blob: 6974dd4614103b65ed269be939dc57201a82e2ea [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* cs35l34.c -- CS35l34 ALSA SoC audio driver
*
* Copyright 2016 Cirrus Logic, Inc.
*
* Author: Paul Handrigan <Paul.Handrigan@cirrus.com>
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/machine.h>
#include <linux/pm_runtime.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/cs35l34.h>
#include "cs35l34.h"
#include "cirrus_legacy.h"
#define PDN_DONE_ATTEMPTS 10
#define CS35L34_START_DELAY 50
struct cs35l34_private {
struct snd_soc_component *component;
struct cs35l34_platform_data pdata;
struct regmap *regmap;
struct regulator_bulk_data core_supplies[2];
int num_core_supplies;
int mclk_int;
bool tdm_mode;
struct gpio_desc *reset_gpio; /* Active-low reset GPIO */
};
static const struct reg_default cs35l34_reg[] = {
{CS35L34_PWRCTL1, 0x01},
{CS35L34_PWRCTL2, 0x19},
{CS35L34_PWRCTL3, 0x01},
{CS35L34_ADSP_CLK_CTL, 0x08},
{CS35L34_MCLK_CTL, 0x11},
{CS35L34_AMP_INP_DRV_CTL, 0x01},
{CS35L34_AMP_DIG_VOL_CTL, 0x12},
{CS35L34_AMP_DIG_VOL, 0x00},
{CS35L34_AMP_ANLG_GAIN_CTL, 0x0F},
{CS35L34_PROTECT_CTL, 0x06},
{CS35L34_AMP_KEEP_ALIVE_CTL, 0x04},
{CS35L34_BST_CVTR_V_CTL, 0x00},
{CS35L34_BST_PEAK_I, 0x10},
{CS35L34_BST_RAMP_CTL, 0x87},
{CS35L34_BST_CONV_COEF_1, 0x24},
{CS35L34_BST_CONV_COEF_2, 0x24},
{CS35L34_BST_CONV_SLOPE_COMP, 0x4E},
{CS35L34_BST_CONV_SW_FREQ, 0x08},
{CS35L34_CLASS_H_CTL, 0x0D},
{CS35L34_CLASS_H_HEADRM_CTL, 0x0D},
{CS35L34_CLASS_H_RELEASE_RATE, 0x08},
{CS35L34_CLASS_H_FET_DRIVE_CTL, 0x41},
{CS35L34_CLASS_H_STATUS, 0x05},
{CS35L34_VPBR_CTL, 0x0A},
{CS35L34_VPBR_VOL_CTL, 0x90},
{CS35L34_VPBR_TIMING_CTL, 0x6A},
{CS35L34_PRED_MAX_ATTEN_SPK_LOAD, 0x95},
{CS35L34_PRED_BROWNOUT_THRESH, 0x1C},
{CS35L34_PRED_BROWNOUT_VOL_CTL, 0x00},
{CS35L34_PRED_BROWNOUT_RATE_CTL, 0x10},
{CS35L34_PRED_WAIT_CTL, 0x10},
{CS35L34_PRED_ZVP_INIT_IMP_CTL, 0x08},
{CS35L34_PRED_MAN_SAFE_VPI_CTL, 0x80},
{CS35L34_VPBR_ATTEN_STATUS, 0x00},
{CS35L34_PRED_BRWNOUT_ATT_STATUS, 0x00},
{CS35L34_SPKR_MON_CTL, 0xC6},
{CS35L34_ADSP_I2S_CTL, 0x00},
{CS35L34_ADSP_TDM_CTL, 0x00},
{CS35L34_TDM_TX_CTL_1_VMON, 0x00},
{CS35L34_TDM_TX_CTL_2_IMON, 0x04},
{CS35L34_TDM_TX_CTL_3_VPMON, 0x03},
{CS35L34_TDM_TX_CTL_4_VBSTMON, 0x07},
{CS35L34_TDM_TX_CTL_5_FLAG1, 0x08},
{CS35L34_TDM_TX_CTL_6_FLAG2, 0x09},
{CS35L34_TDM_TX_SLOT_EN_1, 0x00},
{CS35L34_TDM_TX_SLOT_EN_2, 0x00},
{CS35L34_TDM_TX_SLOT_EN_3, 0x00},
{CS35L34_TDM_TX_SLOT_EN_4, 0x00},
{CS35L34_TDM_RX_CTL_1_AUDIN, 0x40},
{CS35L34_TDM_RX_CTL_3_ALIVE, 0x04},
{CS35L34_MULT_DEV_SYNCH1, 0x00},
{CS35L34_MULT_DEV_SYNCH2, 0x80},
{CS35L34_PROT_RELEASE_CTL, 0x00},
{CS35L34_DIAG_MODE_REG_LOCK, 0x00},
{CS35L34_DIAG_MODE_CTL_1, 0x00},
{CS35L34_DIAG_MODE_CTL_2, 0x00},
{CS35L34_INT_MASK_1, 0xFF},
{CS35L34_INT_MASK_2, 0xFF},
{CS35L34_INT_MASK_3, 0xFF},
{CS35L34_INT_MASK_4, 0xFF},
{CS35L34_INT_STATUS_1, 0x30},
{CS35L34_INT_STATUS_2, 0x05},
{CS35L34_INT_STATUS_3, 0x00},
{CS35L34_INT_STATUS_4, 0x00},
{CS35L34_OTP_TRIM_STATUS, 0x00},
};
static bool cs35l34_volatile_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS35L34_DEVID_AB:
case CS35L34_DEVID_CD:
case CS35L34_DEVID_E:
case CS35L34_FAB_ID:
case CS35L34_REV_ID:
case CS35L34_INT_STATUS_1:
case CS35L34_INT_STATUS_2:
case CS35L34_INT_STATUS_3:
case CS35L34_INT_STATUS_4:
case CS35L34_CLASS_H_STATUS:
case CS35L34_VPBR_ATTEN_STATUS:
case CS35L34_OTP_TRIM_STATUS:
return true;
default:
return false;
}
}
static bool cs35l34_readable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS35L34_DEVID_AB:
case CS35L34_DEVID_CD:
case CS35L34_DEVID_E:
case CS35L34_FAB_ID:
case CS35L34_REV_ID:
case CS35L34_PWRCTL1:
case CS35L34_PWRCTL2:
case CS35L34_PWRCTL3:
case CS35L34_ADSP_CLK_CTL:
case CS35L34_MCLK_CTL:
case CS35L34_AMP_INP_DRV_CTL:
case CS35L34_AMP_DIG_VOL_CTL:
case CS35L34_AMP_DIG_VOL:
case CS35L34_AMP_ANLG_GAIN_CTL:
case CS35L34_PROTECT_CTL:
case CS35L34_AMP_KEEP_ALIVE_CTL:
case CS35L34_BST_CVTR_V_CTL:
case CS35L34_BST_PEAK_I:
case CS35L34_BST_RAMP_CTL:
case CS35L34_BST_CONV_COEF_1:
case CS35L34_BST_CONV_COEF_2:
case CS35L34_BST_CONV_SLOPE_COMP:
case CS35L34_BST_CONV_SW_FREQ:
case CS35L34_CLASS_H_CTL:
case CS35L34_CLASS_H_HEADRM_CTL:
case CS35L34_CLASS_H_RELEASE_RATE:
case CS35L34_CLASS_H_FET_DRIVE_CTL:
case CS35L34_CLASS_H_STATUS:
case CS35L34_VPBR_CTL:
case CS35L34_VPBR_VOL_CTL:
case CS35L34_VPBR_TIMING_CTL:
case CS35L34_PRED_MAX_ATTEN_SPK_LOAD:
case CS35L34_PRED_BROWNOUT_THRESH:
case CS35L34_PRED_BROWNOUT_VOL_CTL:
case CS35L34_PRED_BROWNOUT_RATE_CTL:
case CS35L34_PRED_WAIT_CTL:
case CS35L34_PRED_ZVP_INIT_IMP_CTL:
case CS35L34_PRED_MAN_SAFE_VPI_CTL:
case CS35L34_VPBR_ATTEN_STATUS:
case CS35L34_PRED_BRWNOUT_ATT_STATUS:
case CS35L34_SPKR_MON_CTL:
case CS35L34_ADSP_I2S_CTL:
case CS35L34_ADSP_TDM_CTL:
case CS35L34_TDM_TX_CTL_1_VMON:
case CS35L34_TDM_TX_CTL_2_IMON:
case CS35L34_TDM_TX_CTL_3_VPMON:
case CS35L34_TDM_TX_CTL_4_VBSTMON:
case CS35L34_TDM_TX_CTL_5_FLAG1:
case CS35L34_TDM_TX_CTL_6_FLAG2:
case CS35L34_TDM_TX_SLOT_EN_1:
case CS35L34_TDM_TX_SLOT_EN_2:
case CS35L34_TDM_TX_SLOT_EN_3:
case CS35L34_TDM_TX_SLOT_EN_4:
case CS35L34_TDM_RX_CTL_1_AUDIN:
case CS35L34_TDM_RX_CTL_3_ALIVE:
case CS35L34_MULT_DEV_SYNCH1:
case CS35L34_MULT_DEV_SYNCH2:
case CS35L34_PROT_RELEASE_CTL:
case CS35L34_DIAG_MODE_REG_LOCK:
case CS35L34_DIAG_MODE_CTL_1:
case CS35L34_DIAG_MODE_CTL_2:
case CS35L34_INT_MASK_1:
case CS35L34_INT_MASK_2:
case CS35L34_INT_MASK_3:
case CS35L34_INT_MASK_4:
case CS35L34_INT_STATUS_1:
case CS35L34_INT_STATUS_2:
case CS35L34_INT_STATUS_3:
case CS35L34_INT_STATUS_4:
case CS35L34_OTP_TRIM_STATUS:
return true;
default:
return false;
}
}
static bool cs35l34_precious_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case CS35L34_INT_STATUS_1:
case CS35L34_INT_STATUS_2:
case CS35L34_INT_STATUS_3:
case CS35L34_INT_STATUS_4:
return true;
default:
return false;
}
}
static int cs35l34_sdin_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct cs35l34_private *priv = snd_soc_component_get_drvdata(component);
int ret;
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (priv->tdm_mode)
regmap_update_bits(priv->regmap, CS35L34_PWRCTL3,
CS35L34_PDN_TDM, 0x00);
ret = regmap_update_bits(priv->regmap, CS35L34_PWRCTL1,
CS35L34_PDN_ALL, 0);
if (ret < 0) {
dev_err(component->dev, "Cannot set Power bits %d\n", ret);
return ret;
}
usleep_range(5000, 5100);
break;
case SND_SOC_DAPM_POST_PMD:
if (priv->tdm_mode) {
regmap_update_bits(priv->regmap, CS35L34_PWRCTL3,
CS35L34_PDN_TDM, CS35L34_PDN_TDM);
}
ret = regmap_update_bits(priv->regmap, CS35L34_PWRCTL1,
CS35L34_PDN_ALL, CS35L34_PDN_ALL);
break;
default:
pr_err("Invalid event = 0x%x\n", event);
}
return 0;
}
static int cs35l34_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
struct cs35l34_private *priv = snd_soc_component_get_drvdata(component);
unsigned int reg, bit_pos;
int slot, slot_num;
if (slot_width != 8)
return -EINVAL;
priv->tdm_mode = true;
/* scan rx_mask for aud slot */
slot = ffs(rx_mask) - 1;
if (slot >= 0)
snd_soc_component_update_bits(component, CS35L34_TDM_RX_CTL_1_AUDIN,
CS35L34_X_LOC, slot);
/* scan tx_mask: vmon(2 slots); imon (2 slots); vpmon (1 slot)
* vbstmon (1 slot)
*/
slot = ffs(tx_mask) - 1;
slot_num = 0;
/* disable vpmon/vbstmon: enable later if set in tx_mask */
snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_3_VPMON,
CS35L34_X_STATE | CS35L34_X_LOC,
CS35L34_X_STATE | CS35L34_X_LOC);
snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_4_VBSTMON,
CS35L34_X_STATE | CS35L34_X_LOC,
CS35L34_X_STATE | CS35L34_X_LOC);
/* disconnect {vp,vbst}_mon routes: eanble later if set in tx_mask*/
while (slot >= 0) {
/* configure VMON_TX_LOC */
if (slot_num == 0)
snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_1_VMON,
CS35L34_X_STATE | CS35L34_X_LOC, slot);
/* configure IMON_TX_LOC */
if (slot_num == 4) {
snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_2_IMON,
CS35L34_X_STATE | CS35L34_X_LOC, slot);
}
/* configure VPMON_TX_LOC */
if (slot_num == 3) {
snd_soc_component_update_bits(component, CS35L34_TDM_TX_CTL_3_VPMON,
CS35L34_X_STATE | CS35L34_X_LOC, slot);
}
/* configure VBSTMON_TX_LOC */
if (slot_num == 7) {
snd_soc_component_update_bits(component,
CS35L34_TDM_TX_CTL_4_VBSTMON,
CS35L34_X_STATE | CS35L34_X_LOC, slot);
}
/* Enable the relevant tx slot */
reg = CS35L34_TDM_TX_SLOT_EN_4 - (slot/8);
bit_pos = slot - ((slot / 8) * (8));
snd_soc_component_update_bits(component, reg,
1 << bit_pos, 1 << bit_pos);
tx_mask &= ~(1 << slot);
slot = ffs(tx_mask) - 1;
slot_num++;
}
return 0;
}
static int cs35l34_main_amp_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct cs35l34_private *priv = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
regmap_update_bits(priv->regmap, CS35L34_BST_CVTR_V_CTL,
CS35L34_BST_CVTL_MASK, priv->pdata.boost_vtge);
usleep_range(5000, 5100);
regmap_update_bits(priv->regmap, CS35L34_PROTECT_CTL,
CS35L34_MUTE, 0);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(priv->regmap, CS35L34_BST_CVTR_V_CTL,
CS35L34_BST_CVTL_MASK, 0);
regmap_update_bits(priv->regmap, CS35L34_PROTECT_CTL,
CS35L34_MUTE, CS35L34_MUTE);
usleep_range(5000, 5100);
break;
default:
pr_err("Invalid event = 0x%x\n", event);
}
return 0;
}
static DECLARE_TLV_DB_SCALE(dig_vol_tlv, -10200, 50, 0);
static DECLARE_TLV_DB_SCALE(amp_gain_tlv, 300, 100, 0);
static const struct snd_kcontrol_new cs35l34_snd_controls[] = {
SOC_SINGLE_SX_TLV("Digital Volume", CS35L34_AMP_DIG_VOL,
0, 0x34, 0xE4, dig_vol_tlv),
SOC_SINGLE_TLV("Amp Gain Volume", CS35L34_AMP_ANLG_GAIN_CTL,
0, 0xF, 0, amp_gain_tlv),
};
static int cs35l34_mclk_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct cs35l34_private *priv = snd_soc_component_get_drvdata(component);
int ret, i;
unsigned int reg;
switch (event) {
case SND_SOC_DAPM_PRE_PMD:
ret = regmap_read(priv->regmap, CS35L34_AMP_DIG_VOL_CTL,
&reg);
if (ret != 0) {
pr_err("%s regmap read failure %d\n", __func__, ret);
return ret;
}
if (reg & CS35L34_AMP_DIGSFT)
msleep(40);
else
usleep_range(2000, 2100);
for (i = 0; i < PDN_DONE_ATTEMPTS; i++) {
ret = regmap_read(priv->regmap, CS35L34_INT_STATUS_2,
&reg);
if (ret != 0) {
pr_err("%s regmap read failure %d\n",
__func__, ret);
return ret;
}
if (reg & CS35L34_PDN_DONE)
break;
usleep_range(5000, 5100);
}
if (i == PDN_DONE_ATTEMPTS)
pr_err("%s Device did not power down properly\n",
__func__);
break;
default:
pr_err("Invalid event = 0x%x\n", event);
break;
}
return 0;
}
static const struct snd_soc_dapm_widget cs35l34_dapm_widgets[] = {
SND_SOC_DAPM_AIF_IN_E("SDIN", NULL, 0, CS35L34_PWRCTL3,
1, 1, cs35l34_sdin_event,
SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_AIF_OUT("SDOUT", NULL, 0, CS35L34_PWRCTL3, 2, 1),
SND_SOC_DAPM_SUPPLY("EXTCLK", CS35L34_PWRCTL3, 7, 1,
cs35l34_mclk_event, SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_OUTPUT("SPK"),
SND_SOC_DAPM_INPUT("VP"),
SND_SOC_DAPM_INPUT("VPST"),
SND_SOC_DAPM_INPUT("ISENSE"),
SND_SOC_DAPM_INPUT("VSENSE"),
SND_SOC_DAPM_ADC("VMON ADC", NULL, CS35L34_PWRCTL2, 7, 1),
SND_SOC_DAPM_ADC("IMON ADC", NULL, CS35L34_PWRCTL2, 6, 1),
SND_SOC_DAPM_ADC("VPMON ADC", NULL, CS35L34_PWRCTL3, 3, 1),
SND_SOC_DAPM_ADC("VBSTMON ADC", NULL, CS35L34_PWRCTL3, 4, 1),
SND_SOC_DAPM_ADC("CLASS H", NULL, CS35L34_PWRCTL2, 5, 1),
SND_SOC_DAPM_ADC("BOOST", NULL, CS35L34_PWRCTL2, 2, 1),
SND_SOC_DAPM_OUT_DRV_E("Main AMP", CS35L34_PWRCTL2, 0, 1, NULL, 0,
cs35l34_main_amp_event, SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
};
static const struct snd_soc_dapm_route cs35l34_audio_map[] = {
{"SDIN", NULL, "AMP Playback"},
{"BOOST", NULL, "SDIN"},
{"CLASS H", NULL, "BOOST"},
{"Main AMP", NULL, "CLASS H"},
{"SPK", NULL, "Main AMP"},
{"VPMON ADC", NULL, "CLASS H"},
{"VBSTMON ADC", NULL, "CLASS H"},
{"SPK", NULL, "VPMON ADC"},
{"SPK", NULL, "VBSTMON ADC"},
