blob: e8a1b27db84debab0aad020a869660bc310b2b80 [file] [log] [blame]
/* QLogic qede NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _QEDE_H_
#define _QEDE_H_
#include <linux/compiler.h>
#include <linux/version.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/bitmap.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/bpf.h>
#include <net/xdp.h>
#include <linux/qed/qede_rdma.h>
#include <linux/io.h>
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif
#include <linux/qed/common_hsi.h>
#include <linux/qed/eth_common.h>
#include <linux/qed/qed_if.h>
#include <linux/qed/qed_chain.h>
#include <linux/qed/qed_eth_if.h>
#include <net/pkt_cls.h>
#include <net/tc_act/tc_gact.h>
#define QEDE_MAJOR_VERSION 8
#define QEDE_MINOR_VERSION 37
#define QEDE_REVISION_VERSION 0
#define QEDE_ENGINEERING_VERSION 20
#define DRV_MODULE_VERSION __stringify(QEDE_MAJOR_VERSION) "." \
__stringify(QEDE_MINOR_VERSION) "." \
__stringify(QEDE_REVISION_VERSION) "." \
__stringify(QEDE_ENGINEERING_VERSION)
#define DRV_MODULE_SYM qede
struct qede_stats_common {
u64 no_buff_discards;
u64 packet_too_big_discard;
u64 ttl0_discard;
u64 rx_ucast_bytes;
u64 rx_mcast_bytes;
u64 rx_bcast_bytes;
u64 rx_ucast_pkts;
u64 rx_mcast_pkts;
u64 rx_bcast_pkts;
u64 mftag_filter_discards;
u64 mac_filter_discards;
u64 gft_filter_drop;
u64 tx_ucast_bytes;
u64 tx_mcast_bytes;
u64 tx_bcast_bytes;
u64 tx_ucast_pkts;
u64 tx_mcast_pkts;
u64 tx_bcast_pkts;
u64 tx_err_drop_pkts;
u64 coalesced_pkts;
u64 coalesced_events;
u64 coalesced_aborts_num;
u64 non_coalesced_pkts;
u64 coalesced_bytes;
u64 link_change_count;
u64 ptp_skip_txts;
/* port */
u64 rx_64_byte_packets;
u64 rx_65_to_127_byte_packets;
u64 rx_128_to_255_byte_packets;
u64 rx_256_to_511_byte_packets;
u64 rx_512_to_1023_byte_packets;
u64 rx_1024_to_1518_byte_packets;
u64 rx_crc_errors;
u64 rx_mac_crtl_frames;
u64 rx_pause_frames;
u64 rx_pfc_frames;
u64 rx_align_errors;
u64 rx_carrier_errors;
u64 rx_oversize_packets;
u64 rx_jabbers;
u64 rx_undersize_packets;
u64 rx_fragments;
u64 tx_64_byte_packets;
u64 tx_65_to_127_byte_packets;
u64 tx_128_to_255_byte_packets;
u64 tx_256_to_511_byte_packets;
u64 tx_512_to_1023_byte_packets;
u64 tx_1024_to_1518_byte_packets;
u64 tx_pause_frames;
u64 tx_pfc_frames;
u64 brb_truncates;
u64 brb_discards;
u64 tx_mac_ctrl_frames;
};
struct qede_stats_bb {
u64 rx_1519_to_1522_byte_packets;
u64 rx_1519_to_2047_byte_packets;
u64 rx_2048_to_4095_byte_packets;
u64 rx_4096_to_9216_byte_packets;
u64 rx_9217_to_16383_byte_packets;
u64 tx_1519_to_2047_byte_packets;
u64 tx_2048_to_4095_byte_packets;
