| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * This file contains KASAN runtime code that manages shadow memory for |
| * generic and software tag-based KASAN modes. |
| * |
| * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> |
| * |
| * Some code borrowed from https://github.com/xairy/kasan-prototype by |
| * Andrey Konovalov <andreyknvl@gmail.com> |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/kasan.h> |
| #include <linux/kernel.h> |
| #include <linux/kfence.h> |
| #include <linux/kmemleak.h> |
| #include <linux/memory.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/vmalloc.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| |
| #include "kasan.h" |
| |
| bool __kasan_check_read(const volatile void *p, unsigned int size) |
| { |
| return kasan_check_range((unsigned long)p, size, false, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__kasan_check_read); |
| |
| bool __kasan_check_write(const volatile void *p, unsigned int size) |
| { |
| return kasan_check_range((unsigned long)p, size, true, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__kasan_check_write); |
| |
| #undef memset |
| void *memset(void *addr, int c, size_t len) |
| { |
| if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_)) |
| return NULL; |
| |
| return __memset(addr, c, len); |
| } |
| |
| #ifdef __HAVE_ARCH_MEMMOVE |
| #undef memmove |
| void *memmove(void *dest, const void *src, size_t len) |
| { |
| if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) || |
| !kasan_check_range((unsigned long)dest, len, true, _RET_IP_)) |
| return NULL; |
| |
| return __memmove(dest, src, len); |
| } |
| #endif |
| |
| #undef memcpy |
| void *memcpy(void *dest, const void *src, size_t len) |
| { |
| if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) || |
| !kasan_check_range((unsigned long)dest, len, true, _RET_IP_)) |
| return NULL; |
| |
| return __memcpy(dest, src, len); |
| } |
| |
| void kasan_poison(const void *addr, size_t size, u8 value, bool init) |
| { |
| void *shadow_start, *shadow_end; |
| |
| /* |
| * Perform shadow offset calculation based on untagged address, as |
| * some of the callers (e.g. kasan_poison_object_data) pass tagged |
| * addresses to this function. |
| */ |
| addr = kasan_reset_tag(addr); |
| |
| /* Skip KFENCE memory if called explicitly outside of sl*b. */ |
| if (is_kfence_address(addr)) |
| return; |
| |
| if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK)) |
| return; |
| if (WARN_ON(size & KASAN_GRANULE_MASK)) |
| return; |
| |
| shadow_start = kasan_mem_to_shadow(addr); |
| shadow_end = kasan_mem_to_shadow(addr + size); |
| |
| __memset(shadow_start, value, shadow_end - shadow_start); |
| } |
| EXPORT_SYMBOL(kasan_poison); |
| |
| #ifdef CONFIG_KASAN_GENERIC |
| void kasan_poison_last_granule(const void *addr, size_t size) |
| { |
| if (size & KASAN_GRANULE_MASK) { |
| u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size); |
| *shadow = size & KASAN_GRANULE_MASK; |
| } |
| } |
| #endif |
| |
| void kasan_unpoison(const void *addr, size_t size, bool init) |
| { |
| u8 tag = get_tag(addr); |
| |
| /* |
| * Perform shadow offset calculation based on untagged address, as |
| * some of the callers (e.g. kasan_unpoison_object_data) pass tagged |
| * addresses to this function. |
| */ |
| addr = kasan_reset_tag(addr); |
| |
| /* |
| * Skip KFENCE memory if called explicitly outside of sl*b. Also note |
| * that calls to ksize(), where size is not a multiple of machine-word |
| * size, would otherwise poison the invalid portion of the word. |
| */ |
| if (is_kfence_address(addr)) |
| return; |
| |
| if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK)) |
| return; |
| |
| /* Unpoison all granules that cover the object. */ |
| kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false); |
| |
| /* Partially poison the last granule for the generic mode. */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| kasan_poison_last_granule(addr, size); |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static bool shadow_mapped(unsigned long addr) |