{"IMON ADC", NULL, "ISENSE"},
{"VMON ADC", NULL, "VSENSE"},
{"SDOUT", NULL, "IMON ADC"},
{"SDOUT", NULL, "VMON ADC"},
{"AMP Capture", NULL, "SDOUT"},
{"SDIN", NULL, "EXTCLK"},
{"SDOUT", NULL, "EXTCLK"},
};
struct cs35l34_mclk_div {
int mclk;
int srate;
u8 adsp_rate;
};
static struct cs35l34_mclk_div cs35l34_mclk_coeffs[] = {
/* MCLK, Sample Rate, adsp_rate */
{5644800, 11025, 0x1},
{5644800, 22050, 0x4},
{5644800, 44100, 0x7},
{6000000, 8000, 0x0},
{6000000, 11025, 0x1},
{6000000, 12000, 0x2},
{6000000, 16000, 0x3},
{6000000, 22050, 0x4},
{6000000, 24000, 0x5},
{6000000, 32000, 0x6},
{6000000, 44100, 0x7},
{6000000, 48000, 0x8},
{6144000, 8000, 0x0},
{6144000, 11025, 0x1},
{6144000, 12000, 0x2},
{6144000, 16000, 0x3},
{6144000, 22050, 0x4},
{6144000, 24000, 0x5},
{6144000, 32000, 0x6},
{6144000, 44100, 0x7},
{6144000, 48000, 0x8},
};
static int cs35l34_get_mclk_coeff(int mclk, int srate)
{
int i;
for (i = 0; i < ARRAY_SIZE(cs35l34_mclk_coeffs); i++) {
if (cs35l34_mclk_coeffs[i].mclk == mclk &&
cs35l34_mclk_coeffs[i].srate == srate)
return i;
}
return -EINVAL;
}
static int cs35l34_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
struct cs35l34_private *priv = snd_soc_component_get_drvdata(component);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
regmap_update_bits(priv->regmap, CS35L34_ADSP_CLK_CTL,
0x80, 0x80);
break;
case SND_SOC_DAIFMT_CBS_CFS:
regmap_update_bits(priv->regmap, CS35L34_ADSP_CLK_CTL,
0x80, 0x00);
break;
default:
return -EINVAL;
}
return 0;
}
static int cs35l34_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct cs35l34_private *priv = snd_soc_component_get_drvdata(component);
int srate = params_rate(params);
int ret;
int coeff = cs35l34_get_mclk_coeff(priv->mclk_int, srate);
if (coeff < 0) {
dev_err(component->dev, "ERROR: Invalid mclk %d and/or srate %d\n",
priv->mclk_int, srate);
return coeff;
}
ret = regmap_update_bits(priv->regmap, CS35L34_ADSP_CLK_CTL,
CS35L34_ADSP_RATE, cs35l34_mclk_coeffs[coeff].adsp_rate);
if (ret != 0)
dev_err(component->dev, "Failed to set clock state %d\n", ret);
return ret;
}
static const unsigned int cs35l34_src_rates[] = {
8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000
};
static const struct snd_pcm_hw_constraint_list cs35l34_constraints = {
.count = ARRAY_SIZE(cs35l34_src_rates),
.list = cs35l34_src_rates,
};
static int cs35l34_pcm_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE, &cs35l34_constraints);
return 0;
}
static int cs35l34_set_tristate(struct snd_soc_dai *dai, int tristate)
{
struct snd_soc_component *component = dai->component;
if (tristate)
snd_soc_component_update_bits(component, CS35L34_PWRCTL3,
CS35L34_PDN_SDOUT, CS35L34_PDN_SDOUT);
else
snd_soc_component_update_bits(component, CS35L34_PWRCTL3,
CS35L34_PDN_SDOUT, 0);
return 0;
}
static int cs35l34_dai_set_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = dai->component;
struct cs35l34_private *cs35l34 = snd_soc_component_get_drvdata(component);
unsigned int value;
switch (freq) {
case CS35L34_MCLK_5644:
value = CS35L34_MCLK_RATE_5P6448;
cs35l34->mclk_int = freq;
break;
case CS35L34_MCLK_6:
value = CS35L34_MCLK_RATE_6P0000;
cs35l34->mclk_int = freq;
break;
case CS35L34_MCLK_6144:
value = CS35L34_MCLK_RATE_6P1440;
cs35l34->mclk_int = freq;
break;
case CS35L34_MCLK_11289:
value = CS35L34_MCLK_DIV | CS35L34_MCLK_RATE_5P6448;
cs35l34->mclk_int = freq / 2;
break;
case CS35L34_MCLK_12:
value = CS35L34_MCLK_DIV | CS35L34_MCLK_RATE_6P0000;
cs35l34->mclk_int = freq / 2;
break;
case CS35L34_MCLK_12288:
value = CS35L34_MCLK_DIV | CS35L34_MCLK_RATE_6P1440;
cs35l34->mclk_int = freq / 2;
break;
default:
dev_err(component->dev, "ERROR: Invalid Frequency %d\n", freq);
cs35l34->mclk_int = 0;
return -EINVAL;
}
regmap_update_bits(cs35l34->regmap, CS35L34_MCLK_CTL,
CS35L34_MCLK_DIV | CS35L34_MCLK_RATE_MASK, value);
return 0;
}
static const struct snd_soc_dai_ops cs35l34_ops = {