u64 tx_4096_to_9216_byte_packets;
u64 tx_9217_to_16383_byte_packets;
u64 tx_lpi_entry_count;
u64 tx_total_collisions;
};
struct qede_stats_ah {
u64 rx_1519_to_max_byte_packets;
u64 tx_1519_to_max_byte_packets;
};
struct qede_stats {
struct qede_stats_common common;
union {
struct qede_stats_bb bb;
struct qede_stats_ah ah;
};
};
struct qede_vlan {
struct list_head list;
u16 vid;
bool configured;
};
struct qede_rdma_dev {
struct qedr_dev *qedr_dev;
struct list_head entry;
struct list_head rdma_event_list;
struct workqueue_struct *rdma_wq;
bool exp_recovery;
};
struct qede_ptp;
#define QEDE_RFS_MAX_FLTR 256
enum qede_flags_bit {
QEDE_FLAGS_IS_VF = 0,
QEDE_FLAGS_LINK_REQUESTED,
QEDE_FLAGS_PTP_TX_IN_PRORGESS,
QEDE_FLAGS_TX_TIMESTAMPING_EN
};
#define QEDE_DUMP_MAX_ARGS 4
enum qede_dump_cmd {
QEDE_DUMP_CMD_NONE = 0,
QEDE_DUMP_CMD_NVM_CFG,
QEDE_DUMP_CMD_GRCDUMP,
QEDE_DUMP_CMD_MAX
};
struct qede_dump_info {
enum qede_dump_cmd cmd;
u8 num_args;
u32 args[QEDE_DUMP_MAX_ARGS];
};
struct qede_dev {
struct qed_dev *cdev;
struct net_device *ndev;
struct pci_dev *pdev;
u32 dp_module;
u8 dp_level;
unsigned long flags;
#define IS_VF(edev) (test_bit(QEDE_FLAGS_IS_VF, &(edev)->flags))
const struct qed_eth_ops *ops;
struct qede_ptp *ptp;
u64 ptp_skip_txts;
struct qed_dev_eth_info dev_info;
#define QEDE_MAX_RSS_CNT(edev) ((edev)->dev_info.num_queues)
#define QEDE_MAX_TSS_CNT(edev) ((edev)->dev_info.num_queues)
#define QEDE_IS_BB(edev) \
((edev)->dev_info.common.dev_type == QED_DEV_TYPE_BB)
#define QEDE_IS_AH(edev) \
((edev)->dev_info.common.dev_type == QED_DEV_TYPE_AH)
struct qede_fastpath *fp_array;
u8 req_num_tx;
u8 fp_num_tx;
u8 req_num_rx;
u8 fp_num_rx;
u16 req_queues;
u16 num_queues;
#define QEDE_QUEUE_CNT(edev) ((edev)->num_queues)
#define QEDE_RSS_COUNT(edev) ((edev)->num_queues - (edev)->fp_num_tx)
#define QEDE_RX_QUEUE_IDX(edev, i) (i)
#define QEDE_TSS_COUNT(edev) ((edev)->num_queues - (edev)->fp_num_rx)
struct qed_int_info int_info;
/* Smaller private varaiant of the RTNL lock */
struct mutex qede_lock;
u32 state; /* Protected by qede_lock */
u16 rx_buf_size;
u32 rx_copybreak;
/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
#define ETH_OVERHEAD (ETH_HLEN + 8 + 8)
/* Max supported alignment is 256 (8 shift)
* minimal alignment shift 6 is optimal for 57xxx HW performance
*/
#define QEDE_RX_ALIGN_SHIFT max(6, min(8, L1_CACHE_SHIFT))
/* We assume skb_build() uses sizeof(struct skb_shared_info) bytes
* at the end of skb->data, to avoid wasting a full cache line.
* This reduces memory use (skb->truesize).