| { |
| pgd_t *pgd = pgd_offset_k(addr); |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if (pgd_none(*pgd)) |
| return false; |
| p4d = p4d_offset(pgd, addr); |
| if (p4d_none(*p4d)) |
| return false; |
| pud = pud_offset(p4d, addr); |
| if (pud_none(*pud)) |
| return false; |
| |
| /* |
| * We can't use pud_large() or pud_huge(), the first one is |
| * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse |
| * pud_bad(), if pud is bad then it's bad because it's huge. |
| */ |
| if (pud_bad(*pud)) |
| return true; |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) |
| return false; |
| |
| if (pmd_bad(*pmd)) |
| return true; |
| pte = pte_offset_kernel(pmd, addr); |
| return !pte_none(*pte); |
| } |
| |
| static int __meminit kasan_mem_notifier(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| struct memory_notify *mem_data = data; |
| unsigned long nr_shadow_pages, start_kaddr, shadow_start; |
| unsigned long shadow_end, shadow_size; |
| |
| nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT; |
| start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn); |
| shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr); |
| shadow_size = nr_shadow_pages << PAGE_SHIFT; |
| shadow_end = shadow_start + shadow_size; |
| |
| if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) || |
| WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE)) |
| return NOTIFY_BAD; |
| |
| switch (action) { |
| case MEM_GOING_ONLINE: { |
| void *ret; |
| |
| /* |
| * If shadow is mapped already than it must have been mapped |
| * during the boot. This could happen if we onlining previously |
| * offlined memory. |
| */ |
| if (shadow_mapped(shadow_start)) |
| return NOTIFY_OK; |
| |
| ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start, |
| shadow_end, GFP_KERNEL, |
| PAGE_KERNEL, VM_NO_GUARD, |
| pfn_to_nid(mem_data->start_pfn), |
| __builtin_return_address(0)); |
| if (!ret) |
| return NOTIFY_BAD; |
| |
| kmemleak_ignore(ret); |
| return NOTIFY_OK; |
| } |
| case MEM_CANCEL_ONLINE: |
| case MEM_OFFLINE: { |
| struct vm_struct *vm; |
| |
| /* |
| * shadow_start was either mapped during boot by kasan_init() |
| * or during memory online by __vmalloc_node_range(). |
| * In the latter case we can use vfree() to free shadow. |
| * Non-NULL result of the find_vm_area() will tell us if |
| * that was the second case. |
| * |
| * Currently it's not possible to free shadow mapped |
| * during boot by kasan_init(). It's because the code |
| * to do that hasn't been written yet. So we'll just |
| * leak the memory. |
| */ |
| vm = find_vm_area((void *)shadow_start); |
| if (vm) |
| vfree((void *)shadow_start); |
| } |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static int __init kasan_memhotplug_init(void) |
| { |
| hotplug_memory_notifier(kasan_mem_notifier, 0); |
| |
| return 0; |
| } |
| |
| core_initcall(kasan_memhotplug_init); |
| #endif |
| |
| #ifdef CONFIG_KASAN_VMALLOC |
| |
| static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, |
| void *unused) |
| { |
| unsigned long page; |
| pte_t pte; |
| |
| if (likely(!pte_none(*ptep))) |
| return 0; |
| |
| page = __get_free_page(GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| |
| memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); |
| pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); |
| |
| spin_lock(&init_mm.page_table_lock); |
| if (likely(pte_none(*ptep))) { |
| set_pte_at(&init_mm, addr, ptep, pte); |
| page = 0; |
| } |
| spin_unlock(&init_mm.page_table_lock); |
| if (page) |
| free_page(page); |
| return 0; |
| } |
| |
| int kasan_populate_vmalloc(unsigned long addr, unsigned long size) |
| { |
| unsigned long shadow_start, shadow_end; |
| int ret; |
| |
| if (!is_vmalloc_or_module_addr((void *)addr)) |
| return 0; |
| |
| shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr); |
| shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); |
| shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size); |
