| /* |
| * Copyright (c) 2014 Mellanox Technologies. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/task.h> |
| #include <linux/pid.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hugetlb.h> |
| #include <linux/interval_tree_generic.h> |
| #include <linux/pagemap.h> |
| |
| #include <rdma/ib_verbs.h> |
| #include <rdma/ib_umem.h> |
| #include <rdma/ib_umem_odp.h> |
| |
| /* |
| * The ib_umem list keeps track of memory regions for which the HW |
| * device request to receive notification when the related memory |
| * mapping is changed. |
| * |
| * ib_umem_lock protects the list. |
| */ |
| |
| static u64 node_start(struct umem_odp_node *n) |
| { |
| struct ib_umem_odp *umem_odp = |
| container_of(n, struct ib_umem_odp, interval_tree); |
| |
| return ib_umem_start(&umem_odp->umem); |
| } |
| |
| /* Note that the representation of the intervals in the interval tree |
| * considers the ending point as contained in the interval, while the |
| * function ib_umem_end returns the first address which is not contained |
| * in the umem. |
| */ |
| static u64 node_last(struct umem_odp_node *n) |
| { |
| struct ib_umem_odp *umem_odp = |
| container_of(n, struct ib_umem_odp, interval_tree); |
| |
| return ib_umem_end(&umem_odp->umem) - 1; |
| } |
| |
| INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last, |
| node_start, node_last, static, rbt_ib_umem) |
| |
| static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp) |
| { |
| mutex_lock(&umem_odp->umem_mutex); |
| if (umem_odp->notifiers_count++ == 0) |
| /* |
| * Initialize the completion object for waiting on |
| * notifiers. Since notifier_count is zero, no one should be |
| * waiting right now. |
| */ |
| reinit_completion(&umem_odp->notifier_completion); |
| mutex_unlock(&umem_odp->umem_mutex); |
| } |
| |
| static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp) |
| { |
| mutex_lock(&umem_odp->umem_mutex); |
| /* |
| * This sequence increase will notify the QP page fault that the page |
| * that is going to be mapped in the spte could have been freed. |
| */ |
| ++umem_odp->notifiers_seq; |
| if (--umem_odp->notifiers_count == 0) |
| complete_all(&umem_odp->notifier_completion); |
| mutex_unlock(&umem_odp->umem_mutex); |
| } |
| |
| static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp, |
| u64 start, u64 end, void *cookie) |
| { |
| struct ib_umem *umem = &umem_odp->umem; |
| |
| /* |
| * Increase the number of notifiers running, to |
| * prevent any further fault handling on this MR. |
| */ |
| ib_umem_notifier_start_account(umem_odp); |
| umem_odp->dying = 1; |
| /* Make sure that the fact the umem is dying is out before we release |
| * all pending page faults. */ |
| smp_wmb(); |
| complete_all(&umem_odp->notifier_completion); |
| umem->context->invalidate_range(umem_odp, ib_umem_start(umem), |
| ib_umem_end(umem)); |
| return 0; |
| } |
| |
| static void ib_umem_notifier_release(struct mmu_notifier *mn, |
| struct mm_struct *mm) |
| { |
| struct ib_ucontext_per_mm *per_mm = |
| container_of(mn, struct ib_ucontext_per_mm, mn); |
| |
| down_read(&per_mm->umem_rwsem); |
| if (per_mm->active) |
| rbt_ib_umem_for_each_in_range( |
| &per_mm->umem_tree, 0, ULLONG_MAX, |
| ib_umem_notifier_release_trampoline, true, NULL); |
| up_read(&per_mm->umem_rwsem); |
| } |
| |
| static int invalidate_range_start_trampoline(struct ib_umem_odp *item, |
| u64 start, u64 end, void *cookie) |
| { |
| ib_umem_notifier_start_account(item); |
| item->umem.context->invalidate_range(item, start, end); |
| return 0; |
| } |
| |
| static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, |
| const struct mmu_notifier_range *range) |
| { |
| struct ib_ucontext_per_mm *per_mm = |
| container_of(mn, struct ib_ucontext_per_mm, mn); |
| |
| if (mmu_notifier_range_blockable(range)) |
| down_read(&per_mm->umem_rwsem); |
