blob: dad4326a2a714219577d31eda64f22a28592e7aa [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
// Copyright(c) 2015-17 Intel Corporation.
/*
* Soundwire Intel Master Driver
*/
#include <linux/acpi.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <sound/pcm_params.h>
#include <linux/pm_runtime.h>
#include <sound/soc.h>
#include <linux/soundwire/sdw_registers.h>
#include <linux/soundwire/sdw.h>
#include <linux/soundwire/sdw_intel.h>
#include "cadence_master.h"
#include "bus.h"
#include "intel.h"
#define INTEL_MASTER_SUSPEND_DELAY_MS 3000
/*
* debug/config flags for the Intel SoundWire Master.
*
* Since we may have multiple masters active, we can have up to 8
* flags reused in each byte, with master0 using the ls-byte, etc.
*/
#define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME BIT(0)
#define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP BIT(1)
#define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE BIT(2)
#define SDW_INTEL_MASTER_DISABLE_MULTI_LINK BIT(3)
static int md_flags;
module_param_named(sdw_md_flags, md_flags, int, 0444);
MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)");
/* Intel SHIM Registers Definition */
#define SDW_SHIM_LCAP 0x0
#define SDW_SHIM_LCTL 0x4
#define SDW_SHIM_IPPTR 0x8
#define SDW_SHIM_SYNC 0xC
#define SDW_SHIM_CTLSCAP(x) (0x010 + 0x60 * (x))
#define SDW_SHIM_CTLS0CM(x) (0x012 + 0x60 * (x))
#define SDW_SHIM_CTLS1CM(x) (0x014 + 0x60 * (x))
#define SDW_SHIM_CTLS2CM(x) (0x016 + 0x60 * (x))
#define SDW_SHIM_CTLS3CM(x) (0x018 + 0x60 * (x))
#define SDW_SHIM_PCMSCAP(x) (0x020 + 0x60 * (x))
#define SDW_SHIM_PCMSYCHM(x, y) (0x022 + (0x60 * (x)) + (0x2 * (y)))
#define SDW_SHIM_PCMSYCHC(x, y) (0x042 + (0x60 * (x)) + (0x2 * (y)))
#define SDW_SHIM_PDMSCAP(x) (0x062 + 0x60 * (x))
#define SDW_SHIM_IOCTL(x) (0x06C + 0x60 * (x))
#define SDW_SHIM_CTMCTL(x) (0x06E + 0x60 * (x))
#define SDW_SHIM_WAKEEN 0x190
#define SDW_SHIM_WAKESTS 0x192
#define SDW_SHIM_LCTL_SPA BIT(0)
#define SDW_SHIM_LCTL_SPA_MASK GENMASK(3, 0)
#define SDW_SHIM_LCTL_CPA BIT(8)
#define SDW_SHIM_LCTL_CPA_MASK GENMASK(11, 8)
#define SDW_SHIM_SYNC_SYNCPRD_VAL_24 (24000 / SDW_CADENCE_GSYNC_KHZ - 1)
#define SDW_SHIM_SYNC_SYNCPRD_VAL_38_4 (38400 / SDW_CADENCE_GSYNC_KHZ - 1)
#define SDW_SHIM_SYNC_SYNCPRD GENMASK(14, 0)
#define SDW_SHIM_SYNC_SYNCCPU BIT(15)
#define SDW_SHIM_SYNC_CMDSYNC_MASK GENMASK(19, 16)
#define SDW_SHIM_SYNC_CMDSYNC BIT(16)
#define SDW_SHIM_SYNC_SYNCGO BIT(24)
#define SDW_SHIM_PCMSCAP_ISS GENMASK(3, 0)
#define SDW_SHIM_PCMSCAP_OSS GENMASK(7, 4)
#define SDW_SHIM_PCMSCAP_BSS GENMASK(12, 8)
#define SDW_SHIM_PCMSYCM_LCHN GENMASK(3, 0)
#define SDW_SHIM_PCMSYCM_HCHN GENMASK(7, 4)
#define SDW_SHIM_PCMSYCM_STREAM GENMASK(13, 8)
#define SDW_SHIM_PCMSYCM_DIR BIT(15)
#define SDW_SHIM_PDMSCAP_ISS GENMASK(3, 0)
#define SDW_SHIM_PDMSCAP_OSS GENMASK(7, 4)
#define SDW_SHIM_PDMSCAP_BSS GENMASK(12, 8)
#define SDW_SHIM_PDMSCAP_CPSS GENMASK(15, 13)
#define SDW_SHIM_IOCTL_MIF BIT(0)
#define SDW_SHIM_IOCTL_CO BIT(1)
#define SDW_SHIM_IOCTL_COE BIT(2)
#define SDW_SHIM_IOCTL_DO BIT(3)
#define SDW_SHIM_IOCTL_DOE BIT(4)
#define SDW_SHIM_IOCTL_BKE BIT(5)
#define SDW_SHIM_IOCTL_WPDD BIT(6)
#define SDW_SHIM_IOCTL_CIBD BIT(8)
#define SDW_SHIM_IOCTL_DIBD BIT(9)
#define SDW_SHIM_CTMCTL_DACTQE BIT(0)
#define SDW_SHIM_CTMCTL_DODS BIT(1)
#define SDW_SHIM_CTMCTL_DOAIS GENMASK(4, 3)
#define SDW_SHIM_WAKEEN_ENABLE BIT(0)
#define SDW_SHIM_WAKESTS_STATUS BIT(0)
/* Intel ALH Register definitions */
#define SDW_ALH_STRMZCFG(x) (0x000 + (0x4 * (x)))
#define SDW_ALH_NUM_STREAMS 64
#define SDW_ALH_STRMZCFG_DMAT_VAL 0x3
#define SDW_ALH_STRMZCFG_DMAT GENMASK(7, 0)
#define SDW_ALH_STRMZCFG_CHN GENMASK(19, 16)
enum intel_pdi_type {
INTEL_PDI_IN = 0,
INTEL_PDI_OUT = 1,
INTEL_PDI_BD = 2,
};
#define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns)
/*
* Read, write helpers for HW registers
*/
static inline int intel_readl(void __iomem *base, int offset)
{
return readl(base + offset);
}
static inline void intel_writel(void __iomem *base, int offset, int value)
{
writel(value, base + offset);
}
static inline u16 intel_readw(void __iomem *base, int offset)
{
return readw(base + offset);
}
static inline void intel_writew(void __iomem *base, int offset, u16 value)
{
writew(value, base + offset);
}
static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target)
{
int timeout = 10;
u32 reg_read;
do {
reg_read = readl(base + offset);
if ((reg_read & mask) == target)
return 0;
timeout--;
usleep_range(50, 100);
} while (timeout != 0);
return -EAGAIN;
}
static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask)
{
writel(value, base + offset);
return intel_wait_bit(base, offset, mask, 0);
}
static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask)
{
writel(value, base + offset);
return intel_wait_bit(base, offset, mask, mask);
}
/*