| shadow_end = ALIGN(shadow_end, PAGE_SIZE); |
| |
| ret = apply_to_page_range(&init_mm, shadow_start, |
| shadow_end - shadow_start, |
| kasan_populate_vmalloc_pte, NULL); |
| if (ret) |
| return ret; |
| |
| flush_cache_vmap(shadow_start, shadow_end); |
| |
| /* |
| * We need to be careful about inter-cpu effects here. Consider: |
| * |
| * CPU#0 CPU#1 |
| * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; |
| * p[99] = 1; |
| * |
| * With compiler instrumentation, that ends up looking like this: |
| * |
| * CPU#0 CPU#1 |
| * // vmalloc() allocates memory |
| * // let a = area->addr |
| * // we reach kasan_populate_vmalloc |
| * // and call kasan_unpoison: |
| * STORE shadow(a), unpoison_val |
| * ... |
| * STORE shadow(a+99), unpoison_val x = LOAD p |
| * // rest of vmalloc process <data dependency> |
| * STORE p, a LOAD shadow(x+99) |
| * |
| * If there is no barrier between the end of unpoisioning the shadow |
| * and the store of the result to p, the stores could be committed |
| * in a different order by CPU#0, and CPU#1 could erroneously observe |
| * poison in the shadow. |
| * |
| * We need some sort of barrier between the stores. |
| * |
| * In the vmalloc() case, this is provided by a smp_wmb() in |
| * clear_vm_uninitialized_flag(). In the per-cpu allocator and in |
| * get_vm_area() and friends, the caller gets shadow allocated but |
| * doesn't have any pages mapped into the virtual address space that |
| * has been reserved. Mapping those pages in will involve taking and |
| * releasing a page-table lock, which will provide the barrier. |
| */ |
| |
| return 0; |
| } |
| |
| /* |
| * Poison the shadow for a vmalloc region. Called as part of the |
| * freeing process at the time the region is freed. |
| */ |
| void kasan_poison_vmalloc(const void *start, unsigned long size) |
| { |
| if (!is_vmalloc_or_module_addr(start)) |
| return; |
| |
| size = round_up(size, KASAN_GRANULE_SIZE); |
| kasan_poison(start, size, KASAN_VMALLOC_INVALID, false); |
| } |
| |
| void kasan_unpoison_vmalloc(const void *start, unsigned long size) |
| { |
| if (!is_vmalloc_or_module_addr(start)) |
| return; |
| |
| kasan_unpoison(start, size, false); |
| } |
| |
| static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, |
| void *unused) |
| { |
| unsigned long page; |
| |
| page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT); |
| |
| spin_lock(&init_mm.page_table_lock); |
| |
| if (likely(!pte_none(*ptep))) { |
| pte_clear(&init_mm, addr, ptep); |
| free_page(page); |
| } |
| spin_unlock(&init_mm.page_table_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * Release the backing for the vmalloc region [start, end), which |
| * lies within the free region [free_region_start, free_region_end). |
| * |
| * This can be run lazily, long after the region was freed. It runs |
| * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap |
| * infrastructure. |
| * |
| * How does this work? |
| * ------------------- |
| * |
| * We have a region that is page aligned, labelled as A. |
| * That might not map onto the shadow in a way that is page-aligned: |
| * |
| * start end |
| * v v |
| * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc |
| * -------- -------- -------- -------- -------- |
| * | | | | | |
| * | | | /-------/ | |
| * \-------\|/------/ |/---------------/ |
| * ||| || |
| * |??AAAAAA|AAAAAAAA|AA??????| < shadow |
| * (1) (2) (3) |
| * |
| * First we align the start upwards and the end downwards, so that the |
| * shadow of the region aligns with shadow page boundaries. In the |
| * example, this gives us the shadow page (2). This is the shadow entirely |
| * covered by this allocation. |
| * |
| * Then we have the tricky bits. We want to know if we can free the |
| * partially covered shadow pages - (1) and (3) in the example. For this, |
| * we are given the start and end of the free region that contains this |
| * allocation. Extending our previous example, we could have: |
| * |
| * free_region_start free_region_end |
