| /* |
| * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| */ |
| #include <linux/dmapool.h> |
| #include <linux/kernel.h> |
| #include <linux/in.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ratelimit.h> |
| #include <net/addrconf.h> |
| #include <rdma/ib_cm.h> |
| |
| #include "rds_single_path.h" |
| #include "rds.h" |
| #include "ib.h" |
| #include "ib_mr.h" |
| |
| /* |
| * Set the selected protocol version |
| */ |
| static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version) |
| { |
| conn->c_version = version; |
| } |
| |
| /* |
| * Set up flow control |
| */ |
| static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits) |
| { |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| |
| if (rds_ib_sysctl_flow_control && credits != 0) { |
| /* We're doing flow control */ |
| ic->i_flowctl = 1; |
| rds_ib_send_add_credits(conn, credits); |
| } else { |
| ic->i_flowctl = 0; |
| } |
| } |
| |
| /* |
| * Tune RNR behavior. Without flow control, we use a rather |
| * low timeout, but not the absolute minimum - this should |
| * be tunable. |
| * |
| * We already set the RNR retry count to 7 (which is the |
| * smallest infinite number :-) above. |
| * If flow control is off, we want to change this back to 0 |
| * so that we learn quickly when our credit accounting is |
| * buggy. |
| * |
| * Caller passes in a qp_attr pointer - don't waste stack spacv |
| * by allocation this twice. |
| */ |
| static void |
| rds_ib_tune_rnr(struct rds_ib_connection *ic, struct ib_qp_attr *attr) |
| { |
| int ret; |
| |
| attr->min_rnr_timer = IB_RNR_TIMER_000_32; |
| ret = ib_modify_qp(ic->i_cm_id->qp, attr, IB_QP_MIN_RNR_TIMER); |
| if (ret) |
| printk(KERN_NOTICE "ib_modify_qp(IB_QP_MIN_RNR_TIMER): err=%d\n", -ret); |
| } |
| |
| /* |
| * Connection established. |
| * We get here for both outgoing and incoming connection. |
| */ |
| void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event) |
| { |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| const union rds_ib_conn_priv *dp = NULL; |
| struct ib_qp_attr qp_attr; |
| __be64 ack_seq = 0; |
| __be32 credit = 0; |
| u8 major = 0; |
| u8 minor = 0; |
| int err; |
| |
| dp = event->param.conn.private_data; |
| if (conn->c_isv6) { |
| if (event->param.conn.private_data_len >= |
| sizeof(struct rds6_ib_connect_private)) { |
| major = dp->ricp_v6.dp_protocol_major; |
| minor = dp->ricp_v6.dp_protocol_minor; |
| credit = dp->ricp_v6.dp_credit; |
| /* dp structure start is not guaranteed to be 8 bytes |
| * aligned. Since dp_ack_seq is 64-bit extended load |
| * operations can be used so go through get_unaligned |
| * to avoid unaligned errors. |
| */ |
| ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq); |
| } |
| } else if (event->param.conn.private_data_len >= |
| sizeof(struct rds_ib_connect_private)) { |
| major = dp->ricp_v4.dp_protocol_major; |
| minor = dp->ricp_v4.dp_protocol_minor; |
| credit = dp->ricp_v4.dp_credit; |
| ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq); |
| } |
| |
| /* make sure it isn't empty data */ |
| if (major) { |
| rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor)); |
| rds_ib_set_flow_control(conn, be32_to_cpu(credit)); |
| } |
| |
| if (conn->c_version < RDS_PROTOCOL_VERSION) { |
| if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) { |
| pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n", |
| &conn->c_laddr, &conn->c_faddr, |
| RDS_PROTOCOL_MAJOR(conn->c_version), |
| RDS_PROTOCOL_MINOR(conn->c_version)); |
| rds_conn_destroy(conn); |
| return; |
| } |
| } |
| |
| pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n", |
| ic->i_active_side ? "Active" : "Passive", |
| &conn->c_laddr, &conn->c_faddr, conn->c_tos, |
| RDS_PROTOCOL_MAJOR(conn->c_version), |
| RDS_PROTOCOL_MINOR(conn->c_version), |
| ic->i_flowctl ? ", flow control" : ""); |
| |
| /* receive sl from the peer */ |
| ic->i_sl = ic->i_cm_id->route.path_rec->sl; |
| |
| atomic_set(&ic->i_cq_quiesce, 0); |
| |
| /* Init rings and fill recv. this needs to wait until protocol |
| * negotiation is complete, since ring layout is different |
| * from 3.1 to 4.1. |
| */ |
| rds_ib_send_init_ring(ic); |
| rds_ib_recv_init_ring(ic); |
| /* Post receive buffers - as a side effect, this will update |
| * the posted credit count. */ |
| rds_ib_recv_refill(conn, 1, GFP_KERNEL); |
| |
| /* Tune RNR behavior */ |
| rds_ib_tune_rnr(ic, &qp_attr); |
| |
| qp_attr.qp_state = IB_QPS_RTS; |
| err = ib_modify_qp(ic->i_cm_id->qp, &qp_attr, IB_QP_STATE); |
| if (err) |
| printk(KERN_NOTICE "ib_modify_qp(IB_QP_STATE, RTS): err=%d\n", err); |
| |
| /* update ib_device with this local ipaddr */ |
| err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr); |
| if (err) |
| printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n", |
