blob: 8d7fd65ccced302cd6168f87ee9967a3bce26961 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 OR MIT */
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#define pr_fmt(fmt) "[TTM] " fmt
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/atomic.h>
#include <linux/dma-resv.h>
#include "ttm_module.h"
/* default destructor */
static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
{
kfree(bo);
}
static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
struct drm_printer p = drm_debug_printer(TTM_PFX);
struct ttm_resource_manager *man;
int i, mem_type;
drm_printf(&p, "No space for %p (%lu pages, %zuK, %zuM)\n",
bo, bo->resource->num_pages, bo->base.size >> 10,
bo->base.size >> 20);
for (i = 0; i < placement->num_placement; i++) {
mem_type = placement->placement[i].mem_type;
drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
i, placement->placement[i].flags, mem_type);
man = ttm_manager_type(bo->bdev, mem_type);
ttm_resource_manager_debug(man, &p);
}
}
static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
{
struct ttm_device *bdev = bo->bdev;
list_del_init(&bo->lru);
if (bdev->funcs->del_from_lru_notify)
bdev->funcs->del_from_lru_notify(bo);
}
static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
struct ttm_buffer_object *bo)
{
if (!pos->first)
pos->first = bo;
pos->last = bo;
}
void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
struct ttm_resource *mem,
struct ttm_lru_bulk_move *bulk)
{
struct ttm_device *bdev = bo->bdev;
struct ttm_resource_manager *man;
if (!bo->deleted)
dma_resv_assert_held(bo->base.resv);
if (bo->pin_count) {
ttm_bo_del_from_lru(bo);
return;
}
if (!mem)
return;
man = ttm_manager_type(bdev, mem->mem_type);
list_move_tail(&bo->lru, &man->lru[bo->priority]);
if (bdev->funcs->del_from_lru_notify)
bdev->funcs->del_from_lru_notify(bo);
if (bulk && !bo->pin_count) {
switch (bo->resource->mem_type) {
case TTM_PL_TT:
ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
break;
case TTM_PL_VRAM:
ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
break;
}
}
}
EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
{
unsigned i;
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
struct ttm_resource_manager *man;
if (!pos->first)
continue;
dma_resv_assert_held(pos->first->base.resv);
dma_resv_assert_held(pos->last->base.resv);
man = ttm_manager_type(pos->first->bdev, TTM_PL_TT);
list_bulk_move_tail(&man->lru[i], &pos->first->lru,
&pos->last->lru);
}
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
struct ttm_resource_manager *man;
if (!pos->first)
continue;
dma_resv_assert_held(pos->first->base.resv);
dma_resv_assert_held(pos->last->base.resv);
man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM);
list_bulk_move_tail(&man->lru[i], &pos->first->lru,
&pos->last->lru);
}
}
EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
struct ttm_resource *mem, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_place *hop)
{
struct ttm_resource_manager *old_man, *new_man;
struct ttm_device *bdev = bo->bdev;
int ret;
old_man = ttm_manager_type(bdev, bo->resource->mem_type);
new_man = ttm_manager_type(bdev, mem->mem_type);
ttm_bo_unmap_virtual(bo);
/*
* Create and bind a ttm if required.
*/
if (new_man->use_tt) {
/* Zero init the new TTM structure if the old location should
* have used one as well.
*/
ret = ttm_tt_create(bo, old_man->use_tt);
if (ret)
goto out_err;
if (mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
if (ret)
goto out_err;
}
}
ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
if (ret) {
if (ret == -EMULTIHOP)
return ret;
goto out_err;
}
ctx->bytes_moved += bo->base.size;
return 0;
out_err:
new_man = ttm_manager_type(bdev, bo->resource->mem_type);
if (!new_man->use_tt)
ttm_bo_tt_destroy(bo);
return ret;
}
/*
* Call bo::reserved.
* Will release GPU memory type usage on destruction.
* This is the place to put in driver specific hooks to release
* driver private resources.
* Will release the bo::reserved lock.