* debugfs
*/
#ifdef CONFIG_DEBUG_FS
#define RD_BUF (2 * PAGE_SIZE)
static ssize_t intel_sprintf(void __iomem *mem, bool l,
char *buf, size_t pos, unsigned int reg)
{
int value;
if (l)
value = intel_readl(mem, reg);
else
value = intel_readw(mem, reg);
return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value);
}
static int intel_reg_show(struct seq_file *s_file, void *data)
{
struct sdw_intel *sdw = s_file->private;
void __iomem *s = sdw->link_res->shim;
void __iomem *a = sdw->link_res->alh;
char *buf;
ssize_t ret;
int i, j;
unsigned int links, reg;
buf = kzalloc(RD_BUF, GFP_KERNEL);
if (!buf)
return -ENOMEM;
links = intel_readl(s, SDW_SHIM_LCAP) & GENMASK(2, 0);
ret = scnprintf(buf, RD_BUF, "Register Value\n");
ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n");
for (i = 0; i < links; i++) {
reg = SDW_SHIM_LCAP + i * 4;
ret += intel_sprintf(s, true, buf, ret, reg);
}
for (i = 0; i < links; i++) {
ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i);
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i));
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i));
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i));
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i));
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i));
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i));
ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n");
/*
* the value 10 is the number of PDIs. We will need a
* cleanup to remove hard-coded Intel configurations
* from cadence_master.c
*/
for (j = 0; j < 10; j++) {
ret += intel_sprintf(s, false, buf, ret,
SDW_SHIM_PCMSYCHM(i, j));
ret += intel_sprintf(s, false, buf, ret,
SDW_SHIM_PCMSYCHC(i, j));
}
ret += scnprintf(buf + ret, RD_BUF - ret, "\n PDMSCAP, IOCTL, CTMCTL\n");
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PDMSCAP(i));
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i));
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i));
}
ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n");
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN);
ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS);
ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n");
for (i = 0; i < SDW_ALH_NUM_STREAMS; i++)
ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i));
seq_printf(s_file, "%s", buf);
kfree(buf);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(intel_reg);
static int intel_set_m_datamode(void *data, u64 value)
{
struct sdw_intel *sdw = data;
struct sdw_bus *bus = &sdw->cdns.bus;
if (value > SDW_PORT_DATA_MODE_STATIC_1)
return -EINVAL;
/* Userspace changed the hardware state behind the kernel's back */
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
bus->params.m_data_mode = value;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL,
intel_set_m_datamode, "%llu\n");
static int intel_set_s_datamode(void *data, u64 value)
{
struct sdw_intel *sdw = data;
struct sdw_bus *bus = &sdw->cdns.bus;
if (value > SDW_PORT_DATA_MODE_STATIC_1)
return -EINVAL;
/* Userspace changed the hardware state behind the kernel's back */
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
bus->params.s_data_mode = value;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL,
intel_set_s_datamode, "%llu\n");
static void intel_debugfs_init(struct sdw_intel *sdw)
{
struct dentry *root = sdw->cdns.bus.debugfs;
if (!root)
return;
sdw->debugfs = debugfs_create_dir("intel-sdw", root);
debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw,
&intel_reg_fops);
debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw,
&intel_set_m_datamode_fops);
debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw,
&intel_set_s_datamode_fops);
sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs);
}
static void intel_debugfs_exit(struct sdw_intel *sdw)
{
debugfs_remove_recursive(sdw->debugfs);
}
#else
static void intel_debugfs_init(struct sdw_intel *sdw) {}
static void intel_debugfs_exit(struct sdw_intel *sdw) {}
#endif /* CONFIG_DEBUG_FS */
/*
* shim ops
*/
static int intel_link_power_up(struct sdw_intel *sdw)
{
unsigned int link_id = sdw->instance;
void __iomem *shim = sdw->link_res->shim;
u32 *shim_mask = sdw->link_res->shim_mask;
struct sdw_bus *bus = &sdw->cdns.bus;
struct sdw_master_prop *prop = &bus->prop;
u32 spa_mask, cpa_mask;
u32 link_control;
int ret = 0;
u32 syncprd;
u32 sync_reg;
mutex_lock(sdw->link_res->shim_lock);
/*
* The hardware relies on an internal counter, typically 4kHz,
* to generate the SoundWire SSP - which defines a 'safe'
* synchronization point between commands and audio transport
* and allows for multi link synchronization. The SYNCPRD value
* is only dependent on the oscillator clock provided to
* the IP, so adjust based on _DSD properties reported in DSDT
* tables. The values reported are based on either 24MHz
* (CNL/CML) or 38.4 MHz (ICL/TGL+).