| else if (!down_read_trylock(&per_mm->umem_rwsem)) |
| return -EAGAIN; |
| |
| if (!per_mm->active) { |
| up_read(&per_mm->umem_rwsem); |
| /* |
| * At this point active is permanently set and visible to this |
| * CPU without a lock, that fact is relied on to skip the unlock |
| * in range_end. |
| */ |
| return 0; |
| } |
| |
| return rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, |
| range->end, |
| invalidate_range_start_trampoline, |
| mmu_notifier_range_blockable(range), |
| NULL); |
| } |
| |
| static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start, |
| u64 end, void *cookie) |
| { |
| ib_umem_notifier_end_account(item); |
| return 0; |
| } |
| |
| static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, |
| const struct mmu_notifier_range *range) |
| { |
| struct ib_ucontext_per_mm *per_mm = |
| container_of(mn, struct ib_ucontext_per_mm, mn); |
| |
| if (unlikely(!per_mm->active)) |
| return; |
| |
| rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, |
| range->end, |
| invalidate_range_end_trampoline, true, NULL); |
| up_read(&per_mm->umem_rwsem); |
| } |
| |
| static const struct mmu_notifier_ops ib_umem_notifiers = { |
| .release = ib_umem_notifier_release, |
| .invalidate_range_start = ib_umem_notifier_invalidate_range_start, |
| .invalidate_range_end = ib_umem_notifier_invalidate_range_end, |
| }; |
| |
| static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp) |
| { |
| struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; |
| struct ib_umem *umem = &umem_odp->umem; |
| |
| down_write(&per_mm->umem_rwsem); |
| if (likely(ib_umem_start(umem) != ib_umem_end(umem))) |
| rbt_ib_umem_insert(&umem_odp->interval_tree, |
| &per_mm->umem_tree); |
| up_write(&per_mm->umem_rwsem); |
| } |
| |
| static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp) |
| { |
| struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; |
| struct ib_umem *umem = &umem_odp->umem; |
| |
| down_write(&per_mm->umem_rwsem); |
| if (likely(ib_umem_start(umem) != ib_umem_end(umem))) |
| rbt_ib_umem_remove(&umem_odp->interval_tree, |
| &per_mm->umem_tree); |
| complete_all(&umem_odp->notifier_completion); |
| |
| up_write(&per_mm->umem_rwsem); |
| } |
| |
| static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx, |
| struct mm_struct *mm) |
| { |
| struct ib_ucontext_per_mm *per_mm; |
| int ret; |
| |
| per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL); |
| if (!per_mm) |
| return ERR_PTR(-ENOMEM); |
| |
| per_mm->context = ctx; |
| per_mm->mm = mm; |
| per_mm->umem_tree = RB_ROOT_CACHED; |
| init_rwsem(&per_mm->umem_rwsem); |
| per_mm->active = true; |
| |
| rcu_read_lock(); |
| per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); |
| rcu_read_unlock(); |
| |
| WARN_ON(mm != current->mm); |
| |
| per_mm->mn.ops = &ib_umem_notifiers; |
| ret = mmu_notifier_register(&per_mm->mn, per_mm->mm); |
| if (ret) { |
| dev_err(&ctx->device->dev, |
| "Failed to register mmu_notifier %d\n", ret); |
| goto out_pid; |
| } |
| |
| list_add(&per_mm->ucontext_list, &ctx->per_mm_list); |
| return per_mm; |
| |
| out_pid: |
| put_pid(per_mm->tgid); |
| kfree(per_mm); |
| return ERR_PTR(ret); |
| } |
| |
| static int get_per_mm(struct ib_umem_odp *umem_odp) |
| { |
| struct ib_ucontext *ctx = umem_odp->umem.context; |
| struct ib_ucontext_per_mm *per_mm; |
| |
| /* |
| * Generally speaking we expect only one or two per_mm in this list, |
| * so no reason to optimize this search today. |
| */ |
| mutex_lock(&ctx->per_mm_list_lock); |
| list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) { |
| if (per_mm->mm == umem_odp->umem.owning_mm) |
| goto found; |
| } |
| |
| per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm); |
| if (IS_ERR(per_mm)) { |
| mutex_unlock(&ctx->per_mm_list_lock); |
| return PTR_ERR(per_mm); |
| } |
| |
| found: |
| umem_odp->per_mm = per_mm; |
