blob: 6a3c612c83ab60f46ca68075b61a6aeb7045daca [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright © 2006-2007 Intel Corporation
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
#include <linux/pm_runtime.h>
#include <drm/drmP.h>
#include "psb_intel_reg.h"
#include "gma_display.h"
#include "framebuffer.h"
#include "mdfld_output.h"
#include "mdfld_dsi_output.h"
/* Hardcoded currently */
static int ksel = KSEL_CRYSTAL_19;
struct psb_intel_range_t {
int min, max;
};
struct mrst_limit_t {
struct psb_intel_range_t dot, m, p1;
};
struct mrst_clock_t {
/* derived values */
int dot;
int m;
int p1;
};
#define COUNT_MAX 0x10000000
void mdfldWaitForPipeDisable(struct drm_device *dev, int pipe)
{
struct drm_psb_private *dev_priv = dev->dev_private;
const struct psb_offset *map = &dev_priv->regmap[pipe];
int count, temp;
switch (pipe) {
case 0:
case 1:
case 2:
break;
default:
DRM_ERROR("Illegal Pipe Number.\n");
return;
}
/* FIXME JLIU7_PO */
gma_wait_for_vblank(dev);
return;
/* Wait for for the pipe disable to take effect. */
for (count = 0; count < COUNT_MAX; count++) {
temp = REG_READ(map->conf);
if ((temp & PIPEACONF_PIPE_STATE) == 0)
break;
}
}
void mdfldWaitForPipeEnable(struct drm_device *dev, int pipe)
{
struct drm_psb_private *dev_priv = dev->dev_private;
const struct psb_offset *map = &dev_priv->regmap[pipe];
int count, temp;
switch (pipe) {
case 0:
case 1:
case 2:
break;
default:
DRM_ERROR("Illegal Pipe Number.\n");
return;
}
/* FIXME JLIU7_PO */
gma_wait_for_vblank(dev);
return;
/* Wait for for the pipe enable to take effect. */
for (count = 0; count < COUNT_MAX; count++) {
temp = REG_READ(map->conf);
if (temp & PIPEACONF_PIPE_STATE)
break;
}
}
/**
* Return the pipe currently connected to the panel fitter,
* or -1 if the panel fitter is not present or not in use
*/
static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
{
u32 pfit_control;
pfit_control = REG_READ(PFIT_CONTROL);
/* See if the panel fitter is in use */
if ((pfit_control & PFIT_ENABLE) == 0)
return -1;
/* 965 can place panel fitter on either pipe */
return (pfit_control >> 29) & 0x3;
}
static struct drm_device globle_dev;
void mdfld__intel_plane_set_alpha(int enable)
{
struct drm_device *dev = &globle_dev;
int dspcntr_reg = DSPACNTR;
u32 dspcntr;
dspcntr = REG_READ(dspcntr_reg);
if (enable) {
dspcntr &= ~DISPPLANE_32BPP_NO_ALPHA;
dspcntr |= DISPPLANE_32BPP;
} else {
dspcntr &= ~DISPPLANE_32BPP;
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
}
REG_WRITE(dspcntr_reg, dspcntr);
}
static int check_fb(struct drm_framebuffer *fb)
{
if (!fb)
return 0;
switch (fb->format->cpp[0] * 8) {
case 8:
case 16:
case 24:
case 32:
return 0;
default:
DRM_ERROR("Unknown color depth\n");
return -EINVAL;
}
}
static int mdfld__intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->primary->fb;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int pipe = gma_crtc->pipe;
const struct psb_offset *map = &dev_priv->regmap[pipe];
unsigned long start, offset;
u32 dspcntr;
int ret;
memcpy(&globle_dev, dev, sizeof(struct drm_device));
dev_dbg(dev->dev, "pipe = 0x%x.\n", pipe);
/* no fb bound */
if (!fb) {
dev_dbg(dev->dev, "No FB bound\n");
return 0;
}
ret = check_fb(fb);
if (ret)
return ret;
if (pipe > 2) {
DRM_ERROR("Illegal Pipe Number.\n");
return -EINVAL;
}
if (!gma_power_begin(dev, true))
return 0;
start = to_gtt_range(fb->obj[0])->offset;
offset = y * fb->pitches[0] + x * fb->format->cpp[0];
REG_WRITE(map->stride, fb->pitches[0]);
dspcntr = REG_READ(map->cntr);
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (fb->format->cpp[0] * 8) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (fb->format->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
}
REG_WRITE(map->cntr, dspcntr);
dev_dbg(dev->dev, "Writing base %08lX %08lX %d %d\n",
start, offset, x, y);
REG_WRITE(map->linoff, offset);
REG_READ(map->linoff);
REG_WRITE(map->surf, start);
REG_READ(map->surf);
gma_power_end(dev);
return 0;
}
/*
* Disable the pipe, plane and pll.