*/
if (prop->mclk_freq % 6000000)
syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4;
else
syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24;
if (!*shim_mask) {
dev_dbg(sdw->cdns.dev, "%s: powering up all links\n", __func__);
/* we first need to program the SyncPRD/CPU registers */
dev_dbg(sdw->cdns.dev,
"%s: first link up, programming SYNCPRD\n", __func__);
/* set SyncPRD period */
sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD);
/* Set SyncCPU bit */
sync_reg |= SDW_SHIM_SYNC_SYNCCPU;
intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
/* Link power up sequence */
link_control = intel_readl(shim, SDW_SHIM_LCTL);
/* only power-up enabled links */
spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask);
cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
link_control |= spa_mask;
ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
if (ret < 0) {
dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret);
goto out;
}
/* SyncCPU will change once link is active */
ret = intel_wait_bit(shim, SDW_SHIM_SYNC,
SDW_SHIM_SYNC_SYNCCPU, 0);
if (ret < 0) {
dev_err(sdw->cdns.dev,
"Failed to set SHIM_SYNC: %d\n", ret);
goto out;
}
}
*shim_mask |= BIT(link_id);
sdw->cdns.link_up = true;
out:
mutex_unlock(sdw->link_res->shim_lock);
return ret;
}
/* this needs to be called with shim_lock */
static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw)
{
void __iomem *shim = sdw->link_res->shim;
unsigned int link_id = sdw->instance;
u16 ioctl;
/* Switch to MIP from Glue logic */
ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id));
ioctl &= ~(SDW_SHIM_IOCTL_DOE);
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
ioctl &= ~(SDW_SHIM_IOCTL_DO);
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
ioctl |= (SDW_SHIM_IOCTL_MIF);
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
ioctl &= ~(SDW_SHIM_IOCTL_BKE);
ioctl &= ~(SDW_SHIM_IOCTL_COE);
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
/* at this point Master IP has full control of the I/Os */
}
/* this needs to be called with shim_lock */
static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw)
{
unsigned int link_id = sdw->instance;
void __iomem *shim = sdw->link_res->shim;
u16 ioctl;
/* Glue logic */
ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id));
ioctl |= SDW_SHIM_IOCTL_BKE;
ioctl |= SDW_SHIM_IOCTL_COE;
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
ioctl &= ~(SDW_SHIM_IOCTL_MIF);
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
/* at this point Integration Glue has full control of the I/Os */
}
static int intel_shim_init(struct sdw_intel *sdw, bool clock_stop)
{
void __iomem *shim = sdw->link_res->shim;
unsigned int link_id = sdw->instance;
int ret = 0;
u16 ioctl = 0, act = 0;
mutex_lock(sdw->link_res->shim_lock);
/* Initialize Shim */
ioctl |= SDW_SHIM_IOCTL_BKE;
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
ioctl |= SDW_SHIM_IOCTL_WPDD;
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
ioctl |= SDW_SHIM_IOCTL_DO;
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
ioctl |= SDW_SHIM_IOCTL_DOE;
intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
usleep_range(10, 15);
intel_shim_glue_to_master_ip(sdw);
u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS);
act |= SDW_SHIM_CTMCTL_DACTQE;
act |= SDW_SHIM_CTMCTL_DODS;
intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act);
usleep_range(10, 15);
mutex_unlock(sdw->link_res->shim_lock);
return ret;
}
static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable)
{
void __iomem *shim = sdw->link_res->shim;
unsigned int link_id = sdw->instance;
u16 wake_en, wake_sts;
mutex_lock(sdw->link_res->shim_lock);
wake_en = intel_readw(shim, SDW_SHIM_WAKEEN);
if (wake_enable) {
/* Enable the wakeup */
wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
} else {
/* Disable the wake up interrupt */
wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id);
intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
/* Clear wake status */
wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
wake_sts |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
intel_writew(shim, SDW_SHIM_WAKESTS_STATUS, wake_sts);
}
mutex_unlock(sdw->link_res->shim_lock);
}
static int intel_link_power_down(struct sdw_intel *sdw)
{
u32 link_control, spa_mask, cpa_mask;
unsigned int link_id = sdw->instance;
void __iomem *shim = sdw->link_res->shim;
u32 *shim_mask = sdw->link_res->shim_mask;
int ret = 0;
mutex_lock(sdw->link_res->shim_lock);
if (!(*shim_mask & BIT(link_id)))
dev_err(sdw->cdns.dev,
"%s: Unbalanced power-up/down calls\n", __func__);
sdw->cdns.link_up = false;
intel_shim_master_ip_to_glue(sdw);
*shim_mask &= ~BIT(link_id);
if (!*shim_mask) {
dev_dbg(sdw->cdns.dev, "%s: powering down all links\n", __func__);
/* Link power down sequence */
link_control = intel_readl(shim, SDW_SHIM_LCTL);
/* only power-down enabled links */
spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask);
cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
link_control &= spa_mask;
ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
if (ret < 0) {
dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__);
/*
* we leave the sdw->cdns.link_up flag as false since we've disabled
* the link at this point and cannot handle interrupts any longer.
*/
}
}
link_control = intel_readl(shim, SDW_SHIM_LCTL);
mutex_unlock(sdw->link_res->shim_lock);
return ret;
}
static void intel_shim_sync_arm(struct sdw_intel *sdw)
{
void __iomem *shim = sdw->link_res->shim;
u32 sync_reg;
mutex_lock(sdw->link_res->shim_lock);
/* update SYNC register */
sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance);
intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
mutex_unlock(sdw->link_res->shim_lock);
}
static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw)
{
void __iomem *shim = sdw->link_res->shim;
u32 sync_reg;
int ret;
/* Read SYNC register */
sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
/*
* Set SyncGO bit to synchronously trigger a bank switch for
* all the masters. A write to SYNCGO bit clears CMDSYNC bit for all
* the Masters.
*/
sync_reg |= SDW_SHIM_SYNC_SYNCGO;
ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg,
SDW_SHIM_SYNC_SYNCGO);
if (ret < 0)
dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret);
return ret;
}
static int intel_shim_sync_go(struct sdw_intel *sdw)
{
int ret;
mutex_lock(sdw->link_res->shim_lock);
ret = intel_shim_sync_go_unlocked(sdw);
mutex_unlock(sdw->link_res->shim_lock);
return ret;
}
/*
* PDI routines
*/
static void intel_pdi_init(struct sdw_intel *sdw,
struct sdw_cdns_stream_config *config)
{
void __iomem *shim = sdw->link_res->shim;
unsigned int link_id = sdw->instance;
int pcm_cap, pdm_cap;
/* PCM Stream Capability */
pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id));
config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap);
config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap);
config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap);
dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n",
config->pcm_bd, config->pcm_in, config->pcm_out);
/* PDM Stream Capability */
pdm_cap = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id));
config->pdm_bd = FIELD_GET(SDW_SHIM_PDMSCAP_BSS, pdm_cap);
config->pdm_in = FIELD_GET(SDW_SHIM_PDMSCAP_ISS, pdm_cap);
config->pdm_out = FIELD_GET(SDW_SHIM_PDMSCAP_OSS, pdm_cap);
dev_dbg(sdw->cdns.dev, "PDM cap bd:%d in:%d out:%d\n",
config->pdm_bd, config->pdm_in, config->pdm_out);
}
static int
intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num, bool pcm)
{
void __iomem *shim = sdw->link_res->shim;
unsigned int link_id = sdw->instance;
int count;
if (pcm) {
count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num));
/*
* WORKAROUND: on all existing Intel controllers, pdi
* number 2 reports channel count as 1 even though it
* supports 8 channels. Performing hardcoding for pdi
* number 2.
