| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright © 2006-2014 Intel Corporation. |
| * |
| * Authors: David Woodhouse <dwmw2@infradead.org>, |
| * Ashok Raj <ashok.raj@intel.com>, |
| * Shaohua Li <shaohua.li@intel.com>, |
| * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, |
| * Fenghua Yu <fenghua.yu@intel.com> |
| * Joerg Roedel <jroedel@suse.de> |
| */ |
| |
| #define pr_fmt(fmt) "DMAR: " fmt |
| #define dev_fmt(fmt) pr_fmt(fmt) |
| |
| #include <linux/crash_dump.h> |
| #include <linux/dma-direct.h> |
| #include <linux/dmi.h> |
| #include <linux/memory.h> |
| #include <linux/pci.h> |
| #include <linux/pci-ats.h> |
| #include <linux/spinlock.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/tboot.h> |
| #include <uapi/linux/iommufd.h> |
| |
| #include "iommu.h" |
| #include "../dma-iommu.h" |
| #include "../irq_remapping.h" |
| #include "../iommu-pages.h" |
| #include "pasid.h" |
| #include "cap_audit.h" |
| #include "perfmon.h" |
| |
| #define ROOT_SIZE VTD_PAGE_SIZE |
| #define CONTEXT_SIZE VTD_PAGE_SIZE |
| |
| #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) |
| #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) |
| #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) |
| #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) |
| |
| #define IOAPIC_RANGE_START (0xfee00000) |
| #define IOAPIC_RANGE_END (0xfeefffff) |
| #define IOVA_START_ADDR (0x1000) |
| |
| #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 |
| |
| #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1) |
| #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1) |
| |
| /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR |
| to match. That way, we can use 'unsigned long' for PFNs with impunity. */ |
| #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ |
| __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) |
| #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) |
| |
| static void __init check_tylersburg_isoch(void); |
| static int rwbf_quirk; |
| |
| /* |
| * set to 1 to panic kernel if can't successfully enable VT-d |
| * (used when kernel is launched w/ TXT) |
| */ |
| static int force_on = 0; |
| static int intel_iommu_tboot_noforce; |
| static int no_platform_optin; |
| |
| #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) |
| |
| /* |
| * Take a root_entry and return the Lower Context Table Pointer (LCTP) |
| * if marked present. |
| */ |
| static phys_addr_t root_entry_lctp(struct root_entry *re) |
| { |
| if (!(re->lo & 1)) |
| return 0; |
| |
| return re->lo & VTD_PAGE_MASK; |
| } |
| |
| /* |
| * Take a root_entry and return the Upper Context Table Pointer (UCTP) |
| * if marked present. |
| */ |
| static phys_addr_t root_entry_uctp(struct root_entry *re) |
| { |
| if (!(re->hi & 1)) |
| return 0; |
| |
| return re->hi & VTD_PAGE_MASK; |
| } |
| |
| static int device_rid_cmp_key(const void *key, const struct rb_node *node) |
| { |
| struct device_domain_info *info = |
| rb_entry(node, struct device_domain_info, node); |
| const u16 *rid_lhs = key; |
| |
| if (*rid_lhs < PCI_DEVID(info->bus, info->devfn)) |
| return -1; |
| |
| if (*rid_lhs > PCI_DEVID(info->bus, info->devfn)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int device_rid_cmp(struct rb_node *lhs, const struct rb_node *rhs) |
| { |
| struct device_domain_info *info = |
| rb_entry(lhs, struct device_domain_info, node); |
| u16 key = PCI_DEVID(info->bus, info->devfn); |
| |
| return device_rid_cmp_key(&key, rhs); |
| } |
| |
| /* |
| * Looks up an IOMMU-probed device using its source ID. |
| * |
| * Returns the pointer to the device if there is a match. Otherwise, |
| * returns NULL. |
| * |
| * Note that this helper doesn't guarantee that the device won't be |
| * released by the iommu subsystem after being returned. The caller |
| * should use its own synchronization mechanism to avoid the device |
| * being released during its use if its possibly the case. |
| */ |
| struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid) |
| { |
| struct device_domain_info *info = NULL; |
| struct rb_node *node; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->device_rbtree_lock, flags); |
| node = rb_find(&rid, &iommu->device_rbtree, device_rid_cmp_key); |
| if (node) |
| info = rb_entry(node, struct device_domain_info, node); |
| spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags); |
| |
| return info ? info->dev : NULL; |
| } |
| |
| static int device_rbtree_insert(struct intel_iommu *iommu, |
| struct device_domain_info *info) |
| { |
| struct rb_node *curr; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->device_rbtree_lock, flags); |
| curr = rb_find_add(&info->node, &iommu->device_rbtree, device_rid_cmp); |
| spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags); |
| if (WARN_ON(curr)) |
| return -EEXIST; |
| |
| return 0; |
| } |
| |
| static void device_rbtree_remove(struct device_domain_info *info) |
| { |
| struct intel_iommu *iommu = info->iommu; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&iommu->device_rbtree_lock, flags); |
| rb_erase(&info->node, &iommu->device_rbtree); |
| spin_unlock_irqrestore(&iommu->device_rbtree_lock, flags); |
| } |
| |
| /* |
| * This domain is a statically identity mapping domain. |
| * 1. This domain creats a static 1:1 mapping to all usable memory. |
| * 2. It maps to each iommu if successful. |
| * 3. Each iommu mapps to this domain if successful. |
| */ |
| static struct dmar_domain *si_domain; |
| static int hw_pass_through = 1; |
| |
| struct dmar_rmrr_unit { |
| struct list_head list; /* list of rmrr units */ |
| struct acpi_dmar_header *hdr; /* ACPI header */ |
| u64 base_address; /* reserved base address*/ |
| u64 end_address; /* reserved end address */ |
| struct dmar_dev_scope *devices; /* target devices */ |
| int devices_cnt; /* target device count */ |
| }; |
| |
| struct dmar_atsr_unit { |
| struct list_head list; /* list of ATSR units */ |
| struct acpi_dmar_header *hdr; /* ACPI header */ |
| struct dmar_dev_scope *devices; /* target devices */ |
| int devices_cnt; /* target device count */ |
| u8 include_all:1; /* include all ports */ |
| }; |
| |
| struct dmar_satc_unit { |
| struct list_head list; /* list of SATC units */ |
| struct acpi_dmar_header *hdr; /* ACPI header */ |
| struct dmar_dev_scope *devices; /* target devices */ |
| struct intel_iommu *iommu; /* the corresponding iommu */ |
| int devices_cnt; /* target device count */ |
| u8 atc_required:1; /* ATS is required */ |
| }; |
| |
| static LIST_HEAD(dmar_atsr_units); |
| static LIST_HEAD(dmar_rmrr_units); |
| static LIST_HEAD(dmar_satc_units); |
| |
| #define for_each_rmrr_units(rmrr) \ |
| list_for_each_entry(rmrr, &dmar_rmrr_units, list) |
| |
| static void intel_iommu_domain_free(struct iommu_domain *domain); |
| |
| int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON); |
| int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON); |
| |
| int intel_iommu_enabled = 0; |
| EXPORT_SYMBOL_GPL(intel_iommu_enabled); |
| |
| static int intel_iommu_superpage = 1; |
| static int iommu_identity_mapping; |
| static int iommu_skip_te_disable; |
| static int disable_igfx_iommu; |
| |
| #define IDENTMAP_AZALIA 4 |
| |
| const struct iommu_ops intel_iommu_ops; |
| static const struct iommu_dirty_ops intel_dirty_ops; |
| |
| static bool translation_pre_enabled(struct intel_iommu *iommu) |
| { |
| return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); |
| } |
| |
| static void clear_translation_pre_enabled(struct intel_iommu *iommu) |
| { |
| iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; |
| } |
| |
| static void init_translation_status(struct intel_iommu *iommu) |
| { |
| u32 gsts; |
| |
| gsts = readl(iommu->reg + DMAR_GSTS_REG); |
| if (gsts & DMA_GSTS_TES) |
| iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; |
| } |
| |
| static int __init intel_iommu_setup(char *str) |
| { |
| if (!str) |
| return -EINVAL; |
| |
| while (*str) { |
| if (!strncmp(str, "on", 2)) { |
| dmar_disabled = 0; |
| pr_info("IOMMU enabled\n"); |
| } else if (!strncmp(str, "off", 3)) { |
| dmar_disabled = 1; |
| no_platform_optin = 1; |
| pr_info("IOMMU disabled\n"); |
| } else if (!strncmp(str, "igfx_off", 8)) { |
| disable_igfx_iommu = 1; |
| pr_info("Disable GFX device mapping\n"); |
| } else if (!strncmp(str, "forcedac", 8)) { |
| pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n"); |
| iommu_dma_forcedac = true; |
| } else if (!strncmp(str, "strict", 6)) { |
| pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n"); |
| iommu_set_dma_strict(); |
| } else if (!strncmp(str, "sp_off", 6)) { |
| pr_info("Disable supported super page\n"); |
| intel_iommu_superpage = 0; |
| } else if (!strncmp(str, "sm_on", 5)) { |
| pr_info("Enable scalable mode if hardware supports\n"); |
| intel_iommu_sm = 1; |
| } else if (!strncmp(str, "sm_off", 6)) { |
| pr_info("Scalable mode is disallowed\n"); |
| intel_iommu_sm = 0; |
| } else if (!strncmp(str, "tboot_noforce", 13)) { |
| pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); |
| intel_iommu_tboot_noforce = 1; |
| } else { |
| pr_notice("Unknown option - '%s'\n", str); |
| } |
| |
| str += strcspn(str, ","); |
| while (*str == ',') |
| str++; |
| } |
| |
| return 1; |
| } |
| __setup("intel_iommu=", intel_iommu_setup); |
| |
| static int domain_type_is_si(struct dmar_domain *domain) |
| { |
| return domain->domain.type == IOMMU_DOMAIN_IDENTITY; |
| } |
| |
| static int domain_pfn_supported(struct dmar_domain *domain, unsigned long pfn) |
| { |
| int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; |
| |
| return !(addr_width < BITS_PER_LONG && pfn >> addr_width); |
| } |
| |
| /* |
| * Calculate the Supported Adjusted Guest Address Widths of an IOMMU. |
| * Refer to 11.4.2 of the VT-d spec for the encoding of each bit of |
| * the returned SAGAW. |
| */ |
| static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu) |
| { |
| unsigned long fl_sagaw, sl_sagaw; |
| |
| fl_sagaw = BIT(2) | (cap_fl5lp_support(iommu->cap) ? BIT(3) : 0); |
| sl_sagaw = cap_sagaw(iommu->cap); |
| |
| /* Second level only. */ |
| if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) |
| return sl_sagaw; |
| |
| /* First level only. */ |
| if (!ecap_slts(iommu->ecap)) |
| return fl_sagaw; |
| |
| return fl_sagaw & sl_sagaw; |
| } |
| |
| static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) |
| { |
| unsigned long sagaw; |
| int agaw; |
| |
| sagaw = __iommu_calculate_sagaw(iommu); |
| for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) { |
| if (test_bit(agaw, &sagaw)) |
| break; |
| } |
| |
| return agaw; |
| } |
| |
| /* |
| * Calculate max SAGAW for each iommu. |
| */ |
| int iommu_calculate_max_sagaw(struct intel_iommu *iommu) |
| { |
| return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); |
| } |
| |
| /* |
| * calculate agaw for each iommu. |
| * "SAGAW" may be different across iommus, use a default agaw, and |
| * get a supported less agaw for iommus that don't support the default agaw. |
| */ |
| int iommu_calculate_agaw(struct intel_iommu *iommu) |
| { |
| return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); |
| } |
| |
| static bool iommu_paging_structure_coherency(struct intel_iommu *iommu) |
| { |
| return sm_supported(iommu) ? |
| ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); |
| } |
| |
| static void domain_update_iommu_coherency(struct dmar_domain *domain) |
| { |
| struct iommu_domain_info *info; |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| bool found = false; |
| unsigned long i; |
| |
| domain->iommu_coherency = true; |
| xa_for_each(&domain->iommu_array, i, info) { |
| found = true; |
| if (!iommu_paging_structure_coherency(info->iommu)) { |
| domain->iommu_coherency = false; |
| break; |
| } |
| } |
| if (found) |
| return; |
| |
| /* No hardware attached; use lowest common denominator */ |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (!iommu_paging_structure_coherency(iommu)) { |
| domain->iommu_coherency = false; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| static int domain_update_iommu_superpage(struct dmar_domain *domain, |
| struct intel_iommu *skip) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| int mask = 0x3; |
| |
| if (!intel_iommu_superpage) |
| return 0; |
| |
| /* set iommu_superpage to the smallest common denominator */ |
| rcu_read_lock(); |
| for_each_active_iommu(iommu, drhd) { |
| if (iommu != skip) { |
| if (domain && domain->use_first_level) { |
| if (!cap_fl1gp_support(iommu->cap)) |
| mask = 0x1; |
| } else { |
| mask &= cap_super_page_val(iommu->cap); |
| } |
| |
| if (!mask) |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return fls(mask); |
| } |
| |
| static int domain_update_device_node(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info; |
| int nid = NUMA_NO_NODE; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| list_for_each_entry(info, &domain->devices, link) { |
| /* |
| * There could possibly be multiple device numa nodes as devices |
| * within the same domain may sit behind different IOMMUs. There |
| * isn't perfect answer in such situation, so we select first |
| * come first served policy. |
| */ |
| nid = dev_to_node(info->dev); |
| if (nid != NUMA_NO_NODE) |
| break; |
| } |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return nid; |
| } |
| |
| /* Return the super pagesize bitmap if supported. */ |
| static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain) |
| { |
| unsigned long bitmap = 0; |
| |
| /* |
| * 1-level super page supports page size of 2MiB, 2-level super page |
| * supports page size of both 2MiB and 1GiB. |
| */ |
| if (domain->iommu_superpage == 1) |
| bitmap |= SZ_2M; |
| else if (domain->iommu_superpage == 2) |
| bitmap |= SZ_2M | SZ_1G; |
| |
| return bitmap; |
| } |
| |
| /* Some capabilities may be different across iommus */ |
| void domain_update_iommu_cap(struct dmar_domain *domain) |
| { |
| domain_update_iommu_coherency(domain); |
| domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); |
| |
| /* |
| * If RHSA is missing, we should default to the device numa domain |
| * as fall back. |
| */ |
| if (domain->nid == NUMA_NO_NODE) |
| domain->nid = domain_update_device_node(domain); |
| |
| /* |
| * First-level translation restricts the input-address to a |
| * canonical address (i.e., address bits 63:N have the same |
| * value as address bit [N-1], where N is 48-bits with 4-level |
| * paging and 57-bits with 5-level paging). Hence, skip bit |
| * [N-1]. |
| */ |
| if (domain->use_first_level) |
| domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); |
| else |
| domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); |
| |
| domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain); |
| domain_update_iotlb(domain); |
| } |
| |
| struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, |
| u8 devfn, int alloc) |
| { |
| struct root_entry *root = &iommu->root_entry[bus]; |
| struct context_entry *context; |
| u64 *entry; |
| |
| /* |
| * Except that the caller requested to allocate a new entry, |
| * returning a copied context entry makes no sense. |
| */ |
| if (!alloc && context_copied(iommu, bus, devfn)) |
| return NULL; |
| |
| entry = &root->lo; |
| if (sm_supported(iommu)) { |
| if (devfn >= 0x80) { |
| devfn -= 0x80; |
| entry = &root->hi; |
| } |
| devfn *= 2; |
| } |
| if (*entry & 1) |
| context = phys_to_virt(*entry & VTD_PAGE_MASK); |
| else { |
| unsigned long phy_addr; |
| if (!alloc) |
| return NULL; |
| |
| context = iommu_alloc_page_node(iommu->node, GFP_ATOMIC); |
| if (!context) |
| return NULL; |
| |
| __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); |
| phy_addr = virt_to_phys((void *)context); |
| *entry = phy_addr | 1; |
| __iommu_flush_cache(iommu, entry, sizeof(*entry)); |
| } |
| return &context[devfn]; |
| } |
| |
| /** |
| * is_downstream_to_pci_bridge - test if a device belongs to the PCI |
| * sub-hierarchy of a candidate PCI-PCI bridge |
| * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy |
| * @bridge: the candidate PCI-PCI bridge |
| * |
| * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. |
| */ |
| static bool |
| is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) |
| { |
| struct pci_dev *pdev, *pbridge; |
| |
| if (!dev_is_pci(dev) || !dev_is_pci(bridge)) |
| return false; |
| |
| pdev = to_pci_dev(dev); |
| pbridge = to_pci_dev(bridge); |
| |
| if (pbridge->subordinate && |
| pbridge->subordinate->number <= pdev->bus->number && |
| pbridge->subordinate->busn_res.end >= pdev->bus->number) |
| return true; |
| |
| return false; |
| } |
| |
| static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev) |
| { |
| struct dmar_drhd_unit *drhd; |
| u32 vtbar; |
| int rc; |
| |
| /* We know that this device on this chipset has its own IOMMU. |
| * If we find it under a different IOMMU, then the BIOS is lying |
| * to us. Hope that the IOMMU for this device is actually |
| * disabled, and it needs no translation... |
