| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * |
| * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/file.h> |
| #include <linux/debugfs.h> |
| #include <linux/pgtable.h> |
| |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| #include <asm/pgalloc.h> |
| #include <asm/pte-walk.h> |
| #include <asm/ultravisor.h> |
| #include <asm/kvm_book3s_uvmem.h> |
| |
| /* |
| * Supported radix tree geometry. |
| * Like p9, we support either 5 or 9 bits at the first (lowest) level, |
| * for a page size of 64k or 4k. |
| */ |
| static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; |
| |
| unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, |
| gva_t eaddr, void *to, void *from, |
| unsigned long n) |
| { |
| int old_pid, old_lpid; |
| unsigned long quadrant, ret = n; |
| bool is_load = !!to; |
| |
| /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */ |
| if (kvmhv_on_pseries()) |
| return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr, |
| (to != NULL) ? __pa(to): 0, |
| (from != NULL) ? __pa(from): 0, n); |
| |
| quadrant = 1; |
| if (!pid) |
| quadrant = 2; |
| if (is_load) |
| from = (void *) (eaddr | (quadrant << 62)); |
| else |
| to = (void *) (eaddr | (quadrant << 62)); |
| |
| preempt_disable(); |
| |
| /* switch the lpid first to avoid running host with unallocated pid */ |
| old_lpid = mfspr(SPRN_LPID); |
| if (old_lpid != lpid) |
| mtspr(SPRN_LPID, lpid); |
| if (quadrant == 1) { |
| old_pid = mfspr(SPRN_PID); |
| if (old_pid != pid) |
| mtspr(SPRN_PID, pid); |
| } |
| isync(); |
| |
| pagefault_disable(); |
| if (is_load) |
| ret = __copy_from_user_inatomic(to, (const void __user *)from, n); |
| else |
| ret = __copy_to_user_inatomic((void __user *)to, from, n); |
| pagefault_enable(); |
| |
| /* switch the pid first to avoid running host with unallocated pid */ |
| if (quadrant == 1 && pid != old_pid) |
| mtspr(SPRN_PID, old_pid); |
| if (lpid != old_lpid) |
| mtspr(SPRN_LPID, old_lpid); |
| isync(); |
| |
| preempt_enable(); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix); |
| |
| static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, |
| void *to, void *from, unsigned long n) |
| { |
| int lpid = vcpu->kvm->arch.lpid; |
| int pid = vcpu->arch.pid; |
| |
| /* This would cause a data segment intr so don't allow the access */ |
| if (eaddr & (0x3FFUL << 52)) |
| return -EINVAL; |
| |
| /* Should we be using the nested lpid */ |
| if (vcpu->arch.nested) |
| lpid = vcpu->arch.nested->shadow_lpid; |
| |
| /* If accessing quadrant 3 then pid is expected to be 0 */ |
| if (((eaddr >> 62) & 0x3) == 0x3) |
| pid = 0; |
| |
| eaddr &= ~(0xFFFUL << 52); |
| |
| return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n); |
| } |
| |
| long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, |
| unsigned long n) |
| { |
| long ret; |
| |
| ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n); |
| if (ret > 0) |
| memset(to + (n - ret), 0, ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix); |
| |
| long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from, |
| unsigned long n) |
| { |
| return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n); |
| } |
| EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix); |
| |
| int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, |
| struct kvmppc_pte *gpte, u64 root, |
| u64 *pte_ret_p) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| int ret, level, ps; |
| unsigned long rts, bits, offset, index; |
| u64 pte, base, gpa; |
| __be64 rpte; |
| |
| rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | |
| ((root & RTS2_MASK) >> RTS2_SHIFT); |
| bits = root & RPDS_MASK; |
| base = root & RPDB_MASK; |
| |
| offset = rts + 31; |
| |
| /* Current implementations only support 52-bit space */ |
| if (offset != 52) |
| return -EINVAL; |
| |
| /* Walk each level of the radix tree */ |
| for (level = 3; level >= 0; --level) { |
| u64 addr; |
| /* Check a valid size */ |
| if (level && bits != p9_supported_radix_bits[level]) |
| return -EINVAL; |
| if (level == 0 && !(bits == 5 || bits == 9)) |
| return -EINVAL; |
| offset -= bits; |
| index = (eaddr >> offset) & ((1UL << bits) - 1); |
| /* Check that low bits of page table base are zero */ |
| if (base & ((1UL << (bits + 3)) - 1)) |
| return -EINVAL; |
| /* Read the entry from guest memory */ |
| addr = base + (index * sizeof(rpte)); |
| vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
| ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte)); |
| srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
| if (ret) { |
| if (pte_ret_p) |
| *pte_ret_p = addr; |
| return ret; |
| } |
| pte = __be64_to_cpu(rpte); |
| if (!(pte & _PAGE_PRESENT)) |
| return -ENOENT; |
| /* Check if a leaf entry */ |
| if (pte & _PAGE_PTE) |
| break; |
| /* Get ready to walk the next level */ |
| base = pte & RPDB_MASK; |
| bits = pte & RPDS_MASK; |
| } |
| |
