| /* |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| * |
| * Copyright SUSE Linux Products GmbH 2010 |
| * |
| * Authors: Alexander Graf <agraf@suse.de> |
| */ |
| |
| #ifndef __ASM_KVM_BOOK3S_64_H__ |
| #define __ASM_KVM_BOOK3S_64_H__ |
| |
| #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
| static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu) |
| { |
| preempt_disable(); |
| return &get_paca()->shadow_vcpu; |
| } |
| |
| static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu) |
| { |
| preempt_enable(); |
| } |
| #endif |
| |
| #define SPAPR_TCE_SHIFT 12 |
| |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */ |
| extern unsigned long kvm_rma_pages; |
| #endif |
| |
| #define VRMA_VSID 0x1ffffffUL /* 1TB VSID reserved for VRMA */ |
| |
| /* |
| * We use a lock bit in HPTE dword 0 to synchronize updates and |
| * accesses to each HPTE, and another bit to indicate non-present |
| * HPTEs. |
| */ |
| #define HPTE_V_HVLOCK 0x40UL |
| #define HPTE_V_ABSENT 0x20UL |
| |
| /* |
| * We use this bit in the guest_rpte field of the revmap entry |
| * to indicate a modified HPTE. |
| */ |
| #define HPTE_GR_MODIFIED (1ul << 62) |
| |
| /* These bits are reserved in the guest view of the HPTE */ |
| #define HPTE_GR_RESERVED HPTE_GR_MODIFIED |
| |
| static inline long try_lock_hpte(__be64 *hpte, unsigned long bits) |
| { |
| unsigned long tmp, old; |
| __be64 be_lockbit, be_bits; |
| |
| /* |
| * We load/store in native endian, but the HTAB is in big endian. If |
| * we byte swap all data we apply on the PTE we're implicitly correct |
| * again. |
| */ |
| be_lockbit = cpu_to_be64(HPTE_V_HVLOCK); |
| be_bits = cpu_to_be64(bits); |
| |
| asm volatile(" ldarx %0,0,%2\n" |
| " and. %1,%0,%3\n" |
| " bne 2f\n" |
| " or %0,%0,%4\n" |
| " stdcx. %0,0,%2\n" |
| " beq+ 2f\n" |
| " mr %1,%3\n" |
| "2: isync" |
| : "=&r" (tmp), "=&r" (old) |
| : "r" (hpte), "r" (be_bits), "r" (be_lockbit) |
| : "cc", "memory"); |
| return old == 0; |
| } |
| |
| static inline int __hpte_actual_psize(unsigned int lp, int psize) |
| { |
| int i, shift; |
| unsigned int mask; |
| |
| /* start from 1 ignoring MMU_PAGE_4K */ |
| for (i = 1; i < MMU_PAGE_COUNT; i++) { |
| |
| /* invalid penc */ |
| if (mmu_psize_defs[psize].penc[i] == -1) |
| continue; |
| /* |
| * encoding bits per actual page size |
| * PTE LP actual page size |
| * rrrr rrrz >=8KB |
| * rrrr rrzz >=16KB |
| * rrrr rzzz >=32KB |
| * rrrr zzzz >=64KB |
| * ....... |
| */ |
| shift = mmu_psize_defs[i].shift - LP_SHIFT; |
| if (shift > LP_BITS) |
| shift = LP_BITS; |
| mask = (1 << shift) - 1; |
| if ((lp & mask) == mmu_psize_defs[psize].penc[i]) |
| return i; |
| } |
| return -1; |
| } |
| |
| static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r, |
| unsigned long pte_index) |
| { |
| int b_psize = MMU_PAGE_4K, a_psize = MMU_PAGE_4K; |
| unsigned int penc; |
| unsigned long rb = 0, va_low, sllp; |
| unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1); |
| |
| if (v & HPTE_V_LARGE) { |
| for (b_psize = 0; b_psize < MMU_PAGE_COUNT; b_psize++) { |
| |
| /* valid entries have a shift value */ |
| if (!mmu_psize_defs[b_psize].shift) |
| continue; |
| |
| a_psize = __hpte_actual_psize(lp, b_psize); |
| if (a_psize != -1) |
| break; |
| } |
| } |
| /* |
| * Ignore the top 14 bits of va |
| * v have top two bits covering segment size, hence move |
| * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits. |
| * AVA field in v also have the lower 23 bits ignored. |
| * For base page size 4K we need 14 .. 65 bits (so need to |
| * collect extra 11 bits) |
| * For others we need 14..14+i |
| */ |
| /* This covers 14..54 bits of va*/ |
| rb = (v & ~0x7fUL) << 16; /* AVA field */ |
| |
| rb |= v >> (62 - 8); /* B field */ |
| /* |
| * AVA in v had cleared lower 23 bits. We need to derive |
| * that from pteg index |
| */ |