*/
static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
{
if (bo->bdev->funcs->delete_mem_notify)
bo->bdev->funcs->delete_mem_notify(bo);
ttm_bo_tt_destroy(bo);
ttm_resource_free(bo, &bo->resource);
}
static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
{
int r;
if (bo->base.resv == &bo->base._resv)
return 0;
BUG_ON(!dma_resv_trylock(&bo->base._resv));
r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
dma_resv_unlock(&bo->base._resv);
if (r)
return r;
if (bo->type != ttm_bo_type_sg) {
/* This works because the BO is about to be destroyed and nobody
* reference it any more. The only tricky case is the trylock on
* the resv object while holding the lru_lock.
*/
spin_lock(&bo->bdev->lru_lock);
bo->base.resv = &bo->base._resv;
spin_unlock(&bo->bdev->lru_lock);
}
return r;
}
static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
{
struct dma_resv *resv = &bo->base._resv;
struct dma_resv_list *fobj;
struct dma_fence *fence;
int i;
rcu_read_lock();
fobj = dma_resv_shared_list(resv);
fence = dma_resv_excl_fence(resv);
if (fence && !fence->ops->signaled)
dma_fence_enable_sw_signaling(fence);
for (i = 0; fobj && i < fobj->shared_count; ++i) {
fence = rcu_dereference(fobj->shared[i]);
if (!fence->ops->signaled)
dma_fence_enable_sw_signaling(fence);
}
rcu_read_unlock();
}
/**
* ttm_bo_cleanup_refs
* If bo idle, remove from lru lists, and unref.
* If not idle, block if possible.
*
* Must be called with lru_lock and reservation held, this function
* will drop the lru lock and optionally the reservation lock before returning.
*
* @bo: The buffer object to clean-up
* @interruptible: Any sleeps should occur interruptibly.
* @no_wait_gpu: Never wait for gpu. Return -EBUSY instead.
* @unlock_resv: Unlock the reservation lock as well.
*/
static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
bool interruptible, bool no_wait_gpu,
bool unlock_resv)
{
struct dma_resv *resv = &bo->base._resv;
int ret;
if (dma_resv_test_signaled(resv, true))
ret = 0;
else
ret = -EBUSY;
if (ret && !no_wait_gpu) {
long lret;
if (unlock_resv)
dma_resv_unlock(bo->base.resv);
spin_unlock(&bo->bdev->lru_lock);
lret = dma_resv_wait_timeout(resv, true, interruptible,
30 * HZ);
if (lret < 0)
return lret;
else if (lret == 0)
return -EBUSY;
spin_lock(&bo->bdev->lru_lock);
if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
/*
* We raced, and lost, someone else holds the reservation now,
* and is probably busy in ttm_bo_cleanup_memtype_use.
*
* Even if it's not the case, because we finished waiting any
* delayed destruction would succeed, so just return success
* here.
*/
spin_unlock(&bo->bdev->lru_lock);
return 0;
}
ret = 0;
}
if (ret || unlikely(list_empty(&bo->ddestroy))) {
if (unlock_resv)
dma_resv_unlock(bo->base.resv);
spin_unlock(&bo->bdev->lru_lock);
return ret;
}
ttm_bo_del_from_lru(bo);
list_del_init(&bo->ddestroy);
spin_unlock(&bo->bdev->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
if (unlock_resv)
dma_resv_unlock(bo->base.resv);
ttm_bo_put(bo);
return 0;
}
/*
* Traverse the delayed list, and call ttm_bo_cleanup_refs on all
* encountered buffers.
