| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2019 Western Digital Corporation or its affiliates. |
| * |
| * Authors: |
| * Anup Patel <anup.patel@wdc.com> |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/hugetlb.h> |
| #include <linux/module.h> |
| #include <linux/uaccess.h> |
| #include <linux/vmalloc.h> |
| #include <linux/kvm_host.h> |
| #include <linux/sched/signal.h> |
| #include <asm/csr.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| |
| #ifdef CONFIG_64BIT |
| static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT); |
| static unsigned long gstage_pgd_levels __ro_after_init = 3; |
| #define gstage_index_bits 9 |
| #else |
| static unsigned long gstage_mode __ro_after_init = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT); |
| static unsigned long gstage_pgd_levels __ro_after_init = 2; |
| #define gstage_index_bits 10 |
| #endif |
| |
| #define gstage_pgd_xbits 2 |
| #define gstage_pgd_size (1UL << (HGATP_PAGE_SHIFT + gstage_pgd_xbits)) |
| #define gstage_gpa_bits (HGATP_PAGE_SHIFT + \ |
| (gstage_pgd_levels * gstage_index_bits) + \ |
| gstage_pgd_xbits) |
| #define gstage_gpa_size ((gpa_t)(1ULL << gstage_gpa_bits)) |
| |
| #define gstage_pte_leaf(__ptep) \ |
| (pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)) |
| |
| static inline unsigned long gstage_pte_index(gpa_t addr, u32 level) |
| { |
| unsigned long mask; |
| unsigned long shift = HGATP_PAGE_SHIFT + (gstage_index_bits * level); |
| |
| if (level == (gstage_pgd_levels - 1)) |
| mask = (PTRS_PER_PTE * (1UL << gstage_pgd_xbits)) - 1; |
| else |
| mask = PTRS_PER_PTE - 1; |
| |
| return (addr >> shift) & mask; |
| } |
| |
| static inline unsigned long gstage_pte_page_vaddr(pte_t pte) |
| { |
| return (unsigned long)pfn_to_virt(__page_val_to_pfn(pte_val(pte))); |
| } |
| |
| static int gstage_page_size_to_level(unsigned long page_size, u32 *out_level) |
| { |
| u32 i; |
| unsigned long psz = 1UL << 12; |
| |
| for (i = 0; i < gstage_pgd_levels; i++) { |
| if (page_size == (psz << (i * gstage_index_bits))) { |
| *out_level = i; |
| return 0; |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int gstage_level_to_page_order(u32 level, unsigned long *out_pgorder) |
| { |
| if (gstage_pgd_levels < level) |
| return -EINVAL; |
| |
| *out_pgorder = 12 + (level * gstage_index_bits); |
| return 0; |
| } |
| |
| static int gstage_level_to_page_size(u32 level, unsigned long *out_pgsize) |
| { |
| int rc; |
| unsigned long page_order = PAGE_SHIFT; |
| |
| rc = gstage_level_to_page_order(level, &page_order); |
| if (rc) |
| return rc; |
| |
| *out_pgsize = BIT(page_order); |
| return 0; |
| } |
| |
| static bool gstage_get_leaf_entry(struct kvm *kvm, gpa_t addr, |
| pte_t **ptepp, u32 *ptep_level) |
| { |
| pte_t *ptep; |
| u32 current_level = gstage_pgd_levels - 1; |
| |
| *ptep_level = current_level; |
| ptep = (pte_t *)kvm->arch.pgd; |
| ptep = &ptep[gstage_pte_index(addr, current_level)]; |
| while (ptep && pte_val(ptep_get(ptep))) { |
| if (gstage_pte_leaf(ptep)) { |
| *ptep_level = current_level; |
| *ptepp = ptep; |
| return true; |
| } |
| |
| if (current_level) { |
| current_level--; |
| *ptep_level = current_level; |
| ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep)); |
| ptep = &ptep[gstage_pte_index(addr, current_level)]; |
| } else { |
| ptep = NULL; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void gstage_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr) |
| { |
| unsigned long order = PAGE_SHIFT; |
