| /* |
| * Copyright 2012-15 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: AMD |
| * |
| */ |
| |
| #include "reg_helper.h" |
| #include "dcn20_optc.h" |
| #include "dc.h" |
| |
| #define REG(reg)\ |
| optc1->tg_regs->reg |
| |
| #define CTX \ |
| optc1->base.ctx |
| |
| #undef FN |
| #define FN(reg_name, field_name) \ |
| optc1->tg_shift->field_name, optc1->tg_mask->field_name |
| |
| /** |
| * Enable CRTC |
| * Enable CRTC - call ASIC Control Object to enable Timing generator. |
| */ |
| bool optc2_enable_crtc(struct timing_generator *optc) |
| { |
| /* TODO FPGA wait for answer |
| * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE |
| * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK |
| */ |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| /* opp instance for OTG. For DCN1.0, ODM is remoed. |
| * OPP and OPTC should 1:1 mapping |
| */ |
| REG_UPDATE(OPTC_DATA_SOURCE_SELECT, |
| OPTC_SEG0_SRC_SEL, optc->inst); |
| |
| /* VTG enable first is for HW workaround */ |
| REG_UPDATE(CONTROL, |
| VTG0_ENABLE, 1); |
| |
| REG_SEQ_START(); |
| |
| /* Enable CRTC */ |
| REG_UPDATE_2(OTG_CONTROL, |
| OTG_DISABLE_POINT_CNTL, 3, |
| OTG_MASTER_EN, 1); |
| |
| REG_SEQ_SUBMIT(); |
| REG_SEQ_WAIT_DONE(); |
| |
| return true; |
| } |
| |
| /** |
| * DRR double buffering control to select buffer point |
| * for V_TOTAL, H_TOTAL, VTOTAL_MIN, VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers |
| * Options: anytime, start of frame, dp start of frame (range timing) |
| */ |
| void optc2_set_timing_db_mode(struct timing_generator *optc, bool enable) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| uint32_t blank_data_double_buffer_enable = enable ? 1 : 0; |
| |
| REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL, |
| OTG_RANGE_TIMING_DBUF_UPDATE_MODE, blank_data_double_buffer_enable); |
| } |
| |
| /** |
| *For the below, I'm not sure how your GSL parameters are stored in your env, |
| * so I will assume a gsl_params struct for now |
| */ |
| void optc2_set_gsl(struct timing_generator *optc, |
| const struct gsl_params *params) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| /** |
| * There are (MAX_OPTC+1)/2 gsl groups available for use. |
| * In each group (assign an OTG to a group by setting OTG_GSLX_EN = 1, |
| * set one of the OTGs to be the master (OTG_GSL_MASTER_EN = 1) and the rest are slaves. |
| */ |
| REG_UPDATE_5(OTG_GSL_CONTROL, |
| OTG_GSL0_EN, params->gsl0_en, |
| OTG_GSL1_EN, params->gsl1_en, |
| OTG_GSL2_EN, params->gsl2_en, |
| OTG_GSL_MASTER_EN, params->gsl_master_en, |
| OTG_GSL_MASTER_MODE, params->gsl_master_mode); |
| } |
| |
| |
| /* Use the gsl allow flip as the master update lock */ |
| void optc2_use_gsl_as_master_update_lock(struct timing_generator *optc, |
| const struct gsl_params *params) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_UPDATE(OTG_GSL_CONTROL, |
| OTG_MASTER_UPDATE_LOCK_GSL_EN, params->master_update_lock_gsl_en); |
| } |
| |
| /* You can control the GSL timing by limiting GSL to a window (X,Y) */ |