| per_mm->odp_mrs_count++; |
| mutex_unlock(&ctx->per_mm_list_lock); |
| |
| return 0; |
| } |
| |
| static void free_per_mm(struct rcu_head *rcu) |
| { |
| kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu)); |
| } |
| |
| static void put_per_mm(struct ib_umem_odp *umem_odp) |
| { |
| struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; |
| struct ib_ucontext *ctx = umem_odp->umem.context; |
| bool need_free; |
| |
| mutex_lock(&ctx->per_mm_list_lock); |
| umem_odp->per_mm = NULL; |
| per_mm->odp_mrs_count--; |
| need_free = per_mm->odp_mrs_count == 0; |
| if (need_free) |
| list_del(&per_mm->ucontext_list); |
| mutex_unlock(&ctx->per_mm_list_lock); |
| |
| if (!need_free) |
| return; |
| |
| /* |
| * NOTE! mmu_notifier_unregister() can happen between a start/end |
| * callback, resulting in an start/end, and thus an unbalanced |
| * lock. This doesn't really matter to us since we are about to kfree |
| * the memory that holds the lock, however LOCKDEP doesn't like this. |
| */ |
| down_write(&per_mm->umem_rwsem); |
| per_mm->active = false; |
| up_write(&per_mm->umem_rwsem); |
| |
| WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root)); |
| mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm); |
| put_pid(per_mm->tgid); |
| mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm); |
| } |
| |
| struct ib_umem_odp *ib_alloc_odp_umem(struct ib_umem_odp *root, |
| unsigned long addr, size_t size) |
| { |
| struct ib_ucontext_per_mm *per_mm = root->per_mm; |
| struct ib_ucontext *ctx = per_mm->context; |
| struct ib_umem_odp *odp_data; |
| struct ib_umem *umem; |
| int pages = size >> PAGE_SHIFT; |
| int ret; |
| |
| odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); |
| if (!odp_data) |
| return ERR_PTR(-ENOMEM); |
| umem = &odp_data->umem; |
| umem->context = ctx; |
| umem->length = size; |
| umem->address = addr; |
| umem->page_shift = PAGE_SHIFT; |
| umem->writable = root->umem.writable; |
| umem->is_odp = 1; |
| odp_data->per_mm = per_mm; |
| umem->owning_mm = per_mm->mm; |
| mmgrab(umem->owning_mm); |
| |
| mutex_init(&odp_data->umem_mutex); |
| init_completion(&odp_data->notifier_completion); |
| |
| odp_data->page_list = |
| vzalloc(array_size(pages, sizeof(*odp_data->page_list))); |
| if (!odp_data->page_list) { |
| ret = -ENOMEM; |
| goto out_odp_data; |
| } |
| |
| odp_data->dma_list = |
| vzalloc(array_size(pages, sizeof(*odp_data->dma_list))); |
| if (!odp_data->dma_list) { |
| ret = -ENOMEM; |
| goto out_page_list; |
| } |
| |
| /* |
| * Caller must ensure that the umem_odp that the per_mm came from |
| * cannot be freed during the call to ib_alloc_odp_umem. |
| */ |
| mutex_lock(&ctx->per_mm_list_lock); |
| per_mm->odp_mrs_count++; |
| mutex_unlock(&ctx->per_mm_list_lock); |
| add_umem_to_per_mm(odp_data); |
| |
| return odp_data; |
| |
| out_page_list: |
| vfree(odp_data->page_list); |
| out_odp_data: |
| mmdrop(umem->owning_mm); |
| kfree(odp_data); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL(ib_alloc_odp_umem); |
| |
| int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access) |
| { |
| struct ib_umem *umem = &umem_odp->umem; |
| /* |
| * NOTE: This must called in a process context where umem->owning_mm |
| * == current->mm |
| */ |
| struct mm_struct *mm = umem->owning_mm; |
| int ret_val; |
| |
| if (access & IB_ACCESS_HUGETLB) { |
| struct vm_area_struct *vma; |
| struct hstate *h; |
| |
| down_read(&mm->mmap_sem); |
| vma = find_vma(mm, ib_umem_start(umem)); |
| if (!vma || !is_vm_hugetlb_page(vma)) { |
| up_read(&mm->mmap_sem); |
| return -EINVAL; |
| } |
| h = hstate_vma(vma); |
| umem->page_shift = huge_page_shift(h); |
| up_read(&mm->mmap_sem); |
| } |
| |
| mutex_init(&umem_odp->umem_mutex); |
| |
| init_completion(&umem_odp->notifier_completion); |
| |
| if (ib_umem_num_pages(umem)) { |