*
*/
void mdfld_disable_crtc(struct drm_device *dev, int pipe)
{
struct drm_psb_private *dev_priv = dev->dev_private;
const struct psb_offset *map = &dev_priv->regmap[pipe];
u32 temp;
dev_dbg(dev->dev, "pipe = %d\n", pipe);
if (pipe != 1)
mdfld_dsi_gen_fifo_ready(dev, MIPI_GEN_FIFO_STAT_REG(pipe),
HS_CTRL_FIFO_EMPTY | HS_DATA_FIFO_EMPTY);
/* Disable display plane */
temp = REG_READ(map->cntr);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
REG_WRITE(map->cntr,
temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
REG_WRITE(map->base, REG_READ(map->base));
REG_READ(map->base);
}
/* FIXME_JLIU7 MDFLD_PO revisit */
/* Next, disable display pipes */
temp = REG_READ(map->conf);
if ((temp & PIPEACONF_ENABLE) != 0) {
temp &= ~PIPEACONF_ENABLE;
temp |= PIPECONF_PLANE_OFF | PIPECONF_CURSOR_OFF;
REG_WRITE(map->conf, temp);
REG_READ(map->conf);
/* Wait for for the pipe disable to take effect. */
mdfldWaitForPipeDisable(dev, pipe);
}
temp = REG_READ(map->dpll);
if (temp & DPLL_VCO_ENABLE) {
if ((pipe != 1 &&
!((REG_READ(PIPEACONF) | REG_READ(PIPECCONF))
& PIPEACONF_ENABLE)) || pipe == 1) {
temp &= ~(DPLL_VCO_ENABLE);
REG_WRITE(map->dpll, temp);
REG_READ(map->dpll);
/* Wait for the clocks to turn off. */
/* FIXME_MDFLD PO may need more delay */
udelay(500);
if (!(temp & MDFLD_PWR_GATE_EN)) {
/* gating power of DPLL */
REG_WRITE(map->dpll, temp | MDFLD_PWR_GATE_EN);
/* FIXME_MDFLD PO - change 500 to 1 after PO */
udelay(5000);
}
}
}
}
/**
* Sets the power management mode of the pipe and plane.
*
* This code should probably grow support for turning the cursor off and back
* on appropriately at the same time as we're turning the pipe off/on.
*/
static void mdfld_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int pipe = gma_crtc->pipe;
const struct psb_offset *map = &dev_priv->regmap[pipe];
u32 pipeconf = dev_priv->pipeconf[pipe];
u32 temp;
int timeout = 0;
dev_dbg(dev->dev, "mode = %d, pipe = %d\n", mode, pipe);
/* Note: Old code uses pipe a stat for pipe b but that appears
to be a bug */
if (!gma_power_begin(dev, true))
return;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
/* Enable the DPLL */
temp = REG_READ(map->dpll);
if ((temp & DPLL_VCO_ENABLE) == 0) {
/* When ungating power of DPLL, needs to wait 0.5us
before enable the VCO */
if (temp & MDFLD_PWR_GATE_EN) {
temp &= ~MDFLD_PWR_GATE_EN;
REG_WRITE(map->dpll, temp);
/* FIXME_MDFLD PO - change 500 to 1 after PO */
udelay(500);
}
REG_WRITE(map->dpll, temp);
REG_READ(map->dpll);
/* FIXME_MDFLD PO - change 500 to 1 after PO */
udelay(500);
REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
REG_READ(map->dpll);
/**
* wait for DSI PLL to lock
* NOTE: only need to poll status of pipe 0 and pipe 1,
* since both MIPI pipes share the same PLL.
