blob: 0747866d60abcf5ff24f2a3d51f637f3d13141c6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2018-2020 Linaro Ltd.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/bits.h>
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/io.h>
#include <linux/build_bug.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include "ipa.h"
#include "ipa_version.h"
#include "ipa_endpoint.h"
#include "ipa_table.h"
#include "ipa_reg.h"
#include "ipa_mem.h"
#include "ipa_cmd.h"
#include "gsi.h"
#include "gsi_trans.h"
/**
* DOC: IPA Filter and Route Tables
*
* The IPA has tables defined in its local shared memory that define filter
* and routing rules. Each entry in these tables contains a 64-bit DMA
* address that refers to DRAM (system memory) containing a rule definition.
* A rule consists of a contiguous block of 32-bit values terminated with
* 32 zero bits. A special "zero entry" rule consisting of 64 zero bits
* represents "no filtering" or "no routing," and is the reset value for
* filter or route table rules. Separate tables (both filter and route)
* used for IPv4 and IPv6. Additionally, there can be hashed filter or
* route tables, which are used when a hash of message metadata matches.
* Hashed operation is not supported by all IPA hardware.
*
* Each filter rule is associated with an AP or modem TX endpoint, though
* not all TX endpoints support filtering. The first 64-bit entry in a
* filter table is a bitmap indicating which endpoints have entries in
* the table. The low-order bit (bit 0) in this bitmap represents a
* special global filter, which applies to all traffic. This is not
* used in the current code. Bit 1, if set, indicates that there is an
* entry (i.e. a DMA address referring to a rule) for endpoint 0 in the
* table. Bit 2, if set, indicates there is an entry for endpoint 1,
* and so on. Space is set aside in IPA local memory to hold as many
* filter table entries as might be required, but typically they are not
* all used.
*
* The AP initializes all entries in a filter table to refer to a "zero"
* entry. Once initialized the modem and AP update the entries for
* endpoints they "own" directly. Currently the AP does not use the
* IPA filtering functionality.
*
* IPA Filter Table
* ----------------------
* endpoint bitmap | 0x0000000000000048 | Bits 3 and 6 set (endpoints 2 and 5)
* |--------------------|
* 1st endpoint | 0x000123456789abc0 | DMA address for modem endpoint 2 rule
* |--------------------|
* 2nd endpoint | 0x000123456789abf0 | DMA address for AP endpoint 5 rule
* |--------------------|
* (unused) | | (Unused space in filter table)
* |--------------------|
* . . .
* |--------------------|
* (unused) | | (Unused space in filter table)
* ----------------------
*
* The set of available route rules is divided about equally between the AP
* and modem. The AP initializes all entries in a route table to refer to
* a "zero entry". Once initialized, the modem and AP are responsible for
* updating their own entries. All entries in a route table are usable,
* though the AP currently does not use the IPA routing functionality.
*
* IPA Route Table
* ----------------------
* 1st modem route | 0x0001234500001100 | DMA address for first route rule
* |--------------------|
* 2nd modem route | 0x0001234500001140 | DMA address for second route rule
* |--------------------|
* . . .
* |--------------------|
* Last modem route| 0x0001234500002280 | DMA address for Nth route rule
* |--------------------|
* 1st AP route | 0x0001234500001100 | DMA address for route rule (N+1)
* |--------------------|
* 2nd AP route | 0x0001234500001140 | DMA address for next route rule
* |--------------------|
* . . .
* |--------------------|
* Last AP route | 0x0001234500002280 | DMA address for last route rule
* ----------------------
*/
/* IPA hardware constrains filter and route tables alignment */
#define IPA_TABLE_ALIGN 128 /* Minimum table alignment */
/* Assignment of route table entries to the modem and AP */
#define IPA_ROUTE_MODEM_MIN 0
#define IPA_ROUTE_MODEM_COUNT 8
#define IPA_ROUTE_AP_MIN IPA_ROUTE_MODEM_COUNT
#define IPA_ROUTE_AP_COUNT \
(IPA_ROUTE_COUNT_MAX - IPA_ROUTE_MODEM_COUNT)
/* Filter or route rules consist of a set of 32-bit values followed by a
* 32-bit all-zero rule list terminator. The "zero rule" is simply an
* all-zero rule followed by the list terminator.