| /* Need a leaf at lowest level; 512GB pages not supported */ |
| if (level < 0 || level == 3) |
| return -EINVAL; |
| |
| /* We found a valid leaf PTE */ |
| /* Offset is now log base 2 of the page size */ |
| gpa = pte & 0x01fffffffffff000ul; |
| if (gpa & ((1ul << offset) - 1)) |
| return -EINVAL; |
| gpa |= eaddr & ((1ul << offset) - 1); |
| for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) |
| if (offset == mmu_psize_defs[ps].shift) |
| break; |
| gpte->page_size = ps; |
| gpte->page_shift = offset; |
| |
| gpte->eaddr = eaddr; |
| gpte->raddr = gpa; |
| |
| /* Work out permissions */ |
| gpte->may_read = !!(pte & _PAGE_READ); |
| gpte->may_write = !!(pte & _PAGE_WRITE); |
| gpte->may_execute = !!(pte & _PAGE_EXEC); |
| |
| gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY); |
| |
| if (pte_ret_p) |
| *pte_ret_p = pte; |
| |
| return 0; |
| } |
| |
| /* |
| * Used to walk a partition or process table radix tree in guest memory |
| * Note: We exploit the fact that a partition table and a process |
| * table have the same layout, a partition-scoped page table and a |
| * process-scoped page table have the same layout, and the 2nd |
| * doubleword of a partition table entry has the same layout as |
| * the PTCR register. |
| */ |
| int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, |
| struct kvmppc_pte *gpte, u64 table, |
| int table_index, u64 *pte_ret_p) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| int ret; |
| unsigned long size, ptbl, root; |
| struct prtb_entry entry; |
| |
| if ((table & PRTS_MASK) > 24) |
| return -EINVAL; |
| size = 1ul << ((table & PRTS_MASK) + 12); |
| |
| /* Is the table big enough to contain this entry? */ |
| if ((table_index * sizeof(entry)) >= size) |
| return -EINVAL; |
| |
| /* Read the table to find the root of the radix tree */ |
| ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry)); |
| vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); |
| ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry)); |
| srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); |
| if (ret) |
| return ret; |
| |
| /* Root is stored in the first double word */ |
| root = be64_to_cpu(entry.prtb0); |
| |
| return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p); |
| } |
| |
| int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, |
| struct kvmppc_pte *gpte, bool data, bool iswrite) |
| { |
| u32 pid; |
| u64 pte; |
| int ret; |
| |
| /* Work out effective PID */ |
| switch (eaddr >> 62) { |
| case 0: |
| pid = vcpu->arch.pid; |
| break; |
| case 3: |
| pid = 0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte, |
| vcpu->kvm->arch.process_table, pid, &pte); |
| if (ret) |
| return ret; |
| |
| /* Check privilege (applies only to process scoped translations) */ |
| if (kvmppc_get_msr(vcpu) & MSR_PR) { |
| if (pte & _PAGE_PRIVILEGED) { |
| gpte->may_read = 0; |
| gpte->may_write = 0; |
| gpte->may_execute = 0; |
| } |
| } else { |
| if (!(pte & _PAGE_PRIVILEGED)) { |
| /* Check AMR/IAMR to see if strict mode is in force */ |
| if (vcpu->arch.amr & (1ul << 62)) |
| gpte->may_read = 0; |
| if (vcpu->arch.amr & (1ul << 63)) |
| gpte->may_write = 0; |
| if (vcpu->arch.iamr & (1ul << 62)) |
| gpte->may_execute = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, |
| unsigned int pshift, unsigned int lpid) |
| { |
| unsigned long psize = PAGE_SIZE; |
| int psi; |
| long rc; |
| unsigned long rb; |
| |
| if (pshift) |
| psize = 1UL << pshift; |
| else |
| pshift = PAGE_SHIFT; |
| |
| addr &= ~(psize - 1); |
| |
| if (!kvmhv_on_pseries()) { |
| radix__flush_tlb_lpid_page(lpid, addr, psize); |
| return; |
| } |
| |
| psi = shift_to_mmu_psize(pshift); |
| rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58)); |
| rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1), |
| lpid, rb); |
| if (rc) |
| pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc); |
| } |
| |
| static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid) |
| { |
| long rc; |
| |
| if (!kvmhv_on_pseries()) { |
| radix__flush_pwc_lpid(lpid); |
| return; |
| } |
| |
| rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1), |
| lpid, TLBIEL_INVAL_SET_LPID); |
| if (rc) |
| pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc); |
| } |
| |
| static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, |
| unsigned long clr, unsigned long set, |
| unsigned long addr, unsigned int shift) |
| { |
| return __radix_pte_update(ptep, clr, set); |
| } |
| |
| static void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, |
| pte_t *ptep, pte_t pte) |
| { |
| radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); |
| } |
| |
| static struct kmem_cache *kvm_pte_cache; |
| static struct kmem_cache *kvm_pmd_cache; |
| |
| static pte_t *kvmppc_pte_alloc(void) |
| { |
| pte_t *pte; |
| |
| pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); |
| /* pmd_populate() will only reference _pa(pte). */ |