*/
while ((pipe != 2) && (timeout < 20000) &&
!(REG_READ(map->conf) & PIPECONF_DSIPLL_LOCK)) {
udelay(150);
timeout++;
}
}
/* Enable the plane */
temp = REG_READ(map->cntr);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
REG_WRITE(map->cntr,
temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
REG_WRITE(map->base, REG_READ(map->base));
}
/* Enable the pipe */
temp = REG_READ(map->conf);
if ((temp & PIPEACONF_ENABLE) == 0) {
REG_WRITE(map->conf, pipeconf);
/* Wait for for the pipe enable to take effect. */
mdfldWaitForPipeEnable(dev, pipe);
}
/*workaround for sighting 3741701 Random X blank display*/
/*perform w/a in video mode only on pipe A or C*/
if (pipe == 0 || pipe == 2) {
REG_WRITE(map->status, REG_READ(map->status));
msleep(100);
if (PIPE_VBLANK_STATUS & REG_READ(map->status))
dev_dbg(dev->dev, "OK");
else {
dev_dbg(dev->dev, "STUCK!!!!");
/*shutdown controller*/
temp = REG_READ(map->cntr);
REG_WRITE(map->cntr,
temp & ~DISPLAY_PLANE_ENABLE);
REG_WRITE(map->base, REG_READ(map->base));
/*mdfld_dsi_dpi_shut_down(dev, pipe);*/
REG_WRITE(0xb048, 1);
msleep(100);
temp = REG_READ(map->conf);
temp &= ~PIPEACONF_ENABLE;
REG_WRITE(map->conf, temp);
msleep(100); /*wait for pipe disable*/
REG_WRITE(MIPI_DEVICE_READY_REG(pipe), 0);
msleep(100);
REG_WRITE(0xb004, REG_READ(0xb004));
/* try to bring the controller back up again*/
REG_WRITE(MIPI_DEVICE_READY_REG(pipe), 1);
temp = REG_READ(map->cntr);
REG_WRITE(map->cntr,
temp | DISPLAY_PLANE_ENABLE);
REG_WRITE(map->base, REG_READ(map->base));
/*mdfld_dsi_dpi_turn_on(dev, pipe);*/
REG_WRITE(0xb048, 2);
msleep(100);
temp = REG_READ(map->conf);
temp |= PIPEACONF_ENABLE;
REG_WRITE(map->conf, temp);
}
}
gma_crtc_load_lut(crtc);
/* Give the overlay scaler a chance to enable
if it's on this pipe */
/* psb_intel_crtc_dpms_video(crtc, true); TODO */
break;
case DRM_MODE_DPMS_OFF:
/* Give the overlay scaler a chance to disable
* if it's on this pipe */
/* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
if (pipe != 1)
mdfld_dsi_gen_fifo_ready(dev,
MIPI_GEN_FIFO_STAT_REG(pipe),
HS_CTRL_FIFO_EMPTY | HS_DATA_FIFO_EMPTY);
/* Disable the VGA plane that we never use */
REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
/* Disable display plane */
temp = REG_READ(map->cntr);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
REG_WRITE(map->cntr,
temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
REG_WRITE(map->base, REG_READ(map->base));
REG_READ(map->base);
}
/* Next, disable display pipes */
temp = REG_READ(map->conf);
if ((temp & PIPEACONF_ENABLE) != 0) {
temp &= ~PIPEACONF_ENABLE;
temp |= PIPECONF_PLANE_OFF | PIPECONF_CURSOR_OFF;
REG_WRITE(map->conf, temp);
REG_READ(map->conf);
/* Wait for for the pipe disable to take effect. */
mdfldWaitForPipeDisable(dev, pipe);
}
temp = REG_READ(map->dpll);
if (temp & DPLL_VCO_ENABLE) {
if ((pipe != 1 && !((REG_READ(PIPEACONF)
| REG_READ(PIPECCONF)) & PIPEACONF_ENABLE))
|| pipe == 1) {
temp &= ~(DPLL_VCO_ENABLE);
REG_WRITE(map->dpll, temp);
REG_READ(map->dpll);
/* Wait for the clocks to turn off. */