| err); |
| |
| /* If the peer gave us the last packet it saw, process this as if |
| * we had received a regular ACK. */ |
| if (dp) { |
| if (ack_seq) |
| rds_send_drop_acked(conn, be64_to_cpu(ack_seq), |
| NULL); |
| } |
| |
| conn->c_proposed_version = conn->c_version; |
| rds_connect_complete(conn); |
| } |
| |
| static void rds_ib_cm_fill_conn_param(struct rds_connection *conn, |
| struct rdma_conn_param *conn_param, |
| union rds_ib_conn_priv *dp, |
| u32 protocol_version, |
| u32 max_responder_resources, |
| u32 max_initiator_depth, |
| bool isv6) |
| { |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| struct rds_ib_device *rds_ibdev = ic->rds_ibdev; |
| |
| memset(conn_param, 0, sizeof(struct rdma_conn_param)); |
| |
| conn_param->responder_resources = |
| min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources); |
| conn_param->initiator_depth = |
| min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth); |
| conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7); |
| conn_param->rnr_retry_count = 7; |
| |
| if (dp) { |
| memset(dp, 0, sizeof(*dp)); |
| if (isv6) { |
| dp->ricp_v6.dp_saddr = conn->c_laddr; |
| dp->ricp_v6.dp_daddr = conn->c_faddr; |
| dp->ricp_v6.dp_protocol_major = |
| RDS_PROTOCOL_MAJOR(protocol_version); |
| dp->ricp_v6.dp_protocol_minor = |
| RDS_PROTOCOL_MINOR(protocol_version); |
| dp->ricp_v6.dp_protocol_minor_mask = |
| cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); |
| dp->ricp_v6.dp_ack_seq = |
| cpu_to_be64(rds_ib_piggyb_ack(ic)); |
| dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos; |
| |
| conn_param->private_data = &dp->ricp_v6; |
| conn_param->private_data_len = sizeof(dp->ricp_v6); |
| } else { |
| dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3]; |
| dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3]; |
| dp->ricp_v4.dp_protocol_major = |
| RDS_PROTOCOL_MAJOR(protocol_version); |
| dp->ricp_v4.dp_protocol_minor = |
| RDS_PROTOCOL_MINOR(protocol_version); |
| dp->ricp_v4.dp_protocol_minor_mask = |
| cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); |
| dp->ricp_v4.dp_ack_seq = |
| cpu_to_be64(rds_ib_piggyb_ack(ic)); |
| dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos; |
| |
| conn_param->private_data = &dp->ricp_v4; |
| conn_param->private_data_len = sizeof(dp->ricp_v4); |
| } |
| |
| /* Advertise flow control */ |
| if (ic->i_flowctl) { |
| unsigned int credits; |
| |
| credits = IB_GET_POST_CREDITS |
| (atomic_read(&ic->i_credits)); |
| if (isv6) |
| dp->ricp_v6.dp_credit = cpu_to_be32(credits); |
| else |
| dp->ricp_v4.dp_credit = cpu_to_be32(credits); |
| atomic_sub(IB_SET_POST_CREDITS(credits), |
| &ic->i_credits); |
| } |
| } |
| } |
| |
| static void rds_ib_cq_event_handler(struct ib_event *event, void *data) |
| { |
| rdsdebug("event %u (%s) data %p\n", |
| event->event, ib_event_msg(event->event), data); |
| } |
| |
| /* Plucking the oldest entry from the ring can be done concurrently with |
| * the thread refilling the ring. Each ring operation is protected by |
| * spinlocks and the transient state of refilling doesn't change the |
| * recording of which entry is oldest. |
| * |
| * This relies on IB only calling one cq comp_handler for each cq so that |
| * there will only be one caller of rds_recv_incoming() per RDS connection. |
| */ |
| static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context) |
| { |
| struct rds_connection *conn = context; |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| |
| rdsdebug("conn %p cq %p\n", conn, cq); |
| |
| rds_ib_stats_inc(s_ib_evt_handler_call); |
| |
| tasklet_schedule(&ic->i_recv_tasklet); |
| } |
| |
| static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq, |
| struct ib_wc *wcs) |
| { |
| int nr, i; |
| struct ib_wc *wc; |
| |
| while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { |
| for (i = 0; i < nr; i++) { |
| wc = wcs + i; |
| rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", |
| (unsigned long long)wc->wr_id, wc->status, |
| wc->byte_len, be32_to_cpu(wc->ex.imm_data)); |
| |
| if (wc->wr_id <= ic->i_send_ring.w_nr || |
| wc->wr_id == RDS_IB_ACK_WR_ID) |
| rds_ib_send_cqe_handler(ic, wc); |
| else |
| rds_ib_mr_cqe_handler(ic, wc); |
| |
| } |
| } |
| } |
| |
| static void rds_ib_tasklet_fn_send(unsigned long data) |
| { |
| struct rds_ib_connection *ic = (struct rds_ib_connection *)data; |
| struct rds_connection *conn = ic->conn; |
| |
| rds_ib_stats_inc(s_ib_tasklet_call); |
| |
| /* if cq has been already reaped, ignore incoming cq event */ |
| if (atomic_read(&ic->i_cq_quiesce)) |
| return; |
| |
| poll_scq(ic, ic->i_send_cq, ic->i_send_wc); |
| ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); |
| poll_scq(ic, ic->i_send_cq, ic->i_send_wc); |