| */ |
| rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); |
| if (rc) { |
| /* "can't" happen */ |
| dev_info(&pdev->dev, "failed to run vt-d quirk\n"); |
| return false; |
| } |
| vtbar &= 0xffff0000; |
| |
| /* we know that the this iommu should be at offset 0xa000 from vtbar */ |
| drhd = dmar_find_matched_drhd_unit(pdev); |
| if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { |
| pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev) |
| { |
| if (!iommu || iommu->drhd->ignored) |
| return true; |
| |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| if (pdev->vendor == PCI_VENDOR_ID_INTEL && |
| pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB && |
| quirk_ioat_snb_local_iommu(pdev)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static struct intel_iommu *device_lookup_iommu(struct device *dev, u8 *bus, u8 *devfn) |
| { |
| struct dmar_drhd_unit *drhd = NULL; |
| struct pci_dev *pdev = NULL; |
| struct intel_iommu *iommu; |
| struct device *tmp; |
| u16 segment = 0; |
| int i; |
| |
| if (!dev) |
| return NULL; |
| |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pf_pdev; |
| |
| pdev = pci_real_dma_dev(to_pci_dev(dev)); |
| |
| /* VFs aren't listed in scope tables; we need to look up |
| * the PF instead to find the IOMMU. */ |
| pf_pdev = pci_physfn(pdev); |
| dev = &pf_pdev->dev; |
| segment = pci_domain_nr(pdev->bus); |
| } else if (has_acpi_companion(dev)) |
| dev = &ACPI_COMPANION(dev)->dev; |
| |
| rcu_read_lock(); |
| for_each_iommu(iommu, drhd) { |
| if (pdev && segment != drhd->segment) |
| continue; |
| |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, tmp) { |
| if (tmp == dev) { |
| /* For a VF use its original BDF# not that of the PF |
| * which we used for the IOMMU lookup. Strictly speaking |
| * we could do this for all PCI devices; we only need to |
| * get the BDF# from the scope table for ACPI matches. */ |
| if (pdev && pdev->is_virtfn) |
| goto got_pdev; |
| |
| if (bus && devfn) { |
| *bus = drhd->devices[i].bus; |
| *devfn = drhd->devices[i].devfn; |
| } |
| goto out; |
| } |
| |
| if (is_downstream_to_pci_bridge(dev, tmp)) |
| goto got_pdev; |
| } |
| |
| if (pdev && drhd->include_all) { |
| got_pdev: |
| if (bus && devfn) { |
| *bus = pdev->bus->number; |
| *devfn = pdev->devfn; |
| } |
| goto out; |
| } |
| } |
| iommu = NULL; |
| out: |
| if (iommu_is_dummy(iommu, dev)) |
| iommu = NULL; |
| |
| rcu_read_unlock(); |
| |
| return iommu; |
| } |
| |
| static void domain_flush_cache(struct dmar_domain *domain, |
| void *addr, int size) |
| { |
| if (!domain->iommu_coherency) |
| clflush_cache_range(addr, size); |
| } |
| |
| static void free_context_table(struct intel_iommu *iommu) |
| { |
| struct context_entry *context; |
| int i; |
| |
| if (!iommu->root_entry) |
| return; |
| |
| for (i = 0; i < ROOT_ENTRY_NR; i++) { |
| context = iommu_context_addr(iommu, i, 0, 0); |
| if (context) |
| iommu_free_page(context); |
| |
| if (!sm_supported(iommu)) |
| continue; |
| |
| context = iommu_context_addr(iommu, i, 0x80, 0); |
| if (context) |
| iommu_free_page(context); |
| } |
| |
| iommu_free_page(iommu->root_entry); |
| iommu->root_entry = NULL; |
| } |
| |
| #ifdef CONFIG_DMAR_DEBUG |
| static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn, |
| u8 bus, u8 devfn, struct dma_pte *parent, int level) |
| { |
| struct dma_pte *pte; |
| int offset; |
| |
| while (1) { |
| offset = pfn_level_offset(pfn, level); |
| pte = &parent[offset]; |
| if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) { |
| pr_info("PTE not present at level %d\n", level); |
| break; |
| } |
| |
| pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val); |
| |
| if (level == 1) |
| break; |
| |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| level--; |
| } |
| } |
| |
| void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id, |
| unsigned long long addr, u32 pasid) |
| { |
| struct pasid_dir_entry *dir, *pde; |
| struct pasid_entry *entries, *pte; |
| struct context_entry *ctx_entry; |
| struct root_entry *rt_entry; |
| int i, dir_index, index, level; |
| u8 devfn = source_id & 0xff; |
| u8 bus = source_id >> 8; |
| struct dma_pte *pgtable; |
| |
| pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr); |
| |
| /* root entry dump */ |
| rt_entry = &iommu->root_entry[bus]; |
| if (!rt_entry) { |
| pr_info("root table entry is not present\n"); |
| return; |
| } |
| |
| if (sm_supported(iommu)) |
| pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n", |
| rt_entry->hi, rt_entry->lo); |
| else |
| pr_info("root entry: 0x%016llx", rt_entry->lo); |
| |
| /* context entry dump */ |
| ctx_entry = iommu_context_addr(iommu, bus, devfn, 0); |
| if (!ctx_entry) { |
| pr_info("context table entry is not present\n"); |
| return; |
| } |
| |
| pr_info("context entry: hi 0x%016llx, low 0x%016llx\n", |
| ctx_entry->hi, ctx_entry->lo); |
| |
| /* legacy mode does not require PASID entries */ |
| if (!sm_supported(iommu)) { |
| level = agaw_to_level(ctx_entry->hi & 7); |
| pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); |
| goto pgtable_walk; |
| } |
| |
| /* get the pointer to pasid directory entry */ |
| dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); |
| if (!dir) { |
| pr_info("pasid directory entry is not present\n"); |
| return; |
| } |
| /* For request-without-pasid, get the pasid from context entry */ |
| if (intel_iommu_sm && pasid == IOMMU_PASID_INVALID) |
| pasid = IOMMU_NO_PASID; |
| |
| dir_index = pasid >> PASID_PDE_SHIFT; |
| pde = &dir[dir_index]; |
| pr_info("pasid dir entry: 0x%016llx\n", pde->val); |
| |
| /* get the pointer to the pasid table entry */ |
| entries = get_pasid_table_from_pde(pde); |
| if (!entries) { |
| pr_info("pasid table entry is not present\n"); |
| return; |
| } |
| index = pasid & PASID_PTE_MASK; |
| pte = &entries[index]; |
| for (i = 0; i < ARRAY_SIZE(pte->val); i++) |
| pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]); |
| |
| if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) { |
| level = pte->val[2] & BIT_ULL(2) ? 5 : 4; |
| pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK); |
| } else { |
| level = agaw_to_level((pte->val[0] >> 2) & 0x7); |
| pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK); |
| } |
| |
| pgtable_walk: |
| pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level); |
| } |
| #endif |
| |
| static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, |
| unsigned long pfn, int *target_level, |
| gfp_t gfp) |
| { |
| struct dma_pte *parent, *pte; |
| int level = agaw_to_level(domain->agaw); |
| int offset; |
| |
| if (!domain_pfn_supported(domain, pfn)) |
| /* Address beyond IOMMU's addressing capabilities. */ |
| return NULL; |
| |
| parent = domain->pgd; |
| |
| while (1) { |
| void *tmp_page; |
| |
| offset = pfn_level_offset(pfn, level); |
| pte = &parent[offset]; |
| if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) |
| break; |
| if (level == *target_level) |
| break; |
| |
| if (!dma_pte_present(pte)) { |
| uint64_t pteval, tmp; |
| |
| tmp_page = iommu_alloc_page_node(domain->nid, gfp); |
| |
| if (!tmp_page) |
| return NULL; |
| |
| domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); |
| pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; |
| if (domain->use_first_level) |
| pteval |= DMA_FL_PTE_US | DMA_FL_PTE_ACCESS; |
| |
| tmp = 0ULL; |
| if (!try_cmpxchg64(&pte->val, &tmp, pteval)) |
| /* Someone else set it while we were thinking; use theirs. */ |
| iommu_free_page(tmp_page); |
| else |
| domain_flush_cache(domain, pte, sizeof(*pte)); |
| } |
| if (level == 1) |
| break; |
| |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| level--; |
| } |
| |
| if (!*target_level) |
| *target_level = level; |
| |
| return pte; |
| } |
| |
| /* return address's pte at specific level */ |
| static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, |
| unsigned long pfn, |
| int level, int *large_page) |
| { |
| struct dma_pte *parent, *pte; |
| int total = agaw_to_level(domain->agaw); |
| int offset; |
| |
| parent = domain->pgd; |
| while (level <= total) { |
| offset = pfn_level_offset(pfn, total); |
| pte = &parent[offset]; |
| if (level == total) |
| return pte; |
| |
| if (!dma_pte_present(pte)) { |
| *large_page = total; |
| break; |
| } |
| |
| if (dma_pte_superpage(pte)) { |
| *large_page = total; |
| return pte; |
| } |
| |
| parent = phys_to_virt(dma_pte_addr(pte)); |
| total--; |
| } |
| return NULL; |
| } |
| |
| /* clear last level pte, a tlb flush should be followed */ |
| static void dma_pte_clear_range(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| unsigned int large_page; |
| struct dma_pte *first_pte, *pte; |
| |
| if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) || |
| WARN_ON(start_pfn > last_pfn)) |
| return; |
| |
| /* we don't need lock here; nobody else touches the iova range */ |
| do { |
| large_page = 1; |
| first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); |
| if (!pte) { |
| start_pfn = align_to_level(start_pfn + 1, large_page + 1); |
| continue; |
| } |
| do { |
| dma_clear_pte(pte); |
| start_pfn += lvl_to_nr_pages(large_page); |
| pte++; |
| } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); |
| |
| domain_flush_cache(domain, first_pte, |
| (void *)pte - (void *)first_pte); |
| |
| } while (start_pfn && start_pfn <= last_pfn); |
| } |
| |
| static void dma_pte_free_level(struct dmar_domain *domain, int level, |
| int retain_level, struct dma_pte *pte, |
| unsigned long pfn, unsigned long start_pfn, |
| unsigned long last_pfn) |
| { |
| pfn = max(start_pfn, pfn); |
| pte = &pte[pfn_level_offset(pfn, level)]; |
| |
| do { |
| unsigned long level_pfn; |
| struct dma_pte *level_pte; |
| |
| if (!dma_pte_present(pte) || dma_pte_superpage(pte)) |
| goto next; |
| |
| level_pfn = pfn & level_mask(level); |
| level_pte = phys_to_virt(dma_pte_addr(pte)); |
| |
| if (level > 2) { |
| dma_pte_free_level(domain, level - 1, retain_level, |
| level_pte, level_pfn, start_pfn, |
| last_pfn); |
| } |
| |
| /* |
| * Free the page table if we're below the level we want to |
| * retain and the range covers the entire table. |
| */ |
| if (level < retain_level && !(start_pfn > level_pfn || |
| last_pfn < level_pfn + level_size(level) - 1)) { |
| dma_clear_pte(pte); |
| domain_flush_cache(domain, pte, sizeof(*pte)); |
| iommu_free_page(level_pte); |
| } |
| next: |
| pfn += level_size(level); |
| } while (!first_pte_in_page(++pte) && pfn <= last_pfn); |
| } |
| |
| /* |
| * clear last level (leaf) ptes and free page table pages below the |
| * level we wish to keep intact. |
| */ |
| static void dma_pte_free_pagetable(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long last_pfn, |
| int retain_level) |
| { |
| dma_pte_clear_range(domain, start_pfn, last_pfn); |
| |
| /* We don't need lock here; nobody else touches the iova range */ |
| dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, |
| domain->pgd, 0, start_pfn, last_pfn); |
| |
| /* free pgd */ |
| if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
| iommu_free_page(domain->pgd); |
| domain->pgd = NULL; |
| } |
| } |
| |
| /* When a page at a given level is being unlinked from its parent, we don't |
| need to *modify* it at all. All we need to do is make a list of all the |
| pages which can be freed just as soon as we've flushed the IOTLB and we |
| know the hardware page-walk will no longer touch them. |
| The 'pte' argument is the *parent* PTE, pointing to the page that is to |
| be freed. */ |
| static void dma_pte_list_pagetables(struct dmar_domain *domain, |
| int level, struct dma_pte *pte, |
| struct list_head *freelist) |
| { |
| struct page *pg; |
| |
| pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); |
| list_add_tail(&pg->lru, freelist); |
| |
| if (level == 1) |
| return; |
| |
| pte = page_address(pg); |
| do { |
| if (dma_pte_present(pte) && !dma_pte_superpage(pte)) |
| dma_pte_list_pagetables(domain, level - 1, pte, freelist); |
| pte++; |
| } while (!first_pte_in_page(pte)); |
| } |
| |
| static void dma_pte_clear_level(struct dmar_domain *domain, int level, |
| struct dma_pte *pte, unsigned long pfn, |
| unsigned long start_pfn, unsigned long last_pfn, |
| struct list_head *freelist) |
| { |
| struct dma_pte *first_pte = NULL, *last_pte = NULL; |
| |
| pfn = max(start_pfn, pfn); |
| pte = &pte[pfn_level_offset(pfn, level)]; |
| |
| do { |
| unsigned long level_pfn = pfn & level_mask(level); |
| |
| if (!dma_pte_present(pte)) |
| goto next; |
| |
| /* If range covers entire pagetable, free it */ |
| if (start_pfn <= level_pfn && |
| last_pfn >= level_pfn + level_size(level) - 1) { |
| /* These suborbinate page tables are going away entirely. Don't |
| bother to clear them; we're just going to *free* them. */ |
| if (level > 1 && !dma_pte_superpage(pte)) |
| dma_pte_list_pagetables(domain, level - 1, pte, freelist); |
| |
| dma_clear_pte(pte); |
| if (!first_pte) |
| first_pte = pte; |
| last_pte = pte; |
| } else if (level > 1) { |
| /* Recurse down into a level that isn't *entirely* obsolete */ |
| dma_pte_clear_level(domain, level - 1, |
| phys_to_virt(dma_pte_addr(pte)), |
| level_pfn, start_pfn, last_pfn, |
| freelist); |
| } |
| next: |
| pfn = level_pfn + level_size(level); |
| } while (!first_pte_in_page(++pte) && pfn <= last_pfn); |
| |
| if (first_pte) |
| domain_flush_cache(domain, first_pte, |
| (void *)++last_pte - (void *)first_pte); |
| } |
| |
| /* We can't just free the pages because the IOMMU may still be walking |
| the page tables, and may have cached the intermediate levels. The |
| pages can only be freed after the IOTLB flush has been done. */ |
| static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn, |
| unsigned long last_pfn, struct list_head *freelist) |
| { |
| if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) || |
| WARN_ON(start_pfn > last_pfn)) |
| return; |
| |
| /* we don't need lock here; nobody else touches the iova range */ |
| dma_pte_clear_level(domain, agaw_to_level(domain->agaw), |
| domain->pgd, 0, start_pfn, last_pfn, freelist); |
| |
| /* free pgd */ |
| if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { |
| struct page *pgd_page = virt_to_page(domain->pgd); |
| list_add_tail(&pgd_page->lru, freelist); |
| domain->pgd = NULL; |
| } |
| } |
| |
| /* iommu handling */ |
| static int iommu_alloc_root_entry(struct intel_iommu *iommu) |
| { |
| struct root_entry *root; |
| |
| root = iommu_alloc_page_node(iommu->node, GFP_ATOMIC); |
| if (!root) { |
| pr_err("Allocating root entry for %s failed\n", |
| iommu->name); |
| return -ENOMEM; |
| } |
| |
| __iommu_flush_cache(iommu, root, ROOT_SIZE); |
| iommu->root_entry = root; |
| |
| return 0; |
| } |
| |
| static void iommu_set_root_entry(struct intel_iommu *iommu) |
| { |
| u64 addr; |
| u32 sts; |
| unsigned long flag; |
| |
| addr = virt_to_phys(iommu->root_entry); |
| if (sm_supported(iommu)) |
| addr |= DMA_RTADDR_SMT; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); |
| |
| writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_RTPS), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| /* |
| * Hardware invalidates all DMA remapping hardware translation |
| * caches as part of SRTP flow. |
| */ |
| if (cap_esrtps(iommu->cap)) |
| return; |
| |
| iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); |
| if (sm_supported(iommu)) |
| qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); |
| } |
| |
| void iommu_flush_write_buffer(struct intel_iommu *iommu) |
| { |
| u32 val; |
| unsigned long flag; |
| |
| if (!rwbf_quirk && !cap_rwbf(iommu->cap)) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(val & DMA_GSTS_WBFS)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static void __iommu_flush_context(struct intel_iommu *iommu, |
| u16 did, u16 source_id, u8 function_mask, |
| u64 type) |
| { |
| u64 val = 0; |
| unsigned long flag; |
| |
| switch (type) { |
| case DMA_CCMD_GLOBAL_INVL: |
| val = DMA_CCMD_GLOBAL_INVL; |
| break; |
| case DMA_CCMD_DOMAIN_INVL: |
| val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); |
| break; |
| case DMA_CCMD_DEVICE_INVL: |
| val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) |
| | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); |
| break; |
| default: |
| pr_warn("%s: Unexpected context-cache invalidation type 0x%llx\n", |
| iommu->name, type); |
| return; |
| } |
| val |= DMA_CCMD_ICC; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, |
| dmar_readq, (!(val & DMA_CCMD_ICC)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| /* return value determine if we need a write buffer flush */ |
| static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, |
| u64 addr, unsigned int size_order, u64 type) |
| { |
| int tlb_offset = ecap_iotlb_offset(iommu->ecap); |
| u64 val = 0, val_iva = 0; |
| unsigned long flag; |
| |
| switch (type) { |
| case DMA_TLB_GLOBAL_FLUSH: |
| /* global flush doesn't need set IVA_REG */ |
| val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; |