.startup = cs35l34_pcm_startup,
.set_tristate = cs35l34_set_tristate,
.set_fmt = cs35l34_set_dai_fmt,
.hw_params = cs35l34_pcm_hw_params,
.set_sysclk = cs35l34_dai_set_sysclk,
.set_tdm_slot = cs35l34_set_tdm_slot,
};
static struct snd_soc_dai_driver cs35l34_dai = {
.name = "cs35l34",
.id = 0,
.playback = {
.stream_name = "AMP Playback",
.channels_min = 1,
.channels_max = 8,
.rates = CS35L34_RATES,
.formats = CS35L34_FORMATS,
},
.capture = {
.stream_name = "AMP Capture",
.channels_min = 1,
.channels_max = 8,
.rates = CS35L34_RATES,
.formats = CS35L34_FORMATS,
},
.ops = &cs35l34_ops,
.symmetric_rate = 1,
};
static int cs35l34_boost_inductor(struct cs35l34_private *cs35l34,
unsigned int inductor)
{
struct snd_soc_component *component = cs35l34->component;
switch (inductor) {
case 1000: /* 1 uH */
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_1, 0x24);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_2, 0x24);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SLOPE_COMP,
0x4E);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SW_FREQ, 0);
break;
case 1200: /* 1.2 uH */
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_1, 0x20);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_2, 0x20);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SLOPE_COMP,
0x47);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SW_FREQ, 1);
break;
case 1500: /* 1.5uH */
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_1, 0x20);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_2, 0x20);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SLOPE_COMP,
0x3C);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SW_FREQ, 2);
break;
case 2200: /* 2.2uH */
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_1, 0x19);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_COEF_2, 0x25);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SLOPE_COMP,
0x23);
regmap_write(cs35l34->regmap, CS35L34_BST_CONV_SW_FREQ, 3);
break;
default:
dev_err(component->dev, "%s Invalid Inductor Value %d uH\n",
__func__, inductor);
return -EINVAL;
}
return 0;
}
static int cs35l34_probe(struct snd_soc_component *component)
{
int ret = 0;
struct cs35l34_private *cs35l34 = snd_soc_component_get_drvdata(component);
pm_runtime_get_sync(component->dev);
/* Set over temperature warning attenuation to 6 dB */
regmap_update_bits(cs35l34->regmap, CS35L34_PROTECT_CTL,
CS35L34_OTW_ATTN_MASK, 0x8);
/* Set Power control registers 2 and 3 to have everything
* powered down at initialization
*/
regmap_write(cs35l34->regmap, CS35L34_PWRCTL2, 0xFD);
regmap_write(cs35l34->regmap, CS35L34_PWRCTL3, 0x1F);
/* Set mute bit at startup */
regmap_update_bits(cs35l34->regmap, CS35L34_PROTECT_CTL,
CS35L34_MUTE, CS35L34_MUTE);
/* Set Platform Data */
if (cs35l34->pdata.boost_peak)
regmap_update_bits(cs35l34->regmap, CS35L34_BST_PEAK_I,
CS35L34_BST_PEAK_MASK,
cs35l34->pdata.boost_peak);
if (cs35l34->pdata.gain_zc_disable)
regmap_update_bits(cs35l34->regmap, CS35L34_PROTECT_CTL,
CS35L34_GAIN_ZC_MASK, 0);
else
regmap_update_bits(cs35l34->regmap, CS35L34_PROTECT_CTL,
CS35L34_GAIN_ZC_MASK, CS35L34_GAIN_ZC_MASK);
if (cs35l34->pdata.aif_half_drv)
regmap_update_bits(cs35l34->regmap, CS35L34_ADSP_CLK_CTL,
CS35L34_ADSP_DRIVE, 0);
if (cs35l34->pdata.digsft_disable)
regmap_update_bits(cs35l34->regmap, CS35L34_AMP_DIG_VOL_CTL,
CS35L34_AMP_DIGSFT, 0);
if (cs35l34->pdata.amp_inv)
regmap_update_bits(cs35l34->regmap, CS35L34_AMP_DIG_VOL_CTL,
CS35L34_INV, CS35L34_INV);
if (cs35l34->pdata.boost_ind)
ret = cs35l34_boost_inductor(cs35l34, cs35l34->pdata.boost_ind);
if (cs35l34->pdata.i2s_sdinloc)
regmap_update_bits(cs35l34->regmap, CS35L34_ADSP_I2S_CTL,
CS35L34_I2S_LOC_MASK,
cs35l34->pdata.i2s_sdinloc << CS35L34_I2S_LOC_SHIFT);
if (cs35l34->pdata.tdm_rising_edge)
regmap_update_bits(cs35l34->regmap, CS35L34_ADSP_TDM_CTL,
1, 1);
pm_runtime_put_sync(component->dev);
return ret;
}