| |
| if (rds_conn_up(conn) && |
| (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) || |
| test_bit(0, &conn->c_map_queued))) |
| rds_send_xmit(&ic->conn->c_path[0]); |
| } |
| |
| static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq, |
| struct ib_wc *wcs, |
| struct rds_ib_ack_state *ack_state) |
| { |
| int nr, i; |
| struct ib_wc *wc; |
| |
| while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { |
| for (i = 0; i < nr; i++) { |
| wc = wcs + i; |
| rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", |
| (unsigned long long)wc->wr_id, wc->status, |
| wc->byte_len, be32_to_cpu(wc->ex.imm_data)); |
| |
| rds_ib_recv_cqe_handler(ic, wc, ack_state); |
| } |
| } |
| } |
| |
| static void rds_ib_tasklet_fn_recv(unsigned long data) |
| { |
| struct rds_ib_connection *ic = (struct rds_ib_connection *)data; |
| struct rds_connection *conn = ic->conn; |
| struct rds_ib_device *rds_ibdev = ic->rds_ibdev; |
| struct rds_ib_ack_state state; |
| |
| if (!rds_ibdev) |
| rds_conn_drop(conn); |
| |
| rds_ib_stats_inc(s_ib_tasklet_call); |
| |
| /* if cq has been already reaped, ignore incoming cq event */ |
| if (atomic_read(&ic->i_cq_quiesce)) |
| return; |
| |
| memset(&state, 0, sizeof(state)); |
| poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); |
| ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); |
| poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); |
| |
| if (state.ack_next_valid) |
| rds_ib_set_ack(ic, state.ack_next, state.ack_required); |
| if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { |
| rds_send_drop_acked(conn, state.ack_recv, NULL); |
| ic->i_ack_recv = state.ack_recv; |
| } |
| |
| if (rds_conn_up(conn)) |
| rds_ib_attempt_ack(ic); |
| } |
| |
| static void rds_ib_qp_event_handler(struct ib_event *event, void *data) |
| { |
| struct rds_connection *conn = data; |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| |
| rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event, |
| ib_event_msg(event->event)); |
| |
| switch (event->event) { |
| case IB_EVENT_COMM_EST: |
| rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST); |
| break; |
| default: |
| rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n", |
| event->event, ib_event_msg(event->event), |
| &conn->c_laddr, &conn->c_faddr); |
| rds_conn_drop(conn); |
| break; |
| } |
| } |
| |
| static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context) |
| { |
| struct rds_connection *conn = context; |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| |
| rdsdebug("conn %p cq %p\n", conn, cq); |
| |
| rds_ib_stats_inc(s_ib_evt_handler_call); |
| |
| tasklet_schedule(&ic->i_send_tasklet); |
| } |
| |
| static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev) |
| { |
| int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1]; |
| int index = rds_ibdev->dev->num_comp_vectors - 1; |
| int i; |
| |
| for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) { |
| if (rds_ibdev->vector_load[i] < min) { |
| index = i; |
| min = rds_ibdev->vector_load[i]; |
| } |
| } |
| |
| rds_ibdev->vector_load[index]++; |
| return index; |
| } |
| |
| static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index) |
| { |
| rds_ibdev->vector_load[index]--; |
| } |
| |
| /* Allocate DMA coherent memory to be used to store struct rds_header for |
| * sending/receiving packets. The pointers to the DMA memory and the |
| * associated DMA addresses are stored in two arrays. |
| * |
| * @ibdev: the IB device |
| * @pool: the DMA memory pool |
| * @dma_addrs: pointer to the array for storing DMA addresses |
| * @num_hdrs: number of headers to allocate |
| * |
| * It returns the pointer to the array storing the DMA memory pointers. On |
| * error, NULL pointer is returned. |
| */ |
| struct rds_header **rds_dma_hdrs_alloc(struct ib_device *ibdev, |
| struct dma_pool *pool, |
| dma_addr_t **dma_addrs, u32 num_hdrs) |
| { |
| struct rds_header **hdrs; |
| dma_addr_t *hdr_daddrs; |
| u32 i; |
| |
| hdrs = kvmalloc_node(sizeof(*hdrs) * num_hdrs, GFP_KERNEL, |
| ibdev_to_node(ibdev)); |
| if (!hdrs) |
| return NULL; |
| |
| hdr_daddrs = kvmalloc_node(sizeof(*hdr_daddrs) * num_hdrs, GFP_KERNEL, |
| ibdev_to_node(ibdev)); |
| if (!hdr_daddrs) { |
| kvfree(hdrs); |
| return NULL; |
| } |
| |
| for (i = 0; i < num_hdrs; i++) { |
| hdrs[i] = dma_pool_zalloc(pool, GFP_KERNEL, &hdr_daddrs[i]); |
| if (!hdrs[i]) { |
| rds_dma_hdrs_free(pool, hdrs, hdr_daddrs, i); |
| return NULL; |
| } |
| } |
| |
| *dma_addrs = hdr_daddrs; |
| return hdrs; |
| } |
| |
| /* Free the DMA memory used to store struct rds_header. |
| * |
| * @pool: the DMA memory pool |
| * @hdrs: pointer to the array storing DMA memory pointers |
| * @dma_addrs: pointer to the array storing DMA addresses |