| break; |
| case DMA_TLB_DSI_FLUSH: |
| val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| break; |
| case DMA_TLB_PSI_FLUSH: |
| val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); |
| /* IH bit is passed in as part of address */ |
| val_iva = size_order | addr; |
| break; |
| default: |
| pr_warn("%s: Unexpected iotlb invalidation type 0x%llx\n", |
| iommu->name, type); |
| return; |
| } |
| |
| if (cap_write_drain(iommu->cap)) |
| val |= DMA_TLB_WRITE_DRAIN; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| /* Note: Only uses first TLB reg currently */ |
| if (val_iva) |
| dmar_writeq(iommu->reg + tlb_offset, val_iva); |
| dmar_writeq(iommu->reg + tlb_offset + 8, val); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, tlb_offset + 8, |
| dmar_readq, (!(val & DMA_TLB_IVT)), val); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| |
| /* check IOTLB invalidation granularity */ |
| if (DMA_TLB_IAIG(val) == 0) |
| pr_err("Flush IOTLB failed\n"); |
| if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) |
| pr_debug("TLB flush request %Lx, actual %Lx\n", |
| (unsigned long long)DMA_TLB_IIRG(type), |
| (unsigned long long)DMA_TLB_IAIG(val)); |
| } |
| |
| static struct device_domain_info * |
| domain_lookup_dev_info(struct dmar_domain *domain, |
| struct intel_iommu *iommu, u8 bus, u8 devfn) |
| { |
| struct device_domain_info *info; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| list_for_each_entry(info, &domain->devices, link) { |
| if (info->iommu == iommu && info->bus == bus && |
| info->devfn == devfn) { |
| spin_unlock_irqrestore(&domain->lock, flags); |
| return info; |
| } |
| } |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| return NULL; |
| } |
| |
| void domain_update_iotlb(struct dmar_domain *domain) |
| { |
| struct dev_pasid_info *dev_pasid; |
| struct device_domain_info *info; |
| bool has_iotlb_device = false; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&domain->lock, flags); |
| list_for_each_entry(info, &domain->devices, link) { |
| if (info->ats_enabled) { |
| has_iotlb_device = true; |
| break; |
| } |
| } |
| |
| list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain) { |
| info = dev_iommu_priv_get(dev_pasid->dev); |
| if (info->ats_enabled) { |
| has_iotlb_device = true; |
| break; |
| } |
| } |
| domain->has_iotlb_device = has_iotlb_device; |
| spin_unlock_irqrestore(&domain->lock, flags); |
| } |
| |
| /* |
| * The extra devTLB flush quirk impacts those QAT devices with PCI device |
| * IDs ranging from 0x4940 to 0x4943. It is exempted from risky_device() |
| * check because it applies only to the built-in QAT devices and it doesn't |
| * grant additional privileges. |
| */ |
| #define BUGGY_QAT_DEVID_MASK 0x4940 |
| static bool dev_needs_extra_dtlb_flush(struct pci_dev *pdev) |
| { |
| if (pdev->vendor != PCI_VENDOR_ID_INTEL) |
| return false; |
| |
| if ((pdev->device & 0xfffc) != BUGGY_QAT_DEVID_MASK) |
| return false; |
| |
| return true; |
| } |
| |
| static void iommu_enable_pci_caps(struct device_domain_info *info) |
| { |
| struct pci_dev *pdev; |
| |
| if (!dev_is_pci(info->dev)) |
| return; |
| |
| pdev = to_pci_dev(info->dev); |
| |
| /* The PCIe spec, in its wisdom, declares that the behaviour of |
| the device if you enable PASID support after ATS support is |
| undefined. So always enable PASID support on devices which |
| have it, even if we can't yet know if we're ever going to |
| use it. */ |
| if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) |
| info->pasid_enabled = 1; |
| |
| if (info->ats_supported && pci_ats_page_aligned(pdev) && |
| !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { |
| info->ats_enabled = 1; |
| domain_update_iotlb(info->domain); |
| } |
| } |
| |
| static void iommu_disable_pci_caps(struct device_domain_info *info) |
| { |
| struct pci_dev *pdev; |
| |
| if (!dev_is_pci(info->dev)) |
| return; |
| |
| pdev = to_pci_dev(info->dev); |
| |
| if (info->ats_enabled) { |
| pci_disable_ats(pdev); |
| info->ats_enabled = 0; |
| domain_update_iotlb(info->domain); |
| } |
| |
| if (info->pasid_enabled) { |
| pci_disable_pasid(pdev); |
| info->pasid_enabled = 0; |
| } |
| } |
| |
| static void intel_flush_iotlb_all(struct iommu_domain *domain) |
| { |
| cache_tag_flush_all(to_dmar_domain(domain)); |
| } |
| |
| static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) |
| { |
| u32 pmen; |
| unsigned long flags; |
| |
| if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| pmen = readl(iommu->reg + DMAR_PMEN_REG); |
| pmen &= ~DMA_PMEN_EPM; |
| writel(pmen, iommu->reg + DMAR_PMEN_REG); |
| |
| /* wait for the protected region status bit to clear */ |
| IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, |
| readl, !(pmen & DMA_PMEN_PRS), pmen); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| static void iommu_enable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| iommu->gcmd |= DMA_GCMD_TE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (sts & DMA_GSTS_TES), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| } |
| |
| static void iommu_disable_translation(struct intel_iommu *iommu) |
| { |
| u32 sts; |
| unsigned long flag; |
| |
| if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && |
| (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) |
| return; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| iommu->gcmd &= ~DMA_GCMD_TE; |
| writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); |
| |
| /* Make sure hardware complete it */ |
| IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, |
| readl, (!(sts & DMA_GSTS_TES)), sts); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| |
| static int iommu_init_domains(struct intel_iommu *iommu) |
| { |
| u32 ndomains; |
| |
| ndomains = cap_ndoms(iommu->cap); |
| pr_debug("%s: Number of Domains supported <%d>\n", |
| iommu->name, ndomains); |
| |
| spin_lock_init(&iommu->lock); |
| |
| iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL); |
| if (!iommu->domain_ids) |
| return -ENOMEM; |
| |
| /* |
| * If Caching mode is set, then invalid translations are tagged |
| * with domain-id 0, hence we need to pre-allocate it. We also |
| * use domain-id 0 as a marker for non-allocated domain-id, so |
| * make sure it is not used for a real domain. |
| */ |
| set_bit(0, iommu->domain_ids); |
| |
| /* |
| * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid |
| * entry for first-level or pass-through translation modes should |
| * be programmed with a domain id different from those used for |
| * second-level or nested translation. We reserve a domain id for |
| * this purpose. |
| */ |
| if (sm_supported(iommu)) |
| set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); |
| |
| return 0; |
| } |
| |
| static void disable_dmar_iommu(struct intel_iommu *iommu) |
| { |
| if (!iommu->domain_ids) |
| return; |
| |
| /* |
| * All iommu domains must have been detached from the devices, |
| * hence there should be no domain IDs in use. |
| */ |
| if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap)) |
| > NUM_RESERVED_DID)) |
| return; |
| |
| if (iommu->gcmd & DMA_GCMD_TE) |
| iommu_disable_translation(iommu); |
| } |
| |
| static void free_dmar_iommu(struct intel_iommu *iommu) |
| { |
| if (iommu->domain_ids) { |
| bitmap_free(iommu->domain_ids); |
| iommu->domain_ids = NULL; |
| } |
| |
| if (iommu->copied_tables) { |
| bitmap_free(iommu->copied_tables); |
| iommu->copied_tables = NULL; |
| } |
| |
| /* free context mapping */ |
| free_context_table(iommu); |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| if (pasid_supported(iommu)) { |
| if (ecap_prs(iommu->ecap)) |
| intel_svm_finish_prq(iommu); |
| } |
| #endif |
| } |
| |
| /* |
| * Check and return whether first level is used by default for |
| * DMA translation. |
| */ |
| static bool first_level_by_default(unsigned int type) |
| { |
| /* Only SL is available in legacy mode */ |
| if (!scalable_mode_support()) |
| return false; |
| |
| /* Only level (either FL or SL) is available, just use it */ |
| if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity()) |
| return intel_cap_flts_sanity(); |
| |
| /* Both levels are available, decide it based on domain type */ |
| return type != IOMMU_DOMAIN_UNMANAGED; |
| } |
| |
| static struct dmar_domain *alloc_domain(unsigned int type) |
| { |
| struct dmar_domain *domain; |
| |
| domain = kzalloc(sizeof(*domain), GFP_KERNEL); |
| if (!domain) |
| return NULL; |
| |
| domain->nid = NUMA_NO_NODE; |
| if (first_level_by_default(type)) |
| domain->use_first_level = true; |
| domain->has_iotlb_device = false; |
| INIT_LIST_HEAD(&domain->devices); |
| INIT_LIST_HEAD(&domain->dev_pasids); |
| INIT_LIST_HEAD(&domain->cache_tags); |
| spin_lock_init(&domain->lock); |
| spin_lock_init(&domain->cache_lock); |
| xa_init(&domain->iommu_array); |
| |
| return domain; |
| } |
| |
| int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu) |
| { |
| struct iommu_domain_info *info, *curr; |
| unsigned long ndomains; |
| int num, ret = -ENOSPC; |
| |
| if (domain->domain.type == IOMMU_DOMAIN_SVA) |
| return 0; |
| |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| spin_lock(&iommu->lock); |
| curr = xa_load(&domain->iommu_array, iommu->seq_id); |
| if (curr) { |
| curr->refcnt++; |
| spin_unlock(&iommu->lock); |
| kfree(info); |
| return 0; |
| } |
| |
| ndomains = cap_ndoms(iommu->cap); |
| num = find_first_zero_bit(iommu->domain_ids, ndomains); |
| if (num >= ndomains) { |
| pr_err("%s: No free domain ids\n", iommu->name); |
| goto err_unlock; |
| } |
| |
| set_bit(num, iommu->domain_ids); |
| info->refcnt = 1; |
| info->did = num; |
| info->iommu = iommu; |
| curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id, |
| NULL, info, GFP_ATOMIC); |
| if (curr) { |
| ret = xa_err(curr) ? : -EBUSY; |
| goto err_clear; |
| } |
| domain_update_iommu_cap(domain); |
| |
| spin_unlock(&iommu->lock); |
| return 0; |
| |
| err_clear: |
| clear_bit(info->did, iommu->domain_ids); |
| err_unlock: |
| spin_unlock(&iommu->lock); |
| kfree(info); |
| return ret; |
| } |
| |
| void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu) |
| { |
| struct iommu_domain_info *info; |
| |
| if (domain->domain.type == IOMMU_DOMAIN_SVA) |
| return; |
| |
| spin_lock(&iommu->lock); |
| info = xa_load(&domain->iommu_array, iommu->seq_id); |
| if (--info->refcnt == 0) { |
| clear_bit(info->did, iommu->domain_ids); |
| xa_erase(&domain->iommu_array, iommu->seq_id); |
| domain->nid = NUMA_NO_NODE; |
| domain_update_iommu_cap(domain); |
| kfree(info); |
| } |
| spin_unlock(&iommu->lock); |
| } |
| |
| static int guestwidth_to_adjustwidth(int gaw) |
| { |
| int agaw; |
| int r = (gaw - 12) % 9; |
| |
| if (r == 0) |
| agaw = gaw; |
| else |
| agaw = gaw + 9 - r; |
| if (agaw > 64) |
| agaw = 64; |
| return agaw; |
| } |
| |
| static void domain_exit(struct dmar_domain *domain) |
| { |
| if (domain->pgd) { |
| LIST_HEAD(freelist); |
| |
| domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist); |
| iommu_put_pages_list(&freelist); |
| } |
| |
| if (WARN_ON(!list_empty(&domain->devices))) |
| return; |
| |
| kfree(domain); |
| } |
| |
| static int domain_context_mapping_one(struct dmar_domain *domain, |
| struct intel_iommu *iommu, |
| u8 bus, u8 devfn) |
| { |
| struct device_domain_info *info = |
| domain_lookup_dev_info(domain, iommu, bus, devfn); |
| u16 did = domain_id_iommu(domain, iommu); |
| int translation = CONTEXT_TT_MULTI_LEVEL; |
| struct dma_pte *pgd = domain->pgd; |
| struct context_entry *context; |
| int agaw, ret; |
| |
| if (hw_pass_through && domain_type_is_si(domain)) |
| translation = CONTEXT_TT_PASS_THROUGH; |
| |
| pr_debug("Set context mapping for %02x:%02x.%d\n", |
| bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| |
| spin_lock(&iommu->lock); |
| ret = -ENOMEM; |
| context = iommu_context_addr(iommu, bus, devfn, 1); |
| if (!context) |
| goto out_unlock; |
| |
| ret = 0; |
| if (context_present(context) && !context_copied(iommu, bus, devfn)) |
| goto out_unlock; |
| |
| /* |
| * For kdump cases, old valid entries may be cached due to the |
| * in-flight DMA and copied pgtable, but there is no unmapping |
| * behaviour for them, thus we need an explicit cache flush for |
| * the newly-mapped device. For kdump, at this point, the device |
| * is supposed to finish reset at its driver probe stage, so no |
| * in-flight DMA will exist, and we don't need to worry anymore |
| * hereafter. |
| */ |
| if (context_copied(iommu, bus, devfn)) { |
| u16 did_old = context_domain_id(context); |
| |
| if (did_old < cap_ndoms(iommu->cap)) { |
| iommu->flush.flush_context(iommu, did_old, |
| (((u16)bus) << 8) | devfn, |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| iommu->flush.flush_iotlb(iommu, did_old, 0, 0, |
| DMA_TLB_DSI_FLUSH); |
| } |
| |
| clear_context_copied(iommu, bus, devfn); |
| } |
| |
| context_clear_entry(context); |
| context_set_domain_id(context, did); |
| |
| if (translation != CONTEXT_TT_PASS_THROUGH) { |
| /* |
| * Skip top levels of page tables for iommu which has |
| * less agaw than default. Unnecessary for PT mode. |
| */ |
| for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { |
| ret = -ENOMEM; |
| pgd = phys_to_virt(dma_pte_addr(pgd)); |
| if (!dma_pte_present(pgd)) |
| goto out_unlock; |
| } |
| |
| if (info && info->ats_supported) |
| translation = CONTEXT_TT_DEV_IOTLB; |
| else |
| translation = CONTEXT_TT_MULTI_LEVEL; |
| |
| context_set_address_root(context, virt_to_phys(pgd)); |
| context_set_address_width(context, agaw); |
| } else { |
| /* |
| * In pass through mode, AW must be programmed to |
| * indicate the largest AGAW value supported by |
| * hardware. And ASR is ignored by hardware. |
| */ |
| context_set_address_width(context, iommu->msagaw); |
| } |
| |
| context_set_translation_type(context, translation); |
| context_set_fault_enable(context); |
| context_set_present(context); |
| if (!ecap_coherent(iommu->ecap)) |
| clflush_cache_range(context, sizeof(*context)); |
| |
| /* |
| * It's a non-present to present mapping. If hardware doesn't cache |
| * non-present entry we only need to flush the write-buffer. If the |
| * _does_ cache non-present entries, then it does so in the special |
| * domain #0, which we have to flush: |
| */ |
| if (cap_caching_mode(iommu->cap)) { |
| iommu->flush.flush_context(iommu, 0, |
| (((u16)bus) << 8) | devfn, |
| DMA_CCMD_MASK_NOBIT, |
| DMA_CCMD_DEVICE_INVL); |
| iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); |
| } else { |
| iommu_flush_write_buffer(iommu); |
| } |
| |
| ret = 0; |
| |
| out_unlock: |
| spin_unlock(&iommu->lock); |
| |
| return ret; |
| } |
| |
| static int domain_context_mapping_cb(struct pci_dev *pdev, |
| u16 alias, void *opaque) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(&pdev->dev); |
| struct intel_iommu *iommu = info->iommu; |
| struct dmar_domain *domain = opaque; |
| |
| return domain_context_mapping_one(domain, iommu, |
| PCI_BUS_NUM(alias), alias & 0xff); |
| } |
| |
| static int |
| domain_context_mapping(struct dmar_domain *domain, struct device *dev) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct intel_iommu *iommu = info->iommu; |
| u8 bus = info->bus, devfn = info->devfn; |
| |
| if (!dev_is_pci(dev)) |
| return domain_context_mapping_one(domain, iommu, bus, devfn); |
| |
| return pci_for_each_dma_alias(to_pci_dev(dev), |
| domain_context_mapping_cb, domain); |
| } |
| |
| /* Return largest possible superpage level for a given mapping */ |
| static int hardware_largepage_caps(struct dmar_domain *domain, unsigned long iov_pfn, |
| unsigned long phy_pfn, unsigned long pages) |
| { |
| int support, level = 1; |
| unsigned long pfnmerge; |
| |
| support = domain->iommu_superpage; |
| |
| /* To use a large page, the virtual *and* physical addresses |
| must be aligned to 2MiB/1GiB/etc. Lower bits set in either |
| of them will mean we have to use smaller pages. So just |
| merge them and check both at once. */ |
| pfnmerge = iov_pfn | phy_pfn; |
| |
| while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { |
| pages >>= VTD_STRIDE_SHIFT; |
| if (!pages) |
| break; |
| pfnmerge >>= VTD_STRIDE_SHIFT; |
| level++; |
| support--; |
| } |
| return level; |
| } |
| |
| /* |
| * Ensure that old small page tables are removed to make room for superpage(s). |
| * We're going to add new large pages, so make sure we don't remove their parent |
| * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared. |
| */ |
| static void switch_to_super_page(struct dmar_domain *domain, |
| unsigned long start_pfn, |
| unsigned long end_pfn, int level) |
| { |
| unsigned long lvl_pages = lvl_to_nr_pages(level); |
| struct dma_pte *pte = NULL; |
| |
| while (start_pfn <= end_pfn) { |
| if (!pte) |
| pte = pfn_to_dma_pte(domain, start_pfn, &level, |
| GFP_ATOMIC); |
| |
| if (dma_pte_present(pte)) { |
| dma_pte_free_pagetable(domain, start_pfn, |
| start_pfn + lvl_pages - 1, |
| level + 1); |
| |