| |
| if (gstage_level_to_page_order(level, &order)) |
| return; |
| addr &= ~(BIT(order) - 1); |
| |
| kvm_riscv_hfence_gvma_vmid_gpa(kvm, -1UL, 0, addr, BIT(order), order); |
| } |
| |
| static int gstage_set_pte(struct kvm *kvm, u32 level, |
| struct kvm_mmu_memory_cache *pcache, |
| gpa_t addr, const pte_t *new_pte) |
| { |
| u32 current_level = gstage_pgd_levels - 1; |
| pte_t *next_ptep = (pte_t *)kvm->arch.pgd; |
| pte_t *ptep = &next_ptep[gstage_pte_index(addr, current_level)]; |
| |
| if (current_level < level) |
| return -EINVAL; |
| |
| while (current_level != level) { |
| if (gstage_pte_leaf(ptep)) |
| return -EEXIST; |
| |
| if (!pte_val(ptep_get(ptep))) { |
| if (!pcache) |
| return -ENOMEM; |
| next_ptep = kvm_mmu_memory_cache_alloc(pcache); |
| if (!next_ptep) |
| return -ENOMEM; |
| set_pte(ptep, pfn_pte(PFN_DOWN(__pa(next_ptep)), |
| __pgprot(_PAGE_TABLE))); |
| } else { |
| if (gstage_pte_leaf(ptep)) |
| return -EEXIST; |
| next_ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep)); |
| } |
| |
| current_level--; |
| ptep = &next_ptep[gstage_pte_index(addr, current_level)]; |
| } |
| |
| set_pte(ptep, *new_pte); |
| if (gstage_pte_leaf(ptep)) |
| gstage_remote_tlb_flush(kvm, current_level, addr); |
| |
| return 0; |
| } |
| |
| static int gstage_map_page(struct kvm *kvm, |
| struct kvm_mmu_memory_cache *pcache, |
| gpa_t gpa, phys_addr_t hpa, |
| unsigned long page_size, |
| bool page_rdonly, bool page_exec) |
| { |
| int ret; |
| u32 level = 0; |
| pte_t new_pte; |
| pgprot_t prot; |
| |
| ret = gstage_page_size_to_level(page_size, &level); |
| if (ret) |
| return ret; |
| |
| /* |
| * A RISC-V implementation can choose to either: |
| * 1) Update 'A' and 'D' PTE bits in hardware |
| * 2) Generate page fault when 'A' and/or 'D' bits are not set |
| * PTE so that software can update these bits. |
| * |
| * We support both options mentioned above. To achieve this, we |
| * always set 'A' and 'D' PTE bits at time of creating G-stage |
| * mapping. To support KVM dirty page logging with both options |
| * mentioned above, we will write-protect G-stage PTEs to track |
| * dirty pages. |
| */ |
| |
| if (page_exec) { |
| if (page_rdonly) |
| prot = PAGE_READ_EXEC; |
| else |
| prot = PAGE_WRITE_EXEC; |
| } else { |
| if (page_rdonly) |
| prot = PAGE_READ; |
| else |
| prot = PAGE_WRITE; |
| } |
| new_pte = pfn_pte(PFN_DOWN(hpa), prot); |
| new_pte = pte_mkdirty(new_pte); |
| |
| return gstage_set_pte(kvm, level, pcache, gpa, &new_pte); |
| } |
| |
| enum gstage_op { |
| GSTAGE_OP_NOP = 0, /* Nothing */ |
| GSTAGE_OP_CLEAR, /* Clear/Unmap */ |
| GSTAGE_OP_WP, /* Write-protect */ |
| }; |
| |
| static void gstage_op_pte(struct kvm *kvm, gpa_t addr, |
| pte_t *ptep, u32 ptep_level, enum gstage_op op) |
| { |
| int i, ret; |
| pte_t *next_ptep; |
| u32 next_ptep_level; |
| unsigned long next_page_size, page_size; |
| |
| ret = gstage_level_to_page_size(ptep_level, &page_size); |
| if (ret) |
| return; |
| |
| BUG_ON(addr & (page_size - 1)); |
| |
| if (!pte_val(ptep_get(ptep))) |
| return; |
| |
| if (ptep_level && !gstage_pte_leaf(ptep)) { |
| next_ptep = (pte_t *)gstage_pte_page_vaddr(ptep_get(ptep)); |
| next_ptep_level = ptep_level - 1; |
| ret = gstage_level_to_page_size(next_ptep_level, |
| &next_page_size); |
| if (ret) |
| return; |
| |
| if (op == GSTAGE_OP_CLEAR) |
| set_pte(ptep, __pte(0)); |
| for (i = 0; i < PTRS_PER_PTE; i++) |
| gstage_op_pte(kvm, addr + i * next_page_size, |