| void optc2_set_gsl_window(struct timing_generator *optc, |
| const struct gsl_params *params) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET_2(OTG_GSL_WINDOW_X, 0, |
| OTG_GSL_WINDOW_START_X, params->gsl_window_start_x, |
| OTG_GSL_WINDOW_END_X, params->gsl_window_end_x); |
| REG_SET_2(OTG_GSL_WINDOW_Y, 0, |
| OTG_GSL_WINDOW_START_Y, params->gsl_window_start_y, |
| OTG_GSL_WINDOW_END_Y, params->gsl_window_end_y); |
| } |
| |
| void optc2_set_gsl_source_select( |
| struct timing_generator *optc, |
| int group_idx, |
| uint32_t gsl_ready_signal) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| switch (group_idx) { |
| case 1: |
| REG_UPDATE(GSL_SOURCE_SELECT, GSL0_READY_SOURCE_SEL, gsl_ready_signal); |
| break; |
| case 2: |
| REG_UPDATE(GSL_SOURCE_SELECT, GSL1_READY_SOURCE_SEL, gsl_ready_signal); |
| break; |
| case 3: |
| REG_UPDATE(GSL_SOURCE_SELECT, GSL2_READY_SOURCE_SEL, gsl_ready_signal); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* DSC encoder frame start controls: x = h position, line_num = # of lines from vstartup */ |
| void optc2_set_dsc_encoder_frame_start(struct timing_generator *optc, |
| int x_position, |
| int line_num) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET_2(OTG_DSC_START_POSITION, 0, |
| OTG_DSC_START_POSITION_X, x_position, |
| OTG_DSC_START_POSITION_LINE_NUM, line_num); |
| } |
| |
| /* Set DSC-related configuration. |
| * dsc_mode: 0 disables DSC, other values enable DSC in specified format |
| * sc_bytes_per_pixel: Bytes per pixel in u3.28 format |
| * dsc_slice_width: Slice width in pixels |
| */ |
| void optc2_set_dsc_config(struct timing_generator *optc, |
| enum optc_dsc_mode dsc_mode, |
| uint32_t dsc_bytes_per_pixel, |
| uint32_t dsc_slice_width) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, |
| OPTC_DSC_MODE, dsc_mode); |
| |
| REG_SET(OPTC_BYTES_PER_PIXEL, 0, |
| OPTC_DSC_BYTES_PER_PIXEL, dsc_bytes_per_pixel); |
| |
| REG_UPDATE(OPTC_WIDTH_CONTROL, |
| OPTC_DSC_SLICE_WIDTH, dsc_slice_width); |
| } |
| |
| /*TEMP: Need to figure out inheritance model here.*/ |
| bool optc2_is_two_pixels_per_containter(const struct dc_crtc_timing *timing) |
| { |
| return optc1_is_two_pixels_per_containter(timing); |
| } |
| |
| void optc2_set_odm_bypass(struct timing_generator *optc, |
| const struct dc_crtc_timing *dc_crtc_timing) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t h_div_2 = 0; |
| |
| REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, |
| OPTC_NUM_OF_INPUT_SEGMENT, 0, |
| OPTC_SEG0_SRC_SEL, optc->inst, |
| OPTC_SEG1_SRC_SEL, 0xf); |
| REG_WRITE(OTG_H_TIMING_CNTL, 0); |
| |
| h_div_2 = optc2_is_two_pixels_per_containter(dc_crtc_timing); |
| REG_UPDATE(OTG_H_TIMING_CNTL, |
| OTG_H_TIMING_DIV_BY2, h_div_2); |
| REG_SET(OPTC_MEMORY_CONFIG, 0, |
| OPTC_MEM_SEL, 0); |
| optc1->opp_count = 1; |
| } |
| |
| void optc2_set_odm_combine(struct timing_generator *optc, int *opp_id, int opp_cnt, |
| struct dc_crtc_timing *timing) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| int mpcc_hactive = (timing->h_addressable + timing->h_border_left + timing->h_border_right) |