| kmemleak_ignore(pte); |
| |
| return pte; |
| } |
| |
| static void kvmppc_pte_free(pte_t *ptep) |
| { |
| kmem_cache_free(kvm_pte_cache, ptep); |
| } |
| |
| static pmd_t *kvmppc_pmd_alloc(void) |
| { |
| pmd_t *pmd; |
| |
| pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); |
| /* pud_populate() will only reference _pa(pmd). */ |
| kmemleak_ignore(pmd); |
| |
| return pmd; |
| } |
| |
| static void kvmppc_pmd_free(pmd_t *pmdp) |
| { |
| kmem_cache_free(kvm_pmd_cache, pmdp); |
| } |
| |
| /* Called with kvm->mmu_lock held */ |
| void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, |
| unsigned int shift, |
| const struct kvm_memory_slot *memslot, |
| unsigned int lpid) |
| |
| { |
| unsigned long old; |
| unsigned long gfn = gpa >> PAGE_SHIFT; |
| unsigned long page_size = PAGE_SIZE; |
| unsigned long hpa; |
| |
| old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); |
| kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); |
| |
| /* The following only applies to L1 entries */ |
| if (lpid != kvm->arch.lpid) |
| return; |
| |
| if (!memslot) { |
| memslot = gfn_to_memslot(kvm, gfn); |
| if (!memslot) |
| return; |
| } |
| if (shift) { /* 1GB or 2MB page */ |
| page_size = 1ul << shift; |
| if (shift == PMD_SHIFT) |
| kvm->stat.num_2M_pages--; |
| else if (shift == PUD_SHIFT) |
| kvm->stat.num_1G_pages--; |
| } |
| |
| gpa &= ~(page_size - 1); |
| hpa = old & PTE_RPN_MASK; |
| kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size); |
| |
| if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) |
| kvmppc_update_dirty_map(memslot, gfn, page_size); |
| } |
| |
| /* |
| * kvmppc_free_p?d are used to free existing page tables, and recursively |
| * descend and clear and free children. |
| * Callers are responsible for flushing the PWC. |
| * |
| * When page tables are being unmapped/freed as part of page fault path |
| * (full == false), valid ptes are generally not expected; however, there |
| * is one situation where they arise, which is when dirty page logging is |
| * turned off for a memslot while the VM is running. The new memslot |
| * becomes visible to page faults before the memslot commit function |
| * gets to flush the memslot, which can lead to a 2MB page mapping being |
| * installed for a guest physical address where there are already 64kB |
| * (or 4kB) mappings (of sub-pages of the same 2MB page). |
| */ |
| static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full, |
| unsigned int lpid) |
| { |
| if (full) { |
| memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE); |
| } else { |
| pte_t *p = pte; |
| unsigned long it; |
| |
| for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { |
| if (pte_val(*p) == 0) |
| continue; |
| kvmppc_unmap_pte(kvm, p, |
| pte_pfn(*p) << PAGE_SHIFT, |
| PAGE_SHIFT, NULL, lpid); |
| } |
| } |
| |
| kvmppc_pte_free(pte); |
| } |
| |
| static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full, |
| unsigned int lpid) |
| { |
| unsigned long im; |
| pmd_t *p = pmd; |
| |
| for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { |
| if (!pmd_present(*p)) |
| continue; |
| if (pmd_is_leaf(*p)) { |
| if (full) { |
| pmd_clear(p); |
| } else { |
| WARN_ON_ONCE(1); |
| kvmppc_unmap_pte(kvm, (pte_t *)p, |
| pte_pfn(*(pte_t *)p) << PAGE_SHIFT, |
| PMD_SHIFT, NULL, lpid); |
| } |
| } else { |
| pte_t *pte; |
| |
| pte = pte_offset_map(p, 0); |
| kvmppc_unmap_free_pte(kvm, pte, full, lpid); |
| pmd_clear(p); |
| } |
| } |
| kvmppc_pmd_free(pmd); |
| } |
| |
| static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud, |
| unsigned int lpid) |
| { |
| unsigned long iu; |
| pud_t *p = pud; |
| |
| for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { |
| if (!pud_present(*p)) |
| continue; |
| if (pud_is_leaf(*p)) { |
| pud_clear(p); |
| } else { |
| pmd_t *pmd; |
| |
| pmd = pmd_offset(p, 0); |
| kvmppc_unmap_free_pmd(kvm, pmd, true, lpid); |
| pud_clear(p); |
| } |
| } |
| pud_free(kvm->mm, pud); |
| } |
| |
| void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid) |
| { |
| unsigned long ig; |
| |
| for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { |
| p4d_t *p4d = p4d_offset(pgd, 0); |
| pud_t *pud; |
| |
| if (!p4d_present(*p4d)) |
| continue; |
| pud = pud_offset(p4d, 0); |
| kvmppc_unmap_free_pud(kvm, pud, lpid); |
| p4d_clear(p4d); |
| } |
| } |
| |
| void kvmppc_free_radix(struct kvm *kvm) |
| { |
| if (kvm->arch.pgtable) { |
| kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable, |
| kvm->arch.lpid); |
| pgd_free(kvm->mm, kvm->arch.pgtable); |
| kvm->arch.pgtable = NULL; |
| } |
| } |
| |
| static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, |
| unsigned long gpa, unsigned int lpid) |
| { |
| pte_t *pte = pte_offset_kernel(pmd, 0); |
| |
| /* |
| * Clearing the pmd entry then flushing the PWC ensures that the pte |
| * page no longer be cached by the MMU, so can be freed without |