| * @num_hdars: number of headers to free. |
| */ |
| void rds_dma_hdrs_free(struct dma_pool *pool, struct rds_header **hdrs, |
| dma_addr_t *dma_addrs, u32 num_hdrs) |
| { |
| u32 i; |
| |
| for (i = 0; i < num_hdrs; i++) |
| dma_pool_free(pool, hdrs[i], dma_addrs[i]); |
| kvfree(hdrs); |
| kvfree(dma_addrs); |
| } |
| |
| /* |
| * This needs to be very careful to not leave IS_ERR pointers around for |
| * cleanup to trip over. |
| */ |
| static int rds_ib_setup_qp(struct rds_connection *conn) |
| { |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| struct ib_device *dev = ic->i_cm_id->device; |
| struct ib_qp_init_attr attr; |
| struct ib_cq_init_attr cq_attr = {}; |
| struct rds_ib_device *rds_ibdev; |
| unsigned long max_wrs; |
| int ret, fr_queue_space; |
| struct dma_pool *pool; |
| |
| /* |
| * It's normal to see a null device if an incoming connection races |
| * with device removal, so we don't print a warning. |
| */ |
| rds_ibdev = rds_ib_get_client_data(dev); |
| if (!rds_ibdev) |
| return -EOPNOTSUPP; |
| |
| /* The fr_queue_space is currently set to 512, to add extra space on |
| * completion queue and send queue. This extra space is used for FRWR |
| * registration and invalidation work requests |
| */ |
| fr_queue_space = RDS_IB_DEFAULT_FR_WR; |
| |
| /* add the conn now so that connection establishment has the dev */ |
| rds_ib_add_conn(rds_ibdev, conn); |
| |
| max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_send_wr + 1 ? |
| rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_send_wr; |
| if (ic->i_send_ring.w_nr != max_wrs) |
| rds_ib_ring_resize(&ic->i_send_ring, max_wrs); |
| |
| max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_recv_wr + 1 ? |
| rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_recv_wr; |
| if (ic->i_recv_ring.w_nr != max_wrs) |
| rds_ib_ring_resize(&ic->i_recv_ring, max_wrs); |
| |
| /* Protection domain and memory range */ |
| ic->i_pd = rds_ibdev->pd; |
| |
| ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev); |
| cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1; |
| cq_attr.comp_vector = ic->i_scq_vector; |
| ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send, |
| rds_ib_cq_event_handler, conn, |
| &cq_attr); |
| if (IS_ERR(ic->i_send_cq)) { |
| ret = PTR_ERR(ic->i_send_cq); |
| ic->i_send_cq = NULL; |
| ibdev_put_vector(rds_ibdev, ic->i_scq_vector); |
| rdsdebug("ib_create_cq send failed: %d\n", ret); |
| goto rds_ibdev_out; |
| } |
| |
| ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev); |
| cq_attr.cqe = ic->i_recv_ring.w_nr; |
| cq_attr.comp_vector = ic->i_rcq_vector; |
| ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv, |
| rds_ib_cq_event_handler, conn, |
| &cq_attr); |
| if (IS_ERR(ic->i_recv_cq)) { |
| ret = PTR_ERR(ic->i_recv_cq); |
| ic->i_recv_cq = NULL; |
| ibdev_put_vector(rds_ibdev, ic->i_rcq_vector); |
| rdsdebug("ib_create_cq recv failed: %d\n", ret); |
| goto send_cq_out; |
| } |
| |
| ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); |
| if (ret) { |
| rdsdebug("ib_req_notify_cq send failed: %d\n", ret); |
| goto recv_cq_out; |
| } |
| |
| ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); |
| if (ret) { |
| rdsdebug("ib_req_notify_cq recv failed: %d\n", ret); |
| goto recv_cq_out; |
| } |
| |
| /* XXX negotiate max send/recv with remote? */ |
| memset(&attr, 0, sizeof(attr)); |
| attr.event_handler = rds_ib_qp_event_handler; |
| attr.qp_context = conn; |
| /* + 1 to allow for the single ack message */ |
| attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1; |
| attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1; |
| attr.cap.max_send_sge = rds_ibdev->max_sge; |
| attr.cap.max_recv_sge = RDS_IB_RECV_SGE; |
| attr.sq_sig_type = IB_SIGNAL_REQ_WR; |
| attr.qp_type = IB_QPT_RC; |
| attr.send_cq = ic->i_send_cq; |
| attr.recv_cq = ic->i_recv_cq; |
| |
| /* |
| * XXX this can fail if max_*_wr is too large? Are we supposed |
| * to back off until we get a value that the hardware can support? |
| */ |
| ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr); |
| if (ret) { |
| rdsdebug("rdma_create_qp failed: %d\n", ret); |
| goto recv_cq_out; |
| } |
| |
| pool = rds_ibdev->rid_hdrs_pool; |
| ic->i_send_hdrs = rds_dma_hdrs_alloc(dev, pool, &ic->i_send_hdrs_dma, |
| ic->i_send_ring.w_nr); |
| if (!ic->i_send_hdrs) { |
| ret = -ENOMEM; |
| rdsdebug("DMA send hdrs alloc failed\n"); |
| goto qp_out; |
| } |
| |
| ic->i_recv_hdrs = rds_dma_hdrs_alloc(dev, pool, &ic->i_recv_hdrs_dma, |
| ic->i_recv_ring.w_nr); |
| if (!ic->i_recv_hdrs) { |
| ret = -ENOMEM; |
| rdsdebug("DMA recv hdrs alloc failed\n"); |
| goto send_hdrs_dma_out; |
| } |
| |
| ic->i_ack = dma_pool_zalloc(pool, GFP_KERNEL, |
| &ic->i_ack_dma); |
| if (!ic->i_ack) { |
| ret = -ENOMEM; |