| &next_ptep[i], next_ptep_level, op); |
| if (op == GSTAGE_OP_CLEAR) |
| put_page(virt_to_page(next_ptep)); |
| } else { |
| if (op == GSTAGE_OP_CLEAR) |
| set_pte(ptep, __pte(0)); |
| else if (op == GSTAGE_OP_WP) |
| set_pte(ptep, __pte(pte_val(ptep_get(ptep)) & ~_PAGE_WRITE)); |
| gstage_remote_tlb_flush(kvm, ptep_level, addr); |
| } |
| } |
| |
| static void gstage_unmap_range(struct kvm *kvm, gpa_t start, |
| gpa_t size, bool may_block) |
| { |
| int ret; |
| pte_t *ptep; |
| u32 ptep_level; |
| bool found_leaf; |
| unsigned long page_size; |
| gpa_t addr = start, end = start + size; |
| |
| while (addr < end) { |
| found_leaf = gstage_get_leaf_entry(kvm, addr, |
| &ptep, &ptep_level); |
| ret = gstage_level_to_page_size(ptep_level, &page_size); |
| if (ret) |
| break; |
| |
| if (!found_leaf) |
| goto next; |
| |
| if (!(addr & (page_size - 1)) && ((end - addr) >= page_size)) |
| gstage_op_pte(kvm, addr, ptep, |
| ptep_level, GSTAGE_OP_CLEAR); |
| |
| next: |
| addr += page_size; |
| |
| /* |
| * If the range is too large, release the kvm->mmu_lock |
| * to prevent starvation and lockup detector warnings. |
| */ |
| if (may_block && addr < end) |
| cond_resched_lock(&kvm->mmu_lock); |
| } |
| } |
| |
| static void gstage_wp_range(struct kvm *kvm, gpa_t start, gpa_t end) |
| { |
| int ret; |
| pte_t *ptep; |
| u32 ptep_level; |
| bool found_leaf; |
| gpa_t addr = start; |
| unsigned long page_size; |
| |
| while (addr < end) { |
| found_leaf = gstage_get_leaf_entry(kvm, addr, |
| &ptep, &ptep_level); |
| ret = gstage_level_to_page_size(ptep_level, &page_size); |
| if (ret) |
| break; |
| |
| if (!found_leaf) |
| goto next; |
| |
| if (!(addr & (page_size - 1)) && ((end - addr) >= page_size)) |
| gstage_op_pte(kvm, addr, ptep, |
| ptep_level, GSTAGE_OP_WP); |
| |
| next: |
| addr += page_size; |
| } |
| } |
| |
| static void gstage_wp_memory_region(struct kvm *kvm, int slot) |
| { |
| struct kvm_memslots *slots = kvm_memslots(kvm); |
| struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); |
| phys_addr_t start = memslot->base_gfn << PAGE_SHIFT; |
| phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; |
| |
| spin_lock(&kvm->mmu_lock); |
| gstage_wp_range(kvm, start, end); |
| spin_unlock(&kvm->mmu_lock); |
| kvm_flush_remote_tlbs(kvm); |
| } |
| |
| int kvm_riscv_gstage_ioremap(struct kvm *kvm, gpa_t gpa, |
| phys_addr_t hpa, unsigned long size, |
| bool writable, bool in_atomic) |
| { |
| pte_t pte; |
| int ret = 0; |
| unsigned long pfn; |
| phys_addr_t addr, end; |
| struct kvm_mmu_memory_cache pcache = { |
| .gfp_custom = (in_atomic) ? GFP_ATOMIC | __GFP_ACCOUNT : 0, |
| .gfp_zero = __GFP_ZERO, |
| }; |
| |
| end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK; |
| pfn = __phys_to_pfn(hpa); |
| |
| for (addr = gpa; addr < end; addr += PAGE_SIZE) { |
| pte = pfn_pte(pfn, PAGE_KERNEL_IO); |
| |
| if (!writable) |
| pte = pte_wrprotect(pte); |
| |
| ret = kvm_mmu_topup_memory_cache(&pcache, gstage_pgd_levels); |
| if (ret) |
| goto out; |
| |
| spin_lock(&kvm->mmu_lock); |
| ret = gstage_set_pte(kvm, 0, &pcache, addr, &pte); |
| spin_unlock(&kvm->mmu_lock); |
| if (ret) |
| goto out; |
| |
| pfn++; |
| } |
| |
| out: |
| kvm_mmu_free_memory_cache(&pcache); |
| return ret; |
| } |
| |
| void kvm_riscv_gstage_iounmap(struct kvm *kvm, gpa_t gpa, unsigned long size) |
| { |
| spin_lock(&kvm->mmu_lock); |
| gstage_unmap_range(kvm, gpa, size, false); |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, |
| unsigned long mask) |