| * flushing the PWC again. |
| */ |
| pmd_clear(pmd); |
| kvmppc_radix_flush_pwc(kvm, lpid); |
| |
| kvmppc_unmap_free_pte(kvm, pte, false, lpid); |
| } |
| |
| static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, |
| unsigned long gpa, unsigned int lpid) |
| { |
| pmd_t *pmd = pmd_offset(pud, 0); |
| |
| /* |
| * Clearing the pud entry then flushing the PWC ensures that the pmd |
| * page and any children pte pages will no longer be cached by the MMU, |
| * so can be freed without flushing the PWC again. |
| */ |
| pud_clear(pud); |
| kvmppc_radix_flush_pwc(kvm, lpid); |
| |
| kvmppc_unmap_free_pmd(kvm, pmd, false, lpid); |
| } |
| |
| /* |
| * There are a number of bits which may differ between different faults to |
| * the same partition scope entry. RC bits, in the course of cleaning and |
| * aging. And the write bit can change, either the access could have been |
| * upgraded, or a read fault could happen concurrently with a write fault |
| * that sets those bits first. |
| */ |
| #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) |
| |
| int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, |
| unsigned long gpa, unsigned int level, |
| unsigned long mmu_seq, unsigned int lpid, |
| unsigned long *rmapp, struct rmap_nested **n_rmap) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud, *new_pud = NULL; |
| pmd_t *pmd, *new_pmd = NULL; |
| pte_t *ptep, *new_ptep = NULL; |
| int ret; |
| |
| /* Traverse the guest's 2nd-level tree, allocate new levels needed */ |
| pgd = pgtable + pgd_index(gpa); |
| p4d = p4d_offset(pgd, gpa); |
| |
| pud = NULL; |
| if (p4d_present(*p4d)) |
| pud = pud_offset(p4d, gpa); |
| else |
| new_pud = pud_alloc_one(kvm->mm, gpa); |
| |
| pmd = NULL; |
| if (pud && pud_present(*pud) && !pud_is_leaf(*pud)) |
| pmd = pmd_offset(pud, gpa); |
| else if (level <= 1) |
| new_pmd = kvmppc_pmd_alloc(); |
| |
| if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) |
| new_ptep = kvmppc_pte_alloc(); |
| |
| /* Check if we might have been invalidated; let the guest retry if so */ |
| spin_lock(&kvm->mmu_lock); |
| ret = -EAGAIN; |
| if (mmu_notifier_retry(kvm, mmu_seq)) |
| goto out_unlock; |
| |
| /* Now traverse again under the lock and change the tree */ |
| ret = -ENOMEM; |
| if (p4d_none(*p4d)) { |
| if (!new_pud) |
| goto out_unlock; |
| p4d_populate(kvm->mm, p4d, new_pud); |
| new_pud = NULL; |
| } |
| pud = pud_offset(p4d, gpa); |
| if (pud_is_leaf(*pud)) { |
| unsigned long hgpa = gpa & PUD_MASK; |
| |
| /* Check if we raced and someone else has set the same thing */ |
| if (level == 2) { |
| if (pud_raw(*pud) == pte_raw(pte)) { |
| ret = 0; |
| goto out_unlock; |
| } |
| /* Valid 1GB page here already, add our extra bits */ |
| WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & |
| PTE_BITS_MUST_MATCH); |
| kvmppc_radix_update_pte(kvm, (pte_t *)pud, |
| 0, pte_val(pte), hgpa, PUD_SHIFT); |
| ret = 0; |
| goto out_unlock; |
| } |
| /* |
| * If we raced with another CPU which has just put |
| * a 1GB pte in after we saw a pmd page, try again. |
| */ |
| if (!new_pmd) { |
| ret = -EAGAIN; |
| goto out_unlock; |
| } |
| /* Valid 1GB page here already, remove it */ |
| kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL, |
| lpid); |
| } |
| if (level == 2) { |
| if (!pud_none(*pud)) { |
| /* |
| * There's a page table page here, but we wanted to |
| * install a large page, so remove and free the page |
| * table page. |
| */ |
| kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid); |
| } |
| kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); |
| if (rmapp && n_rmap) |
| kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); |
| ret = 0; |
| goto out_unlock; |
| } |
| if (pud_none(*pud)) { |
| if (!new_pmd) |
| goto out_unlock; |
| pud_populate(kvm->mm, pud, new_pmd); |
| new_pmd = NULL; |
| } |
| pmd = pmd_offset(pud, gpa); |
| if (pmd_is_leaf(*pmd)) { |
| unsigned long lgpa = gpa & PMD_MASK; |
| |
| /* Check if we raced and someone else has set the same thing */ |
| if (level == 1) { |
| if (pmd_raw(*pmd) == pte_raw(pte)) { |
| ret = 0; |
| goto out_unlock; |
| } |
| /* Valid 2MB page here already, add our extra bits */ |
| WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & |
| PTE_BITS_MUST_MATCH); |
| kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), |
| 0, pte_val(pte), lgpa, PMD_SHIFT); |
| ret = 0; |
| goto out_unlock; |
| } |
| |
| /* |
| * If we raced with another CPU which has just put |
| * a 2MB pte in after we saw a pte page, try again. |
| */ |
| if (!new_ptep) { |
| ret = -EAGAIN; |
| goto out_unlock; |
| } |
| /* Valid 2MB page here already, remove it */ |
| kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL, |
| lpid); |
| } |
| if (level == 1) { |
| if (!pmd_none(*pmd)) { |
| /* |
| * There's a page table page here, but we wanted to |
| * install a large page, so remove and free the page |