| umem_odp->page_list = |
| vzalloc(array_size(sizeof(*umem_odp->page_list), |
| ib_umem_num_pages(umem))); |
| if (!umem_odp->page_list) |
| return -ENOMEM; |
| |
| umem_odp->dma_list = |
| vzalloc(array_size(sizeof(*umem_odp->dma_list), |
| ib_umem_num_pages(umem))); |
| if (!umem_odp->dma_list) { |
| ret_val = -ENOMEM; |
| goto out_page_list; |
| } |
| } |
| |
| ret_val = get_per_mm(umem_odp); |
| if (ret_val) |
| goto out_dma_list; |
| add_umem_to_per_mm(umem_odp); |
| |
| return 0; |
| |
| out_dma_list: |
| vfree(umem_odp->dma_list); |
| out_page_list: |
| vfree(umem_odp->page_list); |
| return ret_val; |
| } |
| |
| void ib_umem_odp_release(struct ib_umem_odp *umem_odp) |
| { |
| struct ib_umem *umem = &umem_odp->umem; |
| |
| /* |
| * Ensure that no more pages are mapped in the umem. |
| * |
| * It is the driver's responsibility to ensure, before calling us, |
| * that the hardware will not attempt to access the MR any more. |
| */ |
| ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem), |
| ib_umem_end(umem)); |
| |
| remove_umem_from_per_mm(umem_odp); |
| put_per_mm(umem_odp); |
| vfree(umem_odp->dma_list); |
| vfree(umem_odp->page_list); |
| } |
| |
| /* |
| * Map for DMA and insert a single page into the on-demand paging page tables. |
| * |
| * @umem: the umem to insert the page to. |
| * @page_index: index in the umem to add the page to. |
| * @page: the page struct to map and add. |
| * @access_mask: access permissions needed for this page. |
| * @current_seq: sequence number for synchronization with invalidations. |
| * the sequence number is taken from |
| * umem_odp->notifiers_seq. |
| * |
| * The function returns -EFAULT if the DMA mapping operation fails. It returns |
| * -EAGAIN if a concurrent invalidation prevents us from updating the page. |
| * |
| * The page is released via put_page even if the operation failed. For |
| * on-demand pinning, the page is released whenever it isn't stored in the |
| * umem. |
| */ |
| static int ib_umem_odp_map_dma_single_page( |
| struct ib_umem_odp *umem_odp, |
| int page_index, |
| struct page *page, |
| u64 access_mask, |
| unsigned long current_seq) |
| { |
| struct ib_umem *umem = &umem_odp->umem; |
| struct ib_device *dev = umem->context->device; |
| dma_addr_t dma_addr; |
| int remove_existing_mapping = 0; |
| int ret = 0; |
| |
| /* |
| * Note: we avoid writing if seq is different from the initial seq, to |
| * handle case of a racing notifier. This check also allows us to bail |
| * early if we have a notifier running in parallel with us. |
| */ |
| if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| if (!(umem_odp->dma_list[page_index])) { |
| dma_addr = ib_dma_map_page(dev, |
| page, |
| 0, BIT(umem->page_shift), |
| DMA_BIDIRECTIONAL); |
| if (ib_dma_mapping_error(dev, dma_addr)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| umem_odp->dma_list[page_index] = dma_addr | access_mask; |
| umem_odp->page_list[page_index] = page; |
| umem_odp->npages++; |
| } else if (umem_odp->page_list[page_index] == page) { |
| umem_odp->dma_list[page_index] |= access_mask; |
| } else { |
| pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", |
| umem_odp->page_list[page_index], page); |
| /* Better remove the mapping now, to prevent any further |
| * damage. */ |
| remove_existing_mapping = 1; |
| } |
| |
| out: |
| put_page(page); |
| |
| if (remove_existing_mapping) { |
| ib_umem_notifier_start_account(umem_odp); |
| umem->context->invalidate_range( |
| umem_odp, |
| ib_umem_start(umem) + (page_index << umem->page_shift), |
| ib_umem_start(umem) + |
| ((page_index + 1) << umem->page_shift)); |
| ib_umem_notifier_end_account(umem_odp); |
| ret = -EAGAIN; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. |
| * |
| * Pins the range of pages passed in the argument, and maps them to |
| * DMA addresses. The DMA addresses of the mapped pages is updated in |