/* FIXME_MDFLD PO may need more delay */
udelay(500);
}
}
break;
}
gma_power_end(dev);
}
#define MDFLD_LIMT_DPLL_19 0
#define MDFLD_LIMT_DPLL_25 1
#define MDFLD_LIMT_DPLL_83 2
#define MDFLD_LIMT_DPLL_100 3
#define MDFLD_LIMT_DSIPLL_19 4
#define MDFLD_LIMT_DSIPLL_25 5
#define MDFLD_LIMT_DSIPLL_83 6
#define MDFLD_LIMT_DSIPLL_100 7
#define MDFLD_DOT_MIN 19750
#define MDFLD_DOT_MAX 120000
#define MDFLD_DPLL_M_MIN_19 113
#define MDFLD_DPLL_M_MAX_19 155
#define MDFLD_DPLL_P1_MIN_19 2
#define MDFLD_DPLL_P1_MAX_19 10
#define MDFLD_DPLL_M_MIN_25 101
#define MDFLD_DPLL_M_MAX_25 130
#define MDFLD_DPLL_P1_MIN_25 2
#define MDFLD_DPLL_P1_MAX_25 10
#define MDFLD_DPLL_M_MIN_83 64
#define MDFLD_DPLL_M_MAX_83 64
#define MDFLD_DPLL_P1_MIN_83 2
#define MDFLD_DPLL_P1_MAX_83 2
#define MDFLD_DPLL_M_MIN_100 64
#define MDFLD_DPLL_M_MAX_100 64
#define MDFLD_DPLL_P1_MIN_100 2
#define MDFLD_DPLL_P1_MAX_100 2
#define MDFLD_DSIPLL_M_MIN_19 131
#define MDFLD_DSIPLL_M_MAX_19 175
#define MDFLD_DSIPLL_P1_MIN_19 3
#define MDFLD_DSIPLL_P1_MAX_19 8
#define MDFLD_DSIPLL_M_MIN_25 97
#define MDFLD_DSIPLL_M_MAX_25 140
#define MDFLD_DSIPLL_P1_MIN_25 3
#define MDFLD_DSIPLL_P1_MAX_25 9
#define MDFLD_DSIPLL_M_MIN_83 33
#define MDFLD_DSIPLL_M_MAX_83 92
#define MDFLD_DSIPLL_P1_MIN_83 2
#define MDFLD_DSIPLL_P1_MAX_83 3
#define MDFLD_DSIPLL_M_MIN_100 97
#define MDFLD_DSIPLL_M_MAX_100 140
#define MDFLD_DSIPLL_P1_MIN_100 3
#define MDFLD_DSIPLL_P1_MAX_100 9
static const struct mrst_limit_t mdfld_limits[] = {
{ /* MDFLD_LIMT_DPLL_19 */
.dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX},
.m = {.min = MDFLD_DPLL_M_MIN_19, .max = MDFLD_DPLL_M_MAX_19},
.p1 = {.min = MDFLD_DPLL_P1_MIN_19, .max = MDFLD_DPLL_P1_MAX_19},
},
{ /* MDFLD_LIMT_DPLL_25 */
.dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX},
.m = {.min = MDFLD_DPLL_M_MIN_25, .max = MDFLD_DPLL_M_MAX_25},
.p1 = {.min = MDFLD_DPLL_P1_MIN_25, .max = MDFLD_DPLL_P1_MAX_25},
},
{ /* MDFLD_LIMT_DPLL_83 */
.dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX},
.m = {.min = MDFLD_DPLL_M_MIN_83, .max = MDFLD_DPLL_M_MAX_83},
.p1 = {.min = MDFLD_DPLL_P1_MIN_83, .max = MDFLD_DPLL_P1_MAX_83},
},
{ /* MDFLD_LIMT_DPLL_100 */
.dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX},
.m = {.min = MDFLD_DPLL_M_MIN_100, .max = MDFLD_DPLL_M_MAX_100},
.p1 = {.min = MDFLD_DPLL_P1_MIN_100, .max = MDFLD_DPLL_P1_MAX_100},
},
{ /* MDFLD_LIMT_DSIPLL_19 */
.dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX},
.m = {.min = MDFLD_DSIPLL_M_MIN_19, .max = MDFLD_DSIPLL_M_MAX_19},
.p1 = {.min = MDFLD_DSIPLL_P1_MIN_19, .max = MDFLD_DSIPLL_P1_MAX_19},
},
{ /* MDFLD_LIMT_DSIPLL_25 */
.dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX},
.m = {.min = MDFLD_DSIPLL_M_MIN_25, .max = MDFLD_DSIPLL_M_MAX_25},
.p1 = {.min = MDFLD_DSIPLL_P1_MIN_25, .max = MDFLD_DSIPLL_P1_MAX_25},
},
{ /* MDFLD_LIMT_DSIPLL_83 */
.dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX},
.m = {.min = MDFLD_DSIPLL_M_MIN_83, .max = MDFLD_DSIPLL_M_MAX_83},
.p1 = {.min = MDFLD_DSIPLL_P1_MIN_83, .max = MDFLD_DSIPLL_P1_MAX_83},
},