*/
#define IPA_ZERO_RULE_SIZE (2 * sizeof(__le32))
#ifdef IPA_VALIDATE
/* Check things that can be validated at build time. */
static void ipa_table_validate_build(void)
{
/* IPA hardware accesses memory 128 bytes at a time. Addresses
* referred to by entries in filter and route tables must be
* aligned on 128-byte byte boundaries. The only rule address
* ever use is the "zero rule", and it's aligned at the base
* of a coherent DMA allocation.
*/
BUILD_BUG_ON(ARCH_DMA_MINALIGN % IPA_TABLE_ALIGN);
/* Filter and route tables contain DMA addresses that refer to
* filter or route rules. We use a fixed constant to represent
* the size of either type of table entry. Code in ipa_table_init()
* uses a pointer to __le64 to initialize table entriews.
*/
BUILD_BUG_ON(IPA_TABLE_ENTRY_SIZE != sizeof(dma_addr_t));
BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(__le64));
/* A "zero rule" is used to represent no filtering or no routing.
* It is a 64-bit block of zeroed memory. Code in ipa_table_init()
* assumes that it can be written using a pointer to __le64.
*/
BUILD_BUG_ON(IPA_ZERO_RULE_SIZE != sizeof(__le64));
/* Impose a practical limit on the number of routes */
BUILD_BUG_ON(IPA_ROUTE_COUNT_MAX > 32);
/* The modem must be allotted at least one route table entry */
BUILD_BUG_ON(!IPA_ROUTE_MODEM_COUNT);
/* But it can't have more than what is available */
BUILD_BUG_ON(IPA_ROUTE_MODEM_COUNT > IPA_ROUTE_COUNT_MAX);
}
static bool
ipa_table_valid_one(struct ipa *ipa, bool route, bool ipv6, bool hashed)
{
struct device *dev = &ipa->pdev->dev;
const struct ipa_mem *mem;
u32 size;
if (route) {
if (ipv6)
mem = hashed ? &ipa->mem[IPA_MEM_V6_ROUTE_HASHED]
: &ipa->mem[IPA_MEM_V6_ROUTE];
else
mem = hashed ? &ipa->mem[IPA_MEM_V4_ROUTE_HASHED]
: &ipa->mem[IPA_MEM_V4_ROUTE];
size = IPA_ROUTE_COUNT_MAX * IPA_TABLE_ENTRY_SIZE;
} else {
if (ipv6)
mem = hashed ? &ipa->mem[IPA_MEM_V6_FILTER_HASHED]
: &ipa->mem[IPA_MEM_V6_FILTER];
else
mem = hashed ? &ipa->mem[IPA_MEM_V4_FILTER_HASHED]
: &ipa->mem[IPA_MEM_V4_FILTER];
size = (1 + IPA_FILTER_COUNT_MAX) * IPA_TABLE_ENTRY_SIZE;
}
if (!ipa_cmd_table_valid(ipa, mem, route, ipv6, hashed))
return false;
/* mem->size >= size is sufficient, but we'll demand more */
if (mem->size == size)
return true;
/* Hashed table regions can be zero size if hashing is not supported */
if (hashed && !mem->size)
return true;
dev_err(dev, "IPv%c %s%s table region size 0x%02x, expected 0x%02x\n",
ipv6 ? '6' : '4', hashed ? "hashed " : "",
route ? "route" : "filter", mem->size, size);
return false;
}
/* Verify the filter and route table memory regions are the expected size */
bool ipa_table_valid(struct ipa *ipa)
{
bool valid = true;
valid = valid && ipa_table_valid_one(ipa, false, false, false);
valid = valid && ipa_table_valid_one(ipa, false, false, true);
valid = valid && ipa_table_valid_one(ipa, false, true, false);
valid = valid && ipa_table_valid_one(ipa, false, true, true);
valid = valid && ipa_table_valid_one(ipa, true, false, false);
valid = valid && ipa_table_valid_one(ipa, true, false, true);
valid = valid && ipa_table_valid_one(ipa, true, true, false);
valid = valid && ipa_table_valid_one(ipa, true, true, true);