*/
#define QEDE_FW_RX_ALIGN_END \
max_t(u64, 1UL << QEDE_RX_ALIGN_SHIFT, \
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
struct qede_stats stats;
#define QEDE_RSS_INDIR_INITED BIT(0)
#define QEDE_RSS_KEY_INITED BIT(1)
#define QEDE_RSS_CAPS_INITED BIT(2)
u32 rss_params_inited; /* bit-field to track initialized rss params */
u16 rss_ind_table[128];
u32 rss_key[10];
u8 rss_caps;
u16 q_num_rx_buffers; /* Must be a power of two */
u16 q_num_tx_buffers; /* Must be a power of two */
bool gro_disable;
struct list_head vlan_list;
u16 configured_vlans;
u16 non_configured_vlans;
bool accept_any_vlan;
struct delayed_work sp_task;
unsigned long sp_flags;
u16 vxlan_dst_port;
u16 geneve_dst_port;
struct qede_arfs *arfs;
bool wol_enabled;
struct qede_rdma_dev rdma_info;
struct bpf_prog *xdp_prog;
struct qede_dump_info dump_info;
};
enum QEDE_STATE {
QEDE_STATE_CLOSED,
QEDE_STATE_OPEN,
QEDE_STATE_RECOVERY,
};
#define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo))
#define MAX_NUM_TC 8
#define MAX_NUM_PRI 8
/* The driver supports the new build_skb() API:
* RX ring buffer contains pointer to kmalloc() data only,
* skb are built only after the frame was DMA-ed.
*/
struct sw_rx_data {
struct page *data;
dma_addr_t mapping;
unsigned int page_offset;
};
enum qede_agg_state {
QEDE_AGG_STATE_NONE = 0,
QEDE_AGG_STATE_START = 1,
QEDE_AGG_STATE_ERROR = 2
};
struct qede_agg_info {
/* rx_buf is a data buffer that can be placed / consumed from rx bd
* chain. It has two purposes: We will preallocate the data buffer
* for each aggregation when we open the interface and will place this
* buffer on the rx-bd-ring when we receive TPA_START. We don't want
* to be in a state where allocation fails, as we can't reuse the
* consumer buffer in the rx-chain since FW may still be writing to it
* (since header needs to be modified for TPA).
* The second purpose is to keep a pointer to the bd buffer during
* aggregation.
*/
struct sw_rx_data buffer;
struct sk_buff *skb;
/* We need some structs from the start cookie until termination */
u16 vlan_tag;
bool tpa_start_fail;
u8 state;
u8 frag_id;
u8 tunnel_type;
};
struct qede_rx_queue {
__le16 *hw_cons_ptr;
void __iomem *hw_rxq_prod_addr;
/* Required for the allocation of replacement buffers */
struct device *dev;
struct bpf_prog *xdp_prog;
u16 sw_rx_cons;
u16 sw_rx_prod;
u16 filled_buffers;
u8 data_direction;
u8 rxq_id;
/* Used once per each NAPI run */
u16 num_rx_buffers;
u16 rx_headroom;
u32 rx_buf_size;
u32 rx_buf_seg_size;
struct sw_rx_data *sw_rx_ring;
struct qed_chain rx_bd_ring;
struct qed_chain rx_comp_ring ____cacheline_aligned;
/* GRO */
struct qede_agg_info tpa_info[ETH_TPA_MAX_AGGS_NUM];
/* Used once per each NAPI run */
u64 rcv_pkts;
u64 rx_hw_errors;
u64 rx_alloc_errors;
u64 rx_ip_frags;
u64 xdp_no_pass;
void *handle;
struct xdp_rxq_info xdp_rxq;
};
union db_prod {
struct eth_db_data data;
u32 raw;
};
struct sw_tx_bd {
struct sk_buff *skb;
u8 flags;
/* Set on the first BD descriptor when there is a split BD */
#define QEDE_TSO_SPLIT_BD BIT(0)
};
struct sw_tx_xdp {
struct page *page;
dma_addr_t mapping;
};
struct qede_tx_queue {
u8 is_xdp;
bool is_legacy;
u16 sw_tx_cons;
u16 sw_tx_prod;
u16 num_tx_buffers; /* Slowpath only */