{ /* MDFLD_LIMT_DSIPLL_100 */
.dot = {.min = MDFLD_DOT_MIN, .max = MDFLD_DOT_MAX},
.m = {.min = MDFLD_DSIPLL_M_MIN_100, .max = MDFLD_DSIPLL_M_MAX_100},
.p1 = {.min = MDFLD_DSIPLL_P1_MIN_100, .max = MDFLD_DSIPLL_P1_MAX_100},
},
};
#define MDFLD_M_MIN 21
#define MDFLD_M_MAX 180
static const u32 mdfld_m_converts[] = {
/* M configuration table from 9-bit LFSR table */
224, 368, 440, 220, 366, 439, 219, 365, 182, 347, /* 21 - 30 */
173, 342, 171, 85, 298, 149, 74, 37, 18, 265, /* 31 - 40 */
388, 194, 353, 432, 216, 108, 310, 155, 333, 166, /* 41 - 50 */
83, 41, 276, 138, 325, 162, 337, 168, 340, 170, /* 51 - 60 */
341, 426, 469, 234, 373, 442, 221, 110, 311, 411, /* 61 - 70 */
461, 486, 243, 377, 188, 350, 175, 343, 427, 213, /* 71 - 80 */
106, 53, 282, 397, 354, 227, 113, 56, 284, 142, /* 81 - 90 */
71, 35, 273, 136, 324, 418, 465, 488, 500, 506, /* 91 - 100 */
253, 126, 63, 287, 399, 455, 483, 241, 376, 444, /* 101 - 110 */
478, 495, 503, 251, 381, 446, 479, 239, 375, 443, /* 111 - 120 */
477, 238, 119, 315, 157, 78, 295, 147, 329, 420, /* 121 - 130 */
210, 105, 308, 154, 77, 38, 275, 137, 68, 290, /* 131 - 140 */
145, 328, 164, 82, 297, 404, 458, 485, 498, 249, /* 141 - 150 */
380, 190, 351, 431, 471, 235, 117, 314, 413, 206, /* 151 - 160 */
103, 51, 25, 12, 262, 387, 193, 96, 48, 280, /* 161 - 170 */
396, 198, 99, 305, 152, 76, 294, 403, 457, 228, /* 171 - 180 */
};
static const struct mrst_limit_t *mdfld_limit(struct drm_crtc *crtc)
{
const struct mrst_limit_t *limit = NULL;
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
if (gma_pipe_has_type(crtc, INTEL_OUTPUT_MIPI)
|| gma_pipe_has_type(crtc, INTEL_OUTPUT_MIPI2)) {
if ((ksel == KSEL_CRYSTAL_19) || (ksel == KSEL_BYPASS_19))
limit = &mdfld_limits[MDFLD_LIMT_DSIPLL_19];
else if (ksel == KSEL_BYPASS_25)
limit = &mdfld_limits[MDFLD_LIMT_DSIPLL_25];
else if ((ksel == KSEL_BYPASS_83_100) &&
(dev_priv->core_freq == 166))
limit = &mdfld_limits[MDFLD_LIMT_DSIPLL_83];
else if ((ksel == KSEL_BYPASS_83_100) &&
(dev_priv->core_freq == 100 ||
dev_priv->core_freq == 200))
limit = &mdfld_limits[MDFLD_LIMT_DSIPLL_100];
} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
if ((ksel == KSEL_CRYSTAL_19) || (ksel == KSEL_BYPASS_19))
limit = &mdfld_limits[MDFLD_LIMT_DPLL_19];
else if (ksel == KSEL_BYPASS_25)
limit = &mdfld_limits[MDFLD_LIMT_DPLL_25];
else if ((ksel == KSEL_BYPASS_83_100) &&
(dev_priv->core_freq == 166))
limit = &mdfld_limits[MDFLD_LIMT_DPLL_83];
else if ((ksel == KSEL_BYPASS_83_100) &&
(dev_priv->core_freq == 100 ||
dev_priv->core_freq == 200))
limit = &mdfld_limits[MDFLD_LIMT_DPLL_100];
} else {
limit = NULL;
dev_dbg(dev->dev, "mdfld_limit Wrong display type.\n");
}
return limit;
}
/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
static void mdfld_clock(int refclk, struct mrst_clock_t *clock)
{
clock->dot = (refclk * clock->m) / clock->p1;
}
/**
* Returns a set of divisors for the desired target clock with the given refclk,
* or FALSE. Divisor values are the actual divisors for
*/
static bool
mdfldFindBestPLL(struct drm_crtc *crtc, int target, int refclk,