| va_low = pte_index >> 3; |
| if (v & HPTE_V_SECONDARY) |
| va_low = ~va_low; |
| /* |
| * get the vpn bits from va_low using reverse of hashing. |
| * In v we have va with 23 bits dropped and then left shifted |
| * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need |
| * right shift it with (SID_SHIFT - (23 - 7)) |
| */ |
| if (!(v & HPTE_V_1TB_SEG)) |
| va_low ^= v >> (SID_SHIFT - 16); |
| else |
| va_low ^= v >> (SID_SHIFT_1T - 16); |
| va_low &= 0x7ff; |
| |
| switch (b_psize) { |
| case MMU_PAGE_4K: |
| sllp = ((mmu_psize_defs[a_psize].sllp & SLB_VSID_L) >> 6) | |
| ((mmu_psize_defs[a_psize].sllp & SLB_VSID_LP) >> 4); |
| rb |= sllp << 5; /* AP field */ |
| rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */ |
| break; |
| default: |
| { |
| int aval_shift; |
| /* |
| * remaining bits of AVA/LP fields |
| * Also contain the rr bits of LP |
| */ |
| rb |= (va_low << mmu_psize_defs[b_psize].shift) & 0x7ff000; |
| /* |
| * Now clear not needed LP bits based on actual psize |
| */ |
| rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1); |
| /* |
| * AVAL field 58..77 - base_page_shift bits of va |
| * we have space for 58..64 bits, Missing bits should |
| * be zero filled. +1 is to take care of L bit shift |
| */ |
| aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1; |
| rb |= ((va_low << aval_shift) & 0xfe); |
| |
| rb |= 1; /* L field */ |
| penc = mmu_psize_defs[b_psize].penc[a_psize]; |
| rb |= penc << 12; /* LP field */ |
| break; |
| } |
| } |
| rb |= (v >> 54) & 0x300; /* B field */ |
| return rb; |
| } |
| |
| static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l, |
| bool is_base_size) |
| { |
| |
| int size, a_psize; |
| /* Look at the 8 bit LP value */ |
| unsigned int lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1); |
| |
| /* only handle 4k, 64k and 16M pages for now */ |
| if (!(h & HPTE_V_LARGE)) |
| return 1ul << 12; |
| else { |
| for (size = 0; size < MMU_PAGE_COUNT; size++) { |
| /* valid entries have a shift value */ |
| if (!mmu_psize_defs[size].shift) |
| continue; |
| |
| a_psize = __hpte_actual_psize(lp, size); |
| if (a_psize != -1) { |
| if (is_base_size) |
| return 1ul << mmu_psize_defs[size].shift; |
| return 1ul << mmu_psize_defs[a_psize].shift; |
| } |
| } |
| |
| } |
| return 0; |
| } |
| |
| static inline unsigned long hpte_page_size(unsigned long h, unsigned long l) |
| { |
| return __hpte_page_size(h, l, 0); |
| } |
| |
| static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l) |
| { |
| return __hpte_page_size(h, l, 1); |
| } |
| |
| static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize) |
| { |
| return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT; |
| } |
| |
| static inline int hpte_is_writable(unsigned long ptel) |
| { |
| unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP); |
| |
| return pp != PP_RXRX && pp != PP_RXXX; |
| } |
| |
| static inline unsigned long hpte_make_readonly(unsigned long ptel) |
| { |
| if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX) |
| ptel = (ptel & ~HPTE_R_PP) | PP_RXXX; |
| else |
| ptel |= PP_RXRX; |
| return ptel; |
| } |
| |
| static inline int hpte_cache_flags_ok(unsigned long ptel, unsigned long io_type) |
| { |
| unsigned int wimg = ptel & HPTE_R_WIMG; |
| |
| /* Handle SAO */ |
| if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) && |
| cpu_has_feature(CPU_FTR_ARCH_206)) |
| wimg = HPTE_R_M; |
| |
| if (!io_type) |
| return wimg == HPTE_R_M; |
| |
| return (wimg & (HPTE_R_W | HPTE_R_I)) == io_type; |
| } |
| |
| /* |
| * If it's present and writable, atomically set dirty and referenced bits and |
| * return the PTE, otherwise return 0. If we find a transparent hugepage |
| * and if it is marked splitting we return 0; |
| */ |
| static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing, |
| unsigned int hugepage) |
| { |