*/
if (pdi_num == 2)
count = 7;
} else {
count = intel_readw(shim, SDW_SHIM_PDMSCAP(link_id));
count = FIELD_GET(SDW_SHIM_PDMSCAP_CPSS, count);
}
/* zero based values for channel count in register */
count++;
return count;
}
static int intel_pdi_get_ch_update(struct sdw_intel *sdw,
struct sdw_cdns_pdi *pdi,
unsigned int num_pdi,
unsigned int *num_ch, bool pcm)
{
int i, ch_count = 0;
for (i = 0; i < num_pdi; i++) {
pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num, pcm);
ch_count += pdi->ch_count;
pdi++;
}
*num_ch = ch_count;
return 0;
}
static int intel_pdi_stream_ch_update(struct sdw_intel *sdw,
struct sdw_cdns_streams *stream, bool pcm)
{
intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd,
&stream->num_ch_bd, pcm);
intel_pdi_get_ch_update(sdw, stream->in, stream->num_in,
&stream->num_ch_in, pcm);
intel_pdi_get_ch_update(sdw, stream->out, stream->num_out,
&stream->num_ch_out, pcm);
return 0;
}
static int intel_pdi_ch_update(struct sdw_intel *sdw)
{
/* First update PCM streams followed by PDM streams */
intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm, true);
intel_pdi_stream_ch_update(sdw, &sdw->cdns.pdm, false);
return 0;
}
static void
intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
{
void __iomem *shim = sdw->link_res->shim;
unsigned int link_id = sdw->instance;
int pdi_conf = 0;
/* the Bulk and PCM streams are not contiguous */
pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
if (pdi->num >= 2)
pdi->intel_alh_id += 2;
/*
* Program stream parameters to stream SHIM register
* This is applicable for PCM stream only.
*/
if (pdi->type != SDW_STREAM_PCM)
return;
if (pdi->dir == SDW_DATA_DIR_RX)
pdi_conf |= SDW_SHIM_PCMSYCM_DIR;
else
pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR);
u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM);
u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN);
u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN);
intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf);
}
static void
intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
{
void __iomem *alh = sdw->link_res->alh;
unsigned int link_id = sdw->instance;
unsigned int conf;
/* the Bulk and PCM streams are not contiguous */
pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
if (pdi->num >= 2)
pdi->intel_alh_id += 2;
/* Program Stream config ALH register */
conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id));
u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT);
u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN);
intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf);
}
static int intel_params_stream(struct sdw_intel *sdw,
struct snd_pcm_substream *substream,
struct snd_soc_dai *dai,
struct snd_pcm_hw_params *hw_params,
int link_id, int alh_stream_id)
{
struct sdw_intel_link_res *res = sdw->link_res;
struct sdw_intel_stream_params_data params_data;
params_data.substream = substream;
params_data.dai = dai;
params_data.hw_params = hw_params;
params_data.link_id = link_id;
params_data.alh_stream_id = alh_stream_id;
if (res->ops && res->ops->params_stream && res->dev)
return res->ops->params_stream(res->dev,
&params_data);
return -EIO;
}
static int intel_free_stream(struct sdw_intel *sdw,
struct snd_pcm_substream *substream,
struct snd_soc_dai *dai,
int link_id)
{
struct sdw_intel_link_res *res = sdw->link_res;
struct sdw_intel_stream_free_data free_data;
free_data.substream = substream;
free_data.dai = dai;
free_data.link_id = link_id;
if (res->ops && res->ops->free_stream && res->dev)
return res->ops->free_stream(res->dev,
&free_data);
return 0;
}
/*
* bank switch routines
*/
static int intel_pre_bank_switch(struct sdw_bus *bus)
{
struct sdw_cdns *cdns = bus_to_cdns(bus);
struct sdw_intel *sdw = cdns_to_intel(cdns);
/* Write to register only for multi-link */
if (!bus->multi_link)
return 0;
intel_shim_sync_arm(sdw);
return 0;
}
static int intel_post_bank_switch(struct sdw_bus *bus)
{
struct sdw_cdns *cdns = bus_to_cdns(bus);
struct sdw_intel *sdw = cdns_to_intel(cdns);
void __iomem *shim = sdw->link_res->shim;
int sync_reg, ret;
/* Write to register only for multi-link */
if (!bus->multi_link)
return 0;
mutex_lock(sdw->link_res->shim_lock);
/* Read SYNC register */
sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
/*
* post_bank_switch() ops is called from the bus in loop for
* all the Masters in the steam with the expectation that
* we trigger the bankswitch for the only first Master in the list
* and do nothing for the other Masters
*
* So, set the SYNCGO bit only if CMDSYNC bit is set for any Master.