struct mrst_clock_t *best_clock)
{
struct mrst_clock_t clock;
const struct mrst_limit_t *limit = mdfld_limit(crtc);
int err = target;
memset(best_clock, 0, sizeof(*best_clock));
for (clock.m = limit->m.min; clock.m <= limit->m.max; clock.m++) {
for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max;
clock.p1++) {
int this_err;
mdfld_clock(refclk, &clock);
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
return err != target;
}
static int mdfld_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct drm_psb_private *dev_priv = dev->dev_private;
int pipe = gma_crtc->pipe;
const struct psb_offset *map = &dev_priv->regmap[pipe];
int refclk = 0;
int clk_n = 0, clk_p2 = 0, clk_byte = 1, clk = 0, m_conv = 0,
clk_tmp = 0;
struct mrst_clock_t clock;
bool ok;
u32 dpll = 0, fp = 0;
bool is_mipi = false, is_mipi2 = false, is_hdmi = false;
struct drm_mode_config *mode_config = &dev->mode_config;
struct gma_encoder *gma_encoder = NULL;
uint64_t scalingType = DRM_MODE_SCALE_FULLSCREEN;
struct drm_encoder *encoder;
struct drm_connector *connector;
int timeout = 0;
int ret;
dev_dbg(dev->dev, "pipe = 0x%x\n", pipe);
#if 0
if (pipe == 1) {
if (!gma_power_begin(dev, true))
return 0;
android_hdmi_crtc_mode_set(crtc, mode, adjusted_mode,
x, y, old_fb);
goto mrst_crtc_mode_set_exit;
}
#endif
ret = check_fb(crtc->primary->fb);
if (ret)
return ret;
dev_dbg(dev->dev, "adjusted_hdisplay = %d\n",
adjusted_mode->hdisplay);
dev_dbg(dev->dev, "adjusted_vdisplay = %d\n",
adjusted_mode->vdisplay);
dev_dbg(dev->dev, "adjusted_hsync_start = %d\n",
adjusted_mode->hsync_start);
dev_dbg(dev->dev, "adjusted_hsync_end = %d\n",
adjusted_mode->hsync_end);
dev_dbg(dev->dev, "adjusted_htotal = %d\n",
adjusted_mode->htotal);
dev_dbg(dev->dev, "adjusted_vsync_start = %d\n",
adjusted_mode->vsync_start);
dev_dbg(dev->dev, "adjusted_vsync_end = %d\n",
adjusted_mode->vsync_end);
dev_dbg(dev->dev, "adjusted_vtotal = %d\n",
adjusted_mode->vtotal);
dev_dbg(dev->dev, "adjusted_clock = %d\n",
adjusted_mode->clock);
dev_dbg(dev->dev, "hdisplay = %d\n",
mode->hdisplay);
dev_dbg(dev->dev, "vdisplay = %d\n",
mode->vdisplay);
if (!gma_power_begin(dev, true))
return 0;
memcpy(&gma_crtc->saved_mode, mode,
sizeof(struct drm_display_mode));
memcpy(&gma_crtc->saved_adjusted_mode, adjusted_mode,
sizeof(struct drm_display_mode));
list_for_each_entry(connector, &mode_config->connector_list, head) {
encoder = connector->encoder;
if (!encoder)
continue;
if (encoder->crtc != crtc)
continue;
gma_encoder = gma_attached_encoder(connector);
switch (gma_encoder->type) {
case INTEL_OUTPUT_MIPI:
is_mipi = true;
break;
case INTEL_OUTPUT_MIPI2:
is_mipi2 = true;
break;
case INTEL_OUTPUT_HDMI:
is_hdmi = true;
break;
}
}
/* Disable the VGA plane that we never use */
REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
/* Disable the panel fitter if it was on our pipe */
if (psb_intel_panel_fitter_pipe(dev) == pipe)
REG_WRITE(PFIT_CONTROL, 0);
/* pipesrc and dspsize control the size that is scaled from,
* which should always be the user's requested size.