u64 xmit_pkts;
u64 stopped_cnt;
u64 tx_mem_alloc_err;
__le16 *hw_cons_ptr;
/* Needed for the mapping of packets */
struct device *dev;
void __iomem *doorbell_addr;
union db_prod tx_db;
int index; /* Slowpath only */
#define QEDE_TXQ_XDP_TO_IDX(edev, txq) ((txq)->index - \
QEDE_MAX_TSS_CNT(edev))
#define QEDE_TXQ_IDX_TO_XDP(edev, idx) ((idx) + QEDE_MAX_TSS_CNT(edev))
#define QEDE_NDEV_TXQ_ID_TO_FP_ID(edev, idx) ((edev)->fp_num_rx + \
((idx) % QEDE_TSS_COUNT(edev)))
#define QEDE_NDEV_TXQ_ID_TO_TXQ_COS(edev, idx) ((idx) / QEDE_TSS_COUNT(edev))
#define QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq) ((QEDE_TSS_COUNT(edev) * \
(txq)->cos) + (txq)->index)
#define QEDE_NDEV_TXQ_ID_TO_TXQ(edev, idx) \
(&((edev)->fp_array[QEDE_NDEV_TXQ_ID_TO_FP_ID(edev, idx)].txq \
[QEDE_NDEV_TXQ_ID_TO_TXQ_COS(edev, idx)]))
#define QEDE_FP_TC0_TXQ(fp) (&((fp)->txq[0]))
/* Regular Tx requires skb + metadata for release purpose,
* while XDP requires the pages and the mapped address.
*/
union {
struct sw_tx_bd *skbs;
struct sw_tx_xdp *xdp;
} sw_tx_ring;
struct qed_chain tx_pbl;
/* Slowpath; Should be kept in end [unless missing padding] */
void *handle;
u16 cos;
u16 ndev_txq_id;
};
#define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr.hi), \
le32_to_cpu((bd)->addr.lo))
#define BD_SET_UNMAP_ADDR_LEN(bd, maddr, len) \
do { \
(bd)->addr.hi = cpu_to_le32(upper_32_bits(maddr)); \
(bd)->addr.lo = cpu_to_le32(lower_32_bits(maddr)); \
(bd)->nbytes = cpu_to_le16(len); \
} while (0)
#define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes))
struct qede_fastpath {
struct qede_dev *edev;
#define QEDE_FASTPATH_TX BIT(0)
#define QEDE_FASTPATH_RX BIT(1)
#define QEDE_FASTPATH_XDP BIT(2)
#define QEDE_FASTPATH_COMBINED (QEDE_FASTPATH_TX | QEDE_FASTPATH_RX)
u8 type;
u8 id;
u8 xdp_xmit;
struct napi_struct napi;
struct qed_sb_info *sb_info;
struct qede_rx_queue *rxq;
struct qede_tx_queue *txq;
struct qede_tx_queue *xdp_tx;
#define VEC_NAME_SIZE (sizeof_field(struct net_device, name) + 8)
char name[VEC_NAME_SIZE];
};
/* Debug print definitions */
#define DP_NAME(edev) ((edev)->ndev->name)
#define XMIT_PLAIN 0
#define XMIT_L4_CSUM BIT(0)
#define XMIT_LSO BIT(1)
#define XMIT_ENC BIT(2)
#define XMIT_ENC_GSO_L4_CSUM BIT(3)
#define QEDE_CSUM_ERROR BIT(0)
#define QEDE_CSUM_UNNECESSARY BIT(1)
#define QEDE_TUNN_CSUM_UNNECESSARY BIT(2)
#define QEDE_SP_RECOVERY 0
#define QEDE_SP_RX_MODE 1
#ifdef CONFIG_RFS_ACCEL
int qede_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
u16 rxq_index, u32 flow_id);
#define QEDE_SP_ARFS_CONFIG 4
#define QEDE_SP_TASK_POLL_DELAY (5 * HZ)
#endif
void qede_process_arfs_filters(struct qede_dev *edev, bool free_fltr);
void qede_poll_for_freeing_arfs_filters(struct qede_dev *edev);
void qede_arfs_filter_op(void *dev, void *filter, u8 fw_rc);
void qede_free_arfs(struct qede_dev *edev);
int qede_alloc_arfs(struct qede_dev *edev);
int qede_add_cls_rule(struct qede_dev *edev, struct ethtool_rxnfc *info);
int qede_delete_flow_filter(struct qede_dev *edev, u64 cookie);
int qede_get_cls_rule_entry(struct qede_dev *edev, struct ethtool_rxnfc *cmd);
int qede_get_cls_rule_all(struct qede_dev *edev, struct ethtool_rxnfc *info,
u32 *rule_locs);
int qede_get_arfs_filter_count(struct qede_dev *edev);