| { |
| phys_addr_t base_gfn = slot->base_gfn + gfn_offset; |
| phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; |
| phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; |
| |
| gstage_wp_range(kvm, start, end); |
| } |
| |
| void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) |
| { |
| } |
| |
| void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free) |
| { |
| } |
| |
| void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) |
| { |
| } |
| |
| void kvm_arch_flush_shadow_all(struct kvm *kvm) |
| { |
| kvm_riscv_gstage_free_pgd(kvm); |
| } |
| |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| struct kvm_memory_slot *slot) |
| { |
| gpa_t gpa = slot->base_gfn << PAGE_SHIFT; |
| phys_addr_t size = slot->npages << PAGE_SHIFT; |
| |
| spin_lock(&kvm->mmu_lock); |
| gstage_unmap_range(kvm, gpa, size, false); |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| void kvm_arch_commit_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| /* |
| * At this point memslot has been committed and there is an |
| * allocated dirty_bitmap[], dirty pages will be tracked while |
| * the memory slot is write protected. |
| */ |
| if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) |
| gstage_wp_memory_region(kvm, new->id); |
| } |
| |
| int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| const struct kvm_memory_slot *old, |
| struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| hva_t hva, reg_end, size; |
| gpa_t base_gpa; |
| bool writable; |
| int ret = 0; |
| |
| if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && |
| change != KVM_MR_FLAGS_ONLY) |
| return 0; |
| |
| /* |
| * Prevent userspace from creating a memory region outside of the GPA |
| * space addressable by the KVM guest GPA space. |
| */ |
| if ((new->base_gfn + new->npages) >= |
| (gstage_gpa_size >> PAGE_SHIFT)) |
| return -EFAULT; |
| |
| hva = new->userspace_addr; |
| size = new->npages << PAGE_SHIFT; |
| reg_end = hva + size; |
| base_gpa = new->base_gfn << PAGE_SHIFT; |
| writable = !(new->flags & KVM_MEM_READONLY); |
| |
| mmap_read_lock(current->mm); |
| |
| /* |
| * A memory region could potentially cover multiple VMAs, and |
| * any holes between them, so iterate over all of them to find |
| * out if we can map any of them right now. |
| * |
| * +--------------------------------------------+ |
| * +---------------+----------------+ +----------------+ |
| * | : VMA 1 | VMA 2 | | VMA 3 : | |
| * +---------------+----------------+ +----------------+ |
| * | memory region | |
| * +--------------------------------------------+ |
| */ |
| do { |
| struct vm_area_struct *vma = find_vma(current->mm, hva); |
| hva_t vm_start, vm_end; |
| |
| if (!vma || vma->vm_start >= reg_end) |
| break; |
| |
| /* |
| * Mapping a read-only VMA is only allowed if the |
| * memory region is configured as read-only. |
| */ |
| if (writable && !(vma->vm_flags & VM_WRITE)) { |
| ret = -EPERM; |
| break; |
| } |
| |
| /* Take the intersection of this VMA with the memory region */ |
| vm_start = max(hva, vma->vm_start); |
| vm_end = min(reg_end, vma->vm_end); |
| |
| if (vma->vm_flags & VM_PFNMAP) { |
| gpa_t gpa = base_gpa + (vm_start - hva); |
| phys_addr_t pa; |
| |
| pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; |
| pa += vm_start - vma->vm_start; |
| |
| /* IO region dirty page logging not allowed */ |
| if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = kvm_riscv_gstage_ioremap(kvm, gpa, pa, |
| vm_end - vm_start, |