*/
if (pipe == 1) {
/* FIXME: To make HDMI display with 864x480 (TPO), 480x864
* (PYR) or 480x854 (TMD), set the sprite width/height and
* souce image size registers with the adjusted mode for
* pipe B.
*/
/*
* The defined sprite rectangle must always be completely
* contained within the displayable area of the screen image
* (frame buffer).
*/
REG_WRITE(map->size, ((min(mode->crtc_vdisplay, adjusted_mode->crtc_vdisplay) - 1) << 16)
| (min(mode->crtc_hdisplay, adjusted_mode->crtc_hdisplay) - 1));
/* Set the CRTC with encoder mode. */
REG_WRITE(map->src, ((mode->crtc_hdisplay - 1) << 16)
| (mode->crtc_vdisplay - 1));
} else {
REG_WRITE(map->size,
((mode->crtc_vdisplay - 1) << 16) |
(mode->crtc_hdisplay - 1));
REG_WRITE(map->src,
((mode->crtc_hdisplay - 1) << 16) |
(mode->crtc_vdisplay - 1));
}
REG_WRITE(map->pos, 0);
if (gma_encoder)
drm_object_property_get_value(&connector->base,
dev->mode_config.scaling_mode_property, &scalingType);
if (scalingType == DRM_MODE_SCALE_NO_SCALE) {
/* Medfield doesn't have register support for centering so we
* need to mess with the h/vblank and h/vsync start and ends
* to get centering
*/
int offsetX = 0, offsetY = 0;
offsetX = (adjusted_mode->crtc_hdisplay -
mode->crtc_hdisplay) / 2;
offsetY = (adjusted_mode->crtc_vdisplay -
mode->crtc_vdisplay) / 2;
REG_WRITE(map->htotal, (mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
REG_WRITE(map->vtotal, (mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start -
offsetX - 1) |
((adjusted_mode->crtc_hblank_end - offsetX - 1) << 16));
REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start -
offsetX - 1) |
((adjusted_mode->crtc_hsync_end - offsetX - 1) << 16));
REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start -
offsetY - 1) |
((adjusted_mode->crtc_vblank_end - offsetY - 1) << 16));
REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start -
offsetY - 1) |
((adjusted_mode->crtc_vsync_end - offsetY - 1) << 16));
} else {
REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
}
/* Flush the plane changes */
{
const struct drm_crtc_helper_funcs *crtc_funcs =
crtc->helper_private;
crtc_funcs->mode_set_base(crtc, x, y, old_fb);
}
/* setup pipeconf */
dev_priv->pipeconf[pipe] = PIPEACONF_ENABLE; /* FIXME_JLIU7 REG_READ(pipeconf_reg); */
/* Set up the display plane register */
dev_priv->dspcntr[pipe] = REG_READ(map->cntr);
dev_priv->dspcntr[pipe] |= pipe << DISPPLANE_SEL_PIPE_POS;
dev_priv->dspcntr[pipe] |= DISPLAY_PLANE_ENABLE;
if (is_mipi2)
goto mrst_crtc_mode_set_exit;
clk = adjusted_mode->clock;
if (is_hdmi) {
if ((ksel == KSEL_CRYSTAL_19) || (ksel == KSEL_BYPASS_19)) {
refclk = 19200;
if (is_mipi || is_mipi2)
clk_n = 1, clk_p2 = 8;
else if (is_hdmi)
clk_n = 1, clk_p2 = 10;
} else if (ksel == KSEL_BYPASS_25) {
refclk = 25000;
if (is_mipi || is_mipi2)
clk_n = 1, clk_p2 = 8;
else if (is_hdmi)
clk_n = 1, clk_p2 = 10;
} else if ((ksel == KSEL_BYPASS_83_100) &&
dev_priv->core_freq == 166) {
refclk = 83000;
if (is_mipi || is_mipi2)
clk_n = 4, clk_p2 = 8;
else if (is_hdmi)
clk_n = 4, clk_p2 = 10;