static const struct snd_soc_component_driver soc_component_dev_cs35l34 = {
.probe = cs35l34_probe,
.dapm_widgets = cs35l34_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(cs35l34_dapm_widgets),
.dapm_routes = cs35l34_audio_map,
.num_dapm_routes = ARRAY_SIZE(cs35l34_audio_map),
.controls = cs35l34_snd_controls,
.num_controls = ARRAY_SIZE(cs35l34_snd_controls),
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
};
static struct regmap_config cs35l34_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = CS35L34_MAX_REGISTER,
.reg_defaults = cs35l34_reg,
.num_reg_defaults = ARRAY_SIZE(cs35l34_reg),
.volatile_reg = cs35l34_volatile_register,
.readable_reg = cs35l34_readable_register,
.precious_reg = cs35l34_precious_register,
.cache_type = REGCACHE_MAPLE,
.use_single_read = true,
.use_single_write = true,
};
static int cs35l34_handle_of_data(struct i2c_client *i2c_client,
struct cs35l34_platform_data *pdata)
{
struct device_node *np = i2c_client->dev.of_node;
unsigned int val;
if (of_property_read_u32(np, "cirrus,boost-vtge-millivolt",
&val) >= 0) {
/* Boost Voltage has a maximum of 8V */
if (val > 8000 || (val < 3300 && val > 0)) {
dev_err(&i2c_client->dev,
"Invalid Boost Voltage %d mV\n", val);
return -EINVAL;
}
if (val == 0)
pdata->boost_vtge = 0; /* Use VP */
else
pdata->boost_vtge = ((val - 3300)/100) + 1;
} else {
dev_warn(&i2c_client->dev,
"Boost Voltage not specified. Using VP\n");
}
if (of_property_read_u32(np, "cirrus,boost-ind-nanohenry", &val) >= 0) {
pdata->boost_ind = val;
} else {
dev_err(&i2c_client->dev, "Inductor not specified.\n");
return -EINVAL;
}
if (of_property_read_u32(np, "cirrus,boost-peak-milliamp", &val) >= 0) {
if (val > 3840 || val < 1200) {
dev_err(&i2c_client->dev,
"Invalid Boost Peak Current %d mA\n", val);
return -EINVAL;
}
pdata->boost_peak = ((val - 1200)/80) + 1;
}
pdata->aif_half_drv = of_property_read_bool(np,
"cirrus,aif-half-drv");
pdata->digsft_disable = of_property_read_bool(np,
"cirrus,digsft-disable");
pdata->gain_zc_disable = of_property_read_bool(np,
"cirrus,gain-zc-disable");
pdata->amp_inv = of_property_read_bool(np, "cirrus,amp-inv");
if (of_property_read_u32(np, "cirrus,i2s-sdinloc", &val) >= 0)
pdata->i2s_sdinloc = val;
if (of_property_read_u32(np, "cirrus,tdm-rising-edge", &val) >= 0)
pdata->tdm_rising_edge = val;
return 0;
}
static irqreturn_t cs35l34_irq_thread(int irq, void *data)
{
struct cs35l34_private *cs35l34 = data;
struct snd_soc_component *component = cs35l34->component;
unsigned int sticky1, sticky2, sticky3, sticky4;
unsigned int mask1, mask2, mask3, mask4, current1;
/* ack the irq by reading all status registers */
regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_4, &sticky4);
regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_3, &sticky3);
regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_2, &sticky2);
regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_1, &sticky1);
regmap_read(cs35l34->regmap, CS35L34_INT_MASK_4, &mask4);
regmap_read(cs35l34->regmap, CS35L34_INT_MASK_3, &mask3);
regmap_read(cs35l34->regmap, CS35L34_INT_MASK_2, &mask2);
regmap_read(cs35l34->regmap, CS35L34_INT_MASK_1, &mask1);
if (!(sticky1 & ~mask1) && !(sticky2 & ~mask2) && !(sticky3 & ~mask3)
&& !(sticky4 & ~mask4))
return IRQ_NONE;
regmap_read(cs35l34->regmap, CS35L34_INT_STATUS_1, &current1);
if (sticky1 & CS35L34_CAL_ERR) {
dev_err(component->dev, "Cal error\n");
/* error is no longer asserted; safe to reset */
if (!(current1 & CS35L34_CAL_ERR)) {
dev_dbg(component->dev, "Cal error release\n");
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_CAL_ERR_RLS, 0);
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_CAL_ERR_RLS,
CS35L34_CAL_ERR_RLS);
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_CAL_ERR_RLS, 0);
/* note: amp will re-calibrate on next resume */
}
}
if (sticky1 & CS35L34_ALIVE_ERR)
dev_err(component->dev, "Alive error\n");
if (sticky1 & CS35L34_AMP_SHORT) {