*/
if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) {
ret = 0;
goto unlock;
}
ret = intel_shim_sync_go_unlocked(sdw);
unlock:
mutex_unlock(sdw->link_res->shim_lock);
if (ret < 0)
dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret);
return ret;
}
/*
* DAI routines
*/
static int intel_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
int ret;
ret = pm_runtime_get_sync(cdns->dev);
if (ret < 0 && ret != -EACCES) {
dev_err_ratelimited(cdns->dev,
"pm_runtime_get_sync failed in %s, ret %d\n",
__func__, ret);
pm_runtime_put_noidle(cdns->dev);
return ret;
}
return 0;
}
static int intel_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_cdns_dma_data *dma;
struct sdw_cdns_pdi *pdi;
struct sdw_stream_config sconfig;
struct sdw_port_config *pconfig;
int ch, dir;
int ret;
bool pcm = true;
dma = snd_soc_dai_get_dma_data(dai, substream);
if (!dma)
return -EIO;
ch = params_channels(params);
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
dir = SDW_DATA_DIR_RX;
else
dir = SDW_DATA_DIR_TX;
if (dma->stream_type == SDW_STREAM_PDM)
pcm = false;
if (pcm)
pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id);
else
pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pdm, ch, dir, dai->id);
if (!pdi) {
ret = -EINVAL;
goto error;
}
/* do run-time configurations for SHIM, ALH and PDI/PORT */
intel_pdi_shim_configure(sdw, pdi);
intel_pdi_alh_configure(sdw, pdi);
sdw_cdns_config_stream(cdns, ch, dir, pdi);
/* store pdi and hw_params, may be needed in prepare step */
dma->suspended = false;
dma->pdi = pdi;
dma->hw_params = params;
/* Inform DSP about PDI stream number */
ret = intel_params_stream(sdw, substream, dai, params,
sdw->instance,
pdi->intel_alh_id);
if (ret)
goto error;
sconfig.direction = dir;
sconfig.ch_count = ch;
sconfig.frame_rate = params_rate(params);
sconfig.type = dma->stream_type;
if (dma->stream_type == SDW_STREAM_PDM) {
sconfig.frame_rate *= 50;
sconfig.bps = 1;
} else {
sconfig.bps = snd_pcm_format_width(params_format(params));
}
/* Port configuration */
pconfig = kcalloc(1, sizeof(*pconfig), GFP_KERNEL);
if (!pconfig) {
ret = -ENOMEM;
goto error;
}
pconfig->num = pdi->num;
pconfig->ch_mask = (1 << ch) - 1;
ret = sdw_stream_add_master(&cdns->bus, &sconfig,
pconfig, 1, dma->stream);
if (ret)
dev_err(cdns->dev, "add master to stream failed:%d\n", ret);
kfree(pconfig);
error:
return ret;
}
static int intel_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_cdns_dma_data *dma;
int ch, dir;
int ret = 0;
dma = snd_soc_dai_get_dma_data(dai, substream);
if (!dma) {
dev_err(dai->dev, "failed to get dma data in %s",
__func__);
return -EIO;
}
if (dma->suspended) {
dma->suspended = false;
/*
* .prepare() is called after system resume, where we
* need to reinitialize the SHIM/ALH/Cadence IP.
* .prepare() is also called to deal with underflows,
* but in those cases we cannot touch ALH/SHIM
* registers
*/
/* configure stream */
ch = params_channels(dma->hw_params);
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
dir = SDW_DATA_DIR_RX;
else
dir = SDW_DATA_DIR_TX;
intel_pdi_shim_configure(sdw, dma->pdi);
intel_pdi_alh_configure(sdw, dma->pdi);
sdw_cdns_config_stream(cdns, ch, dir, dma->pdi);
/* Inform DSP about PDI stream number */
ret = intel_params_stream(sdw, substream, dai,
dma->hw_params,
sdw->instance,
dma->pdi->intel_alh_id);
}
return ret;
}
static int
intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai)
{
struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_cdns_dma_data *dma;
int ret;
dma = snd_soc_dai_get_dma_data(dai, substream);
if (!dma)
return -EIO;
/*
* The sdw stream state will transition to RELEASED when stream->
* master_list is empty. So the stream state will transition to
* DEPREPARED for the first cpu-dai and to RELEASED for the last
* cpu-dai.
*/
ret = sdw_stream_remove_master(&cdns->bus, dma->stream);
if (ret < 0) {
dev_err(dai->dev, "remove master from stream %s failed: %d\n",
dma->stream->name, ret);
return ret;
}
ret = intel_free_stream(sdw, substream, dai, sdw->instance);
if (ret < 0) {
dev_err(dai->dev, "intel_free_stream: failed %d", ret);
return ret;
}
dma->hw_params = NULL;
dma->pdi = NULL;
return 0;
}
static void intel_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
pm_runtime_mark_last_busy(cdns->dev);
pm_runtime_put_autosuspend(cdns->dev);
}
static int intel_component_dais_suspend(struct snd_soc_component *component)
{
struct sdw_cdns_dma_data *dma;
struct snd_soc_dai *dai;
for_each_component_dais(component, dai) {
/*
* we don't have a .suspend dai_ops, and we don't have access
* to the substream, so let's mark both capture and playback
* DMA contexts as suspended
*/
dma = dai->playback_dma_data;
if (dma)
dma->suspended = true;
dma = dai->capture_dma_data;
if (dma)
dma->suspended = true;
}
return 0;
}
static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai,
void *stream, int direction)
{
return cdns_set_sdw_stream(dai, stream, true, direction);
}
static int intel_pdm_set_sdw_stream(struct snd_soc_dai *dai,
void *stream, int direction)
{
return cdns_set_sdw_stream(dai, stream, false, direction);
}
static void *intel_get_sdw_stream(struct snd_soc_dai *dai,
int direction)
{
struct sdw_cdns_dma_data *dma;
if (direction == SNDRV_PCM_STREAM_PLAYBACK)
dma = dai->playback_dma_data;
else
dma = dai->capture_dma_data;
if (!dma)
return ERR_PTR(-EINVAL);
return dma->stream;
}
static const struct snd_soc_dai_ops intel_pcm_dai_ops = {
.startup = intel_startup,
.hw_params = intel_hw_params,
.prepare = intel_prepare,
.hw_free = intel_hw_free,
.shutdown = intel_shutdown,
.set_sdw_stream = intel_pcm_set_sdw_stream,
.get_sdw_stream = intel_get_sdw_stream,
};
static const struct snd_soc_dai_ops intel_pdm_dai_ops = {
.startup = intel_startup,
.hw_params = intel_hw_params,
.prepare = intel_prepare,
.hw_free = intel_hw_free,
.shutdown = intel_shutdown,
.set_sdw_stream = intel_pdm_set_sdw_stream,
.get_sdw_stream = intel_get_sdw_stream,