| cache_tag_flush_range(domain, start_pfn << VTD_PAGE_SHIFT, |
| end_pfn << VTD_PAGE_SHIFT, 0); |
| } |
| |
| pte++; |
| start_pfn += lvl_pages; |
| if (first_pte_in_page(pte)) |
| pte = NULL; |
| } |
| } |
| |
| static int |
| __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, |
| unsigned long phys_pfn, unsigned long nr_pages, int prot, |
| gfp_t gfp) |
| { |
| struct dma_pte *first_pte = NULL, *pte = NULL; |
| unsigned int largepage_lvl = 0; |
| unsigned long lvl_pages = 0; |
| phys_addr_t pteval; |
| u64 attr; |
| |
| if (unlikely(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1))) |
| return -EINVAL; |
| |
| if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) |
| return -EINVAL; |
| |
| if (!(prot & DMA_PTE_WRITE) && domain->nested_parent) { |
| pr_err_ratelimited("Read-only mapping is disallowed on the domain which serves as the parent in a nested configuration, due to HW errata (ERRATA_772415_SPR17)\n"); |
| return -EINVAL; |
| } |
| |
| attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); |
| attr |= DMA_FL_PTE_PRESENT; |
| if (domain->use_first_level) { |
| attr |= DMA_FL_PTE_US | DMA_FL_PTE_ACCESS; |
| if (prot & DMA_PTE_WRITE) |
| attr |= DMA_FL_PTE_DIRTY; |
| } |
| |
| domain->has_mappings = true; |
| |
| pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; |
| |
| while (nr_pages > 0) { |
| uint64_t tmp; |
| |
| if (!pte) { |
| largepage_lvl = hardware_largepage_caps(domain, iov_pfn, |
| phys_pfn, nr_pages); |
| |
| pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl, |
| gfp); |
| if (!pte) |
| return -ENOMEM; |
| first_pte = pte; |
| |
| lvl_pages = lvl_to_nr_pages(largepage_lvl); |
| |
| /* It is large page*/ |
| if (largepage_lvl > 1) { |
| unsigned long end_pfn; |
| unsigned long pages_to_remove; |
| |
| pteval |= DMA_PTE_LARGE_PAGE; |
| pages_to_remove = min_t(unsigned long, nr_pages, |
| nr_pte_to_next_page(pte) * lvl_pages); |
| end_pfn = iov_pfn + pages_to_remove - 1; |
| switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl); |
| } else { |
| pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; |
| } |
| |
| } |
| /* We don't need lock here, nobody else |
| * touches the iova range |
| */ |
| tmp = 0ULL; |
| if (!try_cmpxchg64_local(&pte->val, &tmp, pteval)) { |
| static int dumps = 5; |
| pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", |
| iov_pfn, tmp, (unsigned long long)pteval); |
| if (dumps) { |
| dumps--; |
| debug_dma_dump_mappings(NULL); |
| } |
| WARN_ON(1); |
| } |
| |
| nr_pages -= lvl_pages; |
| iov_pfn += lvl_pages; |
| phys_pfn += lvl_pages; |
| pteval += lvl_pages * VTD_PAGE_SIZE; |
| |
| /* If the next PTE would be the first in a new page, then we |
| * need to flush the cache on the entries we've just written. |
| * And then we'll need to recalculate 'pte', so clear it and |
| * let it get set again in the if (!pte) block above. |
| * |
| * If we're done (!nr_pages) we need to flush the cache too. |
| * |
| * Also if we've been setting superpages, we may need to |
| * recalculate 'pte' and switch back to smaller pages for the |
| * end of the mapping, if the trailing size is not enough to |
| * use another superpage (i.e. nr_pages < lvl_pages). |
| */ |
| pte++; |
| if (!nr_pages || first_pte_in_page(pte) || |
| (largepage_lvl > 1 && nr_pages < lvl_pages)) { |
| domain_flush_cache(domain, first_pte, |
| (void *)pte - (void *)first_pte); |
| pte = NULL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn) |
| { |
| struct intel_iommu *iommu = info->iommu; |
| struct context_entry *context; |
| u16 did; |
| |
| spin_lock(&iommu->lock); |
| context = iommu_context_addr(iommu, bus, devfn, 0); |
| if (!context) { |
| spin_unlock(&iommu->lock); |
| return; |
| } |
| |
| did = context_domain_id(context); |
| context_clear_entry(context); |
| __iommu_flush_cache(iommu, context, sizeof(*context)); |
| spin_unlock(&iommu->lock); |
| intel_context_flush_present(info, context, did, true); |
| } |
| |
| static int domain_setup_first_level(struct intel_iommu *iommu, |
| struct dmar_domain *domain, |
| struct device *dev, |
| u32 pasid) |
| { |
| struct dma_pte *pgd = domain->pgd; |
| int agaw, level; |
| int flags = 0; |
| |
| /* |
| * Skip top levels of page tables for iommu which has |
| * less agaw than default. Unnecessary for PT mode. |
| */ |
| for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { |
| pgd = phys_to_virt(dma_pte_addr(pgd)); |
| if (!dma_pte_present(pgd)) |
| return -ENOMEM; |
| } |
| |
| level = agaw_to_level(agaw); |
| if (level != 4 && level != 5) |
| return -EINVAL; |
| |
| if (level == 5) |
| flags |= PASID_FLAG_FL5LP; |
| |
| if (domain->force_snooping) |
| flags |= PASID_FLAG_PAGE_SNOOP; |
| |
| return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, |
| domain_id_iommu(domain, iommu), |
| flags); |
| } |
| |
| static bool dev_is_real_dma_subdevice(struct device *dev) |
| { |
| return dev && dev_is_pci(dev) && |
| pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); |
| } |
| |
| static int iommu_domain_identity_map(struct dmar_domain *domain, |
| unsigned long first_vpfn, |
| unsigned long last_vpfn) |
| { |
| /* |
| * RMRR range might have overlap with physical memory range, |
| * clear it first |
| */ |
| dma_pte_clear_range(domain, first_vpfn, last_vpfn); |
| |
| return __domain_mapping(domain, first_vpfn, |
| first_vpfn, last_vpfn - first_vpfn + 1, |
| DMA_PTE_READ|DMA_PTE_WRITE, GFP_KERNEL); |
| } |
| |
| static int md_domain_init(struct dmar_domain *domain, int guest_width); |
| |
| static int __init si_domain_init(int hw) |
| { |
| struct dmar_rmrr_unit *rmrr; |
| struct device *dev; |
| int i, nid, ret; |
| |
| si_domain = alloc_domain(IOMMU_DOMAIN_IDENTITY); |
| if (!si_domain) |
| return -EFAULT; |
| |
| if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| domain_exit(si_domain); |
| si_domain = NULL; |
| return -EFAULT; |
| } |
| |
| if (hw) |
| return 0; |
| |
| for_each_online_node(nid) { |
| unsigned long start_pfn, end_pfn; |
| int i; |
| |
| for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
| ret = iommu_domain_identity_map(si_domain, |
| mm_to_dma_pfn_start(start_pfn), |
| mm_to_dma_pfn_end(end_pfn-1)); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| /* |
| * Identity map the RMRRs so that devices with RMRRs could also use |
| * the si_domain. |
| */ |
| for_each_rmrr_units(rmrr) { |
| for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, |
| i, dev) { |
| unsigned long long start = rmrr->base_address; |
| unsigned long long end = rmrr->end_address; |
| |
| if (WARN_ON(end < start || |
| end >> agaw_to_width(si_domain->agaw))) |
| continue; |
| |
| ret = iommu_domain_identity_map(si_domain, |
| mm_to_dma_pfn_start(start >> PAGE_SHIFT), |
| mm_to_dma_pfn_end(end >> PAGE_SHIFT)); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int dmar_domain_attach_device(struct dmar_domain *domain, |
| struct device *dev) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct intel_iommu *iommu = info->iommu; |
| unsigned long flags; |
| int ret; |
| |
| ret = domain_attach_iommu(domain, iommu); |
| if (ret) |
| return ret; |
| |
| info->domain = domain; |
| spin_lock_irqsave(&domain->lock, flags); |
| list_add(&info->link, &domain->devices); |
| spin_unlock_irqrestore(&domain->lock, flags); |
| |
| if (dev_is_real_dma_subdevice(dev)) |
| return 0; |
| |
| if (!sm_supported(iommu)) |
| ret = domain_context_mapping(domain, dev); |
| else if (hw_pass_through && domain_type_is_si(domain)) |
| ret = intel_pasid_setup_pass_through(iommu, dev, IOMMU_NO_PASID); |
| else if (domain->use_first_level) |
| ret = domain_setup_first_level(iommu, domain, dev, IOMMU_NO_PASID); |
| else |
| ret = intel_pasid_setup_second_level(iommu, domain, dev, IOMMU_NO_PASID); |
| |
| if (ret) |
| goto out_block_translation; |
| |
| if (sm_supported(info->iommu) || !domain_type_is_si(info->domain)) |
| iommu_enable_pci_caps(info); |
| |
| ret = cache_tag_assign_domain(domain, dev, IOMMU_NO_PASID); |
| if (ret) |
| goto out_block_translation; |
| |
| return 0; |
| |
| out_block_translation: |
| device_block_translation(dev); |
| return ret; |
| } |
| |
| /** |
| * device_rmrr_is_relaxable - Test whether the RMRR of this device |
| * is relaxable (ie. is allowed to be not enforced under some conditions) |
| * @dev: device handle |
| * |
| * We assume that PCI USB devices with RMRRs have them largely |
| * for historical reasons and that the RMRR space is not actively used post |
| * boot. This exclusion may change if vendors begin to abuse it. |
| * |
| * The same exception is made for graphics devices, with the requirement that |
| * any use of the RMRR regions will be torn down before assigning the device |
| * to a guest. |
| * |
| * Return: true if the RMRR is relaxable, false otherwise |
| */ |
| static bool device_rmrr_is_relaxable(struct device *dev) |
| { |
| struct pci_dev *pdev; |
| |
| if (!dev_is_pci(dev)) |
| return false; |
| |
| pdev = to_pci_dev(dev); |
| if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) |
| return true; |
| else |
| return false; |
| } |
| |
| static int device_def_domain_type(struct device *dev) |
| { |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| |
| if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) |
| return IOMMU_DOMAIN_IDENTITY; |
| } |
| |
| return 0; |
| } |
| |
| static void intel_iommu_init_qi(struct intel_iommu *iommu) |
| { |
| /* |
| * Start from the sane iommu hardware state. |
| * If the queued invalidation is already initialized by us |
| * (for example, while enabling interrupt-remapping) then |
| * we got the things already rolling from a sane state. |
| */ |
| if (!iommu->qi) { |
| /* |
| * Clear any previous faults. |
| */ |
| dmar_fault(-1, iommu); |
| /* |
| * Disable queued invalidation if supported and already enabled |
| * before OS handover. |
| */ |
| dmar_disable_qi(iommu); |
| } |
| |
| if (dmar_enable_qi(iommu)) { |
| /* |
| * Queued Invalidate not enabled, use Register Based Invalidate |
| */ |
| iommu->flush.flush_context = __iommu_flush_context; |
| iommu->flush.flush_iotlb = __iommu_flush_iotlb; |
| pr_info("%s: Using Register based invalidation\n", |
| iommu->name); |
| } else { |
| iommu->flush.flush_context = qi_flush_context; |
| iommu->flush.flush_iotlb = qi_flush_iotlb; |
| pr_info("%s: Using Queued invalidation\n", iommu->name); |
| } |
| } |
| |
| static int copy_context_table(struct intel_iommu *iommu, |
| struct root_entry *old_re, |
| struct context_entry **tbl, |
| int bus, bool ext) |
| { |
| int tbl_idx, pos = 0, idx, devfn, ret = 0, did; |
| struct context_entry *new_ce = NULL, ce; |
| struct context_entry *old_ce = NULL; |
| struct root_entry re; |
| phys_addr_t old_ce_phys; |
| |
| tbl_idx = ext ? bus * 2 : bus; |
| memcpy(&re, old_re, sizeof(re)); |
| |
| for (devfn = 0; devfn < 256; devfn++) { |
| /* First calculate the correct index */ |
| idx = (ext ? devfn * 2 : devfn) % 256; |
| |
| if (idx == 0) { |
| /* First save what we may have and clean up */ |
| if (new_ce) { |
| tbl[tbl_idx] = new_ce; |
| __iommu_flush_cache(iommu, new_ce, |
| VTD_PAGE_SIZE); |
| pos = 1; |
| } |
| |
| if (old_ce) |
| memunmap(old_ce); |
| |
| ret = 0; |
| if (devfn < 0x80) |
| old_ce_phys = root_entry_lctp(&re); |
| else |
| old_ce_phys = root_entry_uctp(&re); |
| |
| if (!old_ce_phys) { |
| if (ext && devfn == 0) { |
| /* No LCTP, try UCTP */ |
| devfn = 0x7f; |
| continue; |
| } else { |
| goto out; |
| } |
| } |
| |
| ret = -ENOMEM; |
| old_ce = memremap(old_ce_phys, PAGE_SIZE, |
| MEMREMAP_WB); |
| if (!old_ce) |
| goto out; |
| |
| new_ce = iommu_alloc_page_node(iommu->node, GFP_KERNEL); |
| if (!new_ce) |
| goto out_unmap; |
| |
| ret = 0; |
| } |
| |
| /* Now copy the context entry */ |
| memcpy(&ce, old_ce + idx, sizeof(ce)); |
| |
| if (!context_present(&ce)) |
| continue; |
| |
| did = context_domain_id(&ce); |
| if (did >= 0 && did < cap_ndoms(iommu->cap)) |
| set_bit(did, iommu->domain_ids); |
| |
| set_context_copied(iommu, bus, devfn); |
| new_ce[idx] = ce; |
| } |
| |
| tbl[tbl_idx + pos] = new_ce; |
| |
| __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); |
| |
| out_unmap: |
| memunmap(old_ce); |
| |
| out: |
| return ret; |
| } |
| |
| static int copy_translation_tables(struct intel_iommu *iommu) |
| { |
| struct context_entry **ctxt_tbls; |
| struct root_entry *old_rt; |
| phys_addr_t old_rt_phys; |
| int ctxt_table_entries; |
| u64 rtaddr_reg; |
| int bus, ret; |
| bool new_ext, ext; |
| |
| rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); |
| ext = !!(rtaddr_reg & DMA_RTADDR_SMT); |
| new_ext = !!sm_supported(iommu); |
| |
| /* |
| * The RTT bit can only be changed when translation is disabled, |
| * but disabling translation means to open a window for data |
| * corruption. So bail out and don't copy anything if we would |
| * have to change the bit. |
| */ |
| if (new_ext != ext) |
| return -EINVAL; |
| |
| iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL); |
| if (!iommu->copied_tables) |
| return -ENOMEM; |
| |
| old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; |
| if (!old_rt_phys) |
| return -EINVAL; |
| |
| old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); |
| if (!old_rt) |
| return -ENOMEM; |
| |
| /* This is too big for the stack - allocate it from slab */ |
| ctxt_table_entries = ext ? 512 : 256; |
| ret = -ENOMEM; |
| ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); |
| if (!ctxt_tbls) |
| goto out_unmap; |
| |
| for (bus = 0; bus < 256; bus++) { |
| ret = copy_context_table(iommu, &old_rt[bus], |
| ctxt_tbls, bus, ext); |
| if (ret) { |
| pr_err("%s: Failed to copy context table for bus %d\n", |
| iommu->name, bus); |
| continue; |
| } |
| } |
| |
| spin_lock(&iommu->lock); |
| |
| /* Context tables are copied, now write them to the root_entry table */ |
| for (bus = 0; bus < 256; bus++) { |
| int idx = ext ? bus * 2 : bus; |
| u64 val; |
| |
| if (ctxt_tbls[idx]) { |
| val = virt_to_phys(ctxt_tbls[idx]) | 1; |
| iommu->root_entry[bus].lo = val; |
| } |
| |
| if (!ext || !ctxt_tbls[idx + 1]) |
| continue; |
| |
| val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; |
| iommu->root_entry[bus].hi = val; |
| } |
| |
| spin_unlock(&iommu->lock); |
| |
| kfree(ctxt_tbls); |
| |
| __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); |
| |
| ret = 0; |
| |
| out_unmap: |
| memunmap(old_rt); |
| |
| return ret; |
| } |
| |
| static int __init init_dmars(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| int ret; |
| |
| ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL); |
| if (ret) |
| goto free_iommu; |
| |
| for_each_iommu(iommu, drhd) { |
| if (drhd->ignored) { |
| iommu_disable_translation(iommu); |
| continue; |
| } |
| |
| /* |
| * Find the max pasid size of all IOMMU's in the system. |
| * We need to ensure the system pasid table is no bigger |
| * than the smallest supported. |
| */ |
| if (pasid_supported(iommu)) { |
| u32 temp = 2 << ecap_pss(iommu->ecap); |
| |
| intel_pasid_max_id = min_t(u32, temp, |
| intel_pasid_max_id); |
| } |
| |
| intel_iommu_init_qi(iommu); |
| |
| ret = iommu_init_domains(iommu); |
| if (ret) |
| goto free_iommu; |
| |
| init_translation_status(iommu); |
| |
| if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { |
| iommu_disable_translation(iommu); |
| clear_translation_pre_enabled(iommu); |
| pr_warn("Translation was enabled for %s but we are not in kdump mode\n", |
| iommu->name); |
| } |
| |
| /* |
| * TBD: |
| * we could share the same root & context tables |
| * among all IOMMU's. Need to Split it later. |
| */ |
| ret = iommu_alloc_root_entry(iommu); |
| if (ret) |
| goto free_iommu; |
| |
| if (translation_pre_enabled(iommu)) { |
| pr_info("Translation already enabled - trying to copy translation structures\n"); |
| |
| ret = copy_translation_tables(iommu); |
| if (ret) { |
| /* |
| * We found the IOMMU with translation |
| * enabled - but failed to copy over the |
| * old root-entry table. Try to proceed |
| * by disabling translation now and |
| * allocating a clean root-entry table. |
| * This might cause DMAR faults, but |
| * probably the dump will still succeed. |
| */ |
| pr_err("Failed to copy translation tables from previous kernel for %s\n", |
| iommu->name); |
| iommu_disable_translation(iommu); |
| clear_translation_pre_enabled(iommu); |
| } else { |
| pr_info("Copied translation tables from previous kernel for %s\n", |
| iommu->name); |
| } |
| } |
| |
| if (!ecap_pass_through(iommu->ecap)) |
| hw_pass_through = 0; |
| intel_svm_check(iommu); |
| } |
| |
| /* |
| * Now that qi is enabled on all iommus, set the root entry and flush |
| * caches. This is required on some Intel X58 chipsets, otherwise the |
| * flush_context function will loop forever and the boot hangs. |
| */ |
| for_each_active_iommu(iommu, drhd) { |
| iommu_flush_write_buffer(iommu); |
| iommu_set_root_entry(iommu); |
| } |
| |
| check_tylersburg_isoch(); |
| |
| ret = si_domain_init(hw_pass_through); |
| if (ret) |
| goto free_iommu; |
| |
| /* |
| * for each drhd |