| * umem_odp->dma_list. |
| * |
| * Returns the number of pages mapped in success, negative error code |
| * for failure. |
| * An -EAGAIN error code is returned when a concurrent mmu notifier prevents |
| * the function from completing its task. |
| * An -ENOENT error code indicates that userspace process is being terminated |
| * and mm was already destroyed. |
| * @umem_odp: the umem to map and pin |
| * @user_virt: the address from which we need to map. |
| * @bcnt: the minimal number of bytes to pin and map. The mapping might be |
| * bigger due to alignment, and may also be smaller in case of an error |
| * pinning or mapping a page. The actual pages mapped is returned in |
| * the return value. |
| * @access_mask: bit mask of the requested access permissions for the given |
| * range. |
| * @current_seq: the MMU notifiers sequance value for synchronization with |
| * invalidations. the sequance number is read from |
| * umem_odp->notifiers_seq before calling this function |
| */ |
| int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt, |
| u64 bcnt, u64 access_mask, |
| unsigned long current_seq) |
| { |
| struct ib_umem *umem = &umem_odp->umem; |
| struct task_struct *owning_process = NULL; |
| struct mm_struct *owning_mm = umem_odp->umem.owning_mm; |
| struct page **local_page_list = NULL; |
| u64 page_mask, off; |
| int j, k, ret = 0, start_idx, npages = 0, page_shift; |
| unsigned int flags = 0; |
| phys_addr_t p = 0; |
| |
| if (access_mask == 0) |
| return -EINVAL; |
| |
| if (user_virt < ib_umem_start(umem) || |
| user_virt + bcnt > ib_umem_end(umem)) |
| return -EFAULT; |
| |
| local_page_list = (struct page **)__get_free_page(GFP_KERNEL); |
| if (!local_page_list) |
| return -ENOMEM; |
| |
| page_shift = umem->page_shift; |
| page_mask = ~(BIT(page_shift) - 1); |
| off = user_virt & (~page_mask); |
| user_virt = user_virt & page_mask; |
| bcnt += off; /* Charge for the first page offset as well. */ |
| |
| /* |
| * owning_process is allowed to be NULL, this means somehow the mm is |
| * existing beyond the lifetime of the originating process.. Presumably |
| * mmget_not_zero will fail in this case. |
| */ |
| owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID); |
| if (!owning_process || !mmget_not_zero(owning_mm)) { |
| ret = -EINVAL; |
| goto out_put_task; |
| } |
| |
| if (access_mask & ODP_WRITE_ALLOWED_BIT) |
| flags |= FOLL_WRITE; |
| |
| start_idx = (user_virt - ib_umem_start(umem)) >> page_shift; |
| k = start_idx; |
| |
| while (bcnt > 0) { |
| const size_t gup_num_pages = min_t(size_t, |
| (bcnt + BIT(page_shift) - 1) >> page_shift, |
| PAGE_SIZE / sizeof(struct page *)); |
| |
| down_read(&owning_mm->mmap_sem); |
| /* |
| * Note: this might result in redundent page getting. We can |
| * avoid this by checking dma_list to be 0 before calling |
| * get_user_pages. However, this make the code much more |
| * complex (and doesn't gain us much performance in most use |
| * cases). |
| */ |
| npages = get_user_pages_remote(owning_process, owning_mm, |
| user_virt, gup_num_pages, |
| flags, local_page_list, NULL, NULL); |
| up_read(&owning_mm->mmap_sem); |
| |
| if (npages < 0) { |
| if (npages != -EAGAIN) |
| pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages); |
| else |
| pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages); |
| break; |
| } |
| |
| bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); |
| mutex_lock(&umem_odp->umem_mutex); |
| for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { |
| if (user_virt & ~page_mask) { |
| p += PAGE_SIZE; |
| if (page_to_phys(local_page_list[j]) != p) { |
| ret = -EFAULT; |
| break; |
| } |
| put_page(local_page_list[j]); |
| continue; |
| } |
| |
| ret = ib_umem_odp_map_dma_single_page( |
| umem_odp, k, local_page_list[j], |
| access_mask, current_seq); |