};
static const struct snd_soc_component_driver dai_component = {
.name = "soundwire",
.suspend = intel_component_dais_suspend
};
static int intel_create_dai(struct sdw_cdns *cdns,
struct snd_soc_dai_driver *dais,
enum intel_pdi_type type,
u32 num, u32 off, u32 max_ch, bool pcm)
{
int i;
if (num == 0)
return 0;
/* TODO: Read supported rates/formats from hardware */
for (i = off; i < (off + num); i++) {
dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL,
"SDW%d Pin%d",
cdns->instance, i);
if (!dais[i].name)
return -ENOMEM;
if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) {
dais[i].playback.channels_min = 1;
dais[i].playback.channels_max = max_ch;
dais[i].playback.rates = SNDRV_PCM_RATE_48000;
dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
}
if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) {
dais[i].capture.channels_min = 1;
dais[i].capture.channels_max = max_ch;
dais[i].capture.rates = SNDRV_PCM_RATE_48000;
dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
}
if (pcm)
dais[i].ops = &intel_pcm_dai_ops;
else
dais[i].ops = &intel_pdm_dai_ops;
}
return 0;
}
static int intel_register_dai(struct sdw_intel *sdw)
{
struct sdw_cdns *cdns = &sdw->cdns;
struct sdw_cdns_streams *stream;
struct snd_soc_dai_driver *dais;
int num_dai, ret, off = 0;
/* DAIs are created based on total number of PDIs supported */
num_dai = cdns->pcm.num_pdi + cdns->pdm.num_pdi;
dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL);
if (!dais)
return -ENOMEM;
/* Create PCM DAIs */
stream = &cdns->pcm;
ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in,
off, stream->num_ch_in, true);
if (ret)
return ret;
off += cdns->pcm.num_in;
ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out,
off, stream->num_ch_out, true);
if (ret)
return ret;
off += cdns->pcm.num_out;
ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd,
off, stream->num_ch_bd, true);
if (ret)
return ret;
/* Create PDM DAIs */
stream = &cdns->pdm;
off += cdns->pcm.num_bd;
ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pdm.num_in,
off, stream->num_ch_in, false);
if (ret)
return ret;
off += cdns->pdm.num_in;
ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pdm.num_out,
off, stream->num_ch_out, false);
if (ret)
return ret;
off += cdns->pdm.num_out;
ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pdm.num_bd,
off, stream->num_ch_bd, false);
if (ret)
return ret;
return snd_soc_register_component(cdns->dev, &dai_component,
dais, num_dai);
}
static int sdw_master_read_intel_prop(struct sdw_bus *bus)
{
struct sdw_master_prop *prop = &bus->prop;
struct fwnode_handle *link;
char name[32];
u32 quirk_mask;
/* Find master handle */
snprintf(name, sizeof(name),
"mipi-sdw-link-%d-subproperties", bus->link_id);
link = device_get_named_child_node(bus->dev, name);
if (!link) {
dev_err(bus->dev, "Master node %s not found\n", name);
return -EIO;
}
fwnode_property_read_u32(link,
"intel-sdw-ip-clock",
&prop->mclk_freq);
/* the values reported by BIOS are the 2x clock, not the bus clock */
prop->mclk_freq /= 2;
fwnode_property_read_u32(link,
"intel-quirk-mask",
&quirk_mask);
if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE)
prop->hw_disabled = true;
return 0;
}
static int intel_prop_read(struct sdw_bus *bus)
{
/* Initialize with default handler to read all DisCo properties */
sdw_master_read_prop(bus);
/* read Intel-specific properties */
sdw_master_read_intel_prop(bus);
return 0;
}
static struct sdw_master_ops sdw_intel_ops = {
.read_prop = sdw_master_read_prop,
.xfer_msg = cdns_xfer_msg,
.xfer_msg_defer = cdns_xfer_msg_defer,
.reset_page_addr = cdns_reset_page_addr,
.set_bus_conf = cdns_bus_conf,
.pre_bank_switch = intel_pre_bank_switch,
.post_bank_switch = intel_post_bank_switch,
};
static int intel_init(struct sdw_intel *sdw)
{
bool clock_stop;
/* Initialize shim and controller */
intel_link_power_up(sdw);
clock_stop = sdw_cdns_is_clock_stop(&sdw->cdns);
intel_shim_init(sdw, clock_stop);
return 0;
}
/*
* probe and init
*/
static int intel_master_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sdw_intel *sdw;
struct sdw_cdns *cdns;
struct sdw_bus *bus;
int ret;
sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL);
if (!sdw)
return -ENOMEM;
cdns = &sdw->cdns;
bus = &cdns->bus;
sdw->instance = pdev->id;
sdw->link_res = dev_get_platdata(dev);
cdns->dev = dev;
cdns->registers = sdw->link_res->registers;
cdns->instance = sdw->instance;
cdns->msg_count = 0;
bus->link_id = pdev->id;
sdw_cdns_probe(cdns);
/* Set property read ops */
sdw_intel_ops.read_prop = intel_prop_read;
bus->ops = &sdw_intel_ops;
/* set driver data, accessed by snd_soc_dai_get_drvdata() */
dev_set_drvdata(dev, cdns);
/* use generic bandwidth allocation algorithm */
sdw->cdns.bus.compute_params = sdw_compute_params;
ret = sdw_bus_master_add(bus, dev, dev->fwnode);
if (ret) {
dev_err(dev, "sdw_bus_master_add fail: %d\n", ret);
return ret;
}
if (bus->prop.hw_disabled)
dev_info(dev,
"SoundWire master %d is disabled, will be ignored\n",
bus->link_id);
/*
* Ignore BIOS err_threshold, it's a really bad idea when dealing
* with multiple hardware synchronized links
*/
bus->prop.err_threshold = 0;
return 0;
}
int intel_master_startup(struct platform_device *pdev)
{
struct sdw_cdns_stream_config config;
struct device *dev = &pdev->dev;
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
int link_flags;
bool multi_link;
u32 clock_stop_quirks;
int ret;
if (bus->prop.hw_disabled) {
dev_info(dev,
"SoundWire master %d is disabled, ignoring\n",
sdw->instance);
return 0;
}
link_flags = md_flags >> (bus->link_id * 8);
multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
if (!multi_link) {
dev_dbg(dev, "Multi-link is disabled\n");
bus->multi_link = false;
} else {
/*
* hardware-based synchronization is required regardless
* of the number of segments used by a stream: SSP-based
* synchronization is gated by gsync when the multi-master
* mode is set.