| * enable fault log |
| * global invalidate context cache |
| * global invalidate iotlb |
| * enable translation |
| */ |
| for_each_iommu(iommu, drhd) { |
| if (drhd->ignored) { |
| /* |
| * we always have to disable PMRs or DMA may fail on |
| * this device |
| */ |
| if (force_on) |
| iommu_disable_protect_mem_regions(iommu); |
| continue; |
| } |
| |
| iommu_flush_write_buffer(iommu); |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { |
| /* |
| * Call dmar_alloc_hwirq() with dmar_global_lock held, |
| * could cause possible lock race condition. |
| */ |
| up_write(&dmar_global_lock); |
| ret = intel_svm_enable_prq(iommu); |
| down_write(&dmar_global_lock); |
| if (ret) |
| goto free_iommu; |
| } |
| #endif |
| ret = dmar_set_interrupt(iommu); |
| if (ret) |
| goto free_iommu; |
| } |
| |
| return 0; |
| |
| free_iommu: |
| for_each_active_iommu(iommu, drhd) { |
| disable_dmar_iommu(iommu); |
| free_dmar_iommu(iommu); |
| } |
| if (si_domain) { |
| domain_exit(si_domain); |
| si_domain = NULL; |
| } |
| |
| return ret; |
| } |
| |
| static void __init init_no_remapping_devices(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct device *dev; |
| int i; |
| |
| for_each_drhd_unit(drhd) { |
| if (!drhd->include_all) { |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, dev) |
| break; |
| /* ignore DMAR unit if no devices exist */ |
| if (i == drhd->devices_cnt) |
| drhd->ignored = 1; |
| } |
| } |
| |
| for_each_active_drhd_unit(drhd) { |
| if (drhd->include_all) |
| continue; |
| |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, dev) |
| if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) |
| break; |
| if (i < drhd->devices_cnt) |
| continue; |
| |
| /* This IOMMU has *only* gfx devices. Either bypass it or |
| set the gfx_mapped flag, as appropriate */ |
| drhd->gfx_dedicated = 1; |
| if (disable_igfx_iommu) |
| drhd->ignored = 1; |
| } |
| } |
| |
| #ifdef CONFIG_SUSPEND |
| static int init_iommu_hw(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| int ret; |
| |
| for_each_active_iommu(iommu, drhd) { |
| if (iommu->qi) { |
| ret = dmar_reenable_qi(iommu); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| for_each_iommu(iommu, drhd) { |
| if (drhd->ignored) { |
| /* |
| * we always have to disable PMRs or DMA may fail on |
| * this device |
| */ |
| if (force_on) |
| iommu_disable_protect_mem_regions(iommu); |
| continue; |
| } |
| |
| iommu_flush_write_buffer(iommu); |
| iommu_set_root_entry(iommu); |
| iommu_enable_translation(iommu); |
| iommu_disable_protect_mem_regions(iommu); |
| } |
| |
| return 0; |
| } |
| |
| static void iommu_flush_all(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| |
| for_each_active_iommu(iommu, drhd) { |
| iommu->flush.flush_context(iommu, 0, 0, 0, |
| DMA_CCMD_GLOBAL_INVL); |
| iommu->flush.flush_iotlb(iommu, 0, 0, 0, |
| DMA_TLB_GLOBAL_FLUSH); |
| } |
| } |
| |
| static int iommu_suspend(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| unsigned long flag; |
| |
| iommu_flush_all(); |
| |
| for_each_active_iommu(iommu, drhd) { |
| iommu_disable_translation(iommu); |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| |
| iommu->iommu_state[SR_DMAR_FECTL_REG] = |
| readl(iommu->reg + DMAR_FECTL_REG); |
| iommu->iommu_state[SR_DMAR_FEDATA_REG] = |
| readl(iommu->reg + DMAR_FEDATA_REG); |
| iommu->iommu_state[SR_DMAR_FEADDR_REG] = |
| readl(iommu->reg + DMAR_FEADDR_REG); |
| iommu->iommu_state[SR_DMAR_FEUADDR_REG] = |
| readl(iommu->reg + DMAR_FEUADDR_REG); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| return 0; |
| } |
| |
| static void iommu_resume(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| unsigned long flag; |
| |
| if (init_iommu_hw()) { |
| if (force_on) |
| panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); |
| else |
| WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); |
| return; |
| } |
| |
| for_each_active_iommu(iommu, drhd) { |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flag); |
| |
| writel(iommu->iommu_state[SR_DMAR_FECTL_REG], |
| iommu->reg + DMAR_FECTL_REG); |
| writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], |
| iommu->reg + DMAR_FEDATA_REG); |
| writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], |
| iommu->reg + DMAR_FEADDR_REG); |
| writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], |
| iommu->reg + DMAR_FEUADDR_REG); |
| |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flag); |
| } |
| } |
| |
| static struct syscore_ops iommu_syscore_ops = { |
| .resume = iommu_resume, |
| .suspend = iommu_suspend, |
| }; |
| |
| static void __init init_iommu_pm_ops(void) |
| { |
| register_syscore_ops(&iommu_syscore_ops); |
| } |
| |
| #else |
| static inline void init_iommu_pm_ops(void) {} |
| #endif /* CONFIG_PM */ |
| |
| static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) |
| { |
| if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || |
| !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || |
| rmrr->end_address <= rmrr->base_address || |
| arch_rmrr_sanity_check(rmrr)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) |
| { |
| struct acpi_dmar_reserved_memory *rmrr; |
| struct dmar_rmrr_unit *rmrru; |
| |
| rmrr = (struct acpi_dmar_reserved_memory *)header; |
| if (rmrr_sanity_check(rmrr)) { |
| pr_warn(FW_BUG |
| "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| rmrr->base_address, rmrr->end_address, |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); |
| } |
| |
| rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); |
| if (!rmrru) |
| goto out; |
| |
| rmrru->hdr = header; |
| |
| rmrru->base_address = rmrr->base_address; |
| rmrru->end_address = rmrr->end_address; |
| |
| rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), |
| ((void *)rmrr) + rmrr->header.length, |
| &rmrru->devices_cnt); |
| if (rmrru->devices_cnt && rmrru->devices == NULL) |
| goto free_rmrru; |
| |
| list_add(&rmrru->list, &dmar_rmrr_units); |
| |
| return 0; |
| free_rmrru: |
| kfree(rmrru); |
| out: |
| return -ENOMEM; |
| } |
| |
| static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) |
| { |
| struct dmar_atsr_unit *atsru; |
| struct acpi_dmar_atsr *tmp; |
| |
| list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, |
| dmar_rcu_check()) { |
| tmp = (struct acpi_dmar_atsr *)atsru->hdr; |
| if (atsr->segment != tmp->segment) |
| continue; |
| if (atsr->header.length != tmp->header.length) |
| continue; |
| if (memcmp(atsr, tmp, atsr->header.length) == 0) |
| return atsru; |
| } |
| |
| return NULL; |
| } |
| |
| int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) |
| { |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| |
| if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) |
| return 0; |
| |
| atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| atsru = dmar_find_atsr(atsr); |
| if (atsru) |
| return 0; |
| |
| atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); |
| if (!atsru) |
| return -ENOMEM; |
| |
| /* |
| * If memory is allocated from slab by ACPI _DSM method, we need to |
| * copy the memory content because the memory buffer will be freed |
| * on return. |
| */ |
| atsru->hdr = (void *)(atsru + 1); |
| memcpy(atsru->hdr, hdr, hdr->length); |
| atsru->include_all = atsr->flags & 0x1; |
| if (!atsru->include_all) { |
| atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), |
| (void *)atsr + atsr->header.length, |
| &atsru->devices_cnt); |
| if (atsru->devices_cnt && atsru->devices == NULL) { |
| kfree(atsru); |
| return -ENOMEM; |
| } |
| } |
| |
| list_add_rcu(&atsru->list, &dmar_atsr_units); |
| |
| return 0; |
| } |
| |
| static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) |
| { |
| dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); |
| kfree(atsru); |
| } |
| |
| int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) |
| { |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| |
| atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| atsru = dmar_find_atsr(atsr); |
| if (atsru) { |
| list_del_rcu(&atsru->list); |
| synchronize_rcu(); |
| intel_iommu_free_atsr(atsru); |
| } |
| |
| return 0; |
| } |
| |
| int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) |
| { |
| int i; |
| struct device *dev; |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| |
| atsr = container_of(hdr, struct acpi_dmar_atsr, header); |
| atsru = dmar_find_atsr(atsr); |
| if (!atsru) |
| return 0; |
| |
| if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { |
| for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, |
| i, dev) |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc) |
| { |
| struct dmar_satc_unit *satcu; |
| struct acpi_dmar_satc *tmp; |
| |
| list_for_each_entry_rcu(satcu, &dmar_satc_units, list, |
| dmar_rcu_check()) { |
| tmp = (struct acpi_dmar_satc *)satcu->hdr; |
| if (satc->segment != tmp->segment) |
| continue; |
| if (satc->header.length != tmp->header.length) |
| continue; |
| if (memcmp(satc, tmp, satc->header.length) == 0) |
| return satcu; |
| } |
| |
| return NULL; |
| } |
| |
| int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg) |
| { |
| struct acpi_dmar_satc *satc; |
| struct dmar_satc_unit *satcu; |
| |
| if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) |
| return 0; |
| |
| satc = container_of(hdr, struct acpi_dmar_satc, header); |
| satcu = dmar_find_satc(satc); |
| if (satcu) |
| return 0; |
| |
| satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL); |
| if (!satcu) |
| return -ENOMEM; |
| |
| satcu->hdr = (void *)(satcu + 1); |
| memcpy(satcu->hdr, hdr, hdr->length); |
| satcu->atc_required = satc->flags & 0x1; |
| satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1), |
| (void *)satc + satc->header.length, |
| &satcu->devices_cnt); |
| if (satcu->devices_cnt && !satcu->devices) { |
| kfree(satcu); |
| return -ENOMEM; |
| } |
| list_add_rcu(&satcu->list, &dmar_satc_units); |
| |
| return 0; |
| } |
| |
| static int intel_iommu_add(struct dmar_drhd_unit *dmaru) |
| { |
| int sp, ret; |
| struct intel_iommu *iommu = dmaru->iommu; |
| |
| ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu); |
| if (ret) |
| goto out; |
| |
| if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { |
| pr_warn("%s: Doesn't support hardware pass through.\n", |
| iommu->name); |
| return -ENXIO; |
| } |
| |
| sp = domain_update_iommu_superpage(NULL, iommu) - 1; |
| if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { |
| pr_warn("%s: Doesn't support large page.\n", |
| iommu->name); |
| return -ENXIO; |
| } |
| |
| /* |
| * Disable translation if already enabled prior to OS handover. |
| */ |
| if (iommu->gcmd & DMA_GCMD_TE) |
| iommu_disable_translation(iommu); |
| |
| ret = iommu_init_domains(iommu); |
| if (ret == 0) |
| ret = iommu_alloc_root_entry(iommu); |
| if (ret) |
| goto out; |
| |
| intel_svm_check(iommu); |
| |
| if (dmaru->ignored) { |
| /* |
| * we always have to disable PMRs or DMA may fail on this device |
| */ |
| if (force_on) |
| iommu_disable_protect_mem_regions(iommu); |
| return 0; |
| } |
| |
| intel_iommu_init_qi(iommu); |
| iommu_flush_write_buffer(iommu); |
| |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { |
| ret = intel_svm_enable_prq(iommu); |
| if (ret) |
| goto disable_iommu; |
| } |
| #endif |
| ret = dmar_set_interrupt(iommu); |
| if (ret) |
| goto disable_iommu; |
| |
| iommu_set_root_entry(iommu); |
| iommu_enable_translation(iommu); |
| |
| iommu_disable_protect_mem_regions(iommu); |
| return 0; |
| |
| disable_iommu: |
| disable_dmar_iommu(iommu); |
| out: |
| free_dmar_iommu(iommu); |
| return ret; |
| } |
| |
| int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) |
| { |
| int ret = 0; |
| struct intel_iommu *iommu = dmaru->iommu; |
| |
| if (!intel_iommu_enabled) |
| return 0; |
| if (iommu == NULL) |
| return -EINVAL; |
| |
| if (insert) { |
| ret = intel_iommu_add(dmaru); |
| } else { |
| disable_dmar_iommu(iommu); |
| free_dmar_iommu(iommu); |
| } |
| |
| return ret; |
| } |
| |
| static void intel_iommu_free_dmars(void) |
| { |
| struct dmar_rmrr_unit *rmrru, *rmrr_n; |
| struct dmar_atsr_unit *atsru, *atsr_n; |
| struct dmar_satc_unit *satcu, *satc_n; |
| |
| list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { |
| list_del(&rmrru->list); |
| dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); |
| kfree(rmrru); |
| } |
| |
| list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { |
| list_del(&atsru->list); |
| intel_iommu_free_atsr(atsru); |
| } |
| list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) { |
| list_del(&satcu->list); |
| dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt); |
| kfree(satcu); |
| } |
| } |
| |
| static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev) |
| { |
| struct dmar_satc_unit *satcu; |
| struct acpi_dmar_satc *satc; |
| struct device *tmp; |
| int i; |
| |
| dev = pci_physfn(dev); |
| rcu_read_lock(); |
| |
| list_for_each_entry_rcu(satcu, &dmar_satc_units, list) { |
| satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); |
| if (satc->segment != pci_domain_nr(dev->bus)) |
| continue; |
| for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp) |
| if (to_pci_dev(tmp) == dev) |
| goto out; |
| } |
| satcu = NULL; |
| out: |
| rcu_read_unlock(); |
| return satcu; |
| } |
| |
| static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu) |
| { |
| int i, ret = 1; |
| struct pci_bus *bus; |
| struct pci_dev *bridge = NULL; |
| struct device *tmp; |
| struct acpi_dmar_atsr *atsr; |
| struct dmar_atsr_unit *atsru; |
| struct dmar_satc_unit *satcu; |
| |
| dev = pci_physfn(dev); |
| satcu = dmar_find_matched_satc_unit(dev); |
| if (satcu) |
| /* |
| * This device supports ATS as it is in SATC table. |
| * When IOMMU is in legacy mode, enabling ATS is done |
| * automatically by HW for the device that requires |
| * ATS, hence OS should not enable this device ATS |
| * to avoid duplicated TLB invalidation. |
| */ |
| return !(satcu->atc_required && !sm_supported(iommu)); |
| |
| for (bus = dev->bus; bus; bus = bus->parent) { |
| bridge = bus->self; |
| /* If it's an integrated device, allow ATS */ |
| if (!bridge) |
| return 1; |
| /* Connected via non-PCIe: no ATS */ |
| if (!pci_is_pcie(bridge) || |
| pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) |
| return 0; |
| /* If we found the root port, look it up in the ATSR */ |
| if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) |
| break; |
| } |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { |
| atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
| if (atsr->segment != pci_domain_nr(dev->bus)) |
| continue; |
| |
| for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) |
| if (tmp == &bridge->dev) |
| goto out; |
| |
| if (atsru->include_all) |
| goto out; |
| } |
| ret = 0; |
| out: |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) |
| { |
| int ret; |
| struct dmar_rmrr_unit *rmrru; |
| struct dmar_atsr_unit *atsru; |
| struct dmar_satc_unit *satcu; |
| struct acpi_dmar_atsr *atsr; |
| struct acpi_dmar_reserved_memory *rmrr; |
| struct acpi_dmar_satc *satc; |
| |
| if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) |
| return 0; |
| |
| list_for_each_entry(rmrru, &dmar_rmrr_units, list) { |
| rmrr = container_of(rmrru->hdr, |
| struct acpi_dmar_reserved_memory, header); |
| if (info->event == BUS_NOTIFY_ADD_DEVICE) { |
| ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), |
| ((void *)rmrr) + rmrr->header.length, |
| rmrr->segment, rmrru->devices, |
| rmrru->devices_cnt); |
| if (ret < 0) |
| return ret; |
| } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { |
| dmar_remove_dev_scope(info, rmrr->segment, |
| rmrru->devices, rmrru->devices_cnt); |
| } |
| } |
| |
| list_for_each_entry(atsru, &dmar_atsr_units, list) { |
| if (atsru->include_all) |
| continue; |
| |
| atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); |
| if (info->event == BUS_NOTIFY_ADD_DEVICE) { |
| ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), |
| (void *)atsr + atsr->header.length, |
| atsr->segment, atsru->devices, |
| atsru->devices_cnt); |
| if (ret > 0) |
| break; |
| else if (ret < 0) |
| return ret; |
| } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { |
| if (dmar_remove_dev_scope(info, atsr->segment, |
| atsru->devices, atsru->devices_cnt)) |
| break; |
| } |
| } |
| list_for_each_entry(satcu, &dmar_satc_units, list) { |
| satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); |
| if (info->event == BUS_NOTIFY_ADD_DEVICE) { |
| ret = dmar_insert_dev_scope(info, (void *)(satc + 1), |
| (void *)satc + satc->header.length, |
| satc->segment, satcu->devices, |
| satcu->devices_cnt); |
| if (ret > 0) |
| break; |
| else if (ret < 0) |
| return ret; |
| } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { |
| if (dmar_remove_dev_scope(info, satc->segment, |
| satcu->devices, satcu->devices_cnt)) |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int intel_iommu_memory_notifier(struct notifier_block *nb, |
| unsigned long val, void *v) |