| pte_t old_pte, new_pte = __pte(0); |
| |
| while (1) { |
| old_pte = pte_val(*ptep); |
| /* |
| * wait until _PAGE_BUSY is clear then set it atomically |
| */ |
| if (unlikely(old_pte & _PAGE_BUSY)) { |
| cpu_relax(); |
| continue; |
| } |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| /* If hugepage and is trans splitting return None */ |
| if (unlikely(hugepage && |
| pmd_trans_splitting(pte_pmd(old_pte)))) |
| return __pte(0); |
| #endif |
| /* If pte is not present return None */ |
| if (unlikely(!(old_pte & _PAGE_PRESENT))) |
| return __pte(0); |
| |
| new_pte = pte_mkyoung(old_pte); |
| if (writing && pte_write(old_pte)) |
| new_pte = pte_mkdirty(new_pte); |
| |
| if (old_pte == __cmpxchg_u64((unsigned long *)ptep, old_pte, |
| new_pte)) |
| break; |
| } |
| return new_pte; |
| } |
| |
| |
| /* Return HPTE cache control bits corresponding to Linux pte bits */ |
| static inline unsigned long hpte_cache_bits(unsigned long pte_val) |
| { |
| #if _PAGE_NO_CACHE == HPTE_R_I && _PAGE_WRITETHRU == HPTE_R_W |
| return pte_val & (HPTE_R_W | HPTE_R_I); |
| #else |
| return ((pte_val & _PAGE_NO_CACHE) ? HPTE_R_I : 0) + |
| ((pte_val & _PAGE_WRITETHRU) ? HPTE_R_W : 0); |
| #endif |
| } |
| |
| static inline bool hpte_read_permission(unsigned long pp, unsigned long key) |
| { |
| if (key) |
| return PP_RWRX <= pp && pp <= PP_RXRX; |
| return 1; |
| } |
| |
| static inline bool hpte_write_permission(unsigned long pp, unsigned long key) |
| { |
| if (key) |
| return pp == PP_RWRW; |
| return pp <= PP_RWRW; |
| } |
| |
| static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr) |
| { |
| unsigned long skey; |
| |
| skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) | |
| ((hpte_r & HPTE_R_KEY_LO) >> 9); |
| return (amr >> (62 - 2 * skey)) & 3; |
| } |
| |
| static inline void lock_rmap(unsigned long *rmap) |
| { |
| do { |
| while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap)) |
| cpu_relax(); |
| } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap)); |
| } |
| |
| static inline void unlock_rmap(unsigned long *rmap) |
| { |
| __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap); |
| } |
| |
| static inline bool slot_is_aligned(struct kvm_memory_slot *memslot, |
| unsigned long pagesize) |
| { |
| unsigned long mask = (pagesize >> PAGE_SHIFT) - 1; |
| |
| if (pagesize <= PAGE_SIZE) |
| return 1; |
| return !(memslot->base_gfn & mask) && !(memslot->npages & mask); |
| } |
| |
| /* |
| * This works for 4k, 64k and 16M pages on POWER7, |
| * and 4k and 16M pages on PPC970. |
| */ |
| static inline unsigned long slb_pgsize_encoding(unsigned long psize) |
| { |
| unsigned long senc = 0; |
| |
| if (psize > 0x1000) { |
| senc = SLB_VSID_L; |
| if (psize == 0x10000) |
| senc |= SLB_VSID_LP_01; |
| } |
| return senc; |
| } |
| |
| static inline int is_vrma_hpte(unsigned long hpte_v) |
| { |
| return (hpte_v & ~0xffffffUL) == |
| (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16))); |
| } |
| |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| /* |
| * Note modification of an HPTE; set the HPTE modified bit |
| * if anyone is interested. |
| */ |
| static inline void note_hpte_modification(struct kvm *kvm, |
| struct revmap_entry *rev) |
| { |
| if (atomic_read(&kvm->arch.hpte_mod_interest)) |
| rev->guest_rpte |= HPTE_GR_MODIFIED; |
| } |
| |
| /* |
| * Like kvm_memslots(), but for use in real mode when we can't do |
| * any RCU stuff (since the secondary threads are offline from the |
| * kernel's point of view), and we can't print anything. |
| * Thus we use rcu_dereference_raw() rather than rcu_dereference_check(). |
| */ |
| static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm) |
| { |
| return rcu_dereference_raw_notrace(kvm->memslots); |
| } |
| |
| #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ |
| |
| #endif /* __ASM_KVM_BOOK3S_64_H__ */ |