*/
bus->multi_link = true;
bus->hw_sync_min_links = 1;
}
/* Initialize shim, controller */
ret = intel_init(sdw);
if (ret)
goto err_init;
/* Read the PDI config and initialize cadence PDI */
intel_pdi_init(sdw, &config);
ret = sdw_cdns_pdi_init(cdns, config);
if (ret)
goto err_init;
intel_pdi_ch_update(sdw);
ret = sdw_cdns_enable_interrupt(cdns, true);
if (ret < 0) {
dev_err(dev, "cannot enable interrupts\n");
goto err_init;
}
/*
* follow recommended programming flows to avoid timeouts when
* gsync is enabled
*/
if (multi_link)
intel_shim_sync_arm(sdw);
ret = sdw_cdns_init(cdns);
if (ret < 0) {
dev_err(dev, "unable to initialize Cadence IP\n");
goto err_interrupt;
}
ret = sdw_cdns_exit_reset(cdns);
if (ret < 0) {
dev_err(dev, "unable to exit bus reset sequence\n");
goto err_interrupt;
}
if (multi_link) {
ret = intel_shim_sync_go(sdw);
if (ret < 0) {
dev_err(dev, "sync go failed: %d\n", ret);
goto err_interrupt;
}
}
/* Register DAIs */
ret = intel_register_dai(sdw);
if (ret) {
dev_err(dev, "DAI registration failed: %d\n", ret);
snd_soc_unregister_component(dev);
goto err_interrupt;
}
intel_debugfs_init(sdw);
/* Enable runtime PM */
if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) {
pm_runtime_set_autosuspend_delay(dev,
INTEL_MASTER_SUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
}
clock_stop_quirks = sdw->link_res->clock_stop_quirks;
if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) {
/*
* To keep the clock running we need to prevent
* pm_runtime suspend from happening by increasing the
* reference count.
* This quirk is specified by the parent PCI device in
* case of specific latency requirements. It will have
* no effect if pm_runtime is disabled by the user via
* a module parameter for testing purposes.
*/
pm_runtime_get_noresume(dev);
}
/*
* The runtime PM status of Slave devices is "Unsupported"
* until they report as ATTACHED. If they don't, e.g. because
* there are no Slave devices populated or if the power-on is
* delayed or dependent on a power switch, the Master will
* remain active and prevent its parent from suspending.
*
* Conditionally force the pm_runtime core to re-evaluate the
* Master status in the absence of any Slave activity. A quirk
* is provided to e.g. deal with Slaves that may be powered on
* with a delay. A more complete solution would require the
* definition of Master properties.
*/
if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
pm_runtime_idle(dev);
return 0;
err_interrupt:
sdw_cdns_enable_interrupt(cdns, false);
err_init:
return ret;
}
static int intel_master_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
/*
* Since pm_runtime is already disabled, we don't decrease
* the refcount when the clock_stop_quirk is
* SDW_INTEL_CLK_STOP_NOT_ALLOWED
*/
if (!bus->prop.hw_disabled) {
intel_debugfs_exit(sdw);
sdw_cdns_enable_interrupt(cdns, false);
snd_soc_unregister_component(dev);
}
sdw_bus_master_delete(bus);
return 0;
}
int intel_master_process_wakeen_event(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sdw_intel *sdw;
struct sdw_bus *bus;
void __iomem *shim;
u16 wake_sts;
sdw = platform_get_drvdata(pdev);
bus = &sdw->cdns.bus;
if (bus->prop.hw_disabled) {
dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n", bus->link_id);
return 0;
}
shim = sdw->link_res->shim;
wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
if (!(wake_sts & BIT(sdw->instance)))
return 0;
/* disable WAKEEN interrupt ASAP to prevent interrupt flood */
intel_shim_wake(sdw, false);
/*
* resume the Master, which will generate a bus reset and result in
* Slaves re-attaching and be re-enumerated. The SoundWire physical
* device which generated the wake will trigger an interrupt, which
* will in turn cause the corresponding Linux Slave device to be
* resumed and the Slave codec driver to check the status.
*/
pm_request_resume(dev);
return 0;
}
/*
* PM calls
*/
#ifdef CONFIG_PM
static int __maybe_unused intel_suspend(struct device *dev)
{
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
u32 clock_stop_quirks;
int ret;
if (bus->prop.hw_disabled) {
dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n",
bus->link_id);
return 0;
}
if (pm_runtime_suspended(dev)) {
dev_dbg(dev, "%s: pm_runtime status: suspended\n", __func__);
clock_stop_quirks = sdw->link_res->clock_stop_quirks;
if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET ||
!clock_stop_quirks) &&
!pm_runtime_suspended(dev->parent)) {
/*
* if we've enabled clock stop, and the parent
* is still active, disable shim wake. The
* SHIM registers are not accessible if the
* parent is already pm_runtime suspended so
* it's too late to change that configuration
*/
intel_shim_wake(sdw, false);
}
return 0;
}
ret = sdw_cdns_enable_interrupt(cdns, false);
if (ret < 0) {
dev_err(dev, "cannot disable interrupts on suspend\n");
return ret;
}
ret = intel_link_power_down(sdw);
if (ret) {
dev_err(dev, "Link power down failed: %d", ret);
return ret;
}
intel_shim_wake(sdw, false);
return 0;
}
static int intel_suspend_runtime(struct device *dev)
{
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
u32 clock_stop_quirks;
int ret;
if (bus->prop.hw_disabled) {
dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n",
bus->link_id);
return 0;
}
clock_stop_quirks = sdw->link_res->clock_stop_quirks;
if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
ret = sdw_cdns_enable_interrupt(cdns, false);
if (ret < 0) {
dev_err(dev, "cannot disable interrupts on suspend\n");
return ret;
}
ret = intel_link_power_down(sdw);
if (ret) {
dev_err(dev, "Link power down failed: %d", ret);
return ret;
}
intel_shim_wake(sdw, false);
} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET ||
!clock_stop_quirks) {
ret = sdw_cdns_clock_stop(cdns, true);
if (ret < 0) {
dev_err(dev, "cannot enable clock stop on suspend\n");
return ret;
}
ret = sdw_cdns_enable_interrupt(cdns, false);
if (ret < 0) {
dev_err(dev, "cannot disable interrupts on suspend\n");
return ret;
}
ret = intel_link_power_down(sdw);
if (ret) {
dev_err(dev, "Link power down failed: %d", ret);
return ret;
}
intel_shim_wake(sdw, true);
} else {
dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
__func__, clock_stop_quirks);
ret = -EINVAL;
}
return ret;
}
static int __maybe_unused intel_resume(struct device *dev)
{
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
int link_flags;
bool multi_link;
int ret;
if (bus->prop.hw_disabled) {
dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n",
bus->link_id);
return 0;
}
link_flags = md_flags >> (bus->link_id * 8);
multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
if (pm_runtime_suspended(dev)) {
dev_dbg(dev, "%s: pm_runtime status was suspended, forcing active\n", __func__);
/* follow required sequence from runtime_pm.rst */
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_enable(dev);
link_flags = md_flags >> (bus->link_id * 8);
if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
pm_runtime_idle(dev);
}
ret = intel_init(sdw);
if (ret) {
dev_err(dev, "%s failed: %d", __func__, ret);
return ret;
}
/*
* make sure all Slaves are tagged as UNATTACHED and provide
* reason for reinitialization
*/
sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
ret = sdw_cdns_enable_interrupt(cdns, true);
if (ret < 0) {
dev_err(dev, "cannot enable interrupts during resume\n");
return ret;
}
/*
* follow recommended programming flows to avoid timeouts when
* gsync is enabled
*/
if (multi_link)
intel_shim_sync_arm(sdw);
ret = sdw_cdns_init(&sdw->cdns);
if (ret < 0) {
dev_err(dev, "unable to initialize Cadence IP during resume\n");
return ret;
}
ret = sdw_cdns_exit_reset(cdns);
if (ret < 0) {
dev_err(dev, "unable to exit bus reset sequence during resume\n");
return ret;
}
if (multi_link) {
ret = intel_shim_sync_go(sdw);
if (ret < 0) {
dev_err(dev, "sync go failed during resume\n");
return ret;
}
}
/*
* after system resume, the pm_runtime suspend() may kick in
* during the enumeration, before any children device force the
* master device to remain active. Using pm_runtime_get()
* routines is not really possible, since it'd prevent the
* master from suspending.