*/
bool ttm_bo_delayed_delete(struct ttm_device *bdev, bool remove_all)
{
struct list_head removed;
bool empty;
INIT_LIST_HEAD(&removed);
spin_lock(&bdev->lru_lock);
while (!list_empty(&bdev->ddestroy)) {
struct ttm_buffer_object *bo;
bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
ddestroy);
list_move_tail(&bo->ddestroy, &removed);
if (!ttm_bo_get_unless_zero(bo))
continue;
if (remove_all || bo->base.resv != &bo->base._resv) {
spin_unlock(&bdev->lru_lock);
dma_resv_lock(bo->base.resv, NULL);
spin_lock(&bdev->lru_lock);
ttm_bo_cleanup_refs(bo, false, !remove_all, true);
} else if (dma_resv_trylock(bo->base.resv)) {
ttm_bo_cleanup_refs(bo, false, !remove_all, true);
} else {
spin_unlock(&bdev->lru_lock);
}
ttm_bo_put(bo);
spin_lock(&bdev->lru_lock);
}
list_splice_tail(&removed, &bdev->ddestroy);
empty = list_empty(&bdev->ddestroy);
spin_unlock(&bdev->lru_lock);
return empty;
}
static void ttm_bo_release(struct kref *kref)
{
struct ttm_buffer_object *bo =
container_of(kref, struct ttm_buffer_object, kref);
struct ttm_device *bdev = bo->bdev;
int ret;
WARN_ON_ONCE(bo->pin_count);
if (!bo->deleted) {
ret = ttm_bo_individualize_resv(bo);
if (ret) {
/* Last resort, if we fail to allocate memory for the
* fences block for the BO to become idle
*/
dma_resv_wait_timeout(bo->base.resv, true, false,
30 * HZ);
}
if (bo->bdev->funcs->release_notify)
bo->bdev->funcs->release_notify(bo);
drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
ttm_mem_io_free(bdev, bo->resource);
}
if (!dma_resv_test_signaled(bo->base.resv, true) ||
!dma_resv_trylock(bo->base.resv)) {
/* The BO is not idle, resurrect it for delayed destroy */
ttm_bo_flush_all_fences(bo);
bo->deleted = true;
spin_lock(&bo->bdev->lru_lock);
/*
* Make pinned bos immediately available to
* shrinkers, now that they are queued for
* destruction.
*
* FIXME: QXL is triggering this. Can be removed when the
* driver is fixed.
*/
if (bo->pin_count) {
bo->pin_count = 0;
ttm_bo_move_to_lru_tail(bo, bo->resource, NULL);
}
kref_init(&bo->kref);
list_add_tail(&bo->ddestroy, &bdev->ddestroy);
spin_unlock(&bo->bdev->lru_lock);
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
return;
}
spin_lock(&bo->bdev->lru_lock);
ttm_bo_del_from_lru(bo);
list_del(&bo->ddestroy);
spin_unlock(&bo->bdev->lru_lock);
ttm_bo_cleanup_memtype_use(bo);
dma_resv_unlock(bo->base.resv);
atomic_dec(&ttm_glob.bo_count);
dma_fence_put(bo->moving);
bo->destroy(bo);
}
void ttm_bo_put(struct ttm_buffer_object *bo)
{
kref_put(&bo->kref, ttm_bo_release);
}
EXPORT_SYMBOL(ttm_bo_put);
int ttm_bo_lock_delayed_workqueue(struct ttm_device *bdev)
{
return cancel_delayed_work_sync(&bdev->wq);
}
EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
void ttm_bo_unlock_delayed_workqueue(struct ttm_device *bdev, int resched)
{
if (resched)
schedule_delayed_work(&bdev->wq,
((HZ / 100) < 1) ? 1 : HZ / 100);
}
EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
static int ttm_bo_evict(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx)
{
struct ttm_device *bdev = bo->bdev;
struct ttm_resource *evict_mem;
struct ttm_placement placement;
struct ttm_place hop;
int ret = 0;
memset(&hop, 0, sizeof(hop));
dma_resv_assert_held(bo->base.resv);
placement.num_placement = 0;
placement.num_busy_placement = 0;
bdev->funcs->evict_flags(bo, &placement);
if (!placement.num_placement && !placement.num_busy_placement) {
ret = ttm_bo_wait(bo, true, false);
if (ret)
return ret;
/*
* Since we've already synced, this frees backing store
* immediately.