dev_crit(component->dev, "Amp short error\n");
/* error is no longer asserted; safe to reset */
if (!(current1 & CS35L34_AMP_SHORT)) {
dev_dbg(component->dev,
"Amp short error release\n");
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_SHORT_RLS, 0);
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_SHORT_RLS,
CS35L34_SHORT_RLS);
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_SHORT_RLS, 0);
}
}
if (sticky1 & CS35L34_OTW) {
dev_crit(component->dev, "Over temperature warning\n");
/* error is no longer asserted; safe to reset */
if (!(current1 & CS35L34_OTW)) {
dev_dbg(component->dev,
"Over temperature warning release\n");
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_OTW_RLS, 0);
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_OTW_RLS,
CS35L34_OTW_RLS);
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_OTW_RLS, 0);
}
}
if (sticky1 & CS35L34_OTE) {
dev_crit(component->dev, "Over temperature error\n");
/* error is no longer asserted; safe to reset */
if (!(current1 & CS35L34_OTE)) {
dev_dbg(component->dev,
"Over temperature error release\n");
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_OTE_RLS, 0);
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_OTE_RLS,
CS35L34_OTE_RLS);
regmap_update_bits(cs35l34->regmap,
CS35L34_PROT_RELEASE_CTL,
CS35L34_OTE_RLS, 0);
}
}
if (sticky3 & CS35L34_BST_HIGH) {
dev_crit(component->dev, "VBST too high error; powering off!\n");
regmap_update_bits(cs35l34->regmap, CS35L34_PWRCTL2,
CS35L34_PDN_AMP, CS35L34_PDN_AMP);
regmap_update_bits(cs35l34->regmap, CS35L34_PWRCTL1,
CS35L34_PDN_ALL, CS35L34_PDN_ALL);
}
if (sticky3 & CS35L34_LBST_SHORT) {
dev_crit(component->dev, "LBST short error; powering off!\n");
regmap_update_bits(cs35l34->regmap, CS35L34_PWRCTL2,
CS35L34_PDN_AMP, CS35L34_PDN_AMP);
regmap_update_bits(cs35l34->regmap, CS35L34_PWRCTL1,
CS35L34_PDN_ALL, CS35L34_PDN_ALL);
}
return IRQ_HANDLED;
}
static const char * const cs35l34_core_supplies[] = {
"VA",
"VP",
};
static int cs35l34_i2c_probe(struct i2c_client *i2c_client)
{
struct cs35l34_private *cs35l34;
struct cs35l34_platform_data *pdata =
dev_get_platdata(&i2c_client->dev);
int i, devid;
int ret;
unsigned int reg;
cs35l34 = devm_kzalloc(&i2c_client->dev, sizeof(*cs35l34), GFP_KERNEL);
if (!cs35l34)
return -ENOMEM;
i2c_set_clientdata(i2c_client, cs35l34);
cs35l34->regmap = devm_regmap_init_i2c(i2c_client, &cs35l34_regmap);
if (IS_ERR(cs35l34->regmap)) {
ret = PTR_ERR(cs35l34->regmap);
dev_err(&i2c_client->dev, "regmap_init() failed: %d\n", ret);
return ret;
}
cs35l34->num_core_supplies = ARRAY_SIZE(cs35l34_core_supplies);
for (i = 0; i < ARRAY_SIZE(cs35l34_core_supplies); i++)
cs35l34->core_supplies[i].supply = cs35l34_core_supplies[i];
ret = devm_regulator_bulk_get(&i2c_client->dev,
cs35l34->num_core_supplies,
cs35l34->core_supplies);
if (ret != 0) {
dev_err(&i2c_client->dev,
"Failed to request core supplies %d\n", ret);
return ret;
}
ret = regulator_bulk_enable(cs35l34->num_core_supplies,
cs35l34->core_supplies);
if (ret != 0) {
dev_err(&i2c_client->dev,
"Failed to enable core supplies: %d\n", ret);
return ret;
}
if (pdata) {
cs35l34->pdata = *pdata;
} else {
pdata = devm_kzalloc(&i2c_client->dev, sizeof(*pdata),
GFP_KERNEL);
if (!pdata) {
ret = -ENOMEM;
goto err_regulator;
}
if (i2c_client->dev.of_node) {
ret = cs35l34_handle_of_data(i2c_client, pdata);
if (ret != 0)
goto err_regulator;
}
cs35l34->pdata = *pdata;
}
ret = devm_request_threaded_irq(&i2c_client->dev, i2c_client->irq, NULL,
cs35l34_irq_thread, IRQF_ONESHOT | IRQF_TRIGGER_LOW,
"cs35l34", cs35l34);
if (ret != 0)
dev_err(&i2c_client->dev, "Failed to request IRQ: %d\n", ret);
cs35l34->reset_gpio = devm_gpiod_get_optional(&i2c_client->dev,
"reset-gpios", GPIOD_OUT_LOW);
if (IS_ERR(cs35l34->reset_gpio)) {
ret = PTR_ERR(cs35l34->reset_gpio);
goto err_regulator;
}
gpiod_set_value_cansleep(cs35l34->reset_gpio, 1);
