| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * sun8i-ce-cipher.c - hardware cryptographic offloader for |
| * Allwinner H3/A64/H5/H2+/H6/R40 SoC |
| * |
| * Copyright (C) 2016-2019 Corentin LABBE <clabbe.montjoie@gmail.com> |
| * |
| * This file add support for AES cipher with 128,192,256 bits keysize in |
| * CBC and ECB mode. |
| * |
| * You could find a link for the datasheet in Documentation/arch/arm/sunxi.rst |
| */ |
| |
| #include <linux/bottom_half.h> |
| #include <linux/crypto.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/io.h> |
| #include <linux/pm_runtime.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/internal/des.h> |
| #include <crypto/internal/skcipher.h> |
| #include "sun8i-ce.h" |
| |
| static int sun8i_ce_cipher_need_fallback(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct scatterlist *sg; |
| struct skcipher_alg *alg = crypto_skcipher_alg(tfm); |
| struct sun8i_ce_alg_template *algt; |
| unsigned int todo, len; |
| |
| algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher); |
| |
| if (sg_nents_for_len(areq->src, areq->cryptlen) > MAX_SG || |
| sg_nents_for_len(areq->dst, areq->cryptlen) > MAX_SG) { |
| algt->stat_fb_maxsg++; |
| return true; |
| } |
| |
| if (areq->cryptlen < crypto_skcipher_ivsize(tfm)) { |
| algt->stat_fb_leniv++; |
| return true; |
| } |
| |
| if (areq->cryptlen == 0) { |
| algt->stat_fb_len0++; |
| return true; |
| } |
| |
| if (areq->cryptlen % 16) { |
| algt->stat_fb_mod16++; |
| return true; |
| } |
| |
| len = areq->cryptlen; |
| sg = areq->src; |
| while (sg) { |
| if (!IS_ALIGNED(sg->offset, sizeof(u32))) { |
| algt->stat_fb_srcali++; |
| return true; |
| } |
| todo = min(len, sg->length); |
| if (todo % 4) { |
| algt->stat_fb_srclen++; |
| return true; |
| } |
| len -= todo; |
| sg = sg_next(sg); |
| } |
| |
| len = areq->cryptlen; |
| sg = areq->dst; |
| while (sg) { |
| if (!IS_ALIGNED(sg->offset, sizeof(u32))) { |
| algt->stat_fb_dstali++; |
| return true; |
| } |
| todo = min(len, sg->length); |
| if (todo % 4) { |
| algt->stat_fb_dstlen++; |
| return true; |
| } |
| len -= todo; |
| sg = sg_next(sg); |
| } |
| return false; |
| } |
| |
| static int sun8i_ce_cipher_fallback(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| int err; |
| #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG |
| struct skcipher_alg *alg = crypto_skcipher_alg(tfm); |
| struct sun8i_ce_alg_template *algt; |
| |
| algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher); |
| algt->stat_fb++; |
| #endif |
| |
| skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm); |
| skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags, |
| areq->base.complete, areq->base.data); |
| skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst, |
| areq->cryptlen, areq->iv); |
| if (rctx->op_dir & CE_DECRYPTION) |
| err = crypto_skcipher_decrypt(&rctx->fallback_req); |
| else |
| err = crypto_skcipher_encrypt(&rctx->fallback_req); |
| return err; |
| } |
| |
| static int sun8i_ce_cipher_prepare(struct crypto_engine *engine, void *async_req) |
| { |
| struct skcipher_request *areq = container_of(async_req, struct skcipher_request, base); |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun8i_ce_dev *ce = op->ce; |
| struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| struct skcipher_alg *alg = crypto_skcipher_alg(tfm); |
| struct sun8i_ce_alg_template *algt; |
| struct sun8i_ce_flow *chan; |
| struct ce_task *cet; |
| struct scatterlist *sg; |
| unsigned int todo, len, offset, ivsize; |
| u32 common, sym; |
| int flow, i; |
| int nr_sgs = 0; |
| int nr_sgd = 0; |
| int err = 0; |