*/
return ttm_bo_pipeline_gutting(bo);
}
ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
if (ret) {
if (ret != -ERESTARTSYS) {
pr_err("Failed to find memory space for buffer 0x%p eviction\n",
bo);
ttm_bo_mem_space_debug(bo, &placement);
}
goto out;
}
ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
if (unlikely(ret)) {
WARN(ret == -EMULTIHOP, "Unexpected multihop in eviction - likely driver bug\n");
if (ret != -ERESTARTSYS)
pr_err("Buffer eviction failed\n");
ttm_resource_free(bo, &evict_mem);
}
out:
return ret;
}
bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
const struct ttm_place *place)
{
dma_resv_assert_held(bo->base.resv);
if (bo->resource->mem_type == TTM_PL_SYSTEM)
return true;
/* Don't evict this BO if it's outside of the
* requested placement range
*/
if (place->fpfn >= (bo->resource->start + bo->resource->num_pages) ||
(place->lpfn && place->lpfn <= bo->resource->start))
return false;
return true;
}
EXPORT_SYMBOL(ttm_bo_eviction_valuable);
/*
* Check the target bo is allowable to be evicted or swapout, including cases:
*
* a. if share same reservation object with ctx->resv, have assumption
* reservation objects should already be locked, so not lock again and
* return true directly when either the opreation allow_reserved_eviction
* or the target bo already is in delayed free list;
*
* b. Otherwise, trylock it.
*/
static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx,
const struct ttm_place *place,
bool *locked, bool *busy)
{
bool ret = false;
if (bo->base.resv == ctx->resv) {
dma_resv_assert_held(bo->base.resv);
if (ctx->allow_res_evict)
ret = true;
*locked = false;
if (busy)
*busy = false;
} else {
ret = dma_resv_trylock(bo->base.resv);
*locked = ret;
if (busy)
*busy = !ret;
}
if (ret && place && !bo->bdev->funcs->eviction_valuable(bo, place)) {
ret = false;
if (*locked) {
dma_resv_unlock(bo->base.resv);
*locked = false;
}
}
return ret;
}
/**
* ttm_mem_evict_wait_busy - wait for a busy BO to become available
*
* @busy_bo: BO which couldn't be locked with trylock
* @ctx: operation context
* @ticket: acquire ticket
*
* Try to lock a busy buffer object to avoid failing eviction.
*/
static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
struct ttm_operation_ctx *ctx,
struct ww_acquire_ctx *ticket)
{
int r;
if (!busy_bo || !ticket)
return -EBUSY;
if (ctx->interruptible)
r = dma_resv_lock_interruptible(busy_bo->base.resv,
ticket);
else
r = dma_resv_lock(busy_bo->base.resv, ticket);
/*
* TODO: It would be better to keep the BO locked until allocation is at
* least tried one more time, but that would mean a much larger rework
* of TTM.
*/
if (!r)
dma_resv_unlock(busy_bo->base.resv);
return r == -EDEADLK ? -EBUSY : r;
}
int ttm_mem_evict_first(struct ttm_device *bdev,
struct ttm_resource_manager *man,
const struct ttm_place *place,
struct ttm_operation_ctx *ctx,
struct ww_acquire_ctx *ticket)
{
struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
bool locked = false;
unsigned i;
int ret;
spin_lock(&bdev->lru_lock);
for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
list_for_each_entry(bo, &man->lru[i], lru) {
bool busy;
if (!ttm_bo_evict_swapout_allowable(bo, ctx, place,
&locked, &busy)) {
if (busy && !busy_bo && ticket !=
dma_resv_locking_ctx(bo->base.resv))
busy_bo = bo;
continue;
}
if (!ttm_bo_get_unless_zero(bo)) {
if (locked)
dma_resv_unlock(bo->base.resv);
continue;
}
break;
}
/* If the inner loop terminated early, we have our candidate */
if (&bo->lru != &man->lru[i])
break;
bo = NULL;
}
if (!bo) {
if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
busy_bo = NULL;
spin_unlock(&bdev->lru_lock);
ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
if (busy_bo)
ttm_bo_put(busy_bo);
return ret;
}
if (bo->deleted) {
ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
ctx->no_wait_gpu, locked);
ttm_bo_put(bo);
return ret;
}
spin_unlock(&bdev->lru_lock);
ret = ttm_bo_evict(bo, ctx);
if (locked)
ttm_bo_unreserve(bo);
ttm_bo_put(bo);
return ret;
}
/*
* Add the last move fence to the BO and reserve a new shared slot. We only use
* a shared slot to avoid unecessary sync and rely on the subsequent bo move to
* either stall or use an exclusive fence respectively set bo->moving.