| { |
| struct memory_notify *mhp = v; |
| unsigned long start_vpfn = mm_to_dma_pfn_start(mhp->start_pfn); |
| unsigned long last_vpfn = mm_to_dma_pfn_end(mhp->start_pfn + |
| mhp->nr_pages - 1); |
| |
| switch (val) { |
| case MEM_GOING_ONLINE: |
| if (iommu_domain_identity_map(si_domain, |
| start_vpfn, last_vpfn)) { |
| pr_warn("Failed to build identity map for [%lx-%lx]\n", |
| start_vpfn, last_vpfn); |
| return NOTIFY_BAD; |
| } |
| break; |
| |
| case MEM_OFFLINE: |
| case MEM_CANCEL_ONLINE: |
| { |
| LIST_HEAD(freelist); |
| |
| domain_unmap(si_domain, start_vpfn, last_vpfn, &freelist); |
| iommu_put_pages_list(&freelist); |
| } |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block intel_iommu_memory_nb = { |
| .notifier_call = intel_iommu_memory_notifier, |
| .priority = 0 |
| }; |
| |
| static void intel_disable_iommus(void) |
| { |
| struct intel_iommu *iommu = NULL; |
| struct dmar_drhd_unit *drhd; |
| |
| for_each_iommu(iommu, drhd) |
| iommu_disable_translation(iommu); |
| } |
| |
| void intel_iommu_shutdown(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu = NULL; |
| |
| if (no_iommu || dmar_disabled) |
| return; |
| |
| down_write(&dmar_global_lock); |
| |
| /* Disable PMRs explicitly here. */ |
| for_each_iommu(iommu, drhd) |
| iommu_disable_protect_mem_regions(iommu); |
| |
| /* Make sure the IOMMUs are switched off */ |
| intel_disable_iommus(); |
| |
| up_write(&dmar_global_lock); |
| } |
| |
| static struct intel_iommu *dev_to_intel_iommu(struct device *dev) |
| { |
| struct iommu_device *iommu_dev = dev_to_iommu_device(dev); |
| |
| return container_of(iommu_dev, struct intel_iommu, iommu); |
| } |
| |
| static ssize_t version_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| u32 ver = readl(iommu->reg + DMAR_VER_REG); |
| return sysfs_emit(buf, "%d:%d\n", |
| DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); |
| } |
| static DEVICE_ATTR_RO(version); |
| |
| static ssize_t address_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sysfs_emit(buf, "%llx\n", iommu->reg_phys); |
| } |
| static DEVICE_ATTR_RO(address); |
| |
| static ssize_t cap_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sysfs_emit(buf, "%llx\n", iommu->cap); |
| } |
| static DEVICE_ATTR_RO(cap); |
| |
| static ssize_t ecap_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sysfs_emit(buf, "%llx\n", iommu->ecap); |
| } |
| static DEVICE_ATTR_RO(ecap); |
| |
| static ssize_t domains_supported_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sysfs_emit(buf, "%ld\n", cap_ndoms(iommu->cap)); |
| } |
| static DEVICE_ATTR_RO(domains_supported); |
| |
| static ssize_t domains_used_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct intel_iommu *iommu = dev_to_intel_iommu(dev); |
| return sysfs_emit(buf, "%d\n", |
| bitmap_weight(iommu->domain_ids, |
| cap_ndoms(iommu->cap))); |
| } |
| static DEVICE_ATTR_RO(domains_used); |
| |
| static struct attribute *intel_iommu_attrs[] = { |
| &dev_attr_version.attr, |
| &dev_attr_address.attr, |
| &dev_attr_cap.attr, |
| &dev_attr_ecap.attr, |
| &dev_attr_domains_supported.attr, |
| &dev_attr_domains_used.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group intel_iommu_group = { |
| .name = "intel-iommu", |
| .attrs = intel_iommu_attrs, |
| }; |
| |
| const struct attribute_group *intel_iommu_groups[] = { |
| &intel_iommu_group, |
| NULL, |
| }; |
| |
| static bool has_external_pci(void) |
| { |
| struct pci_dev *pdev = NULL; |
| |
| for_each_pci_dev(pdev) |
| if (pdev->external_facing) { |
| pci_dev_put(pdev); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int __init platform_optin_force_iommu(void) |
| { |
| if (!dmar_platform_optin() || no_platform_optin || !has_external_pci()) |
| return 0; |
| |
| if (no_iommu || dmar_disabled) |
| pr_info("Intel-IOMMU force enabled due to platform opt in\n"); |
| |
| /* |
| * If Intel-IOMMU is disabled by default, we will apply identity |
| * map for all devices except those marked as being untrusted. |
| */ |
| if (dmar_disabled) |
| iommu_set_default_passthrough(false); |
| |
| dmar_disabled = 0; |
| no_iommu = 0; |
| |
| return 1; |
| } |
| |
| static int __init probe_acpi_namespace_devices(void) |
| { |
| struct dmar_drhd_unit *drhd; |
| /* To avoid a -Wunused-but-set-variable warning. */ |
| struct intel_iommu *iommu __maybe_unused; |
| struct device *dev; |
| int i, ret = 0; |
| |
| for_each_active_iommu(iommu, drhd) { |
| for_each_active_dev_scope(drhd->devices, |
| drhd->devices_cnt, i, dev) { |
| struct acpi_device_physical_node *pn; |
| struct acpi_device *adev; |
| |
| if (dev->bus != &acpi_bus_type) |
| continue; |
| |
| adev = to_acpi_device(dev); |
| mutex_lock(&adev->physical_node_lock); |
| list_for_each_entry(pn, |
| &adev->physical_node_list, node) { |
| ret = iommu_probe_device(pn->dev); |
| if (ret) |
| break; |
| } |
| mutex_unlock(&adev->physical_node_lock); |
| |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static __init int tboot_force_iommu(void) |
| { |
| if (!tboot_enabled()) |
| return 0; |
| |
| if (no_iommu || dmar_disabled) |
| pr_warn("Forcing Intel-IOMMU to enabled\n"); |
| |
| dmar_disabled = 0; |
| no_iommu = 0; |
| |
| return 1; |
| } |
| |
| int __init intel_iommu_init(void) |
| { |
| int ret = -ENODEV; |
| struct dmar_drhd_unit *drhd; |
| struct intel_iommu *iommu; |
| |
| /* |
| * Intel IOMMU is required for a TXT/tboot launch or platform |
| * opt in, so enforce that. |
| */ |
| force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) || |
| platform_optin_force_iommu(); |
| |
| down_write(&dmar_global_lock); |
| if (dmar_table_init()) { |
| if (force_on) |
| panic("tboot: Failed to initialize DMAR table\n"); |
| goto out_free_dmar; |
| } |
| |
| if (dmar_dev_scope_init() < 0) { |
| if (force_on) |
| panic("tboot: Failed to initialize DMAR device scope\n"); |
| goto out_free_dmar; |
| } |
| |
| up_write(&dmar_global_lock); |
| |
| /* |
| * The bus notifier takes the dmar_global_lock, so lockdep will |
| * complain later when we register it under the lock. |
| */ |
| dmar_register_bus_notifier(); |
| |
| down_write(&dmar_global_lock); |
| |
| if (!no_iommu) |
| intel_iommu_debugfs_init(); |
| |
| if (no_iommu || dmar_disabled) { |
| /* |
| * We exit the function here to ensure IOMMU's remapping and |
| * mempool aren't setup, which means that the IOMMU's PMRs |
| * won't be disabled via the call to init_dmars(). So disable |
| * it explicitly here. The PMRs were setup by tboot prior to |
| * calling SENTER, but the kernel is expected to reset/tear |
| * down the PMRs. |
| */ |
| if (intel_iommu_tboot_noforce) { |
| for_each_iommu(iommu, drhd) |
| iommu_disable_protect_mem_regions(iommu); |
| } |
| |
| /* |
| * Make sure the IOMMUs are switched off, even when we |
| * boot into a kexec kernel and the previous kernel left |
| * them enabled |
| */ |
| intel_disable_iommus(); |
| goto out_free_dmar; |
| } |
| |
| if (list_empty(&dmar_rmrr_units)) |
| pr_info("No RMRR found\n"); |
| |
| if (list_empty(&dmar_atsr_units)) |
| pr_info("No ATSR found\n"); |
| |
| if (list_empty(&dmar_satc_units)) |
| pr_info("No SATC found\n"); |
| |
| init_no_remapping_devices(); |
| |
| ret = init_dmars(); |
| if (ret) { |
| if (force_on) |
| panic("tboot: Failed to initialize DMARs\n"); |
| pr_err("Initialization failed\n"); |
| goto out_free_dmar; |
| } |
| up_write(&dmar_global_lock); |
| |
| init_iommu_pm_ops(); |
| |
| down_read(&dmar_global_lock); |
| for_each_active_iommu(iommu, drhd) { |
| /* |
| * The flush queue implementation does not perform |
| * page-selective invalidations that are required for efficient |
| * TLB flushes in virtual environments. The benefit of batching |
| * is likely to be much lower than the overhead of synchronizing |
| * the virtual and physical IOMMU page-tables. |
| */ |
| if (cap_caching_mode(iommu->cap) && |
| !first_level_by_default(IOMMU_DOMAIN_DMA)) { |
| pr_info_once("IOMMU batching disallowed due to virtualization\n"); |
| iommu_set_dma_strict(); |
| } |
| iommu_device_sysfs_add(&iommu->iommu, NULL, |
| intel_iommu_groups, |
| "%s", iommu->name); |
| iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); |
| |
| iommu_pmu_register(iommu); |
| } |
| up_read(&dmar_global_lock); |
| |
| if (si_domain && !hw_pass_through) |
| register_memory_notifier(&intel_iommu_memory_nb); |
| |
| down_read(&dmar_global_lock); |
| if (probe_acpi_namespace_devices()) |
| pr_warn("ACPI name space devices didn't probe correctly\n"); |
| |
| /* Finally, we enable the DMA remapping hardware. */ |
| for_each_iommu(iommu, drhd) { |
| if (!drhd->ignored && !translation_pre_enabled(iommu)) |
| iommu_enable_translation(iommu); |
| |
| iommu_disable_protect_mem_regions(iommu); |
| } |
| up_read(&dmar_global_lock); |
| |
| pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); |
| |
| intel_iommu_enabled = 1; |
| |
| return 0; |
| |
| out_free_dmar: |
| intel_iommu_free_dmars(); |
| up_write(&dmar_global_lock); |
| return ret; |
| } |
| |
| static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) |
| { |
| struct device_domain_info *info = opaque; |
| |
| domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff); |
| return 0; |
| } |
| |
| /* |
| * NB - intel-iommu lacks any sort of reference counting for the users of |
| * dependent devices. If multiple endpoints have intersecting dependent |
| * devices, unbinding the driver from any one of them will possibly leave |
| * the others unable to operate. |
| */ |
| static void domain_context_clear(struct device_domain_info *info) |
| { |
| if (!dev_is_pci(info->dev)) |
| domain_context_clear_one(info, info->bus, info->devfn); |
| |
| pci_for_each_dma_alias(to_pci_dev(info->dev), |
| &domain_context_clear_one_cb, info); |
| } |
| |
| /* |
| * Clear the page table pointer in context or pasid table entries so that |
| * all DMA requests without PASID from the device are blocked. If the page |
| * table has been set, clean up the data structures. |
| */ |
| void device_block_translation(struct device *dev) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct intel_iommu *iommu = info->iommu; |
| unsigned long flags; |
| |
| iommu_disable_pci_caps(info); |
| if (!dev_is_real_dma_subdevice(dev)) { |
| if (sm_supported(iommu)) |
| intel_pasid_tear_down_entry(iommu, dev, |
| IOMMU_NO_PASID, false); |
| else |
| domain_context_clear(info); |
| } |
| |
| if (!info->domain) |
| return; |
| |
| spin_lock_irqsave(&info->domain->lock, flags); |
| list_del(&info->link); |
| spin_unlock_irqrestore(&info->domain->lock, flags); |
| |
| cache_tag_unassign_domain(info->domain, dev, IOMMU_NO_PASID); |
| domain_detach_iommu(info->domain, iommu); |
| info->domain = NULL; |
| } |
| |
| static int md_domain_init(struct dmar_domain *domain, int guest_width) |
| { |
| int adjust_width; |
| |
| /* calculate AGAW */ |
| domain->gaw = guest_width; |
| adjust_width = guestwidth_to_adjustwidth(guest_width); |
| domain->agaw = width_to_agaw(adjust_width); |
| |
| domain->iommu_coherency = false; |
| domain->iommu_superpage = 0; |
| domain->max_addr = 0; |
| |
| /* always allocate the top pgd */ |
| domain->pgd = iommu_alloc_page_node(domain->nid, GFP_ATOMIC); |
| if (!domain->pgd) |
| return -ENOMEM; |
| domain_flush_cache(domain, domain->pgd, PAGE_SIZE); |
| return 0; |
| } |
| |
| static int blocking_domain_attach_dev(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| device_block_translation(dev); |
| return 0; |
| } |
| |
| static struct iommu_domain blocking_domain = { |
| .type = IOMMU_DOMAIN_BLOCKED, |
| .ops = &(const struct iommu_domain_ops) { |
| .attach_dev = blocking_domain_attach_dev, |
| } |
| }; |
| |
| static int iommu_superpage_capability(struct intel_iommu *iommu, bool first_stage) |
| { |
| if (!intel_iommu_superpage) |
| return 0; |
| |
| if (first_stage) |
| return cap_fl1gp_support(iommu->cap) ? 2 : 1; |
| |
| return fls(cap_super_page_val(iommu->cap)); |
| } |
| |
| static struct dmar_domain *paging_domain_alloc(struct device *dev, bool first_stage) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct intel_iommu *iommu = info->iommu; |
| struct dmar_domain *domain; |
| int addr_width; |
| |
| domain = kzalloc(sizeof(*domain), GFP_KERNEL); |
| if (!domain) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&domain->devices); |
| INIT_LIST_HEAD(&domain->dev_pasids); |
| INIT_LIST_HEAD(&domain->cache_tags); |
| spin_lock_init(&domain->lock); |
| spin_lock_init(&domain->cache_lock); |
| xa_init(&domain->iommu_array); |
| |
| domain->nid = dev_to_node(dev); |
| domain->has_iotlb_device = info->ats_enabled; |
| domain->use_first_level = first_stage; |
| |
| /* calculate the address width */ |
| addr_width = agaw_to_width(iommu->agaw); |
| if (addr_width > cap_mgaw(iommu->cap)) |
| addr_width = cap_mgaw(iommu->cap); |
| domain->gaw = addr_width; |
| domain->agaw = iommu->agaw; |
| domain->max_addr = __DOMAIN_MAX_ADDR(addr_width); |
| |
| /* iommu memory access coherency */ |
| domain->iommu_coherency = iommu_paging_structure_coherency(iommu); |
| |
| /* pagesize bitmap */ |
| domain->domain.pgsize_bitmap = SZ_4K; |
| domain->iommu_superpage = iommu_superpage_capability(iommu, first_stage); |
| domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain); |
| |
| /* |
| * IOVA aperture: First-level translation restricts the input-address |
| * to a canonical address (i.e., address bits 63:N have the same value |
| * as address bit [N-1], where N is 48-bits with 4-level paging and |
| * 57-bits with 5-level paging). Hence, skip bit [N-1]. |
| */ |
| domain->domain.geometry.force_aperture = true; |
| domain->domain.geometry.aperture_start = 0; |
| if (first_stage) |
| domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); |
| else |
| domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); |
| |
| /* always allocate the top pgd */ |
| domain->pgd = iommu_alloc_page_node(domain->nid, GFP_KERNEL); |
| if (!domain->pgd) { |
| kfree(domain); |
| return ERR_PTR(-ENOMEM); |
| } |
| domain_flush_cache(domain, domain->pgd, PAGE_SIZE); |
| |
| return domain; |
| } |
| |
| static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) |
| { |
| struct dmar_domain *dmar_domain; |
| struct iommu_domain *domain; |
| |
| switch (type) { |
| case IOMMU_DOMAIN_DMA: |
| case IOMMU_DOMAIN_UNMANAGED: |
| dmar_domain = alloc_domain(type); |
| if (!dmar_domain) { |
| pr_err("Can't allocate dmar_domain\n"); |
| return NULL; |
| } |
| if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { |
| pr_err("Domain initialization failed\n"); |
| domain_exit(dmar_domain); |
| return NULL; |
| } |
| |
| domain = &dmar_domain->domain; |
| domain->geometry.aperture_start = 0; |
| domain->geometry.aperture_end = |
| __DOMAIN_MAX_ADDR(dmar_domain->gaw); |
| domain->geometry.force_aperture = true; |
| |
| return domain; |
| case IOMMU_DOMAIN_IDENTITY: |
| return &si_domain->domain; |
| default: |
| return NULL; |
| } |
| |
| return NULL; |
| } |
| |
| static struct iommu_domain * |
| intel_iommu_domain_alloc_user(struct device *dev, u32 flags, |
| struct iommu_domain *parent, |
| const struct iommu_user_data *user_data) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING; |
| bool nested_parent = flags & IOMMU_HWPT_ALLOC_NEST_PARENT; |
| struct intel_iommu *iommu = info->iommu; |
| struct dmar_domain *dmar_domain; |
| struct iommu_domain *domain; |
| |
| /* Must be NESTING domain */ |
| if (parent) { |
| if (!nested_supported(iommu) || flags) |
| return ERR_PTR(-EOPNOTSUPP); |
| return intel_nested_domain_alloc(parent, user_data); |
| } |
| |
| if (flags & |
| (~(IOMMU_HWPT_ALLOC_NEST_PARENT | IOMMU_HWPT_ALLOC_DIRTY_TRACKING))) |
| return ERR_PTR(-EOPNOTSUPP); |
| if (nested_parent && !nested_supported(iommu)) |
| return ERR_PTR(-EOPNOTSUPP); |
| if (user_data || (dirty_tracking && !ssads_supported(iommu))) |
| return ERR_PTR(-EOPNOTSUPP); |
| |
| /* Do not use first stage for user domain translation. */ |
| dmar_domain = paging_domain_alloc(dev, false); |
| if (IS_ERR(dmar_domain)) |
| return ERR_CAST(dmar_domain); |
| domain = &dmar_domain->domain; |
| domain->type = IOMMU_DOMAIN_UNMANAGED; |
| domain->owner = &intel_iommu_ops; |
| domain->ops = intel_iommu_ops.default_domain_ops; |
| |
| if (nested_parent) { |
| dmar_domain->nested_parent = true; |
| INIT_LIST_HEAD(&dmar_domain->s1_domains); |
| spin_lock_init(&dmar_domain->s1_lock); |
| } |
| |
| if (dirty_tracking) { |
| if (dmar_domain->use_first_level) { |
| iommu_domain_free(domain); |
| return ERR_PTR(-EOPNOTSUPP); |
| } |
| domain->dirty_ops = &intel_dirty_ops; |
| } |
| |
| return domain; |
| } |
| |
| static void intel_iommu_domain_free(struct iommu_domain *domain) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| |
| WARN_ON(dmar_domain->nested_parent && |
| !list_empty(&dmar_domain->s1_domains)); |
| if (domain != &si_domain->domain) |
| domain_exit(dmar_domain); |
| } |
| |
| int prepare_domain_attach_device(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| struct intel_iommu *iommu = info->iommu; |