| * | start end | |
| * v v v v |
| * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc |
| * -------- -------- -------- -------- -------- |
| * | | | | | |
| * | | | /-------/ | |
| * \-------\|/------/ |/---------------/ |
| * ||| || |
| * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow |
| * (1) (2) (3) |
| * |
| * Once again, we align the start of the free region up, and the end of |
| * the free region down so that the shadow is page aligned. So we can free |
| * page (1) - we know no allocation currently uses anything in that page, |
| * because all of it is in the vmalloc free region. But we cannot free |
| * page (3), because we can't be sure that the rest of it is unused. |
| * |
| * We only consider pages that contain part of the original region for |
| * freeing: we don't try to free other pages from the free region or we'd |
| * end up trying to free huge chunks of virtual address space. |
| * |
| * Concurrency |
| * ----------- |
| * |
| * How do we know that we're not freeing a page that is simultaneously |
| * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? |
| * |
| * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running |
| * at the same time. While we run under free_vmap_area_lock, the population |
| * code does not. |
| * |
| * free_vmap_area_lock instead operates to ensure that the larger range |
| * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and |
| * the per-cpu region-finding algorithm both run under free_vmap_area_lock, |
| * no space identified as free will become used while we are running. This |
| * means that so long as we are careful with alignment and only free shadow |
| * pages entirely covered by the free region, we will not run in to any |
| * trouble - any simultaneous allocations will be for disjoint regions. |
| */ |
| void kasan_release_vmalloc(unsigned long start, unsigned long end, |
| unsigned long free_region_start, |
| unsigned long free_region_end) |
| { |
| void *shadow_start, *shadow_end; |
| unsigned long region_start, region_end; |
| unsigned long size; |
| |
| region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE); |
| region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE); |
| |
| free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE); |
| |
| if (start != region_start && |
| free_region_start < region_start) |
| region_start -= KASAN_MEMORY_PER_SHADOW_PAGE; |
| |
| free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE); |
| |
| if (end != region_end && |
| free_region_end > region_end) |
| region_end += KASAN_MEMORY_PER_SHADOW_PAGE; |
| |
| shadow_start = kasan_mem_to_shadow((void *)region_start); |
| shadow_end = kasan_mem_to_shadow((void *)region_end); |
| |
| if (shadow_end > shadow_start) { |
| size = shadow_end - shadow_start; |
| apply_to_existing_page_range(&init_mm, |
| (unsigned long)shadow_start, |
| size, kasan_depopulate_vmalloc_pte, |
| NULL); |
| flush_tlb_kernel_range((unsigned long)shadow_start, |
| (unsigned long)shadow_end); |
| } |
| } |
| |
| #else /* CONFIG_KASAN_VMALLOC */ |
| |
| int kasan_module_alloc(void *addr, size_t size) |
| { |
| void *ret; |
| size_t scaled_size; |
| size_t shadow_size; |
| unsigned long shadow_start; |
| |
| shadow_start = (unsigned long)kasan_mem_to_shadow(addr); |
| scaled_size = (size + KASAN_GRANULE_SIZE - 1) >> |
| KASAN_SHADOW_SCALE_SHIFT; |
| shadow_size = round_up(scaled_size, PAGE_SIZE); |
| |
| if (WARN_ON(!PAGE_ALIGNED(shadow_start))) |
| return -EINVAL; |
| |
| ret = __vmalloc_node_range(shadow_size, 1, shadow_start, |
| shadow_start + shadow_size, |
| GFP_KERNEL, |
| PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE, |
| __builtin_return_address(0)); |
| |
| if (ret) { |
| __memset(ret, KASAN_SHADOW_INIT, shadow_size); |
| find_vm_area(addr)->flags |= VM_KASAN; |
| kmemleak_ignore(ret); |
| return 0; |
| } |
| |
| return -ENOMEM; |
| } |
| |
| void kasan_free_shadow(const struct vm_struct *vm) |
| { |
| if (vm->flags & VM_KASAN) |
| vfree(kasan_mem_to_shadow(vm->addr)); |
| } |
| |
| #endif |