| writable, false); |
| if (ret) |
| break; |
| } |
| hva = vm_end; |
| } while (hva < reg_end); |
| |
| if (change == KVM_MR_FLAGS_ONLY) |
| goto out; |
| |
| if (ret) |
| kvm_riscv_gstage_iounmap(kvm, base_gpa, size); |
| |
| out: |
| mmap_read_unlock(current->mm); |
| return ret; |
| } |
| |
| bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| if (!kvm->arch.pgd) |
| return false; |
| |
| gstage_unmap_range(kvm, range->start << PAGE_SHIFT, |
| (range->end - range->start) << PAGE_SHIFT, |
| range->may_block); |
| return false; |
| } |
| |
| bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| int ret; |
| kvm_pfn_t pfn = pte_pfn(range->arg.pte); |
| |
| if (!kvm->arch.pgd) |
| return false; |
| |
| WARN_ON(range->end - range->start != 1); |
| |
| ret = gstage_map_page(kvm, NULL, range->start << PAGE_SHIFT, |
| __pfn_to_phys(pfn), PAGE_SIZE, true, true); |
| if (ret) { |
| kvm_debug("Failed to map G-stage page (error %d)\n", ret); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| pte_t *ptep; |
| u32 ptep_level = 0; |
| u64 size = (range->end - range->start) << PAGE_SHIFT; |
| |
| if (!kvm->arch.pgd) |
| return false; |
| |
| WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); |
| |
| if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT, |
| &ptep, &ptep_level)) |
| return false; |
| |
| return ptep_test_and_clear_young(NULL, 0, ptep); |
| } |
| |
| bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| { |
| pte_t *ptep; |
| u32 ptep_level = 0; |
| u64 size = (range->end - range->start) << PAGE_SHIFT; |
| |
| if (!kvm->arch.pgd) |
| return false; |
| |
| WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); |
| |
| if (!gstage_get_leaf_entry(kvm, range->start << PAGE_SHIFT, |
| &ptep, &ptep_level)) |
| return false; |
| |
| return pte_young(ptep_get(ptep)); |
| } |
| |
| int kvm_riscv_gstage_map(struct kvm_vcpu *vcpu, |
| struct kvm_memory_slot *memslot, |
| gpa_t gpa, unsigned long hva, bool is_write) |
| { |
| int ret; |
| kvm_pfn_t hfn; |
| bool writable; |
| short vma_pageshift; |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| struct vm_area_struct *vma; |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache; |
| bool logging = (memslot->dirty_bitmap && |
| !(memslot->flags & KVM_MEM_READONLY)) ? true : false; |
| unsigned long vma_pagesize, mmu_seq; |
| |
| /* We need minimum second+third level pages */ |
| ret = kvm_mmu_topup_memory_cache(pcache, gstage_pgd_levels); |
| if (ret) { |
| kvm_err("Failed to topup G-stage cache\n"); |
| return ret; |
| } |
| |
| mmap_read_lock(current->mm); |
| |
| vma = vma_lookup(current->mm, hva); |
| if (unlikely(!vma)) { |
| kvm_err("Failed to find VMA for hva 0x%lx\n", hva); |
| mmap_read_unlock(current->mm); |
| return -EFAULT; |
| } |
| |
| if (is_vm_hugetlb_page(vma)) |
| vma_pageshift = huge_page_shift(hstate_vma(vma)); |
| else |
| vma_pageshift = PAGE_SHIFT; |
| vma_pagesize = 1ULL << vma_pageshift; |
| if (logging || (vma->vm_flags & VM_PFNMAP)) |
| vma_pagesize = PAGE_SIZE; |
| |
| if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE) |
| gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; |
| |
| /* |
| * Read mmu_invalidate_seq so that KVM can detect if the results of |
| * vma_lookup() or gfn_to_pfn_prot() become stale priort to acquiring |
| * kvm->mmu_lock. |
| * |
| * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs |
| * with the smp_wmb() in kvm_mmu_invalidate_end(). |
| */ |
| mmu_seq = kvm->mmu_invalidate_seq; |