msleep(CS35L34_START_DELAY);
devid = cirrus_read_device_id(cs35l34->regmap, CS35L34_DEVID_AB);
if (devid < 0) {
ret = devid;
dev_err(&i2c_client->dev, "Failed to read device ID: %d\n", ret);
goto err_reset;
}
if (devid != CS35L34_CHIP_ID) {
dev_err(&i2c_client->dev,
"CS35l34 Device ID (%X). Expected ID %X\n",
devid, CS35L34_CHIP_ID);
ret = -ENODEV;
goto err_reset;
}
ret = regmap_read(cs35l34->regmap, CS35L34_REV_ID, &reg);
if (ret < 0) {
dev_err(&i2c_client->dev, "Get Revision ID failed\n");
goto err_reset;
}
dev_info(&i2c_client->dev,
"Cirrus Logic CS35l34 (%x), Revision: %02X\n", devid,
reg & 0xFF);
/* Unmask critical interrupts */
regmap_update_bits(cs35l34->regmap, CS35L34_INT_MASK_1,
CS35L34_M_CAL_ERR | CS35L34_M_ALIVE_ERR |
CS35L34_M_AMP_SHORT | CS35L34_M_OTW |
CS35L34_M_OTE, 0);
regmap_update_bits(cs35l34->regmap, CS35L34_INT_MASK_3,
CS35L34_M_BST_HIGH | CS35L34_M_LBST_SHORT, 0);
pm_runtime_set_autosuspend_delay(&i2c_client->dev, 100);
pm_runtime_use_autosuspend(&i2c_client->dev);
pm_runtime_set_active(&i2c_client->dev);
pm_runtime_enable(&i2c_client->dev);
ret = devm_snd_soc_register_component(&i2c_client->dev,
&soc_component_dev_cs35l34, &cs35l34_dai, 1);
if (ret < 0) {
dev_err(&i2c_client->dev,
"%s: Register component failed\n", __func__);
goto err_reset;
}
return 0;
err_reset:
gpiod_set_value_cansleep(cs35l34->reset_gpio, 0);
err_regulator:
regulator_bulk_disable(cs35l34->num_core_supplies,
cs35l34->core_supplies);
return ret;
}
static void cs35l34_i2c_remove(struct i2c_client *client)
{
struct cs35l34_private *cs35l34 = i2c_get_clientdata(client);
gpiod_set_value_cansleep(cs35l34->reset_gpio, 0);
pm_runtime_disable(&client->dev);
regulator_bulk_disable(cs35l34->num_core_supplies,
cs35l34->core_supplies);
}
static int __maybe_unused cs35l34_runtime_resume(struct device *dev)
{
struct cs35l34_private *cs35l34 = dev_get_drvdata(dev);
int ret;
ret = regulator_bulk_enable(cs35l34->num_core_supplies,
cs35l34->core_supplies);
if (ret != 0) {
dev_err(dev, "Failed to enable core supplies: %d\n",
ret);
return ret;
}
regcache_cache_only(cs35l34->regmap, false);
gpiod_set_value_cansleep(cs35l34->reset_gpio, 1);
msleep(CS35L34_START_DELAY);
ret = regcache_sync(cs35l34->regmap);
if (ret != 0) {
dev_err(dev, "Failed to restore register cache\n");
goto err;
}
return 0;
err:
regcache_cache_only(cs35l34->regmap, true);
regulator_bulk_disable(cs35l34->num_core_supplies,
cs35l34->core_supplies);
return ret;
}
static int __maybe_unused cs35l34_runtime_suspend(struct device *dev)
{
struct cs35l34_private *cs35l34 = dev_get_drvdata(dev);
regcache_cache_only(cs35l34->regmap, true);
regcache_mark_dirty(cs35l34->regmap);
gpiod_set_value_cansleep(cs35l34->reset_gpio, 0);
regulator_bulk_disable(cs35l34->num_core_supplies,
cs35l34->core_supplies);
return 0;
}
static const struct dev_pm_ops cs35l34_pm_ops = {
SET_RUNTIME_PM_OPS(cs35l34_runtime_suspend,
cs35l34_runtime_resume,
NULL)
};
static const struct of_device_id cs35l34_of_match[] = {
{.compatible = "cirrus,cs35l34"},
{},
};
MODULE_DEVICE_TABLE(of, cs35l34_of_match);
static const struct i2c_device_id cs35l34_id[] = {
{"cs35l34", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, cs35l34_id);
static struct i2c_driver cs35l34_i2c_driver = {
.driver = {
.name = "cs35l34",
.pm = &cs35l34_pm_ops,
.of_match_table = cs35l34_of_match,
},
.id_table = cs35l34_id,
.probe = cs35l34_i2c_probe,
.remove = cs35l34_i2c_remove,
};
static int __init cs35l34_modinit(void)
{
int ret;
ret = i2c_add_driver(&cs35l34_i2c_driver);
if (ret != 0) {
pr_err("Failed to register CS35l34 I2C driver: %d\n", ret);
return ret;
}
return 0;
}
module_init(cs35l34_modinit);
static void __exit cs35l34_exit(void)
{
i2c_del_driver(&cs35l34_i2c_driver);
}
module_exit(cs35l34_exit);
MODULE_DESCRIPTION("ASoC CS35l34 driver");
MODULE_AUTHOR("Paul Handrigan, Cirrus Logic Inc, <Paul.Handrigan@cirrus.com>");
MODULE_LICENSE("GPL");