| int ns = sg_nents_for_len(areq->src, areq->cryptlen); |
| int nd = sg_nents_for_len(areq->dst, areq->cryptlen); |
| |
| algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher); |
| |
| dev_dbg(ce->dev, "%s %s %u %x IV(%p %u) key=%u\n", __func__, |
| crypto_tfm_alg_name(areq->base.tfm), |
| areq->cryptlen, |
| rctx->op_dir, areq->iv, crypto_skcipher_ivsize(tfm), |
| op->keylen); |
| |
| #ifdef CONFIG_CRYPTO_DEV_SUN8I_CE_DEBUG |
| algt->stat_req++; |
| #endif |
| |
| flow = rctx->flow; |
| |
| chan = &ce->chanlist[flow]; |
| |
| cet = chan->tl; |
| memset(cet, 0, sizeof(struct ce_task)); |
| |
| cet->t_id = cpu_to_le32(flow); |
| common = ce->variant->alg_cipher[algt->ce_algo_id]; |
| common |= rctx->op_dir | CE_COMM_INT; |
| cet->t_common_ctl = cpu_to_le32(common); |
| /* CTS and recent CE (H6) need length in bytes, in word otherwise */ |
| if (ce->variant->cipher_t_dlen_in_bytes) |
| cet->t_dlen = cpu_to_le32(areq->cryptlen); |
| else |
| cet->t_dlen = cpu_to_le32(areq->cryptlen / 4); |
| |
| sym = ce->variant->op_mode[algt->ce_blockmode]; |
| len = op->keylen; |
| switch (len) { |
| case 128 / 8: |
| sym |= CE_AES_128BITS; |
| break; |
| case 192 / 8: |
| sym |= CE_AES_192BITS; |
| break; |
| case 256 / 8: |
| sym |= CE_AES_256BITS; |
| break; |
| } |
| |
| cet->t_sym_ctl = cpu_to_le32(sym); |
| cet->t_asym_ctl = 0; |
| |
| rctx->addr_key = dma_map_single(ce->dev, op->key, op->keylen, DMA_TO_DEVICE); |
| if (dma_mapping_error(ce->dev, rctx->addr_key)) { |
| dev_err(ce->dev, "Cannot DMA MAP KEY\n"); |
| err = -EFAULT; |
| goto theend; |
| } |
| cet->t_key = cpu_to_le32(rctx->addr_key); |
| |
| ivsize = crypto_skcipher_ivsize(tfm); |
| if (areq->iv && crypto_skcipher_ivsize(tfm) > 0) { |
| rctx->ivlen = ivsize; |
| if (rctx->op_dir & CE_DECRYPTION) { |
| offset = areq->cryptlen - ivsize; |
| scatterwalk_map_and_copy(chan->backup_iv, areq->src, |
| offset, ivsize, 0); |
| } |
| memcpy(chan->bounce_iv, areq->iv, ivsize); |
| rctx->addr_iv = dma_map_single(ce->dev, chan->bounce_iv, rctx->ivlen, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(ce->dev, rctx->addr_iv)) { |
| dev_err(ce->dev, "Cannot DMA MAP IV\n"); |
| err = -ENOMEM; |
| goto theend_iv; |
| } |
| cet->t_iv = cpu_to_le32(rctx->addr_iv); |
| } |
| |
| if (areq->src == areq->dst) { |
| nr_sgs = dma_map_sg(ce->dev, areq->src, ns, DMA_BIDIRECTIONAL); |
| if (nr_sgs <= 0 || nr_sgs > MAX_SG) { |
| dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs); |
| err = -EINVAL; |
| goto theend_iv; |
| } |
| nr_sgd = nr_sgs; |
| } else { |
| nr_sgs = dma_map_sg(ce->dev, areq->src, ns, DMA_TO_DEVICE); |
| if (nr_sgs <= 0 || nr_sgs > MAX_SG) { |
| dev_err(ce->dev, "Invalid sg number %d\n", nr_sgs); |
| err = -EINVAL; |
| goto theend_iv; |
| } |
| nr_sgd = dma_map_sg(ce->dev, areq->dst, nd, DMA_FROM_DEVICE); |
| if (nr_sgd <= 0 || nr_sgd > MAX_SG) { |
| dev_err(ce->dev, "Invalid sg number %d\n", nr_sgd); |
| err = -EINVAL; |
| goto theend_sgs; |
| } |
| } |
| |
| len = areq->cryptlen; |
| for_each_sg(areq->src, sg, nr_sgs, i) { |
| cet->t_src[i].addr = cpu_to_le32(sg_dma_address(sg)); |
| todo = min(len, sg_dma_len(sg)); |
| cet->t_src[i].len = cpu_to_le32(todo / 4); |
| dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__, |
| areq->cryptlen, i, cet->t_src[i].len, sg->offset, todo); |
| len -= todo; |
| } |
| if (len > 0) { |
| dev_err(ce->dev, "remaining len %d\n", len); |
| err = -EINVAL; |
| goto theend_sgs; |
| } |
| |
| len = areq->cryptlen; |
| for_each_sg(areq->dst, sg, nr_sgd, i) { |
| cet->t_dst[i].addr = cpu_to_le32(sg_dma_address(sg)); |
| todo = min(len, sg_dma_len(sg)); |
| cet->t_dst[i].len = cpu_to_le32(todo / 4); |