| / opp_cnt; |
| uint32_t memory_mask; |
| |
| ASSERT(opp_cnt == 2); |
| |
| /* TODO: In pseudocode but does not affect maximus, delete comment if we dont need on asic |
| * REG_SET(OTG_GLOBAL_CONTROL2, 0, GLOBAL_UPDATE_LOCK_EN, 1); |
| * Program OTG register MASTER_UPDATE_LOCK_DB_X/Y to the position before DP frame start |
| * REG_SET_2(OTG_GLOBAL_CONTROL1, 0, |
| * MASTER_UPDATE_LOCK_DB_X, 160, |
| * MASTER_UPDATE_LOCK_DB_Y, 240); |
| */ |
| |
| /* 2 pieces of memory required for up to 5120 displays, 4 for up to 8192, |
| * however, for ODM combine we can simplify by always using 4. |
| * To make sure there's no overlap, each instance "reserves" 2 memories and |
| * they are uniquely combined here. |
| */ |
| memory_mask = 0x3 << (opp_id[0] * 2) | 0x3 << (opp_id[1] * 2); |
| |
| if (REG(OPTC_MEMORY_CONFIG)) |
| REG_SET(OPTC_MEMORY_CONFIG, 0, |
| OPTC_MEM_SEL, memory_mask); |
| |
| REG_SET_3(OPTC_DATA_SOURCE_SELECT, 0, |
| OPTC_NUM_OF_INPUT_SEGMENT, 1, |
| OPTC_SEG0_SRC_SEL, opp_id[0], |
| OPTC_SEG1_SRC_SEL, opp_id[1]); |
| |
| REG_UPDATE(OPTC_WIDTH_CONTROL, |
| OPTC_SEGMENT_WIDTH, mpcc_hactive); |
| |
| REG_SET(OTG_H_TIMING_CNTL, 0, OTG_H_TIMING_DIV_BY2, 1); |
| optc1->opp_count = opp_cnt; |
| } |
| |
| void optc2_get_optc_source(struct timing_generator *optc, |
| uint32_t *num_of_src_opp, |
| uint32_t *src_opp_id_0, |
| uint32_t *src_opp_id_1) |
| { |
| uint32_t num_of_input_segments; |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_GET_3(OPTC_DATA_SOURCE_SELECT, |
| OPTC_NUM_OF_INPUT_SEGMENT, &num_of_input_segments, |
| OPTC_SEG0_SRC_SEL, src_opp_id_0, |
| OPTC_SEG1_SRC_SEL, src_opp_id_1); |
| |
| if (num_of_input_segments == 1) |
| *num_of_src_opp = 2; |
| else |
| *num_of_src_opp = 1; |
| |
| /* Work around VBIOS not updating OPTC_NUM_OF_INPUT_SEGMENT */ |
| if (*src_opp_id_1 == 0xf) |
| *num_of_src_opp = 1; |
| } |
| |
| void optc2_set_dwb_source(struct timing_generator *optc, |
| uint32_t dwb_pipe_inst) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| if (dwb_pipe_inst == 0) |
| REG_UPDATE(DWB_SOURCE_SELECT, |
| OPTC_DWB0_SOURCE_SELECT, optc->inst); |
| else if (dwb_pipe_inst == 1) |
| REG_UPDATE(DWB_SOURCE_SELECT, |
| OPTC_DWB1_SOURCE_SELECT, optc->inst); |
| } |
| |
| void optc2_align_vblanks( |
| struct timing_generator *optc_master, |
| struct timing_generator *optc_slave, |
| uint32_t master_pixel_clock_100Hz, |
| uint32_t slave_pixel_clock_100Hz, |
| uint8_t master_clock_divider, |
| uint8_t slave_clock_divider) |
| { |
| /* accessing slave OTG registers */ |
| struct optc *optc1 = DCN10TG_FROM_TG(optc_slave); |
| |
| uint32_t master_v_active = 0; |
| uint32_t master_h_total = 0; |
| uint32_t slave_h_total = 0; |
| uint64_t L, XY; |
| uint32_t X, Y, p = 10000; |
| uint32_t master_update_lock; |
| |
| /* disable slave OTG */ |
| REG_UPDATE(OTG_CONTROL, OTG_MASTER_EN, 0); |
| /* wait until disabled */ |
| REG_WAIT(OTG_CONTROL, |
| OTG_CURRENT_MASTER_EN_STATE, |
| 0, 10, 5000); |
| |
| REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &slave_h_total); |
| |