return valid;
}
bool ipa_filter_map_valid(struct ipa *ipa, u32 filter_map)
{
struct device *dev = &ipa->pdev->dev;
u32 count;
if (!filter_map) {
dev_err(dev, "at least one filtering endpoint is required\n");
return false;
}
count = hweight32(filter_map);
if (count > IPA_FILTER_COUNT_MAX) {
dev_err(dev, "too many filtering endpoints (%u, max %u)\n",
count, IPA_FILTER_COUNT_MAX);
return false;
}
return true;
}
#else /* !IPA_VALIDATE */
static void ipa_table_validate_build(void)
{
}
#endif /* !IPA_VALIDATE */
/* Zero entry count means no table, so just return a 0 address */
static dma_addr_t ipa_table_addr(struct ipa *ipa, bool filter_mask, u16 count)
{
u32 skip;
if (!count)
return 0;
/* assert(count <= max_t(u32, IPA_FILTER_COUNT_MAX, IPA_ROUTE_COUNT_MAX)); */
/* Skip over the zero rule and possibly the filter mask */
skip = filter_mask ? 1 : 2;
return ipa->table_addr + skip * sizeof(*ipa->table_virt);
}
static void ipa_table_reset_add(struct gsi_trans *trans, bool filter,
u16 first, u16 count, const struct ipa_mem *mem)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
dma_addr_t addr;
u32 offset;
u16 size;
/* Nothing to do if the table memory regions is empty */
if (!mem->size)
return;
if (filter)
first++; /* skip over bitmap */
offset = mem->offset + first * IPA_TABLE_ENTRY_SIZE;
size = count * IPA_TABLE_ENTRY_SIZE;
addr = ipa_table_addr(ipa, false, count);
ipa_cmd_dma_shared_mem_add(trans, offset, size, addr, true);
}
/* Reset entries in a single filter table belonging to either the AP or
* modem to refer to the zero entry. The memory region supplied will be
* for the IPv4 and IPv6 non-hashed and hashed filter tables.
*/
static int
ipa_filter_reset_table(struct ipa *ipa, const struct ipa_mem *mem, bool modem)
{
u32 ep_mask = ipa->filter_map;
u32 count = hweight32(ep_mask);
struct gsi_trans *trans;
enum gsi_ee_id ee_id;
if (!mem->size)
return 0;
trans = ipa_cmd_trans_alloc(ipa, count);
if (!trans) {
dev_err(&ipa->pdev->dev,
"no transaction for %s filter reset\n",
modem ? "modem" : "AP");
return -EBUSY;
}
ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP;
while (ep_mask) {
u32 endpoint_id = __ffs(ep_mask);
struct ipa_endpoint *endpoint;
ep_mask ^= BIT(endpoint_id);
endpoint = &ipa->endpoint[endpoint_id];
if (endpoint->ee_id != ee_id)
continue;
ipa_table_reset_add(trans, true, endpoint_id, 1, mem);
}
gsi_trans_commit_wait(trans);
return 0;
}
/* Theoretically, each filter table could have more filter slots to
* update than the maximum number of commands in a transaction. So
* we do each table separately.
*/
static int ipa_filter_reset(struct ipa *ipa, bool modem)
{
int ret;
ret = ipa_filter_reset_table(ipa, &ipa->mem[IPA_MEM_V4_FILTER], modem);
if (ret)
return ret;
ret = ipa_filter_reset_table(ipa, &ipa->mem[IPA_MEM_V4_FILTER_HASHED],
modem);
if (ret)
return ret;
ret = ipa_filter_reset_table(ipa, &ipa->mem[IPA_MEM_V6_FILTER], modem);
if (ret)
return ret;
ret = ipa_filter_reset_table(ipa, &ipa->mem[IPA_MEM_V6_FILTER_HASHED],
modem);
return ret;
}
/* The AP routes and modem routes are each contiguous within the
* table. We can update each table with a single command, and we
* won't exceed the per-transaction command limit.