*/
static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
struct ttm_resource_manager *man,
struct ttm_resource *mem,
bool no_wait_gpu)
{
struct dma_fence *fence;
int ret;
spin_lock(&man->move_lock);
fence = dma_fence_get(man->move);
spin_unlock(&man->move_lock);
if (!fence)
return 0;
if (no_wait_gpu) {
ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
dma_fence_put(fence);
return ret;
}
dma_resv_add_shared_fence(bo->base.resv, fence);
ret = dma_resv_reserve_shared(bo->base.resv, 1);
if (unlikely(ret)) {
dma_fence_put(fence);
return ret;
}
dma_fence_put(bo->moving);
bo->moving = fence;
return 0;
}
/*
* Repeatedly evict memory from the LRU for @mem_type until we create enough
* space, or we've evicted everything and there isn't enough space.
*/
static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
const struct ttm_place *place,
struct ttm_resource **mem,
struct ttm_operation_ctx *ctx)
{
struct ttm_device *bdev = bo->bdev;
struct ttm_resource_manager *man;
struct ww_acquire_ctx *ticket;
int ret;
man = ttm_manager_type(bdev, place->mem_type);
ticket = dma_resv_locking_ctx(bo->base.resv);
do {
ret = ttm_resource_alloc(bo, place, mem);
if (likely(!ret))
break;
if (unlikely(ret != -ENOSPC))
return ret;
ret = ttm_mem_evict_first(bdev, man, place, ctx,
ticket);
if (unlikely(ret != 0))
return ret;
} while (1);
return ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
}
/*
* Creates space for memory region @mem according to its type.
*
* This function first searches for free space in compatible memory types in
* the priority order defined by the driver. If free space isn't found, then
* ttm_bo_mem_force_space is attempted in priority order to evict and find
* space.
*/
int ttm_bo_mem_space(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_resource **mem,
struct ttm_operation_ctx *ctx)
{
struct ttm_device *bdev = bo->bdev;
bool type_found = false;
int i, ret;
ret = dma_resv_reserve_shared(bo->base.resv, 1);
if (unlikely(ret))
return ret;
for (i = 0; i < placement->num_placement; ++i) {
const struct ttm_place *place = &placement->placement[i];
struct ttm_resource_manager *man;
man = ttm_manager_type(bdev, place->mem_type);
if (!man || !ttm_resource_manager_used(man))
continue;
type_found = true;
ret = ttm_resource_alloc(bo, place, mem);
if (ret == -ENOSPC)
continue;
if (unlikely(ret))
goto error;
ret = ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu);
if (unlikely(ret)) {
ttm_resource_free(bo, mem);
if (ret == -EBUSY)
continue;
goto error;
}
return 0;
}
for (i = 0; i < placement->num_busy_placement; ++i) {
const struct ttm_place *place = &placement->busy_placement[i];
struct ttm_resource_manager *man;
man = ttm_manager_type(bdev, place->mem_type);
if (!man || !ttm_resource_manager_used(man))
continue;
type_found = true;
ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
if (likely(!ret))
return 0;
if (ret && ret != -EBUSY)
goto error;
}
ret = -ENOMEM;
if (!type_found) {
pr_err(TTM_PFX "No compatible memory type found\n");
ret = -EINVAL;
}
error:
if (bo->resource->mem_type == TTM_PL_SYSTEM && !bo->pin_count)
ttm_bo_move_to_lru_tail_unlocked(bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_mem_space);
static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
struct ttm_resource **mem,
struct ttm_operation_ctx *ctx,
struct ttm_place *hop)
{
struct ttm_placement hop_placement;
struct ttm_resource *hop_mem;
int ret;
hop_placement.num_placement = hop_placement.num_busy_placement = 1;
hop_placement.placement = hop_placement.busy_placement = hop;
/* find space in the bounce domain */
ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
if (ret)
return ret;
/* move to the bounce domain */
ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
if (ret) {
ttm_resource_free(bo, &hop_mem);
return ret;
}
return 0;
}
static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_operation_ctx *ctx)
{
struct ttm_resource *mem;
struct ttm_place hop;
int ret;
dma_resv_assert_held(bo->base.resv);
/*
* Determine where to move the buffer.