struct qede_reload_args {
void (*func)(struct qede_dev *edev, struct qede_reload_args *args);
union {
netdev_features_t features;
struct bpf_prog *new_prog;
u16 mtu;
} u;
};
/* Datapath functions definition */
netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev);
u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev);
netdev_features_t qede_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features);
void qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp);
int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy);
int qede_free_tx_pkt(struct qede_dev *edev,
struct qede_tx_queue *txq, int *len);
int qede_poll(struct napi_struct *napi, int budget);
irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie);
/* Filtering function definitions */
void qede_force_mac(void *dev, u8 *mac, bool forced);
void qede_udp_ports_update(void *dev, u16 vxlan_port, u16 geneve_port);
int qede_set_mac_addr(struct net_device *ndev, void *p);
int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid);
int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid);
void qede_vlan_mark_nonconfigured(struct qede_dev *edev);
int qede_configure_vlan_filters(struct qede_dev *edev);
netdev_features_t qede_fix_features(struct net_device *dev,
netdev_features_t features);
int qede_set_features(struct net_device *dev, netdev_features_t features);
void qede_set_rx_mode(struct net_device *ndev);
void qede_config_rx_mode(struct net_device *ndev);
void qede_fill_rss_params(struct qede_dev *edev,
struct qed_update_vport_rss_params *rss, u8 *update);
void qede_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti);
void qede_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti);
int qede_xdp(struct net_device *dev, struct netdev_bpf *xdp);
#ifdef CONFIG_DCB
void qede_set_dcbnl_ops(struct net_device *ndev);
#endif
void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level);
void qede_set_ethtool_ops(struct net_device *netdev);
void qede_reload(struct qede_dev *edev,
struct qede_reload_args *args, bool is_locked);
int qede_change_mtu(struct net_device *dev, int new_mtu);
void qede_fill_by_demand_stats(struct qede_dev *edev);
void __qede_lock(struct qede_dev *edev);
void __qede_unlock(struct qede_dev *edev);
bool qede_has_rx_work(struct qede_rx_queue *rxq);
int qede_txq_has_work(struct qede_tx_queue *txq);
void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count);
void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq);
int qede_add_tc_flower_fltr(struct qede_dev *edev, __be16 proto,
struct flow_cls_offload *f);
#define RX_RING_SIZE_POW 13
#define RX_RING_SIZE ((u16)BIT(RX_RING_SIZE_POW))
#define NUM_RX_BDS_MAX (RX_RING_SIZE - 1)
#define NUM_RX_BDS_MIN 128
#define NUM_RX_BDS_DEF ((u16)BIT(10) - 1)
#define TX_RING_SIZE_POW 13
#define TX_RING_SIZE ((u16)BIT(TX_RING_SIZE_POW))
#define NUM_TX_BDS_MAX (TX_RING_SIZE - 1)
#define NUM_TX_BDS_MIN 128
#define NUM_TX_BDS_DEF NUM_TX_BDS_MAX
#define QEDE_MIN_PKT_LEN 64
#define QEDE_RX_HDR_SIZE 256
#define QEDE_MAX_JUMBO_PACKET_SIZE 9600
#define for_each_queue(i) for (i = 0; i < edev->num_queues; i++)
#define for_each_cos_in_txq(edev, var) \
for ((var) = 0; (var) < (edev)->dev_info.num_tc; (var)++)
#endif /* _QEDE_H_ */