* */
static int ipa_route_reset(struct ipa *ipa, bool modem)
{
struct gsi_trans *trans;
u16 first;
u16 count;
trans = ipa_cmd_trans_alloc(ipa, 4);
if (!trans) {
dev_err(&ipa->pdev->dev,
"no transaction for %s route reset\n",
modem ? "modem" : "AP");
return -EBUSY;
}
if (modem) {
first = IPA_ROUTE_MODEM_MIN;
count = IPA_ROUTE_MODEM_COUNT;
} else {
first = IPA_ROUTE_AP_MIN;
count = IPA_ROUTE_AP_COUNT;
}
ipa_table_reset_add(trans, false, first, count,
&ipa->mem[IPA_MEM_V4_ROUTE]);
ipa_table_reset_add(trans, false, first, count,
&ipa->mem[IPA_MEM_V4_ROUTE_HASHED]);
ipa_table_reset_add(trans, false, first, count,
&ipa->mem[IPA_MEM_V6_ROUTE]);
ipa_table_reset_add(trans, false, first, count,
&ipa->mem[IPA_MEM_V6_ROUTE_HASHED]);
gsi_trans_commit_wait(trans);
return 0;
}
void ipa_table_reset(struct ipa *ipa, bool modem)
{
struct device *dev = &ipa->pdev->dev;
const char *ee_name;
int ret;
ee_name = modem ? "modem" : "AP";
/* Report errors, but reset filter and route tables */
ret = ipa_filter_reset(ipa, modem);
if (ret)
dev_err(dev, "error %d resetting filter table for %s\n",
ret, ee_name);
ret = ipa_route_reset(ipa, modem);
if (ret)
dev_err(dev, "error %d resetting route table for %s\n",
ret, ee_name);
}
int ipa_table_hash_flush(struct ipa *ipa)
{
u32 offset = ipa_reg_filt_rout_hash_flush_offset(ipa->version);
struct gsi_trans *trans;
u32 val;
/* IPA version 4.2 does not support hashed tables */
if (ipa->version == IPA_VERSION_4_2)
return 0;
trans = ipa_cmd_trans_alloc(ipa, 1);
if (!trans) {
dev_err(&ipa->pdev->dev, "no transaction for hash flush\n");
return -EBUSY;
}
val = IPV4_FILTER_HASH_FLUSH | IPV6_FILTER_HASH_FLUSH;
val |= IPV6_ROUTER_HASH_FLUSH | IPV4_ROUTER_HASH_FLUSH;
ipa_cmd_register_write_add(trans, offset, val, val, false);
gsi_trans_commit_wait(trans);
return 0;
}
static void ipa_table_init_add(struct gsi_trans *trans, bool filter,
enum ipa_cmd_opcode opcode,
const struct ipa_mem *mem,
const struct ipa_mem *hash_mem)
{
struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi);
dma_addr_t hash_addr;
dma_addr_t addr;
u16 hash_count;
u16 hash_size;
u16 count;
u16 size;
/* The number of filtering endpoints determines number of entries
* in the filter table. The hashed and non-hashed filter table
* will have the same number of entries. The size of the route
* table region determines the number of entries it has.