| int addr_width; |
| |
| if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap)) |
| return -EINVAL; |
| |
| if (domain->dirty_ops && !ssads_supported(iommu)) |
| return -EINVAL; |
| |
| /* check if this iommu agaw is sufficient for max mapped address */ |
| addr_width = agaw_to_width(iommu->agaw); |
| if (addr_width > cap_mgaw(iommu->cap)) |
| addr_width = cap_mgaw(iommu->cap); |
| |
| if (dmar_domain->max_addr > (1LL << addr_width)) |
| return -EINVAL; |
| dmar_domain->gaw = addr_width; |
| |
| /* |
| * Knock out extra levels of page tables if necessary |
| */ |
| while (iommu->agaw < dmar_domain->agaw) { |
| struct dma_pte *pte; |
| |
| pte = dmar_domain->pgd; |
| if (dma_pte_present(pte)) { |
| dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte)); |
| iommu_free_page(pte); |
| } |
| dmar_domain->agaw--; |
| } |
| |
| if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev) && |
| context_copied(iommu, info->bus, info->devfn)) |
| return intel_pasid_setup_sm_context(dev); |
| |
| return 0; |
| } |
| |
| static int intel_iommu_attach_device(struct iommu_domain *domain, |
| struct device *dev) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| int ret; |
| |
| if (info->domain) |
| device_block_translation(dev); |
| |
| ret = prepare_domain_attach_device(domain, dev); |
| if (ret) |
| return ret; |
| |
| return dmar_domain_attach_device(to_dmar_domain(domain), dev); |
| } |
| |
| static int intel_iommu_map(struct iommu_domain *domain, |
| unsigned long iova, phys_addr_t hpa, |
| size_t size, int iommu_prot, gfp_t gfp) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| u64 max_addr; |
| int prot = 0; |
| |
| if (iommu_prot & IOMMU_READ) |
| prot |= DMA_PTE_READ; |
| if (iommu_prot & IOMMU_WRITE) |
| prot |= DMA_PTE_WRITE; |
| if (dmar_domain->set_pte_snp) |
| prot |= DMA_PTE_SNP; |
| |
| max_addr = iova + size; |
| if (dmar_domain->max_addr < max_addr) { |
| u64 end; |
| |
| /* check if minimum agaw is sufficient for mapped address */ |
| end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; |
| if (end < max_addr) { |
| pr_err("%s: iommu width (%d) is not " |
| "sufficient for the mapped address (%llx)\n", |
| __func__, dmar_domain->gaw, max_addr); |
| return -EFAULT; |
| } |
| dmar_domain->max_addr = max_addr; |
| } |
| /* Round up size to next multiple of PAGE_SIZE, if it and |
| the low bits of hpa would take us onto the next page */ |
| size = aligned_nrpages(hpa, size); |
| return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, |
| hpa >> VTD_PAGE_SHIFT, size, prot, gfp); |
| } |
| |
| static int intel_iommu_map_pages(struct iommu_domain *domain, |
| unsigned long iova, phys_addr_t paddr, |
| size_t pgsize, size_t pgcount, |
| int prot, gfp_t gfp, size_t *mapped) |
| { |
| unsigned long pgshift = __ffs(pgsize); |
| size_t size = pgcount << pgshift; |
| int ret; |
| |
| if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G) |
| return -EINVAL; |
| |
| if (!IS_ALIGNED(iova | paddr, pgsize)) |
| return -EINVAL; |
| |
| ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp); |
| if (!ret && mapped) |
| *mapped = size; |
| |
| return ret; |
| } |
| |
| static size_t intel_iommu_unmap(struct iommu_domain *domain, |
| unsigned long iova, size_t size, |
| struct iommu_iotlb_gather *gather) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| unsigned long start_pfn, last_pfn; |
| int level = 0; |
| |
| /* Cope with horrid API which requires us to unmap more than the |
| size argument if it happens to be a large-page mapping. */ |
| if (unlikely(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, |
| &level, GFP_ATOMIC))) |
| return 0; |
| |
| if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) |
| size = VTD_PAGE_SIZE << level_to_offset_bits(level); |
| |
| start_pfn = iova >> VTD_PAGE_SHIFT; |
| last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; |
| |
| domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist); |
| |
| if (dmar_domain->max_addr == iova + size) |
| dmar_domain->max_addr = iova; |
| |
| /* |
| * We do not use page-selective IOTLB invalidation in flush queue, |
| * so there is no need to track page and sync iotlb. |
| */ |
| if (!iommu_iotlb_gather_queued(gather)) |
| iommu_iotlb_gather_add_page(domain, gather, iova, size); |
| |
| return size; |
| } |
| |
| static size_t intel_iommu_unmap_pages(struct iommu_domain *domain, |
| unsigned long iova, |
| size_t pgsize, size_t pgcount, |
| struct iommu_iotlb_gather *gather) |
| { |
| unsigned long pgshift = __ffs(pgsize); |
| size_t size = pgcount << pgshift; |
| |
| return intel_iommu_unmap(domain, iova, size, gather); |
| } |
| |
| static void intel_iommu_tlb_sync(struct iommu_domain *domain, |
| struct iommu_iotlb_gather *gather) |
| { |
| cache_tag_flush_range(to_dmar_domain(domain), gather->start, |
| gather->end, list_empty(&gather->freelist)); |
| iommu_put_pages_list(&gather->freelist); |
| } |
| |
| static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, |
| dma_addr_t iova) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| struct dma_pte *pte; |
| int level = 0; |
| u64 phys = 0; |
| |
| pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level, |
| GFP_ATOMIC); |
| if (pte && dma_pte_present(pte)) |
| phys = dma_pte_addr(pte) + |
| (iova & (BIT_MASK(level_to_offset_bits(level) + |
| VTD_PAGE_SHIFT) - 1)); |
| |
| return phys; |
| } |
| |
| static bool domain_support_force_snooping(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info; |
| bool support = true; |
| |
| assert_spin_locked(&domain->lock); |
| list_for_each_entry(info, &domain->devices, link) { |
| if (!ecap_sc_support(info->iommu->ecap)) { |
| support = false; |
| break; |
| } |
| } |
| |
| return support; |
| } |
| |
| static void domain_set_force_snooping(struct dmar_domain *domain) |
| { |
| struct device_domain_info *info; |
| |
| assert_spin_locked(&domain->lock); |
| /* |
| * Second level page table supports per-PTE snoop control. The |
| * iommu_map() interface will handle this by setting SNP bit. |
| */ |
| if (!domain->use_first_level) { |
| domain->set_pte_snp = true; |
| return; |
| } |
| |
| list_for_each_entry(info, &domain->devices, link) |
| intel_pasid_setup_page_snoop_control(info->iommu, info->dev, |
| IOMMU_NO_PASID); |
| } |
| |
| static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| unsigned long flags; |
| |
| if (dmar_domain->force_snooping) |
| return true; |
| |
| spin_lock_irqsave(&dmar_domain->lock, flags); |
| if (!domain_support_force_snooping(dmar_domain) || |
| (!dmar_domain->use_first_level && dmar_domain->has_mappings)) { |
| spin_unlock_irqrestore(&dmar_domain->lock, flags); |
| return false; |
| } |
| |
| domain_set_force_snooping(dmar_domain); |
| dmar_domain->force_snooping = true; |
| spin_unlock_irqrestore(&dmar_domain->lock, flags); |
| |
| return true; |
| } |
| |
| static bool intel_iommu_capable(struct device *dev, enum iommu_cap cap) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| |
| switch (cap) { |
| case IOMMU_CAP_CACHE_COHERENCY: |
| case IOMMU_CAP_DEFERRED_FLUSH: |
| return true; |
| case IOMMU_CAP_PRE_BOOT_PROTECTION: |
| return dmar_platform_optin(); |
| case IOMMU_CAP_ENFORCE_CACHE_COHERENCY: |
| return ecap_sc_support(info->iommu->ecap); |
| case IOMMU_CAP_DIRTY_TRACKING: |
| return ssads_supported(info->iommu); |
| default: |
| return false; |
| } |
| } |
| |
| static struct iommu_device *intel_iommu_probe_device(struct device *dev) |
| { |
| struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL; |
| struct device_domain_info *info; |
| struct intel_iommu *iommu; |
| u8 bus, devfn; |
| int ret; |
| |
| iommu = device_lookup_iommu(dev, &bus, &devfn); |
| if (!iommu || !iommu->iommu.ops) |
| return ERR_PTR(-ENODEV); |
| |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return ERR_PTR(-ENOMEM); |
| |
| if (dev_is_real_dma_subdevice(dev)) { |
| info->bus = pdev->bus->number; |
| info->devfn = pdev->devfn; |
| info->segment = pci_domain_nr(pdev->bus); |
| } else { |
| info->bus = bus; |
| info->devfn = devfn; |
| info->segment = iommu->segment; |
| } |
| |
| info->dev = dev; |
| info->iommu = iommu; |
| if (dev_is_pci(dev)) { |
| if (ecap_dev_iotlb_support(iommu->ecap) && |
| pci_ats_supported(pdev) && |
| dmar_ats_supported(pdev, iommu)) { |
| info->ats_supported = 1; |
| info->dtlb_extra_inval = dev_needs_extra_dtlb_flush(pdev); |
| |
| /* |
| * For IOMMU that supports device IOTLB throttling |
| * (DIT), we assign PFSID to the invalidation desc |
| * of a VF such that IOMMU HW can gauge queue depth |
| * at PF level. If DIT is not set, PFSID will be |
| * treated as reserved, which should be set to 0. |
| */ |
| if (ecap_dit(iommu->ecap)) |
| info->pfsid = pci_dev_id(pci_physfn(pdev)); |
| info->ats_qdep = pci_ats_queue_depth(pdev); |
| } |
| if (sm_supported(iommu)) { |
| if (pasid_supported(iommu)) { |
| int features = pci_pasid_features(pdev); |
| |
| if (features >= 0) |
| info->pasid_supported = features | 1; |
| } |
| |
| if (info->ats_supported && ecap_prs(iommu->ecap) && |
| pci_pri_supported(pdev)) |
| info->pri_supported = 1; |
| } |
| } |
| |
| dev_iommu_priv_set(dev, info); |
| if (pdev && pci_ats_supported(pdev)) { |
| ret = device_rbtree_insert(iommu, info); |
| if (ret) |
| goto free; |
| } |
| |
| if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) { |
| ret = intel_pasid_alloc_table(dev); |
| if (ret) { |
| dev_err(dev, "PASID table allocation failed\n"); |
| goto clear_rbtree; |
| } |
| |
| if (!context_copied(iommu, info->bus, info->devfn)) { |
| ret = intel_pasid_setup_sm_context(dev); |
| if (ret) |
| goto free_table; |
| } |
| } |
| |
| intel_iommu_debugfs_create_dev(info); |
| |
| return &iommu->iommu; |
| free_table: |
| intel_pasid_free_table(dev); |
| clear_rbtree: |
| device_rbtree_remove(info); |
| free: |
| kfree(info); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static void intel_iommu_release_device(struct device *dev) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct intel_iommu *iommu = info->iommu; |
| |
| mutex_lock(&iommu->iopf_lock); |
| if (dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev))) |
| device_rbtree_remove(info); |
| mutex_unlock(&iommu->iopf_lock); |
| |
| if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev) && |
| !context_copied(iommu, info->bus, info->devfn)) |
| intel_pasid_teardown_sm_context(dev); |
| |
| intel_pasid_free_table(dev); |
| intel_iommu_debugfs_remove_dev(info); |
| kfree(info); |
| set_dma_ops(dev, NULL); |
| } |
| |
| static void intel_iommu_get_resv_regions(struct device *device, |
| struct list_head *head) |
| { |
| int prot = DMA_PTE_READ | DMA_PTE_WRITE; |
| struct iommu_resv_region *reg; |
| struct dmar_rmrr_unit *rmrr; |
| struct device *i_dev; |
| int i; |
| |
| rcu_read_lock(); |
| for_each_rmrr_units(rmrr) { |
| for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, |
| i, i_dev) { |
| struct iommu_resv_region *resv; |
| enum iommu_resv_type type; |
| size_t length; |
| |
| if (i_dev != device && |
| !is_downstream_to_pci_bridge(device, i_dev)) |
| continue; |
| |
| length = rmrr->end_address - rmrr->base_address + 1; |
| |
| type = device_rmrr_is_relaxable(device) ? |
| IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; |
| |
| resv = iommu_alloc_resv_region(rmrr->base_address, |
| length, prot, type, |
| GFP_ATOMIC); |
| if (!resv) |
| break; |
| |
| list_add_tail(&resv->list, head); |
| } |
| } |
| rcu_read_unlock(); |
| |
| #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA |
| if (dev_is_pci(device)) { |
| struct pci_dev *pdev = to_pci_dev(device); |
| |
| if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { |
| reg = iommu_alloc_resv_region(0, 1UL << 24, prot, |
| IOMMU_RESV_DIRECT_RELAXABLE, |
| GFP_KERNEL); |
| if (reg) |
| list_add_tail(®->list, head); |
| } |
| } |
| #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ |
| |
| reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, |
| IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, |
| 0, IOMMU_RESV_MSI, GFP_KERNEL); |
| if (!reg) |
| return; |
| list_add_tail(®->list, head); |
| } |
| |
| static struct iommu_group *intel_iommu_device_group(struct device *dev) |
| { |
| if (dev_is_pci(dev)) |
| return pci_device_group(dev); |
| return generic_device_group(dev); |
| } |
| |
| static int intel_iommu_enable_sva(struct device *dev) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct intel_iommu *iommu; |
| |
| if (!info || dmar_disabled) |
| return -EINVAL; |
| |
| iommu = info->iommu; |
| if (!iommu) |
| return -EINVAL; |
| |
| if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE)) |
| return -ENODEV; |
| |
| if (!info->pasid_enabled || !info->ats_enabled) |
| return -EINVAL; |
| |
| /* |
| * Devices having device-specific I/O fault handling should not |
| * support PCI/PRI. The IOMMU side has no means to check the |
| * capability of device-specific IOPF. Therefore, IOMMU can only |
| * default that if the device driver enables SVA on a non-PRI |
| * device, it will handle IOPF in its own way. |
| */ |
| if (!info->pri_supported) |
| return 0; |
| |
| /* Devices supporting PRI should have it enabled. */ |
| if (!info->pri_enabled) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int context_flip_pri(struct device_domain_info *info, bool enable) |
| { |
| struct intel_iommu *iommu = info->iommu; |
| u8 bus = info->bus, devfn = info->devfn; |
| struct context_entry *context; |
| u16 did; |
| |
| spin_lock(&iommu->lock); |
| if (context_copied(iommu, bus, devfn)) { |
| spin_unlock(&iommu->lock); |
| return -EINVAL; |
| } |
| |
| context = iommu_context_addr(iommu, bus, devfn, false); |
| if (!context || !context_present(context)) { |
| spin_unlock(&iommu->lock); |
| return -ENODEV; |
| } |
| did = context_domain_id(context); |
| |
| if (enable) |
| context_set_sm_pre(context); |
| else |
| context_clear_sm_pre(context); |
| |
| if (!ecap_coherent(iommu->ecap)) |
| clflush_cache_range(context, sizeof(*context)); |
| intel_context_flush_present(info, context, did, true); |
| spin_unlock(&iommu->lock); |
| |
| return 0; |
| } |
| |
| static int intel_iommu_enable_iopf(struct device *dev) |
| { |
| struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL; |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct intel_iommu *iommu; |
| int ret; |
| |
| if (!pdev || !info || !info->ats_enabled || !info->pri_supported) |
| return -ENODEV; |
| |
| if (info->pri_enabled) |
| return -EBUSY; |
| |
| iommu = info->iommu; |
| if (!iommu) |
| return -EINVAL; |
| |
| /* PASID is required in PRG Response Message. */ |
| if (info->pasid_enabled && !pci_prg_resp_pasid_required(pdev)) |
| return -EINVAL; |
| |
| ret = pci_reset_pri(pdev); |
| if (ret) |
| return ret; |
| |
| ret = iopf_queue_add_device(iommu->iopf_queue, dev); |
| if (ret) |
| return ret; |
| |
| ret = context_flip_pri(info, true); |
| if (ret) |
| goto err_remove_device; |
| |
| ret = pci_enable_pri(pdev, PRQ_DEPTH); |
| if (ret) |
| goto err_clear_pri; |
| |
| info->pri_enabled = 1; |
| |
| return 0; |
| err_clear_pri: |
| context_flip_pri(info, false); |
| err_remove_device: |
| iopf_queue_remove_device(iommu->iopf_queue, dev); |
| |
| return ret; |
| } |
| |
| static int intel_iommu_disable_iopf(struct device *dev) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct intel_iommu *iommu = info->iommu; |
| |
| if (!info->pri_enabled) |
| return -EINVAL; |
| |
| /* Disable new PRI reception: */ |
| context_flip_pri(info, false); |
| |
| /* |
| * Remove device from fault queue and acknowledge all outstanding |
| * PRQs to the device: |
| */ |
| iopf_queue_remove_device(iommu->iopf_queue, dev); |
| |
| /* |
| * PCIe spec states that by clearing PRI enable bit, the Page |
| * Request Interface will not issue new page requests, but has |
| * outstanding page requests that have been transmitted or are |
| * queued for transmission. This is supposed to be called after |
| * the device driver has stopped DMA, all PASIDs have been |
| * unbound and the outstanding PRQs have been drained. |
| */ |
| pci_disable_pri(to_pci_dev(dev)); |
| info->pri_enabled = 0; |
| |
| return 0; |
| } |
| |
| static int |
| intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) |
| { |
| switch (feat) { |
| case IOMMU_DEV_FEAT_IOPF: |
| return intel_iommu_enable_iopf(dev); |
| |
| case IOMMU_DEV_FEAT_SVA: |
| return intel_iommu_enable_sva(dev); |
| |
| default: |
| return -ENODEV; |
| } |
| } |
| |
| static int |
| intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) |
| { |
| switch (feat) { |
| case IOMMU_DEV_FEAT_IOPF: |
| return intel_iommu_disable_iopf(dev); |
| |
| case IOMMU_DEV_FEAT_SVA: |
| return 0; |
| |
| default: |
| return -ENODEV; |
| } |
| } |
| |
| static bool intel_iommu_is_attach_deferred(struct device *dev) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| |
| return translation_pre_enabled(info->iommu) && !info->domain; |
| } |
| |
| /* |
| * Check that the device does not live on an external facing PCI port that is |