} else if ((ksel == KSEL_BYPASS_83_100) &&
(dev_priv->core_freq == 100 ||
dev_priv->core_freq == 200)) {
refclk = 100000;
if (is_mipi || is_mipi2)
clk_n = 4, clk_p2 = 8;
else if (is_hdmi)
clk_n = 4, clk_p2 = 10;
}
if (is_mipi)
clk_byte = dev_priv->bpp / 8;
else if (is_mipi2)
clk_byte = dev_priv->bpp2 / 8;
clk_tmp = clk * clk_n * clk_p2 * clk_byte;
dev_dbg(dev->dev, "clk = %d, clk_n = %d, clk_p2 = %d.\n",
clk, clk_n, clk_p2);
dev_dbg(dev->dev, "adjusted_mode->clock = %d, clk_tmp = %d.\n",
adjusted_mode->clock, clk_tmp);
ok = mdfldFindBestPLL(crtc, clk_tmp, refclk, &clock);
if (!ok) {
DRM_ERROR
("mdfldFindBestPLL fail in mdfld_crtc_mode_set.\n");
} else {
m_conv = mdfld_m_converts[(clock.m - MDFLD_M_MIN)];
dev_dbg(dev->dev, "dot clock = %d,"
"m = %d, p1 = %d, m_conv = %d.\n",
clock.dot, clock.m,
clock.p1, m_conv);
}
dpll = REG_READ(map->dpll);
if (dpll & DPLL_VCO_ENABLE) {
dpll &= ~DPLL_VCO_ENABLE;
REG_WRITE(map->dpll, dpll);
REG_READ(map->dpll);
/* FIXME jliu7 check the DPLL lock bit PIPEACONF[29] */
/* FIXME_MDFLD PO - change 500 to 1 after PO */
udelay(500);
/* reset M1, N1 & P1 */
REG_WRITE(map->fp0, 0);
dpll &= ~MDFLD_P1_MASK;
REG_WRITE(map->dpll, dpll);
/* FIXME_MDFLD PO - change 500 to 1 after PO */
udelay(500);
}
/* When ungating power of DPLL, needs to wait 0.5us before
* enable the VCO */
if (dpll & MDFLD_PWR_GATE_EN) {
dpll &= ~MDFLD_PWR_GATE_EN;
REG_WRITE(map->dpll, dpll);
/* FIXME_MDFLD PO - change 500 to 1 after PO */
udelay(500);
}
dpll = 0;
#if 0 /* FIXME revisit later */
if (ksel == KSEL_CRYSTAL_19 || ksel == KSEL_BYPASS_19 ||
ksel == KSEL_BYPASS_25)
dpll &= ~MDFLD_INPUT_REF_SEL;
else if (ksel == KSEL_BYPASS_83_100)
dpll |= MDFLD_INPUT_REF_SEL;
#endif /* FIXME revisit later */
if (is_hdmi)
dpll |= MDFLD_VCO_SEL;
fp = (clk_n / 2) << 16;
fp |= m_conv;
/* compute bitmask from p1 value */
dpll |= (1 << (clock.p1 - 2)) << 17;
#if 0 /* 1080p30 & 720p */
dpll = 0x00050000;
fp = 0x000001be;
#endif
#if 0 /* 480p */
dpll = 0x02010000;
fp = 0x000000d2;
#endif
} else {
#if 0 /*DBI_TPO_480x864*/
dpll = 0x00020000;
fp = 0x00000156;
#endif /* DBI_TPO_480x864 */ /* get from spec. */
dpll = 0x00800000;
fp = 0x000000c1;
}
REG_WRITE(map->fp0, fp);
REG_WRITE(map->dpll, dpll);
/* FIXME_MDFLD PO - change 500 to 1 after PO */
udelay(500);
dpll |= DPLL_VCO_ENABLE;
REG_WRITE(map->dpll, dpll);
REG_READ(map->dpll);
/* wait for DSI PLL to lock */
while (timeout < 20000 &&
!(REG_READ(map->conf) & PIPECONF_DSIPLL_LOCK)) {
udelay(150);
timeout++;
}
if (is_mipi)
goto mrst_crtc_mode_set_exit;
dev_dbg(dev->dev, "is_mipi = 0x%x\n", is_mipi);
REG_WRITE(map->conf, dev_priv->pipeconf[pipe]);
REG_READ(map->conf);
/* Wait for for the pipe enable to take effect. */
REG_WRITE(map->cntr, dev_priv->dspcntr[pipe]);
gma_wait_for_vblank(dev);
mrst_crtc_mode_set_exit:
gma_power_end(dev);
return 0;
}
const struct drm_crtc_helper_funcs mdfld_helper_funcs = {
.dpms = mdfld_crtc_dpms,
.mode_set = mdfld_crtc_mode_set,
.mode_set_base = mdfld__intel_pipe_set_base,
.prepare = gma_crtc_prepare,
.commit = gma_crtc_commit,
};