*/
if (filter) {
/* Include one extra "slot" to hold the filter map itself */
count = 1 + hweight32(ipa->filter_map);
hash_count = hash_mem->size ? count : 0;
} else {
count = mem->size / IPA_TABLE_ENTRY_SIZE;
hash_count = hash_mem->size / IPA_TABLE_ENTRY_SIZE;
}
size = count * IPA_TABLE_ENTRY_SIZE;
hash_size = hash_count * IPA_TABLE_ENTRY_SIZE;
addr = ipa_table_addr(ipa, filter, count);
hash_addr = ipa_table_addr(ipa, filter, hash_count);
ipa_cmd_table_init_add(trans, opcode, size, mem->offset, addr,
hash_size, hash_mem->offset, hash_addr);
}
int ipa_table_setup(struct ipa *ipa)
{
struct gsi_trans *trans;
trans = ipa_cmd_trans_alloc(ipa, 4);
if (!trans) {
dev_err(&ipa->pdev->dev, "no transaction for table setup\n");
return -EBUSY;
}
ipa_table_init_add(trans, false, IPA_CMD_IP_V4_ROUTING_INIT,
&ipa->mem[IPA_MEM_V4_ROUTE],
&ipa->mem[IPA_MEM_V4_ROUTE_HASHED]);
ipa_table_init_add(trans, false, IPA_CMD_IP_V6_ROUTING_INIT,
&ipa->mem[IPA_MEM_V6_ROUTE],
&ipa->mem[IPA_MEM_V6_ROUTE_HASHED]);
ipa_table_init_add(trans, true, IPA_CMD_IP_V4_FILTER_INIT,
&ipa->mem[IPA_MEM_V4_FILTER],
&ipa->mem[IPA_MEM_V4_FILTER_HASHED]);
ipa_table_init_add(trans, true, IPA_CMD_IP_V6_FILTER_INIT,
&ipa->mem[IPA_MEM_V6_FILTER],
&ipa->mem[IPA_MEM_V6_FILTER_HASHED]);
gsi_trans_commit_wait(trans);
return 0;
}
void ipa_table_teardown(struct ipa *ipa)
{
/* Nothing to do */ /* XXX Maybe reset the tables? */
}
/**
* ipa_filter_tuple_zero() - Zero an endpoint's hashed filter tuple
* @endpoint: Endpoint whose filter hash tuple should be zeroed
*
* Endpoint must be for the AP (not modem) and support filtering. Updates
* the filter hash values without changing route ones.
*/
static void ipa_filter_tuple_zero(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
u32 offset;
u32 val;
offset = IPA_REG_ENDP_FILTER_ROUTER_HSH_CFG_N_OFFSET(endpoint_id);
val = ioread32(endpoint->ipa->reg_virt + offset);
/* Zero all filter-related fields, preserving the rest */
u32p_replace_bits(&val, 0, IPA_REG_ENDP_FILTER_HASH_MSK_ALL);
iowrite32(val, endpoint->ipa->reg_virt + offset);
}
static void ipa_filter_config(struct ipa *ipa, bool modem)
{
enum gsi_ee_id ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP;
u32 ep_mask = ipa->filter_map;
/* IPA version 4.2 has no hashed route tables */
if (ipa->version == IPA_VERSION_4_2)
return;
while (ep_mask) {
u32 endpoint_id = __ffs(ep_mask);
struct ipa_endpoint *endpoint;
ep_mask ^= BIT(endpoint_id);
endpoint = &ipa->endpoint[endpoint_id];
if (endpoint->ee_id == ee_id)
ipa_filter_tuple_zero(endpoint);
}
}
static void ipa_filter_deconfig(struct ipa *ipa, bool modem)
{
/* Nothing to do */
}
static bool ipa_route_id_modem(u32 route_id)
{
return route_id >= IPA_ROUTE_MODEM_MIN &&
route_id <= IPA_ROUTE_MODEM_MIN + IPA_ROUTE_MODEM_COUNT - 1;
}
/**
* ipa_route_tuple_zero() - Zero a hashed route table entry tuple
* @ipa: IPA pointer
* @route_id: Route table entry whose hash tuple should be zeroed
*
* Updates the route hash values without changing filter ones.