| rdsdebug("DMA ack header alloc failed\n"); |
| goto recv_hdrs_dma_out; |
| } |
| |
| ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work), |
| ic->i_send_ring.w_nr), |
| ibdev_to_node(dev)); |
| if (!ic->i_sends) { |
| ret = -ENOMEM; |
| rdsdebug("send allocation failed\n"); |
| goto ack_dma_out; |
| } |
| |
| ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work), |
| ic->i_recv_ring.w_nr), |
| ibdev_to_node(dev)); |
| if (!ic->i_recvs) { |
| ret = -ENOMEM; |
| rdsdebug("recv allocation failed\n"); |
| goto sends_out; |
| } |
| |
| rds_ib_recv_init_ack(ic); |
| |
| rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd, |
| ic->i_send_cq, ic->i_recv_cq); |
| |
| goto out; |
| |
| sends_out: |
| vfree(ic->i_sends); |
| |
| ack_dma_out: |
| dma_pool_free(pool, ic->i_ack, ic->i_ack_dma); |
| ic->i_ack = NULL; |
| |
| recv_hdrs_dma_out: |
| rds_dma_hdrs_free(pool, ic->i_recv_hdrs, ic->i_recv_hdrs_dma, |
| ic->i_recv_ring.w_nr); |
| ic->i_recv_hdrs = NULL; |
| ic->i_recv_hdrs_dma = NULL; |
| |
| send_hdrs_dma_out: |
| rds_dma_hdrs_free(pool, ic->i_send_hdrs, ic->i_send_hdrs_dma, |
| ic->i_send_ring.w_nr); |
| ic->i_send_hdrs = NULL; |
| ic->i_send_hdrs_dma = NULL; |
| |
| qp_out: |
| rdma_destroy_qp(ic->i_cm_id); |
| recv_cq_out: |
| ib_destroy_cq(ic->i_recv_cq); |
| ic->i_recv_cq = NULL; |
| send_cq_out: |
| ib_destroy_cq(ic->i_send_cq); |
| ic->i_send_cq = NULL; |
| rds_ibdev_out: |
| rds_ib_remove_conn(rds_ibdev, conn); |
| out: |
| rds_ib_dev_put(rds_ibdev); |
| |
| return ret; |
| } |
| |
| static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6) |
| { |
| const union rds_ib_conn_priv *dp = event->param.conn.private_data; |
| u8 data_len, major, minor; |
| u32 version = 0; |
| __be16 mask; |
| u16 common; |
| |
| /* |
| * rdma_cm private data is odd - when there is any private data in the |
| * request, we will be given a pretty large buffer without telling us the |
| * original size. The only way to tell the difference is by looking at |
| * the contents, which are initialized to zero. |
| * If the protocol version fields aren't set, this is a connection attempt |
| * from an older version. This could be 3.0 or 2.0 - we can't tell. |
| * We really should have changed this for OFED 1.3 :-( |
| */ |
| |
| /* Be paranoid. RDS always has privdata */ |
| if (!event->param.conn.private_data_len) { |
| printk(KERN_NOTICE "RDS incoming connection has no private data, " |
| "rejecting\n"); |
| return 0; |
| } |
| |
| if (isv6) { |
| data_len = sizeof(struct rds6_ib_connect_private); |
| major = dp->ricp_v6.dp_protocol_major; |
| minor = dp->ricp_v6.dp_protocol_minor; |
| mask = dp->ricp_v6.dp_protocol_minor_mask; |
| } else { |
| data_len = sizeof(struct rds_ib_connect_private); |
| major = dp->ricp_v4.dp_protocol_major; |
| minor = dp->ricp_v4.dp_protocol_minor; |
| mask = dp->ricp_v4.dp_protocol_minor_mask; |
| } |
| |
| /* Even if len is crap *now* I still want to check it. -ASG */ |
| if (event->param.conn.private_data_len < data_len || major == 0) |
| return RDS_PROTOCOL_4_0; |
| |
| common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS; |
| if (major == 4 && common) { |
| version = RDS_PROTOCOL_4_0; |
| while ((common >>= 1) != 0) |
| version++; |
| } else if (RDS_PROTOCOL_COMPAT_VERSION == |
| RDS_PROTOCOL(major, minor)) { |
| version = RDS_PROTOCOL_COMPAT_VERSION; |
| } else { |
| if (isv6) |
| printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n", |
| &dp->ricp_v6.dp_saddr, major, minor); |
| else |
| printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n", |
| &dp->ricp_v4.dp_saddr, major, minor); |
| } |
| return version; |
| } |
| |
| #if IS_ENABLED(CONFIG_IPV6) |
| /* Given an IPv6 address, find the net_device which hosts that address and |
| * return its index. This is used by the rds_ib_cm_handle_connect() code to |
| * find the interface index of where an incoming request comes from when |
| * the request is using a link local address. |
| * |
| * Note one problem in this search. It is possible that two interfaces have |
| * the same link local address. Unfortunately, this cannot be solved unless |
| * the underlying layer gives us the interface which an incoming RDMA connect |
| * request comes from. |
| */ |
| static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr) |
| { |
| struct net_device *dev; |
| int idx = 0; |
| |
| rcu_read_lock(); |
| for_each_netdev_rcu(net, dev) { |
| if (ipv6_chk_addr(net, addr, dev, 1)) { |
| idx = dev->ifindex; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return idx; |
| } |
| #endif |
| |
| int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id, |
| struct rdma_cm_event *event, bool isv6) |
| { |
| __be64 lguid = cm_id->route.path_rec->sgid.global.interface_id; |
| __be64 fguid = cm_id->route.path_rec->dgid.global.interface_id; |