| * marked as untrusted. Such devices should not be able to apply quirks and |
| * thus not be able to bypass the IOMMU restrictions. |
| */ |
| static bool risky_device(struct pci_dev *pdev) |
| { |
| if (pdev->untrusted) { |
| pci_info(pdev, |
| "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n", |
| pdev->vendor, pdev->device); |
| pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n"); |
| return true; |
| } |
| return false; |
| } |
| |
| static int intel_iommu_iotlb_sync_map(struct iommu_domain *domain, |
| unsigned long iova, size_t size) |
| { |
| cache_tag_flush_range_np(to_dmar_domain(domain), iova, iova + size - 1); |
| |
| return 0; |
| } |
| |
| static void intel_iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid, |
| struct iommu_domain *domain) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| struct dev_pasid_info *curr, *dev_pasid = NULL; |
| struct intel_iommu *iommu = info->iommu; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dmar_domain->lock, flags); |
| list_for_each_entry(curr, &dmar_domain->dev_pasids, link_domain) { |
| if (curr->dev == dev && curr->pasid == pasid) { |
| list_del(&curr->link_domain); |
| dev_pasid = curr; |
| break; |
| } |
| } |
| WARN_ON_ONCE(!dev_pasid); |
| spin_unlock_irqrestore(&dmar_domain->lock, flags); |
| |
| cache_tag_unassign_domain(dmar_domain, dev, pasid); |
| domain_detach_iommu(dmar_domain, iommu); |
| intel_iommu_debugfs_remove_dev_pasid(dev_pasid); |
| kfree(dev_pasid); |
| intel_pasid_tear_down_entry(iommu, dev, pasid, false); |
| intel_drain_pasid_prq(dev, pasid); |
| } |
| |
| static int intel_iommu_set_dev_pasid(struct iommu_domain *domain, |
| struct device *dev, ioasid_t pasid) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| struct intel_iommu *iommu = info->iommu; |
| struct dev_pasid_info *dev_pasid; |
| unsigned long flags; |
| int ret; |
| |
| if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev)) |
| return -EOPNOTSUPP; |
| |
| if (domain->dirty_ops) |
| return -EINVAL; |
| |
| if (context_copied(iommu, info->bus, info->devfn)) |
| return -EBUSY; |
| |
| ret = prepare_domain_attach_device(domain, dev); |
| if (ret) |
| return ret; |
| |
| dev_pasid = kzalloc(sizeof(*dev_pasid), GFP_KERNEL); |
| if (!dev_pasid) |
| return -ENOMEM; |
| |
| ret = domain_attach_iommu(dmar_domain, iommu); |
| if (ret) |
| goto out_free; |
| |
| ret = cache_tag_assign_domain(dmar_domain, dev, pasid); |
| if (ret) |
| goto out_detach_iommu; |
| |
| if (domain_type_is_si(dmar_domain)) |
| ret = intel_pasid_setup_pass_through(iommu, dev, pasid); |
| else if (dmar_domain->use_first_level) |
| ret = domain_setup_first_level(iommu, dmar_domain, |
| dev, pasid); |
| else |
| ret = intel_pasid_setup_second_level(iommu, dmar_domain, |
| dev, pasid); |
| if (ret) |
| goto out_unassign_tag; |
| |
| dev_pasid->dev = dev; |
| dev_pasid->pasid = pasid; |
| spin_lock_irqsave(&dmar_domain->lock, flags); |
| list_add(&dev_pasid->link_domain, &dmar_domain->dev_pasids); |
| spin_unlock_irqrestore(&dmar_domain->lock, flags); |
| |
| if (domain->type & __IOMMU_DOMAIN_PAGING) |
| intel_iommu_debugfs_create_dev_pasid(dev_pasid); |
| |
| return 0; |
| out_unassign_tag: |
| cache_tag_unassign_domain(dmar_domain, dev, pasid); |
| out_detach_iommu: |
| domain_detach_iommu(dmar_domain, iommu); |
| out_free: |
| kfree(dev_pasid); |
| return ret; |
| } |
| |
| static void *intel_iommu_hw_info(struct device *dev, u32 *length, u32 *type) |
| { |
| struct device_domain_info *info = dev_iommu_priv_get(dev); |
| struct intel_iommu *iommu = info->iommu; |
| struct iommu_hw_info_vtd *vtd; |
| |
| vtd = kzalloc(sizeof(*vtd), GFP_KERNEL); |
| if (!vtd) |
| return ERR_PTR(-ENOMEM); |
| |
| vtd->flags = IOMMU_HW_INFO_VTD_ERRATA_772415_SPR17; |
| vtd->cap_reg = iommu->cap; |
| vtd->ecap_reg = iommu->ecap; |
| *length = sizeof(*vtd); |
| *type = IOMMU_HW_INFO_TYPE_INTEL_VTD; |
| return vtd; |
| } |
| |
| /* |
| * Set dirty tracking for the device list of a domain. The caller must |
| * hold the domain->lock when calling it. |
| */ |
| static int device_set_dirty_tracking(struct list_head *devices, bool enable) |
| { |
| struct device_domain_info *info; |
| int ret = 0; |
| |
| list_for_each_entry(info, devices, link) { |
| ret = intel_pasid_setup_dirty_tracking(info->iommu, info->dev, |
| IOMMU_NO_PASID, enable); |
| if (ret) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int parent_domain_set_dirty_tracking(struct dmar_domain *domain, |
| bool enable) |
| { |
| struct dmar_domain *s1_domain; |
| unsigned long flags; |
| int ret; |
| |
| spin_lock(&domain->s1_lock); |
| list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) { |
| spin_lock_irqsave(&s1_domain->lock, flags); |
| ret = device_set_dirty_tracking(&s1_domain->devices, enable); |
| spin_unlock_irqrestore(&s1_domain->lock, flags); |
| if (ret) |
| goto err_unwind; |
| } |
| spin_unlock(&domain->s1_lock); |
| return 0; |
| |
| err_unwind: |
| list_for_each_entry(s1_domain, &domain->s1_domains, s2_link) { |
| spin_lock_irqsave(&s1_domain->lock, flags); |
| device_set_dirty_tracking(&s1_domain->devices, |
| domain->dirty_tracking); |
| spin_unlock_irqrestore(&s1_domain->lock, flags); |
| } |
| spin_unlock(&domain->s1_lock); |
| return ret; |
| } |
| |
| static int intel_iommu_set_dirty_tracking(struct iommu_domain *domain, |
| bool enable) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| int ret; |
| |
| spin_lock(&dmar_domain->lock); |
| if (dmar_domain->dirty_tracking == enable) |
| goto out_unlock; |
| |
| ret = device_set_dirty_tracking(&dmar_domain->devices, enable); |
| if (ret) |
| goto err_unwind; |
| |
| if (dmar_domain->nested_parent) { |
| ret = parent_domain_set_dirty_tracking(dmar_domain, enable); |
| if (ret) |
| goto err_unwind; |
| } |
| |
| dmar_domain->dirty_tracking = enable; |
| out_unlock: |
| spin_unlock(&dmar_domain->lock); |
| |
| return 0; |
| |
| err_unwind: |
| device_set_dirty_tracking(&dmar_domain->devices, |
| dmar_domain->dirty_tracking); |
| spin_unlock(&dmar_domain->lock); |
| return ret; |
| } |
| |
| static int intel_iommu_read_and_clear_dirty(struct iommu_domain *domain, |
| unsigned long iova, size_t size, |
| unsigned long flags, |
| struct iommu_dirty_bitmap *dirty) |
| { |
| struct dmar_domain *dmar_domain = to_dmar_domain(domain); |
| unsigned long end = iova + size - 1; |
| unsigned long pgsize; |
| |
| /* |
| * IOMMUFD core calls into a dirty tracking disabled domain without an |
| * IOVA bitmap set in order to clean dirty bits in all PTEs that might |
| * have occurred when we stopped dirty tracking. This ensures that we |
| * never inherit dirtied bits from a previous cycle. |
| */ |
| if (!dmar_domain->dirty_tracking && dirty->bitmap) |
| return -EINVAL; |
| |
| do { |
| struct dma_pte *pte; |
| int lvl = 0; |
| |
| pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &lvl, |
| GFP_ATOMIC); |
| pgsize = level_size(lvl) << VTD_PAGE_SHIFT; |
| if (!pte || !dma_pte_present(pte)) { |
| iova += pgsize; |
| continue; |
| } |
| |
| if (dma_sl_pte_test_and_clear_dirty(pte, flags)) |
| iommu_dirty_bitmap_record(dirty, iova, pgsize); |
| iova += pgsize; |
| } while (iova < end); |
| |
| return 0; |
| } |
| |
| static const struct iommu_dirty_ops intel_dirty_ops = { |
| .set_dirty_tracking = intel_iommu_set_dirty_tracking, |
| .read_and_clear_dirty = intel_iommu_read_and_clear_dirty, |
| }; |
| |
| const struct iommu_ops intel_iommu_ops = { |
| .blocked_domain = &blocking_domain, |
| .release_domain = &blocking_domain, |
| .capable = intel_iommu_capable, |
| .hw_info = intel_iommu_hw_info, |
| .domain_alloc = intel_iommu_domain_alloc, |
| .domain_alloc_user = intel_iommu_domain_alloc_user, |
| .domain_alloc_sva = intel_svm_domain_alloc, |
| .probe_device = intel_iommu_probe_device, |
| .release_device = intel_iommu_release_device, |
| .get_resv_regions = intel_iommu_get_resv_regions, |
| .device_group = intel_iommu_device_group, |
| .dev_enable_feat = intel_iommu_dev_enable_feat, |
| .dev_disable_feat = intel_iommu_dev_disable_feat, |
| .is_attach_deferred = intel_iommu_is_attach_deferred, |
| .def_domain_type = device_def_domain_type, |
| .remove_dev_pasid = intel_iommu_remove_dev_pasid, |
| .pgsize_bitmap = SZ_4K, |
| #ifdef CONFIG_INTEL_IOMMU_SVM |
| .page_response = intel_svm_page_response, |
| #endif |
| .default_domain_ops = &(const struct iommu_domain_ops) { |
| .attach_dev = intel_iommu_attach_device, |
| .set_dev_pasid = intel_iommu_set_dev_pasid, |
| .map_pages = intel_iommu_map_pages, |
| .unmap_pages = intel_iommu_unmap_pages, |
| .iotlb_sync_map = intel_iommu_iotlb_sync_map, |
| .flush_iotlb_all = intel_flush_iotlb_all, |
| .iotlb_sync = intel_iommu_tlb_sync, |
| .iova_to_phys = intel_iommu_iova_to_phys, |
| .free = intel_iommu_domain_free, |
| .enforce_cache_coherency = intel_iommu_enforce_cache_coherency, |
| } |
| }; |
| |
| static void quirk_iommu_igfx(struct pci_dev *dev) |
| { |
| if (risky_device(dev)) |
| return; |
| |
| pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); |
| disable_igfx_iommu = 1; |
| } |
| |
| /* G4x/GM45 integrated gfx dmar support is totally busted. */ |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); |
| |
| /* Broadwell igfx malfunctions with dmar */ |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); |
| |
| static void quirk_iommu_rwbf(struct pci_dev *dev) |
| { |
| if (risky_device(dev)) |
| return; |
| |
| /* |
| * Mobile 4 Series Chipset neglects to set RWBF capability, |
| * but needs it. Same seems to hold for the desktop versions. |
| */ |
| pci_info(dev, "Forcing write-buffer flush capability\n"); |
| rwbf_quirk = 1; |
| } |
| |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); |
| |
| #define GGC 0x52 |
| #define GGC_MEMORY_SIZE_MASK (0xf << 8) |
| #define GGC_MEMORY_SIZE_NONE (0x0 << 8) |
| #define GGC_MEMORY_SIZE_1M (0x1 << 8) |
| #define GGC_MEMORY_SIZE_2M (0x3 << 8) |
| #define GGC_MEMORY_VT_ENABLED (0x8 << 8) |
| #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) |
| #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) |
| #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) |
| |
| static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) |
| { |
| unsigned short ggc; |
| |
| if (risky_device(dev)) |
| return; |
| |
| if (pci_read_config_word(dev, GGC, &ggc)) |
| return; |
| |
| if (!(ggc & GGC_MEMORY_VT_ENABLED)) { |
| pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); |
| disable_igfx_iommu = 1; |
| } else if (!disable_igfx_iommu) { |
| /* we have to ensure the gfx device is idle before we flush */ |
| pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); |
| iommu_set_dma_strict(); |
| } |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); |
| |
| static void quirk_igfx_skip_te_disable(struct pci_dev *dev) |
| { |
| unsigned short ver; |
| |
| if (!IS_GFX_DEVICE(dev)) |
| return; |
| |
| ver = (dev->device >> 8) & 0xff; |
| if (ver != 0x45 && ver != 0x46 && ver != 0x4c && |
| ver != 0x4e && ver != 0x8a && ver != 0x98 && |
| ver != 0x9a && ver != 0xa7 && ver != 0x7d) |
| return; |
| |
| if (risky_device(dev)) |
| return; |
| |
| pci_info(dev, "Skip IOMMU disabling for graphics\n"); |
| iommu_skip_te_disable = 1; |
| } |
| DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable); |
| |
| /* On Tylersburg chipsets, some BIOSes have been known to enable the |
| ISOCH DMAR unit for the Azalia sound device, but not give it any |
| TLB entries, which causes it to deadlock. Check for that. We do |
| this in a function called from init_dmars(), instead of in a PCI |
| quirk, because we don't want to print the obnoxious "BIOS broken" |
| message if VT-d is actually disabled. |
| */ |
| static void __init check_tylersburg_isoch(void) |
| { |
| struct pci_dev *pdev; |
| uint32_t vtisochctrl; |
| |
| /* If there's no Azalia in the system anyway, forget it. */ |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); |
| if (!pdev) |
| return; |
| |
| if (risky_device(pdev)) { |
| pci_dev_put(pdev); |
| return; |
| } |
| |
| pci_dev_put(pdev); |
| |
| /* System Management Registers. Might be hidden, in which case |
| we can't do the sanity check. But that's OK, because the |
| known-broken BIOSes _don't_ actually hide it, so far. */ |
| pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); |
| if (!pdev) |
| return; |
| |
| if (risky_device(pdev)) { |
| pci_dev_put(pdev); |
| return; |
| } |
| |
| if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { |
| pci_dev_put(pdev); |
| return; |
| } |
| |
| pci_dev_put(pdev); |
| |
| /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ |
| if (vtisochctrl & 1) |
| return; |
| |
| /* Drop all bits other than the number of TLB entries */ |
| vtisochctrl &= 0x1c; |
| |
| /* If we have the recommended number of TLB entries (16), fine. */ |
| if (vtisochctrl == 0x10) |
| return; |
| |
| /* Zero TLB entries? You get to ride the short bus to school. */ |
| if (!vtisochctrl) { |
| WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" |
| "BIOS vendor: %s; Ver: %s; Product Version: %s\n", |
| dmi_get_system_info(DMI_BIOS_VENDOR), |
| dmi_get_system_info(DMI_BIOS_VERSION), |
| dmi_get_system_info(DMI_PRODUCT_VERSION)); |
| iommu_identity_mapping |= IDENTMAP_AZALIA; |
| return; |
| } |
| |
| pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", |
| vtisochctrl); |
| } |
| |
| /* |
| * Here we deal with a device TLB defect where device may inadvertently issue ATS |
| * invalidation completion before posted writes initiated with translated address |
| * that utilized translations matching the invalidation address range, violating |
| * the invalidation completion ordering. |
| * Therefore, any use cases that cannot guarantee DMA is stopped before unmap is |
| * vulnerable to this defect. In other words, any dTLB invalidation initiated not |
| * under the control of the trusted/privileged host device driver must use this |
| * quirk. |
| * Device TLBs are invalidated under the following six conditions: |
| * 1. Device driver does DMA API unmap IOVA |
| * 2. Device driver unbind a PASID from a process, sva_unbind_device() |
| * 3. PASID is torn down, after PASID cache is flushed. e.g. process |
| * exit_mmap() due to crash |
| * 4. Under SVA usage, called by mmu_notifier.invalidate_range() where |
| * VM has to free pages that were unmapped |
| * 5. Userspace driver unmaps a DMA buffer |
| * 6. Cache invalidation in vSVA usage (upcoming) |
| * |
| * For #1 and #2, device drivers are responsible for stopping DMA traffic |
| * before unmap/unbind. For #3, iommu driver gets mmu_notifier to |
| * invalidate TLB the same way as normal user unmap which will use this quirk. |
| * The dTLB invalidation after PASID cache flush does not need this quirk. |
| * |
| * As a reminder, #6 will *NEED* this quirk as we enable nested translation. |
| */ |
| void quirk_extra_dev_tlb_flush(struct device_domain_info *info, |
| unsigned long address, unsigned long mask, |
| u32 pasid, u16 qdep) |
| { |
| u16 sid; |
| |
| if (likely(!info->dtlb_extra_inval)) |
| return; |
| |
| sid = PCI_DEVID(info->bus, info->devfn); |
| if (pasid == IOMMU_NO_PASID) { |
| qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, |
| qdep, address, mask); |
| } else { |
| qi_flush_dev_iotlb_pasid(info->iommu, sid, info->pfsid, |
| pasid, qdep, address, mask); |
| } |
| } |
| |
| #define ecmd_get_status_code(res) (((res) & 0xff) >> 1) |
| |
| /* |
| * Function to submit a command to the enhanced command interface. The |
| * valid enhanced command descriptions are defined in Table 47 of the |
| * VT-d spec. The VT-d hardware implementation may support some but not |
| * all commands, which can be determined by checking the Enhanced |
| * Command Capability Register. |
| * |
| * Return values: |
| * - 0: Command successful without any error; |
| * - Negative: software error value; |
| * - Nonzero positive: failure status code defined in Table 48. |
| */ |
| int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob) |
| { |
| unsigned long flags; |
| u64 res; |
| int ret; |
| |
| if (!cap_ecmds(iommu->cap)) |
| return -ENODEV; |
| |
| raw_spin_lock_irqsave(&iommu->register_lock, flags); |
| |
| res = dmar_readq(iommu->reg + DMAR_ECRSP_REG); |
| if (res & DMA_ECMD_ECRSP_IP) { |
| ret = -EBUSY; |
| goto err; |
| } |
| |
| /* |
| * Unconditionally write the operand B, because |
| * - There is no side effect if an ecmd doesn't require an |
| * operand B, but we set the register to some value. |
| * - It's not invoked in any critical path. The extra MMIO |
| * write doesn't bring any performance concerns. |
| */ |
| dmar_writeq(iommu->reg + DMAR_ECEO_REG, ob); |
| dmar_writeq(iommu->reg + DMAR_ECMD_REG, ecmd | (oa << DMA_ECMD_OA_SHIFT)); |
| |
| IOMMU_WAIT_OP(iommu, DMAR_ECRSP_REG, dmar_readq, |
| !(res & DMA_ECMD_ECRSP_IP), res); |
| |
| if (res & DMA_ECMD_ECRSP_IP) { |
| ret = -ETIMEDOUT; |
| goto err; |
| } |
| |
| ret = ecmd_get_status_code(res); |
| err: |
| raw_spin_unlock_irqrestore(&iommu->register_lock, flags); |
| |
| return ret; |
| } |