| mmap_read_unlock(current->mm); |
| |
| if (vma_pagesize != PUD_SIZE && |
| vma_pagesize != PMD_SIZE && |
| vma_pagesize != PAGE_SIZE) { |
| kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize); |
| return -EFAULT; |
| } |
| |
| hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writable); |
| if (hfn == KVM_PFN_ERR_HWPOISON) { |
| send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, |
| vma_pageshift, current); |
| return 0; |
| } |
| if (is_error_noslot_pfn(hfn)) |
| return -EFAULT; |
| |
| /* |
| * If logging is active then we allow writable pages only |
| * for write faults. |
| */ |
| if (logging && !is_write) |
| writable = false; |
| |
| spin_lock(&kvm->mmu_lock); |
| |
| if (mmu_invalidate_retry(kvm, mmu_seq)) |
| goto out_unlock; |
| |
| if (writable) { |
| kvm_set_pfn_dirty(hfn); |
| mark_page_dirty(kvm, gfn); |
| ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT, |
| vma_pagesize, false, true); |
| } else { |
| ret = gstage_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT, |
| vma_pagesize, true, true); |
| } |
| |
| if (ret) |
| kvm_err("Failed to map in G-stage\n"); |
| |
| out_unlock: |
| spin_unlock(&kvm->mmu_lock); |
| kvm_set_pfn_accessed(hfn); |
| kvm_release_pfn_clean(hfn); |
| return ret; |
| } |
| |
| int kvm_riscv_gstage_alloc_pgd(struct kvm *kvm) |
| { |
| struct page *pgd_page; |
| |
| if (kvm->arch.pgd != NULL) { |
| kvm_err("kvm_arch already initialized?\n"); |
| return -EINVAL; |
| } |
| |
| pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(gstage_pgd_size)); |
| if (!pgd_page) |
| return -ENOMEM; |
| kvm->arch.pgd = page_to_virt(pgd_page); |
| kvm->arch.pgd_phys = page_to_phys(pgd_page); |
| |
| return 0; |
| } |
| |
| void kvm_riscv_gstage_free_pgd(struct kvm *kvm) |
| { |
| void *pgd = NULL; |
| |
| spin_lock(&kvm->mmu_lock); |
| if (kvm->arch.pgd) { |
| gstage_unmap_range(kvm, 0UL, gstage_gpa_size, false); |
| pgd = READ_ONCE(kvm->arch.pgd); |
| kvm->arch.pgd = NULL; |
| kvm->arch.pgd_phys = 0; |
| } |
| spin_unlock(&kvm->mmu_lock); |
| |
| if (pgd) |
| free_pages((unsigned long)pgd, get_order(gstage_pgd_size)); |
| } |
| |
| void kvm_riscv_gstage_update_hgatp(struct kvm_vcpu *vcpu) |
| { |
| unsigned long hgatp = gstage_mode; |
| struct kvm_arch *k = &vcpu->kvm->arch; |
| |
| hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID; |
| hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN; |
| |
| csr_write(CSR_HGATP, hgatp); |
| |
| if (!kvm_riscv_gstage_vmid_bits()) |
| kvm_riscv_local_hfence_gvma_all(); |
| } |
| |
| void __init kvm_riscv_gstage_mode_detect(void) |
| { |
| #ifdef CONFIG_64BIT |
| /* Try Sv57x4 G-stage mode */ |
| csr_write(CSR_HGATP, HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT); |
| if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV57X4) { |
| gstage_mode = (HGATP_MODE_SV57X4 << HGATP_MODE_SHIFT); |
| gstage_pgd_levels = 5; |
| goto skip_sv48x4_test; |
| } |
| |
| /* Try Sv48x4 G-stage mode */ |
| csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT); |
| if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) { |
| gstage_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT); |
| gstage_pgd_levels = 4; |
| } |
| skip_sv48x4_test: |
| |
| csr_write(CSR_HGATP, 0); |
| kvm_riscv_local_hfence_gvma_all(); |
| #endif |
| } |
| |
| unsigned long __init kvm_riscv_gstage_mode(void) |
| { |
| return gstage_mode >> HGATP_MODE_SHIFT; |
| } |
| |
| int kvm_riscv_gstage_gpa_bits(void) |
| { |
| return gstage_gpa_bits; |
| } |