*/
static void ipa_route_tuple_zero(struct ipa *ipa, u32 route_id)
{
u32 offset = IPA_REG_ENDP_FILTER_ROUTER_HSH_CFG_N_OFFSET(route_id);
u32 val;
val = ioread32(ipa->reg_virt + offset);
/* Zero all route-related fields, preserving the rest */
u32p_replace_bits(&val, 0, IPA_REG_ENDP_ROUTER_HASH_MSK_ALL);
iowrite32(val, ipa->reg_virt + offset);
}
static void ipa_route_config(struct ipa *ipa, bool modem)
{
u32 route_id;
/* IPA version 4.2 has no hashed route tables */
if (ipa->version == IPA_VERSION_4_2)
return;
for (route_id = 0; route_id < IPA_ROUTE_COUNT_MAX; route_id++)
if (ipa_route_id_modem(route_id) == modem)
ipa_route_tuple_zero(ipa, route_id);
}
static void ipa_route_deconfig(struct ipa *ipa, bool modem)
{
/* Nothing to do */
}
void ipa_table_config(struct ipa *ipa)
{
ipa_filter_config(ipa, false);
ipa_filter_config(ipa, true);
ipa_route_config(ipa, false);
ipa_route_config(ipa, true);
}
void ipa_table_deconfig(struct ipa *ipa)
{
ipa_route_deconfig(ipa, true);
ipa_route_deconfig(ipa, false);
ipa_filter_deconfig(ipa, true);
ipa_filter_deconfig(ipa, false);
}
/*
* Initialize a coherent DMA allocation containing initialized filter and
* route table data. This is used when initializing or resetting the IPA
* filter or route table.
*
* The first entry in a filter table contains a bitmap indicating which
* endpoints contain entries in the table. In addition to that first entry,
* there are at most IPA_FILTER_COUNT_MAX entries that follow. Filter table
* entries are 64 bits wide, and (other than the bitmap) contain the DMA
* address of a filter rule. A "zero rule" indicates no filtering, and
* consists of 64 bits of zeroes. When a filter table is initialized (or
* reset) its entries are made to refer to the zero rule.
*
* Each entry in a route table is the DMA address of a routing rule. For
* routing there is also a 64-bit "zero rule" that means no routing, and
* when a route table is initialized or reset, its entries are made to refer
* to the zero rule. The zero rule is shared for route and filter tables.
*
* Note that the IPA hardware requires a filter or route rule address to be
* aligned on a 128 byte boundary. The coherent DMA buffer we allocate here
* has a minimum alignment, and we place the zero rule at the base of that
* allocated space. In ipa_table_init() we verify the minimum DMA allocation
* meets our requirement.
*
* +-------------------+
* --> | zero rule |
* / |-------------------|
* | | filter mask |
* |\ |-------------------|
* | ---- zero rule address | \
* |\ |-------------------| |
* | ---- zero rule address | | IPA_FILTER_COUNT_MAX
* | |-------------------| > or IPA_ROUTE_COUNT_MAX,
* | ... | whichever is greater
* \ |-------------------| |
* ---- zero rule address | /
* +-------------------+
*/
int ipa_table_init(struct ipa *ipa)
{
u32 count = max_t(u32, IPA_FILTER_COUNT_MAX, IPA_ROUTE_COUNT_MAX);
struct device *dev = &ipa->pdev->dev;
dma_addr_t addr;
__le64 le_addr;
__le64 *virt;
size_t size;
ipa_table_validate_build();
size = IPA_ZERO_RULE_SIZE + (1 + count) * IPA_TABLE_ENTRY_SIZE;
virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
if (!virt)
return -ENOMEM;
ipa->table_virt = virt;
ipa->table_addr = addr;
/* First slot is the zero rule */
*virt++ = 0;
/* Next is the filter table bitmap. The "soft" bitmap value
* must be converted to the hardware representation by shifting
* it left one position. (Bit 0 repesents global filtering,
* which is possible but not used.)
*/
*virt++ = cpu_to_le64((u64)ipa->filter_map << 1);
/* All the rest contain the DMA address of the zero rule */
le_addr = cpu_to_le64(addr);
while (count--)
*virt++ = le_addr;
return 0;
}
void ipa_table_exit(struct ipa *ipa)
{
u32 count = max_t(u32, 1 + IPA_FILTER_COUNT_MAX, IPA_ROUTE_COUNT_MAX);
struct device *dev = &ipa->pdev->dev;
size_t size;
size = IPA_ZERO_RULE_SIZE + (1 + count) * IPA_TABLE_ENTRY_SIZE;
dma_free_coherent(dev, size, ipa->table_virt, ipa->table_addr);
ipa->table_addr = 0;
ipa->table_virt = NULL;
}