| const struct rds_ib_conn_priv_cmn *dp_cmn; |
| struct rds_connection *conn = NULL; |
| struct rds_ib_connection *ic = NULL; |
| struct rdma_conn_param conn_param; |
| const union rds_ib_conn_priv *dp; |
| union rds_ib_conn_priv dp_rep; |
| struct in6_addr s_mapped_addr; |
| struct in6_addr d_mapped_addr; |
| const struct in6_addr *saddr6; |
| const struct in6_addr *daddr6; |
| int destroy = 1; |
| u32 ifindex = 0; |
| u32 version; |
| int err = 1; |
| |
| /* Check whether the remote protocol version matches ours. */ |
| version = rds_ib_protocol_compatible(event, isv6); |
| if (!version) { |
| err = RDS_RDMA_REJ_INCOMPAT; |
| goto out; |
| } |
| |
| dp = event->param.conn.private_data; |
| if (isv6) { |
| #if IS_ENABLED(CONFIG_IPV6) |
| dp_cmn = &dp->ricp_v6.dp_cmn; |
| saddr6 = &dp->ricp_v6.dp_saddr; |
| daddr6 = &dp->ricp_v6.dp_daddr; |
| /* If either address is link local, need to find the |
| * interface index in order to create a proper RDS |
| * connection. |
| */ |
| if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) { |
| /* Using init_net for now .. */ |
| ifindex = __rds_find_ifindex(&init_net, daddr6); |
| /* No index found... Need to bail out. */ |
| if (ifindex == 0) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| } else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) { |
| /* Use our address to find the correct index. */ |
| ifindex = __rds_find_ifindex(&init_net, daddr6); |
| /* No index found... Need to bail out. */ |
| if (ifindex == 0) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| } |
| #else |
| err = -EOPNOTSUPP; |
| goto out; |
| #endif |
| } else { |
| dp_cmn = &dp->ricp_v4.dp_cmn; |
| ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr); |
| ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr); |
| saddr6 = &s_mapped_addr; |
| daddr6 = &d_mapped_addr; |
| } |
| |
| rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n", |
| saddr6, daddr6, RDS_PROTOCOL_MAJOR(version), |
| RDS_PROTOCOL_MINOR(version), |
| (unsigned long long)be64_to_cpu(lguid), |
| (unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss); |
| |
| /* RDS/IB is not currently netns aware, thus init_net */ |
| conn = rds_conn_create(&init_net, daddr6, saddr6, |
| &rds_ib_transport, dp_cmn->ricpc_dp_toss, |
| GFP_KERNEL, ifindex); |
| if (IS_ERR(conn)) { |
| rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn)); |
| conn = NULL; |
| goto out; |
| } |
| |
| /* |
| * The connection request may occur while the |
| * previous connection exist, e.g. in case of failover. |
| * But as connections may be initiated simultaneously |
| * by both hosts, we have a random backoff mechanism - |
| * see the comment above rds_queue_reconnect() |
| */ |
| mutex_lock(&conn->c_cm_lock); |
| if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) { |
| if (rds_conn_state(conn) == RDS_CONN_UP) { |
| rdsdebug("incoming connect while connecting\n"); |
| rds_conn_drop(conn); |
| rds_ib_stats_inc(s_ib_listen_closed_stale); |
| } else |
| if (rds_conn_state(conn) == RDS_CONN_CONNECTING) { |
| /* Wait and see - our connect may still be succeeding */ |
| rds_ib_stats_inc(s_ib_connect_raced); |
| } |
| goto out; |
| } |
| |
| ic = conn->c_transport_data; |
| |
| rds_ib_set_protocol(conn, version); |
| rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit)); |
| |
| /* If the peer gave us the last packet it saw, process this as if |
| * we had received a regular ACK. */ |
| if (dp_cmn->ricpc_ack_seq) |
| rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq), |
| NULL); |
| |
| BUG_ON(cm_id->context); |
| BUG_ON(ic->i_cm_id); |
| |
| ic->i_cm_id = cm_id; |
| cm_id->context = conn; |
| |
| /* We got halfway through setting up the ib_connection, if we |
| * fail now, we have to take the long route out of this mess. */ |
| destroy = 0; |
| |
| err = rds_ib_setup_qp(conn); |
| if (err) { |
| rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err); |
| goto out; |
| } |
| |
| rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version, |
| event->param.conn.responder_resources, |
| event->param.conn.initiator_depth, isv6); |
| |
| /* rdma_accept() calls rdma_reject() internally if it fails */ |
| if (rdma_accept(cm_id, &conn_param)) |
| rds_ib_conn_error(conn, "rdma_accept failed\n"); |
| |
| out: |
| if (conn) |
| mutex_unlock(&conn->c_cm_lock); |
| if (err) |
| rdma_reject(cm_id, &err, sizeof(int), |
| IB_CM_REJ_CONSUMER_DEFINED); |
| return destroy; |
| } |
| |
| |
| int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6) |
| { |
| struct rds_connection *conn = cm_id->context; |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| struct rdma_conn_param conn_param; |
| union rds_ib_conn_priv dp; |
| int ret; |
| |
| /* If the peer doesn't do protocol negotiation, we must |