| * table page. |
| */ |
| kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid); |
| } |
| kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); |
| if (rmapp && n_rmap) |
| kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); |
| ret = 0; |
| goto out_unlock; |
| } |
| if (pmd_none(*pmd)) { |
| if (!new_ptep) |
| goto out_unlock; |
| pmd_populate(kvm->mm, pmd, new_ptep); |
| new_ptep = NULL; |
| } |
| ptep = pte_offset_kernel(pmd, gpa); |
| if (pte_present(*ptep)) { |
| /* Check if someone else set the same thing */ |
| if (pte_raw(*ptep) == pte_raw(pte)) { |
| ret = 0; |
| goto out_unlock; |
| } |
| /* Valid page here already, add our extra bits */ |
| WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & |
| PTE_BITS_MUST_MATCH); |
| kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); |
| ret = 0; |
| goto out_unlock; |
| } |
| kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); |
| if (rmapp && n_rmap) |
| kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); |
| ret = 0; |
| |
| out_unlock: |
| spin_unlock(&kvm->mmu_lock); |
| if (new_pud) |
| pud_free(kvm->mm, new_pud); |
| if (new_pmd) |
| kvmppc_pmd_free(new_pmd); |
| if (new_ptep) |
| kvmppc_pte_free(new_ptep); |
| return ret; |
| } |
| |
| bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing, |
| unsigned long gpa, unsigned int lpid) |
| { |
| unsigned long pgflags; |
| unsigned int shift; |
| pte_t *ptep; |
| |
| /* |
| * Need to set an R or C bit in the 2nd-level tables; |
| * since we are just helping out the hardware here, |
| * it is sufficient to do what the hardware does. |
| */ |
| pgflags = _PAGE_ACCESSED; |
| if (writing) |
| pgflags |= _PAGE_DIRTY; |
| |
| if (nested) |
| ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); |
| else |
| ptep = find_kvm_secondary_pte(kvm, gpa, &shift); |
| |
| if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) { |
| kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift); |
| return true; |
| } |
| return false; |
| } |
| |
| int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, |
| unsigned long gpa, |
| struct kvm_memory_slot *memslot, |
| bool writing, bool kvm_ro, |
| pte_t *inserted_pte, unsigned int *levelp) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct page *page = NULL; |
| unsigned long mmu_seq; |
| unsigned long hva, gfn = gpa >> PAGE_SHIFT; |
| bool upgrade_write = false; |
| bool *upgrade_p = &upgrade_write; |
| pte_t pte, *ptep; |
| unsigned int shift, level; |
| int ret; |
| bool large_enable; |
| |
| /* used to check for invalidations in progress */ |
| mmu_seq = kvm->mmu_notifier_seq; |
| smp_rmb(); |
| |
| /* |
| * Do a fast check first, since __gfn_to_pfn_memslot doesn't |
| * do it with !atomic && !async, which is how we call it. |
| * We always ask for write permission since the common case |
| * is that the page is writable. |
| */ |
| hva = gfn_to_hva_memslot(memslot, gfn); |
| if (!kvm_ro && get_user_page_fast_only(hva, FOLL_WRITE, &page)) { |
| upgrade_write = true; |
| } else { |
| unsigned long pfn; |
| |
| /* Call KVM generic code to do the slow-path check */ |
| pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, |
| writing, upgrade_p); |
| if (is_error_noslot_pfn(pfn)) |
| return -EFAULT; |
| page = NULL; |
| if (pfn_valid(pfn)) { |
| page = pfn_to_page(pfn); |
| if (PageReserved(page)) |
| page = NULL; |
| } |
| } |
| |
| /* |
| * Read the PTE from the process' radix tree and use that |
| * so we get the shift and attribute bits. |
| */ |
| spin_lock(&kvm->mmu_lock); |
| ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); |
| pte = __pte(0); |
| if (ptep) |
| pte = READ_ONCE(*ptep); |
| spin_unlock(&kvm->mmu_lock); |
| /* |
| * If the PTE disappeared temporarily due to a THP |
| * collapse, just return and let the guest try again. |
| */ |
| if (!pte_present(pte)) { |
| if (page) |
| put_page(page); |
| return RESUME_GUEST; |
| } |
| |
| /* If we're logging dirty pages, always map single pages */ |
| large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES); |
| |
| /* Get pte level from shift/size */ |
| if (large_enable && shift == PUD_SHIFT && |
| (gpa & (PUD_SIZE - PAGE_SIZE)) == |
| (hva & (PUD_SIZE - PAGE_SIZE))) { |
| level = 2; |
| } else if (large_enable && shift == PMD_SHIFT && |
| (gpa & (PMD_SIZE - PAGE_SIZE)) == |
| (hva & (PMD_SIZE - PAGE_SIZE))) { |
| level = 1; |
| } else { |
| level = 0; |
| if (shift > PAGE_SHIFT) { |
| /* |
| * If the pte maps more than one page, bring over |
| * bits from the virtual address to get the real |
| * address of the specific single page we want. |
| */ |
| unsigned long rpnmask = (1ul << shift) - PAGE_SIZE; |
| pte = __pte(pte_val(pte) | (hva & rpnmask)); |
| } |
| } |
| |
| pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); |
| if (writing || upgrade_write) { |
| if (pte_val(pte) & _PAGE_WRITE) |
| pte = __pte(pte_val(pte) | _PAGE_DIRTY); |
| } else { |
| pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); |
| } |
| |
| /* Allocate space in the tree and write the PTE */ |
| ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level, |
| mmu_seq, kvm->arch.lpid, NULL, NULL); |
| if (inserted_pte) |
| *inserted_pte = pte; |
| if (levelp) |
| *levelp = level; |
| |
| if (page) { |
| if (!ret && (pte_val(pte) & _PAGE_WRITE)) |
| set_page_dirty_lock(page); |
| put_page(page); |
| } |
| |
| /* Increment number of large pages if we (successfully) inserted one */ |
| if (!ret) { |
| if (level == 1) |
| kvm->stat.num_2M_pages++; |
| else if (level == 2) |
| kvm->stat.num_1G_pages++; |
| } |
| |
| return ret; |
| } |
| |
| int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu, |
| unsigned long ea, unsigned long dsisr) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long gpa, gfn; |
| struct kvm_memory_slot *memslot; |
| long ret; |
| bool writing = !!(dsisr & DSISR_ISSTORE); |
| bool kvm_ro = false; |
| |
| /* Check for unusual errors */ |
| if (dsisr & DSISR_UNSUPP_MMU) { |
| pr_err("KVM: Got unsupported MMU fault\n"); |
| return -EFAULT; |
| } |
| if (dsisr & DSISR_BADACCESS) { |
| /* Reflect to the guest as DSI */ |
| pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); |
| kvmppc_core_queue_data_storage(vcpu, ea, dsisr); |
| return RESUME_GUEST; |
| } |
| |
| /* Translate the logical address */ |
| gpa = vcpu->arch.fault_gpa & ~0xfffUL; |
| gpa &= ~0xF000000000000000ul; |
| gfn = gpa >> PAGE_SHIFT; |
| if (!(dsisr & DSISR_PRTABLE_FAULT)) |
| gpa |= ea & 0xfff; |
| |
| if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) |
| return kvmppc_send_page_to_uv(kvm, gfn); |
| |
| /* Get the corresponding memslot */ |
| memslot = gfn_to_memslot(kvm, gfn); |
| |
| /* No memslot means it's an emulated MMIO region */ |
| if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { |
| if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | |
| DSISR_SET_RC)) { |
| /* |
| * Bad address in guest page table tree, or other |
| * unusual error - reflect it to the guest as DSI. |
| */ |
| kvmppc_core_queue_data_storage(vcpu, ea, dsisr); |
| return RESUME_GUEST; |
| } |
| return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); |
| } |
| |
| if (memslot->flags & KVM_MEM_READONLY) { |
| if (writing) { |
| /* give the guest a DSI */ |
| kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE | |
| DSISR_PROTFAULT); |
| return RESUME_GUEST; |
| } |
| kvm_ro = true; |
| } |
| |
| /* Failed to set the reference/change bits */ |
| if (dsisr & DSISR_SET_RC) { |
| spin_lock(&kvm->mmu_lock); |
| if (kvmppc_hv_handle_set_rc(kvm, false, writing, |
| gpa, kvm->arch.lpid)) |
| dsisr &= ~DSISR_SET_RC; |
| spin_unlock(&kvm->mmu_lock); |
| |
| if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | |
| DSISR_PROTFAULT | DSISR_SET_RC))) |
| return RESUME_GUEST; |
| } |
| |
| /* Try to insert a pte */ |
| ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing, |
| kvm_ro, NULL, NULL); |
| |
| if (ret == 0 || ret == -EAGAIN) |
| ret = RESUME_GUEST; |
| return ret; |
| } |
| |
| /* Called with kvm->mmu_lock held */ |
| int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn) |
| { |
| pte_t *ptep; |
| unsigned long gpa = gfn << PAGE_SHIFT; |
| unsigned int shift; |
| |
| if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) { |
| uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT); |
| return 0; |
| } |
| |
| ptep = find_kvm_secondary_pte(kvm, gpa, &shift); |
| if (ptep && pte_present(*ptep)) |
| kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, |
| kvm->arch.lpid); |
| return 0; |
| } |
| |
| /* Called with kvm->mmu_lock held */ |
| int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn) |
| { |
| pte_t *ptep; |
| unsigned long gpa = gfn << PAGE_SHIFT; |
| unsigned int shift; |
| int ref = 0; |
| unsigned long old, *rmapp; |
| |
| if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) |
| return ref; |
| |
| ptep = find_kvm_secondary_pte(kvm, gpa, &shift); |
| if (ptep && pte_present(*ptep) && pte_young(*ptep)) { |
| old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, |
| gpa, shift); |
| /* XXX need to flush tlb here? */ |
| /* Also clear bit in ptes in shadow pgtable for nested guests */ |
| rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; |
| kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0, |
| old & PTE_RPN_MASK, |
| 1UL << shift); |
| ref = 1; |
| } |
| return ref; |
| } |
| |
| /* Called with kvm->mmu_lock held */ |
| int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| unsigned long gfn) |
| { |
| pte_t *ptep; |
| unsigned long gpa = gfn << PAGE_SHIFT; |
| unsigned int shift; |
| int ref = 0; |
| |
| if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) |
| return ref; |
| |
| ptep = find_kvm_secondary_pte(kvm, gpa, &shift); |
| if (ptep && pte_present(*ptep) && pte_young(*ptep)) |
| ref = 1; |
| return ref; |
| } |