| /* assign slave OTG to be controlled by master update lock */ |
| REG_SET(OTG_GLOBAL_CONTROL0, 0, |
| OTG_MASTER_UPDATE_LOCK_SEL, optc_master->inst); |
| |
| /* accessing master OTG registers */ |
| optc1 = DCN10TG_FROM_TG(optc_master); |
| |
| /* saving update lock state, not sure if it's needed */ |
| REG_GET(OTG_MASTER_UPDATE_LOCK, |
| OTG_MASTER_UPDATE_LOCK, &master_update_lock); |
| /* unlocking master OTG */ |
| REG_SET(OTG_MASTER_UPDATE_LOCK, 0, |
| OTG_MASTER_UPDATE_LOCK, 0); |
| |
| REG_GET(OTG_V_BLANK_START_END, |
| OTG_V_BLANK_START, &master_v_active); |
| REG_GET(OTG_H_TOTAL, OTG_H_TOTAL, &master_h_total); |
| |
| /* calculate when to enable slave OTG */ |
| L = (uint64_t)p * slave_h_total * master_pixel_clock_100Hz; |
| L = div_u64(L, master_h_total); |
| L = div_u64(L, slave_pixel_clock_100Hz); |
| XY = div_u64(L, p); |
| Y = master_v_active - XY - 1; |
| X = div_u64(((XY + 1) * p - L) * master_h_total, p * master_clock_divider); |
| |
| /* |
| * set master OTG to unlock when V/H |
| * counters reach calculated values |
| */ |
| REG_UPDATE(OTG_GLOBAL_CONTROL1, |
| MASTER_UPDATE_LOCK_DB_EN, 1); |
| REG_UPDATE_2(OTG_GLOBAL_CONTROL1, |
| MASTER_UPDATE_LOCK_DB_X, |
| X, |
| MASTER_UPDATE_LOCK_DB_Y, |
| Y); |
| |
| /* lock master OTG */ |
| REG_SET(OTG_MASTER_UPDATE_LOCK, 0, |
| OTG_MASTER_UPDATE_LOCK, 1); |
| REG_WAIT(OTG_MASTER_UPDATE_LOCK, |
| UPDATE_LOCK_STATUS, 1, 1, 10); |
| |
| /* accessing slave OTG registers */ |
| optc1 = DCN10TG_FROM_TG(optc_slave); |
| |
| /* |
| * enable slave OTG, the OTG is locked with |
| * master's update lock, so it will not run |
| */ |
| REG_UPDATE(OTG_CONTROL, |
| OTG_MASTER_EN, 1); |
| |
| /* accessing master OTG registers */ |
| optc1 = DCN10TG_FROM_TG(optc_master); |
| |
| /* |
| * unlock master OTG. When master H/V counters reach |
| * DB_XY point, slave OTG will start |
| */ |
| REG_SET(OTG_MASTER_UPDATE_LOCK, 0, |
| OTG_MASTER_UPDATE_LOCK, 0); |
| |
| /* accessing slave OTG registers */ |
| optc1 = DCN10TG_FROM_TG(optc_slave); |
| |
| /* wait for slave OTG to start running*/ |
| REG_WAIT(OTG_CONTROL, |
| OTG_CURRENT_MASTER_EN_STATE, |
| 1, 10, 5000); |
| |
| /* accessing master OTG registers */ |
| optc1 = DCN10TG_FROM_TG(optc_master); |
| |
| /* disable the XY point*/ |
| REG_UPDATE(OTG_GLOBAL_CONTROL1, |
| MASTER_UPDATE_LOCK_DB_EN, 0); |
| REG_UPDATE_2(OTG_GLOBAL_CONTROL1, |
| MASTER_UPDATE_LOCK_DB_X, |
| 0, |
| MASTER_UPDATE_LOCK_DB_Y, |
| 0); |
| |
| /*restore master update lock*/ |
| REG_SET(OTG_MASTER_UPDATE_LOCK, 0, |
| OTG_MASTER_UPDATE_LOCK, master_update_lock); |
| |
| /* accessing slave OTG registers */ |
| optc1 = DCN10TG_FROM_TG(optc_slave); |
| /* restore slave to be controlled by it's own */ |
| REG_SET(OTG_GLOBAL_CONTROL0, 0, |
| OTG_MASTER_UPDATE_LOCK_SEL, optc_slave->inst); |
| |
| } |
| |
| void optc2_triplebuffer_lock(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_GLOBAL_CONTROL0, 0, |
| OTG_MASTER_UPDATE_LOCK_SEL, optc->inst); |
| |
| REG_SET(OTG_VUPDATE_KEEPOUT, 0, |
| OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 1); |
| |