| if (ret < 0) { |
| if (ret != -EAGAIN) |
| pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); |
| else |
| pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); |
| break; |
| } |
| |
| p = page_to_phys(local_page_list[j]); |
| k++; |
| } |
| mutex_unlock(&umem_odp->umem_mutex); |
| |
| if (ret < 0) { |
| /* |
| * Release pages, remembering that the first page |
| * to hit an error was already released by |
| * ib_umem_odp_map_dma_single_page(). |
| */ |
| if (npages - (j + 1) > 0) |
| release_pages(&local_page_list[j+1], |
| npages - (j + 1)); |
| break; |
| } |
| } |
| |
| if (ret >= 0) { |
| if (npages < 0 && k == start_idx) |
| ret = npages; |
| else |
| ret = k - start_idx; |
| } |
| |
| mmput(owning_mm); |
| out_put_task: |
| if (owning_process) |
| put_task_struct(owning_process); |
| free_page((unsigned long)local_page_list); |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); |
| |
| void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, |
| u64 bound) |
| { |
| struct ib_umem *umem = &umem_odp->umem; |
| int idx; |
| u64 addr; |
| struct ib_device *dev = umem->context->device; |
| |
| virt = max_t(u64, virt, ib_umem_start(umem)); |
| bound = min_t(u64, bound, ib_umem_end(umem)); |
| /* Note that during the run of this function, the |
| * notifiers_count of the MR is > 0, preventing any racing |
| * faults from completion. We might be racing with other |
| * invalidations, so we must make sure we free each page only |
| * once. */ |
| mutex_lock(&umem_odp->umem_mutex); |
| for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) { |
| idx = (addr - ib_umem_start(umem)) >> umem->page_shift; |
| if (umem_odp->page_list[idx]) { |
| struct page *page = umem_odp->page_list[idx]; |
| dma_addr_t dma = umem_odp->dma_list[idx]; |
| dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; |
| |
| WARN_ON(!dma_addr); |
| |
| ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE, |
| DMA_BIDIRECTIONAL); |
| if (dma & ODP_WRITE_ALLOWED_BIT) { |
| struct page *head_page = compound_head(page); |
| /* |
| * set_page_dirty prefers being called with |
| * the page lock. However, MMU notifiers are |
| * called sometimes with and sometimes without |
| * the lock. We rely on the umem_mutex instead |
| * to prevent other mmu notifiers from |
| * continuing and allowing the page mapping to |
| * be removed. |
| */ |
| set_page_dirty(head_page); |
| } |
| umem_odp->page_list[idx] = NULL; |
| umem_odp->dma_list[idx] = 0; |
| umem_odp->npages--; |
| } |
| } |
| mutex_unlock(&umem_odp->umem_mutex); |
| } |
| EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); |
| |
| /* @last is not a part of the interval. See comment for function |
| * node_last. |
| */ |
| int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, |
| u64 start, u64 last, |
| umem_call_back cb, |
| bool blockable, |
| void *cookie) |
| { |
| int ret_val = 0; |
| struct umem_odp_node *node, *next; |
| struct ib_umem_odp *umem; |
| |
| if (unlikely(start == last)) |
| return ret_val; |
| |
| for (node = rbt_ib_umem_iter_first(root, start, last - 1); |
| node; node = next) { |
| /* TODO move the blockable decision up to the callback */ |
| if (!blockable) |
| return -EAGAIN; |
| next = rbt_ib_umem_iter_next(node, start, last - 1); |
| umem = container_of(node, struct ib_umem_odp, interval_tree); |
| ret_val = cb(umem, start, last, cookie) || ret_val; |
| } |
| |
| return ret_val; |
| } |
| EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range); |
| |
| struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root, |
| u64 addr, u64 length) |
| { |
| struct umem_odp_node *node; |
| |
| node = rbt_ib_umem_iter_first(root, addr, addr + length - 1); |
| if (node) |
| return container_of(node, struct ib_umem_odp, interval_tree); |
| return NULL; |
| |
| } |
| EXPORT_SYMBOL(rbt_ib_umem_lookup); |