| |
| /* Returns the number of PAGE_SIZE pages that are dirty */ |
| static int kvm_radix_test_clear_dirty(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, int pagenum) |
| { |
| unsigned long gfn = memslot->base_gfn + pagenum; |
| unsigned long gpa = gfn << PAGE_SHIFT; |
| pte_t *ptep, pte; |
| unsigned int shift; |
| int ret = 0; |
| unsigned long old, *rmapp; |
| |
| if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) |
| return ret; |
| |
| /* |
| * For performance reasons we don't hold kvm->mmu_lock while walking the |
| * partition scoped table. |
| */ |
| ptep = find_kvm_secondary_pte_unlocked(kvm, gpa, &shift); |
| if (!ptep) |
| return 0; |
| |
| pte = READ_ONCE(*ptep); |
| if (pte_present(pte) && pte_dirty(pte)) { |
| spin_lock(&kvm->mmu_lock); |
| /* |
| * Recheck the pte again |
| */ |
| if (pte_val(pte) != pte_val(*ptep)) { |
| /* |
| * We have KVM_MEM_LOG_DIRTY_PAGES enabled. Hence we can |
| * only find PAGE_SIZE pte entries here. We can continue |
| * to use the pte addr returned by above page table |
| * walk. |
| */ |
| if (!pte_present(*ptep) || !pte_dirty(*ptep)) { |
| spin_unlock(&kvm->mmu_lock); |
| return 0; |
| } |
| } |
| |
| ret = 1; |
| VM_BUG_ON(shift); |
| old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, |
| gpa, shift); |
| kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid); |
| /* Also clear bit in ptes in shadow pgtable for nested guests */ |
| rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; |
| kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0, |
| old & PTE_RPN_MASK, |
| 1UL << shift); |
| spin_unlock(&kvm->mmu_lock); |
| } |
| return ret; |
| } |
| |
| long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, unsigned long *map) |
| { |
| unsigned long i, j; |
| int npages; |
| |
| for (i = 0; i < memslot->npages; i = j) { |
| npages = kvm_radix_test_clear_dirty(kvm, memslot, i); |
| |
| /* |
| * Note that if npages > 0 then i must be a multiple of npages, |
| * since huge pages are only used to back the guest at guest |
| * real addresses that are a multiple of their size. |
| * Since we have at most one PTE covering any given guest |
| * real address, if npages > 1 we can skip to i + npages. |
| */ |
| j = i + 1; |
| if (npages) { |
| set_dirty_bits(map, i, npages); |
| j = i + npages; |
| } |
| } |
| return 0; |
| } |
| |
| void kvmppc_radix_flush_memslot(struct kvm *kvm, |
| const struct kvm_memory_slot *memslot) |
| { |
| unsigned long n; |
| pte_t *ptep; |
| unsigned long gpa; |
| unsigned int shift; |
| |
| if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START) |
| kvmppc_uvmem_drop_pages(memslot, kvm, true); |
| |
| if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) |
| return; |
| |
| gpa = memslot->base_gfn << PAGE_SHIFT; |
| spin_lock(&kvm->mmu_lock); |
| for (n = memslot->npages; n; --n) { |
| ptep = find_kvm_secondary_pte(kvm, gpa, &shift); |
| if (ptep && pte_present(*ptep)) |
| kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, |
| kvm->arch.lpid); |
| gpa += PAGE_SIZE; |
| } |
| /* |
| * Increase the mmu notifier sequence number to prevent any page |
| * fault that read the memslot earlier from writing a PTE. |
| */ |
| kvm->mmu_notifier_seq++; |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, |
| int psize, int *indexp) |
| { |
| if (!mmu_psize_defs[psize].shift) |
| return; |
| info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | |
| (mmu_psize_defs[psize].ap << 29); |
| ++(*indexp); |
| } |
| |
| int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) |
| { |
| int i; |
| |
| if (!radix_enabled()) |
| return -EINVAL; |
| memset(info, 0, sizeof(*info)); |
| |
| /* 4k page size */ |
| info->geometries[0].page_shift = 12; |
| info->geometries[0].level_bits[0] = 9; |
| for (i = 1; i < 4; ++i) |
| info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; |
| /* 64k page size */ |
| info->geometries[1].page_shift = 16; |
| for (i = 0; i < 4; ++i) |
| info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; |
| |
| i = 0; |
| add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); |
| add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); |
| add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); |
| add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); |
| |
| return 0; |
| } |
| |
| int kvmppc_init_vm_radix(struct kvm *kvm) |
| { |
| kvm->arch.pgtable = pgd_alloc(kvm->mm); |
| if (!kvm->arch.pgtable) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void pte_ctor(void *addr) |
| { |
| memset(addr, 0, RADIX_PTE_TABLE_SIZE); |
| } |
| |
| static void pmd_ctor(void *addr) |
| { |
| memset(addr, 0, RADIX_PMD_TABLE_SIZE); |
| } |
| |
| struct debugfs_radix_state { |
| struct kvm *kvm; |
| struct mutex mutex; |
| unsigned long gpa; |
| int lpid; |
| int chars_left; |
| int buf_index; |
| char buf[128]; |
| u8 hdr; |
| }; |
| |
| static int debugfs_radix_open(struct inode *inode, struct file *file) |