| * default to RDSv3.0 */ |
| rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1); |
| ic->i_flowctl = rds_ib_sysctl_flow_control; /* advertise flow control */ |
| |
| ret = rds_ib_setup_qp(conn); |
| if (ret) { |
| rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret); |
| goto out; |
| } |
| |
| rds_ib_cm_fill_conn_param(conn, &conn_param, &dp, |
| conn->c_proposed_version, |
| UINT_MAX, UINT_MAX, isv6); |
| ret = rdma_connect(cm_id, &conn_param); |
| if (ret) |
| rds_ib_conn_error(conn, "rdma_connect failed (%d)\n", ret); |
| |
| out: |
| /* Beware - returning non-zero tells the rdma_cm to destroy |
| * the cm_id. We should certainly not do it as long as we still |
| * "own" the cm_id. */ |
| if (ret) { |
| if (ic->i_cm_id == cm_id) |
| ret = 0; |
| } |
| ic->i_active_side = true; |
| return ret; |
| } |
| |
| int rds_ib_conn_path_connect(struct rds_conn_path *cp) |
| { |
| struct rds_connection *conn = cp->cp_conn; |
| struct sockaddr_storage src, dest; |
| rdma_cm_event_handler handler; |
| struct rds_ib_connection *ic; |
| int ret; |
| |
| ic = conn->c_transport_data; |
| |
| /* XXX I wonder what affect the port space has */ |
| /* delegate cm event handler to rdma_transport */ |
| #if IS_ENABLED(CONFIG_IPV6) |
| if (conn->c_isv6) |
| handler = rds6_rdma_cm_event_handler; |
| else |
| #endif |
| handler = rds_rdma_cm_event_handler; |
| ic->i_cm_id = rdma_create_id(&init_net, handler, conn, |
| RDMA_PS_TCP, IB_QPT_RC); |
| if (IS_ERR(ic->i_cm_id)) { |
| ret = PTR_ERR(ic->i_cm_id); |
| ic->i_cm_id = NULL; |
| rdsdebug("rdma_create_id() failed: %d\n", ret); |
| goto out; |
| } |
| |
| rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn); |
| |
| if (ipv6_addr_v4mapped(&conn->c_faddr)) { |
| struct sockaddr_in *sin; |
| |
| sin = (struct sockaddr_in *)&src; |
| sin->sin_family = AF_INET; |
| sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3]; |
| sin->sin_port = 0; |
| |
| sin = (struct sockaddr_in *)&dest; |
| sin->sin_family = AF_INET; |
| sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3]; |
| sin->sin_port = htons(RDS_PORT); |
| } else { |
| struct sockaddr_in6 *sin6; |
| |
| sin6 = (struct sockaddr_in6 *)&src; |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_addr = conn->c_laddr; |
| sin6->sin6_port = 0; |
| sin6->sin6_scope_id = conn->c_dev_if; |
| |
| sin6 = (struct sockaddr_in6 *)&dest; |
| sin6->sin6_family = AF_INET6; |
| sin6->sin6_addr = conn->c_faddr; |
| sin6->sin6_port = htons(RDS_CM_PORT); |
| sin6->sin6_scope_id = conn->c_dev_if; |
| } |
| |
| ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src, |
| (struct sockaddr *)&dest, |
| RDS_RDMA_RESOLVE_TIMEOUT_MS); |
| if (ret) { |
| rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id, |
| ret); |
| rdma_destroy_id(ic->i_cm_id); |
| ic->i_cm_id = NULL; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * This is so careful about only cleaning up resources that were built up |
| * so that it can be called at any point during startup. In fact it |
| * can be called multiple times for a given connection. |
| */ |
| void rds_ib_conn_path_shutdown(struct rds_conn_path *cp) |
| { |
| struct rds_connection *conn = cp->cp_conn; |
| struct rds_ib_connection *ic = conn->c_transport_data; |
| int err = 0; |
| |
| rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id, |
| ic->i_pd, ic->i_send_cq, ic->i_recv_cq, |
| ic->i_cm_id ? ic->i_cm_id->qp : NULL); |
| |
| if (ic->i_cm_id) { |
| rdsdebug("disconnecting cm %p\n", ic->i_cm_id); |
| err = rdma_disconnect(ic->i_cm_id); |
| if (err) { |
| /* Actually this may happen quite frequently, when |
| * an outgoing connect raced with an incoming connect. |
| */ |
| rdsdebug("failed to disconnect, cm: %p err %d\n", |
| ic->i_cm_id, err); |
| } |
| |
| /* kick off "flush_worker" for all pools in order to reap |
| * all FRMR registrations that are still marked "FRMR_IS_INUSE" |
| */ |
| rds_ib_flush_mrs(); |
| |
| /* |
| * We want to wait for tx and rx completion to finish |
| * before we tear down the connection, but we have to be |
| * careful not to get stuck waiting on a send ring that |
| * only has unsignaled sends in it. We've shutdown new |
| * sends before getting here so by waiting for signaled |
| * sends to complete we're ensured that there will be no |
| * more tx processing. |
| */ |
| wait_event(rds_ib_ring_empty_wait, |
| rds_ib_ring_empty(&ic->i_recv_ring) && |
| (atomic_read(&ic->i_signaled_sends) == 0) && |
| (atomic_read(&ic->i_fastreg_inuse_count) == 0) && |
| (atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR)); |
| tasklet_kill(&ic->i_send_tasklet); |
| tasklet_kill(&ic->i_recv_tasklet); |
| |
| atomic_set(&ic->i_cq_quiesce, 1); |
| |
| /* first destroy the ib state that generates callbacks */ |