*
* If driver determines move is going to need
* an extra step then it will return -EMULTIHOP
* and the buffer will be moved to the temporary
* stop and the driver will be called to make
* the second hop.
*/
ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
if (ret)
return ret;
bounce:
ret = ttm_bo_handle_move_mem(bo, mem, false, ctx, &hop);
if (ret == -EMULTIHOP) {
ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop);
if (ret)
goto out;
/* try and move to final place now. */
goto bounce;
}
out:
if (ret)
ttm_resource_free(bo, &mem);
return ret;
}
static bool ttm_bo_places_compat(const struct ttm_place *places,
unsigned num_placement,
struct ttm_resource *mem,
uint32_t *new_flags)
{
unsigned i;
for (i = 0; i < num_placement; i++) {
const struct ttm_place *heap = &places[i];
if ((mem->start < heap->fpfn ||
(heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
continue;
*new_flags = heap->flags;
if ((mem->mem_type == heap->mem_type) &&
(!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
(mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
return true;
}
return false;
}
bool ttm_bo_mem_compat(struct ttm_placement *placement,
struct ttm_resource *mem,
uint32_t *new_flags)
{
if (ttm_bo_places_compat(placement->placement, placement->num_placement,
mem, new_flags))
return true;
if ((placement->busy_placement != placement->placement ||
placement->num_busy_placement > placement->num_placement) &&
ttm_bo_places_compat(placement->busy_placement,
placement->num_busy_placement,
mem, new_flags))
return true;
return false;
}
EXPORT_SYMBOL(ttm_bo_mem_compat);
int ttm_bo_validate(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_operation_ctx *ctx)
{
int ret;
uint32_t new_flags;
dma_resv_assert_held(bo->base.resv);
/*
* Remove the backing store if no placement is given.
*/
if (!placement->num_placement && !placement->num_busy_placement)
return ttm_bo_pipeline_gutting(bo);
/*
* Check whether we need to move buffer.
*/
if (!ttm_bo_mem_compat(placement, bo->resource, &new_flags)) {
ret = ttm_bo_move_buffer(bo, placement, ctx);
if (ret)
return ret;
}
/*
* We might need to add a TTM.
*/
if (bo->resource->mem_type == TTM_PL_SYSTEM) {
ret = ttm_tt_create(bo, true);
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(ttm_bo_validate);
int ttm_bo_init_reserved(struct ttm_device *bdev,
struct ttm_buffer_object *bo,
size_t size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
struct ttm_operation_ctx *ctx,
struct sg_table *sg,
struct dma_resv *resv,
void (*destroy) (struct ttm_buffer_object *))
{
static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM };
bool locked;
int ret;
bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
kref_init(&bo->kref);
INIT_LIST_HEAD(&bo->lru);
INIT_LIST_HEAD(&bo->ddestroy);
bo->bdev = bdev;
bo->type = type;
bo->page_alignment = page_alignment;
bo->moving = NULL;
bo->pin_count = 0;
bo->sg = sg;
if (resv) {
bo->base.resv = resv;
dma_resv_assert_held(bo->base.resv);
} else {
bo->base.resv = &bo->base._resv;
}
atomic_inc(&ttm_glob.bo_count);
ret = ttm_resource_alloc(bo, &sys_mem, &bo->resource);
if (unlikely(ret)) {
ttm_bo_put(bo);
return ret;
}
/*
* For ttm_bo_type_device buffers, allocate
* address space from the device.
*/
if (bo->type == ttm_bo_type_device ||
bo->type == ttm_bo_type_sg)
ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
bo->resource->num_pages);
/* passed reservation objects should already be locked,
* since otherwise lockdep will be angered in radeon.