| REG_SET(OTG_MASTER_UPDATE_LOCK, 0, |
| OTG_MASTER_UPDATE_LOCK, 1); |
| |
| if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) |
| REG_WAIT(OTG_MASTER_UPDATE_LOCK, |
| UPDATE_LOCK_STATUS, 1, |
| 1, 10); |
| } |
| |
| void optc2_triplebuffer_unlock(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_MASTER_UPDATE_LOCK, 0, |
| OTG_MASTER_UPDATE_LOCK, 0); |
| |
| REG_SET(OTG_VUPDATE_KEEPOUT, 0, |
| OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, 0); |
| |
| } |
| |
| void optc2_lock_doublebuffer_enable(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| uint32_t v_blank_start = 0; |
| uint32_t h_blank_start = 0; |
| |
| REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 1); |
| |
| REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 1, |
| DIG_UPDATE_LOCATION, 20); |
| |
| REG_GET(OTG_V_BLANK_START_END, OTG_V_BLANK_START, &v_blank_start); |
| |
| REG_GET(OTG_H_BLANK_START_END, OTG_H_BLANK_START, &h_blank_start); |
| |
| REG_UPDATE_2(OTG_GLOBAL_CONTROL1, |
| MASTER_UPDATE_LOCK_DB_X, |
| (h_blank_start - 200 - 1) / optc1->opp_count, |
| MASTER_UPDATE_LOCK_DB_Y, |
| v_blank_start - 1); |
| } |
| |
| void optc2_lock_doublebuffer_disable(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_UPDATE_2(OTG_GLOBAL_CONTROL1, |
| MASTER_UPDATE_LOCK_DB_X, |
| 0, |
| MASTER_UPDATE_LOCK_DB_Y, |
| 0); |
| |
| REG_UPDATE_2(OTG_GLOBAL_CONTROL2, GLOBAL_UPDATE_LOCK_EN, 0, |
| DIG_UPDATE_LOCATION, 0); |
| |
| REG_UPDATE(OTG_GLOBAL_CONTROL1, MASTER_UPDATE_LOCK_DB_EN, 0); |
| } |
| |
| void optc2_setup_manual_trigger(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET_8(OTG_TRIGA_CNTL, 0, |
| OTG_TRIGA_SOURCE_SELECT, 21, |
| OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst, |
| OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1, |
| OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0, |
| OTG_TRIGA_POLARITY_SELECT, 0, |
| OTG_TRIGA_FREQUENCY_SELECT, 0, |
| OTG_TRIGA_DELAY, 0, |
| OTG_TRIGA_CLEAR, 1); |
| } |
| |
| void optc2_program_manual_trigger(struct timing_generator *optc) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET(OTG_TRIGA_MANUAL_TRIG, 0, |
| OTG_TRIGA_MANUAL_TRIG, 1); |
| } |
| |
| bool optc2_configure_crc(struct timing_generator *optc, |
| const struct crc_params *params) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_SET_2(OTG_CRC_CNTL2, 0, |
| OTG_CRC_DSC_MODE, params->dsc_mode, |
| OTG_CRC_DATA_STREAM_COMBINE_MODE, params->odm_mode); |
| |
| return optc1_configure_crc(optc, params); |
| } |
| |
| |
| void optc2_get_last_used_drr_vtotal(struct timing_generator *optc, uint32_t *refresh_rate) |
| { |
| struct optc *optc1 = DCN10TG_FROM_TG(optc); |
| |
| REG_GET(OTG_DRR_CONTROL, OTG_V_TOTAL_LAST_USED_BY_DRR, refresh_rate); |
| } |
| |
| static struct timing_generator_funcs dcn20_tg_funcs = { |
| .validate_timing = optc1_validate_timing, |
| .program_timing = optc1_program_timing, |
| .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0, |
| .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1, |
| .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2, |