| if (ic->i_cm_id->qp) |
| rdma_destroy_qp(ic->i_cm_id); |
| if (ic->i_send_cq) { |
| if (ic->rds_ibdev) |
| ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector); |
| ib_destroy_cq(ic->i_send_cq); |
| } |
| |
| if (ic->i_recv_cq) { |
| if (ic->rds_ibdev) |
| ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector); |
| ib_destroy_cq(ic->i_recv_cq); |
| } |
| |
| if (ic->rds_ibdev) { |
| struct dma_pool *pool; |
| |
| pool = ic->rds_ibdev->rid_hdrs_pool; |
| |
| /* then free the resources that ib callbacks use */ |
| if (ic->i_send_hdrs) { |
| rds_dma_hdrs_free(pool, ic->i_send_hdrs, |
| ic->i_send_hdrs_dma, |
| ic->i_send_ring.w_nr); |
| ic->i_send_hdrs = NULL; |
| ic->i_send_hdrs_dma = NULL; |
| } |
| |
| if (ic->i_recv_hdrs) { |
| rds_dma_hdrs_free(pool, ic->i_recv_hdrs, |
| ic->i_recv_hdrs_dma, |
| ic->i_recv_ring.w_nr); |
| ic->i_recv_hdrs = NULL; |
| ic->i_recv_hdrs_dma = NULL; |
| } |
| |
| if (ic->i_ack) { |
| dma_pool_free(pool, ic->i_ack, ic->i_ack_dma); |
| ic->i_ack = NULL; |
| } |
| } else { |
| WARN_ON(ic->i_send_hdrs); |
| WARN_ON(ic->i_send_hdrs_dma); |
| WARN_ON(ic->i_recv_hdrs); |
| WARN_ON(ic->i_recv_hdrs_dma); |
| WARN_ON(ic->i_ack); |
| } |
| |
| if (ic->i_sends) |
| rds_ib_send_clear_ring(ic); |
| if (ic->i_recvs) |
| rds_ib_recv_clear_ring(ic); |
| |
| rdma_destroy_id(ic->i_cm_id); |
| |
| /* |
| * Move connection back to the nodev list. |
| */ |
| if (ic->rds_ibdev) |
| rds_ib_remove_conn(ic->rds_ibdev, conn); |
| |
| ic->i_cm_id = NULL; |
| ic->i_pd = NULL; |
| ic->i_send_cq = NULL; |
| ic->i_recv_cq = NULL; |
| } |
| BUG_ON(ic->rds_ibdev); |
| |
| /* Clear pending transmit */ |
| if (ic->i_data_op) { |
| struct rds_message *rm; |
| |
| rm = container_of(ic->i_data_op, struct rds_message, data); |
| rds_message_put(rm); |
| ic->i_data_op = NULL; |
| } |
| |
| /* Clear the ACK state */ |
| clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); |
| #ifdef KERNEL_HAS_ATOMIC64 |
| atomic64_set(&ic->i_ack_next, 0); |
| #else |
| ic->i_ack_next = 0; |
| #endif |
| ic->i_ack_recv = 0; |
| |
| /* Clear flow control state */ |
| ic->i_flowctl = 0; |
| atomic_set(&ic->i_credits, 0); |
| |
| /* Re-init rings, but retain sizes. */ |
| rds_ib_ring_init(&ic->i_send_ring, ic->i_send_ring.w_nr); |
| rds_ib_ring_init(&ic->i_recv_ring, ic->i_recv_ring.w_nr); |
| |
| if (ic->i_ibinc) { |
| rds_inc_put(&ic->i_ibinc->ii_inc); |
| ic->i_ibinc = NULL; |
| } |
| |
| vfree(ic->i_sends); |
| ic->i_sends = NULL; |
| vfree(ic->i_recvs); |
| ic->i_recvs = NULL; |
| ic->i_active_side = false; |
| } |
| |
| int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp) |
| { |
| struct rds_ib_connection *ic; |
| unsigned long flags; |
| int ret; |
| |
| /* XXX too lazy? */ |
| ic = kzalloc(sizeof(struct rds_ib_connection), gfp); |
| if (!ic) |
| return -ENOMEM; |
| |
| ret = rds_ib_recv_alloc_caches(ic, gfp); |
| if (ret) { |
| kfree(ic); |
| return ret; |
| } |
| |
| INIT_LIST_HEAD(&ic->ib_node); |
| tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send, |
| (unsigned long)ic); |
| tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv, |
| (unsigned long)ic); |
| mutex_init(&ic->i_recv_mutex); |
| #ifndef KERNEL_HAS_ATOMIC64 |
| spin_lock_init(&ic->i_ack_lock); |
| #endif |
| atomic_set(&ic->i_signaled_sends, 0); |
| atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR); |
| |
| /* |
| * rds_ib_conn_shutdown() waits for these to be emptied so they |
| * must be initialized before it can be called. |
| */ |
| rds_ib_ring_init(&ic->i_send_ring, 0); |
| rds_ib_ring_init(&ic->i_recv_ring, 0); |
| |
| ic->conn = conn; |
| conn->c_transport_data = ic; |
| |
| spin_lock_irqsave(&ib_nodev_conns_lock, flags); |
| list_add_tail(&ic->ib_node, &ib_nodev_conns); |
| spin_unlock_irqrestore(&ib_nodev_conns_lock, flags); |
| |
| |
| rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data); |
| return 0; |
| } |
| |
| /* |
| * Free a connection. Connection must be shut down and not set for reconnect. |
| */ |
| void rds_ib_conn_free(void *arg) |
| { |
| struct rds_ib_connection *ic = arg; |
| spinlock_t *lock_ptr; |
| |
| rdsdebug("ic %p\n", ic); |
| |
| /* |
| * Conn is either on a dev's list or on the nodev list. |
| * A race with shutdown() or connect() would cause problems |
| * (since rds_ibdev would change) but that should never happen. |
| */ |
| lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock; |
| |
| spin_lock_irq(lock_ptr); |
| list_del(&ic->ib_node); |
| spin_unlock_irq(lock_ptr); |
| |
| rds_ib_recv_free_caches(ic); |
| |
| kfree(ic); |
| } |
| |
| |
| /* |
| * An error occurred on the connection |
| */ |
| void |
| __rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| rds_conn_drop(conn); |
| |
| va_start(ap, fmt); |
| vprintk(fmt, ap); |
| va_end(ap); |
| } |