*/
if (!resv) {
locked = dma_resv_trylock(bo->base.resv);
WARN_ON(!locked);
}
if (likely(!ret))
ret = ttm_bo_validate(bo, placement, ctx);
if (unlikely(ret)) {
if (!resv)
ttm_bo_unreserve(bo);
ttm_bo_put(bo);
return ret;
}
ttm_bo_move_to_lru_tail_unlocked(bo);
return ret;
}
EXPORT_SYMBOL(ttm_bo_init_reserved);
int ttm_bo_init(struct ttm_device *bdev,
struct ttm_buffer_object *bo,
size_t size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
struct sg_table *sg,
struct dma_resv *resv,
void (*destroy) (struct ttm_buffer_object *))
{
struct ttm_operation_ctx ctx = { interruptible, false };
int ret;
ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
page_alignment, &ctx, sg, resv, destroy);
if (ret)
return ret;
if (!resv)
ttm_bo_unreserve(bo);
return 0;
}
EXPORT_SYMBOL(ttm_bo_init);
/*
* buffer object vm functions.
*/
void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
{
struct ttm_device *bdev = bo->bdev;
drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
ttm_mem_io_free(bdev, bo->resource);
}
EXPORT_SYMBOL(ttm_bo_unmap_virtual);
int ttm_bo_wait(struct ttm_buffer_object *bo,
bool interruptible, bool no_wait)
{
long timeout = 15 * HZ;
if (no_wait) {
if (dma_resv_test_signaled(bo->base.resv, true))
return 0;
else
return -EBUSY;
}
timeout = dma_resv_wait_timeout(bo->base.resv, true, interruptible,
timeout);
if (timeout < 0)
return timeout;
if (timeout == 0)
return -EBUSY;
dma_resv_add_excl_fence(bo->base.resv, NULL);
return 0;
}
EXPORT_SYMBOL(ttm_bo_wait);
int ttm_bo_swapout(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx,
gfp_t gfp_flags)
{
struct ttm_place place;
bool locked;
int ret;
/*
* While the bo may already reside in SYSTEM placement, set
* SYSTEM as new placement to cover also the move further below.
* The driver may use the fact that we're moving from SYSTEM
* as an indication that we're about to swap out.
*/
memset(&place, 0, sizeof(place));
place.mem_type = TTM_PL_SYSTEM;
if (!ttm_bo_evict_swapout_allowable(bo, ctx, &place, &locked, NULL))
return -EBUSY;
if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
bo->ttm->page_flags & TTM_PAGE_FLAG_SG ||
bo->ttm->page_flags & TTM_PAGE_FLAG_SWAPPED ||
!ttm_bo_get_unless_zero(bo)) {
if (locked)
dma_resv_unlock(bo->base.resv);
return -EBUSY;
}
if (bo->deleted) {
ttm_bo_cleanup_refs(bo, false, false, locked);
ttm_bo_put(bo);
return 0;
}
ttm_bo_del_from_lru(bo);
/* TODO: Cleanup the locking */
spin_unlock(&bo->bdev->lru_lock);
/*
* Move to system cached
*/
if (bo->resource->mem_type != TTM_PL_SYSTEM) {
struct ttm_operation_ctx ctx = { false, false };
struct ttm_resource *evict_mem;
struct ttm_place hop;
memset(&hop, 0, sizeof(hop));
ret = ttm_resource_alloc(bo, &place, &evict_mem);
if (unlikely(ret))
goto out;
ret = ttm_bo_handle_move_mem(bo, evict_mem, true, &ctx, &hop);
if (unlikely(ret != 0)) {
WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n");
goto out;
}
}
/*
* Make sure BO is idle.
*/
ret = ttm_bo_wait(bo, false, false);
if (unlikely(ret != 0))
goto out;
ttm_bo_unmap_virtual(bo);
/*
* Swap out. Buffer will be swapped in again as soon as
* anyone tries to access a ttm page.
*/
if (bo->bdev->funcs->swap_notify)
bo->bdev->funcs->swap_notify(bo);
if (ttm_tt_is_populated(bo->ttm))
ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags);
out:
/*
* Unreserve without putting on LRU to avoid swapping out an
* already swapped buffer.
*/
if (locked)
dma_resv_unlock(bo->base.resv);
ttm_bo_put(bo);
return ret;
}
void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
{
if (bo->ttm == NULL)
return;
ttm_tt_destroy(bo->bdev, bo->ttm);
bo->ttm = NULL;
}