| .program_global_sync = optc1_program_global_sync, |
| .enable_crtc = optc2_enable_crtc, |
| .disable_crtc = optc1_disable_crtc, |
| /* used by enable_timing_synchronization. Not need for FPGA */ |
| .is_counter_moving = optc1_is_counter_moving, |
| .get_position = optc1_get_position, |
| .get_frame_count = optc1_get_vblank_counter, |
| .get_scanoutpos = optc1_get_crtc_scanoutpos, |
| .get_otg_active_size = optc1_get_otg_active_size, |
| .set_early_control = optc1_set_early_control, |
| /* used by enable_timing_synchronization. Not need for FPGA */ |
| .wait_for_state = optc1_wait_for_state, |
| .set_blank = optc1_set_blank, |
| .is_blanked = optc1_is_blanked, |
| .set_blank_color = optc1_program_blank_color, |
| .enable_reset_trigger = optc1_enable_reset_trigger, |
| .enable_crtc_reset = optc1_enable_crtc_reset, |
| .did_triggered_reset_occur = optc1_did_triggered_reset_occur, |
| .triplebuffer_lock = optc2_triplebuffer_lock, |
| .triplebuffer_unlock = optc2_triplebuffer_unlock, |
| .disable_reset_trigger = optc1_disable_reset_trigger, |
| .lock = optc1_lock, |
| .unlock = optc1_unlock, |
| .lock_doublebuffer_enable = optc2_lock_doublebuffer_enable, |
| .lock_doublebuffer_disable = optc2_lock_doublebuffer_disable, |
| .enable_optc_clock = optc1_enable_optc_clock, |
| .set_drr = optc1_set_drr, |
| .get_last_used_drr_vtotal = optc2_get_last_used_drr_vtotal, |
| .set_static_screen_control = optc1_set_static_screen_control, |
| .program_stereo = optc1_program_stereo, |
| .is_stereo_left_eye = optc1_is_stereo_left_eye, |
| .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer, |
| .tg_init = optc1_tg_init, |
| .is_tg_enabled = optc1_is_tg_enabled, |
| .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred, |
| .clear_optc_underflow = optc1_clear_optc_underflow, |
| .setup_global_swap_lock = NULL, |
| .get_crc = optc1_get_crc, |
| .configure_crc = optc2_configure_crc, |
| .set_dsc_config = optc2_set_dsc_config, |
| .set_dwb_source = optc2_set_dwb_source, |
| .set_odm_bypass = optc2_set_odm_bypass, |
| .set_odm_combine = optc2_set_odm_combine, |
| .get_optc_source = optc2_get_optc_source, |
| .set_gsl = optc2_set_gsl, |
| .set_gsl_source_select = optc2_set_gsl_source_select, |
| .set_vtg_params = optc1_set_vtg_params, |
| .program_manual_trigger = optc2_program_manual_trigger, |
| .setup_manual_trigger = optc2_setup_manual_trigger, |
| .get_hw_timing = optc1_get_hw_timing, |
| .align_vblanks = optc2_align_vblanks, |
| }; |
| |
| void dcn20_timing_generator_init(struct optc *optc1) |
| { |
| optc1->base.funcs = &dcn20_tg_funcs; |
| |
| optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1; |
| optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1; |
| |
| optc1->min_h_blank = 32; |
| optc1->min_v_blank = 3; |
| optc1->min_v_blank_interlace = 5; |
| optc1->min_h_sync_width = 4;// Minimum HSYNC = 8 pixels asked By HW in the first place for no actual reason. Oculus Rift S will not light up with 8 as it's hsyncWidth is 6. Changing it to 4 to fix that issue. |
| optc1->min_v_sync_width = 1; |
| } |