* A reasonable compromise is to update the pm_runtime
* counters and delay the pm_runtime suspend by several
* seconds, by when all enumeration should be complete.
*/
pm_runtime_mark_last_busy(dev);
return ret;
}
static int intel_resume_runtime(struct device *dev)
{
struct sdw_cdns *cdns = dev_get_drvdata(dev);
struct sdw_intel *sdw = cdns_to_intel(cdns);
struct sdw_bus *bus = &cdns->bus;
u32 clock_stop_quirks;
bool clock_stop0;
int link_flags;
bool multi_link;
int status;
int ret;
if (bus->prop.hw_disabled) {
dev_dbg(dev, "SoundWire master %d is disabled, ignoring\n",
bus->link_id);
return 0;
}
link_flags = md_flags >> (bus->link_id * 8);
multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
clock_stop_quirks = sdw->link_res->clock_stop_quirks;
if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
ret = intel_init(sdw);
if (ret) {
dev_err(dev, "%s failed: %d", __func__, ret);
return ret;
}
/*
* make sure all Slaves are tagged as UNATTACHED and provide
* reason for reinitialization
*/
sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
ret = sdw_cdns_enable_interrupt(cdns, true);
if (ret < 0) {
dev_err(dev, "cannot enable interrupts during resume\n");
return ret;
}
/*
* follow recommended programming flows to avoid
* timeouts when gsync is enabled
*/
if (multi_link)
intel_shim_sync_arm(sdw);
ret = sdw_cdns_init(&sdw->cdns);
if (ret < 0) {
dev_err(dev, "unable to initialize Cadence IP during resume\n");
return ret;
}
ret = sdw_cdns_exit_reset(cdns);
if (ret < 0) {
dev_err(dev, "unable to exit bus reset sequence during resume\n");
return ret;
}
if (multi_link) {
ret = intel_shim_sync_go(sdw);
if (ret < 0) {
dev_err(dev, "sync go failed during resume\n");
return ret;
}
}
} else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) {
ret = intel_init(sdw);
if (ret) {
dev_err(dev, "%s failed: %d", __func__, ret);
return ret;
}
/*
* An exception condition occurs for the CLK_STOP_BUS_RESET
* case if one or more masters remain active. In this condition,
* all the masters are powered on for they are in the same power
* domain. Master can preserve its context for clock stop0, so
* there is no need to clear slave status and reset bus.
*/
clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
if (!clock_stop0) {
/*
* make sure all Slaves are tagged as UNATTACHED and
* provide reason for reinitialization
*/
status = SDW_UNATTACH_REQUEST_MASTER_RESET;
sdw_clear_slave_status(bus, status);
ret = sdw_cdns_enable_interrupt(cdns, true);
if (ret < 0) {
dev_err(dev, "cannot enable interrupts during resume\n");
return ret;
}
/*
* follow recommended programming flows to avoid
* timeouts when gsync is enabled
*/
if (multi_link)
intel_shim_sync_arm(sdw);
/*
* Re-initialize the IP since it was powered-off
*/
sdw_cdns_init(&sdw->cdns);
} else {
ret = sdw_cdns_enable_interrupt(cdns, true);
if (ret < 0) {
dev_err(dev, "cannot enable interrupts during resume\n");
return ret;
}
}
ret = sdw_cdns_clock_restart(cdns, !clock_stop0);
if (ret < 0) {
dev_err(dev, "unable to restart clock during resume\n");
return ret;
}
if (!clock_stop0) {
ret = sdw_cdns_exit_reset(cdns);
if (ret < 0) {
dev_err(dev, "unable to exit bus reset sequence during resume\n");
return ret;
}
if (multi_link) {
ret = intel_shim_sync_go(sdw);
if (ret < 0) {
dev_err(sdw->cdns.dev, "sync go failed during resume\n");
return ret;
}
}
}
} else if (!clock_stop_quirks) {
clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
if (!clock_stop0)
dev_err(dev, "%s invalid configuration, clock was not stopped", __func__);
ret = intel_init(sdw);
if (ret) {
dev_err(dev, "%s failed: %d", __func__, ret);
return ret;
}
ret = sdw_cdns_enable_interrupt(cdns, true);
if (ret < 0) {
dev_err(dev, "cannot enable interrupts during resume\n");
return ret;
}
ret = sdw_cdns_clock_restart(cdns, false);
if (ret < 0) {
dev_err(dev, "unable to resume master during resume\n");
return ret;
}
} else {
dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
__func__, clock_stop_quirks);
ret = -EINVAL;
}
return ret;
}
#endif
static const struct dev_pm_ops intel_pm = {
SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL)
};
static struct platform_driver sdw_intel_drv = {
.probe = intel_master_probe,
.remove = intel_master_remove,
.driver = {
.name = "intel-sdw",
.pm = &intel_pm,
}
};
module_platform_driver(sdw_intel_drv);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_ALIAS("platform:intel-sdw");
MODULE_DESCRIPTION("Intel Soundwire Master Driver");