| { |
| struct kvm *kvm = inode->i_private; |
| struct debugfs_radix_state *p; |
| |
| p = kzalloc(sizeof(*p), GFP_KERNEL); |
| if (!p) |
| return -ENOMEM; |
| |
| kvm_get_kvm(kvm); |
| p->kvm = kvm; |
| mutex_init(&p->mutex); |
| file->private_data = p; |
| |
| return nonseekable_open(inode, file); |
| } |
| |
| static int debugfs_radix_release(struct inode *inode, struct file *file) |
| { |
| struct debugfs_radix_state *p = file->private_data; |
| |
| kvm_put_kvm(p->kvm); |
| kfree(p); |
| return 0; |
| } |
| |
| static ssize_t debugfs_radix_read(struct file *file, char __user *buf, |
| size_t len, loff_t *ppos) |
| { |
| struct debugfs_radix_state *p = file->private_data; |
| ssize_t ret, r; |
| unsigned long n; |
| struct kvm *kvm; |
| unsigned long gpa; |
| pgd_t *pgt; |
| struct kvm_nested_guest *nested; |
| pgd_t *pgdp; |
| p4d_t p4d, *p4dp; |
| pud_t pud, *pudp; |
| pmd_t pmd, *pmdp; |
| pte_t *ptep; |
| int shift; |
| unsigned long pte; |
| |
| kvm = p->kvm; |
| if (!kvm_is_radix(kvm)) |
| return 0; |
| |
| ret = mutex_lock_interruptible(&p->mutex); |
| if (ret) |
| return ret; |
| |
| if (p->chars_left) { |
| n = p->chars_left; |
| if (n > len) |
| n = len; |
| r = copy_to_user(buf, p->buf + p->buf_index, n); |
| n -= r; |
| p->chars_left -= n; |
| p->buf_index += n; |
| buf += n; |
| len -= n; |
| ret = n; |
| if (r) { |
| if (!n) |
| ret = -EFAULT; |
| goto out; |
| } |
| } |
| |
| gpa = p->gpa; |
| nested = NULL; |
| pgt = NULL; |
| while (len != 0 && p->lpid >= 0) { |
| if (gpa >= RADIX_PGTABLE_RANGE) { |
| gpa = 0; |
| pgt = NULL; |
| if (nested) { |
| kvmhv_put_nested(nested); |
| nested = NULL; |
| } |
| p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid); |
| p->hdr = 0; |
| if (p->lpid < 0) |
| break; |
| } |
| if (!pgt) { |
| if (p->lpid == 0) { |
| pgt = kvm->arch.pgtable; |
| } else { |
| nested = kvmhv_get_nested(kvm, p->lpid, false); |
| if (!nested) { |
| gpa = RADIX_PGTABLE_RANGE; |
| continue; |
| } |
| pgt = nested->shadow_pgtable; |
| } |
| } |
| n = 0; |
| if (!p->hdr) { |
| if (p->lpid > 0) |
| n = scnprintf(p->buf, sizeof(p->buf), |
| "\nNested LPID %d: ", p->lpid); |
| n += scnprintf(p->buf + n, sizeof(p->buf) - n, |
| "pgdir: %lx\n", (unsigned long)pgt); |
| p->hdr = 1; |
| goto copy; |
| } |
| |
| pgdp = pgt + pgd_index(gpa); |
| p4dp = p4d_offset(pgdp, gpa); |
| p4d = READ_ONCE(*p4dp); |
| if (!(p4d_val(p4d) & _PAGE_PRESENT)) { |
| gpa = (gpa & P4D_MASK) + P4D_SIZE; |
| continue; |
| } |
| |
| pudp = pud_offset(&p4d, gpa); |
| pud = READ_ONCE(*pudp); |
| if (!(pud_val(pud) & _PAGE_PRESENT)) { |
| gpa = (gpa & PUD_MASK) + PUD_SIZE; |
| continue; |
| } |
| if (pud_val(pud) & _PAGE_PTE) { |
| pte = pud_val(pud); |
| shift = PUD_SHIFT; |
| goto leaf; |
| } |
| |
| pmdp = pmd_offset(&pud, gpa); |
| pmd = READ_ONCE(*pmdp); |
| if (!(pmd_val(pmd) & _PAGE_PRESENT)) { |
| gpa = (gpa & PMD_MASK) + PMD_SIZE; |
| continue; |
| } |
| if (pmd_val(pmd) & _PAGE_PTE) { |
| pte = pmd_val(pmd); |
| shift = PMD_SHIFT; |
| goto leaf; |
| } |
| |
| ptep = pte_offset_kernel(&pmd, gpa); |
| pte = pte_val(READ_ONCE(*ptep)); |
| if (!(pte & _PAGE_PRESENT)) { |
| gpa += PAGE_SIZE; |
| continue; |
| } |
| shift = PAGE_SHIFT; |
| leaf: |
| n = scnprintf(p->buf, sizeof(p->buf), |
| " %lx: %lx %d\n", gpa, pte, shift); |
| gpa += 1ul << shift; |
| copy: |
| p->chars_left = n; |
| if (n > len) |
| n = len; |
| r = copy_to_user(buf, p->buf, n); |
| n -= r; |
| p->chars_left -= n; |
| p->buf_index = n; |
| buf += n; |
| len -= n; |
| ret += n; |
| if (r) { |
| if (!ret) |
| ret = -EFAULT; |
| break; |
| } |
| } |
| p->gpa = gpa; |
| if (nested) |
| kvmhv_put_nested(nested); |
| |
| out: |
| mutex_unlock(&p->mutex); |
| return ret; |
| } |
| |
| static ssize_t debugfs_radix_write(struct file *file, const char __user *buf, |
| size_t len, loff_t *ppos) |
| { |
| return -EACCES; |
| } |
| |
| static const struct file_operations debugfs_radix_fops = { |
| .owner = THIS_MODULE, |
| .open = debugfs_radix_open, |
| .release = debugfs_radix_release, |
| .read = debugfs_radix_read, |
| .write = debugfs_radix_write, |
| .llseek = generic_file_llseek, |
| }; |
| |
| void kvmhv_radix_debugfs_init(struct kvm *kvm) |
| { |
| debugfs_create_file("radix", 0400, kvm->arch.debugfs_dir, kvm, |
| &debugfs_radix_fops); |
| } |
| |
| int kvmppc_radix_init(void) |
| { |
| unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; |
| |
| kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); |
| if (!kvm_pte_cache) |
| return -ENOMEM; |
| |
| size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; |
| |
| kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); |
| if (!kvm_pmd_cache) { |
| kmem_cache_destroy(kvm_pte_cache); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| void kvmppc_radix_exit(void) |
| { |
| kmem_cache_destroy(kvm_pte_cache); |
| kmem_cache_destroy(kvm_pmd_cache); |
| } |