| dev_dbg(ce->dev, "%s total=%u SG(%d %u off=%d) todo=%u\n", __func__, |
| areq->cryptlen, i, cet->t_dst[i].len, sg->offset, todo); |
| len -= todo; |
| } |
| if (len > 0) { |
| dev_err(ce->dev, "remaining len %d\n", len); |
| err = -EINVAL; |
| goto theend_sgs; |
| } |
| |
| chan->timeout = areq->cryptlen; |
| rctx->nr_sgs = nr_sgs; |
| rctx->nr_sgd = nr_sgd; |
| return 0; |
| |
| theend_sgs: |
| if (areq->src == areq->dst) { |
| dma_unmap_sg(ce->dev, areq->src, ns, DMA_BIDIRECTIONAL); |
| } else { |
| if (nr_sgs > 0) |
| dma_unmap_sg(ce->dev, areq->src, ns, DMA_TO_DEVICE); |
| dma_unmap_sg(ce->dev, areq->dst, nd, DMA_FROM_DEVICE); |
| } |
| |
| theend_iv: |
| if (areq->iv && ivsize > 0) { |
| if (rctx->addr_iv) |
| dma_unmap_single(ce->dev, rctx->addr_iv, rctx->ivlen, DMA_TO_DEVICE); |
| offset = areq->cryptlen - ivsize; |
| if (rctx->op_dir & CE_DECRYPTION) { |
| memcpy(areq->iv, chan->backup_iv, ivsize); |
| memzero_explicit(chan->backup_iv, ivsize); |
| } else { |
| scatterwalk_map_and_copy(areq->iv, areq->dst, offset, |
| ivsize, 0); |
| } |
| memzero_explicit(chan->bounce_iv, ivsize); |
| } |
| |
| dma_unmap_single(ce->dev, rctx->addr_key, op->keylen, DMA_TO_DEVICE); |
| |
| theend: |
| return err; |
| } |
| |
| static int sun8i_ce_cipher_run(struct crypto_engine *engine, void *areq) |
| { |
| struct skcipher_request *breq = container_of(areq, struct skcipher_request, base); |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(breq); |
| struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun8i_ce_dev *ce = op->ce; |
| struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(breq); |
| int flow, err; |
| |
| flow = rctx->flow; |
| err = sun8i_ce_run_task(ce, flow, crypto_tfm_alg_name(breq->base.tfm)); |
| local_bh_disable(); |
| crypto_finalize_skcipher_request(engine, breq, err); |
| local_bh_enable(); |
| return 0; |
| } |
| |
| static int sun8i_ce_cipher_unprepare(struct crypto_engine *engine, void *async_req) |
| { |
| struct skcipher_request *areq = container_of(async_req, struct skcipher_request, base); |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun8i_ce_dev *ce = op->ce; |
| struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| struct sun8i_ce_flow *chan; |
| struct ce_task *cet; |
| unsigned int ivsize, offset; |
| int nr_sgs = rctx->nr_sgs; |
| int nr_sgd = rctx->nr_sgd; |
| int flow; |
| |
| flow = rctx->flow; |
| chan = &ce->chanlist[flow]; |
| cet = chan->tl; |
| ivsize = crypto_skcipher_ivsize(tfm); |
| |
| if (areq->src == areq->dst) { |
| dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL); |
| } else { |
| if (nr_sgs > 0) |
| dma_unmap_sg(ce->dev, areq->src, nr_sgs, DMA_TO_DEVICE); |
| dma_unmap_sg(ce->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE); |
| } |
| |
| if (areq->iv && ivsize > 0) { |
| if (cet->t_iv) |
| dma_unmap_single(ce->dev, rctx->addr_iv, rctx->ivlen, DMA_TO_DEVICE); |
| offset = areq->cryptlen - ivsize; |
| if (rctx->op_dir & CE_DECRYPTION) { |
| memcpy(areq->iv, chan->backup_iv, ivsize); |
| memzero_explicit(chan->backup_iv, ivsize); |
| } else { |
| scatterwalk_map_and_copy(areq->iv, areq->dst, offset, |
| ivsize, 0); |
| } |
| memzero_explicit(chan->bounce_iv, ivsize); |
| } |
| |
| dma_unmap_single(ce->dev, rctx->addr_key, op->keylen, DMA_TO_DEVICE); |
| |
| return 0; |
| } |
| |
| int sun8i_ce_skdecrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| struct crypto_engine *engine; |
| int e; |
| |
| rctx->op_dir = CE_DECRYPTION; |
| if (sun8i_ce_cipher_need_fallback(areq)) |
| return sun8i_ce_cipher_fallback(areq); |
| |
| e = sun8i_ce_get_engine_number(op->ce); |
| rctx->flow = e; |
| engine = op->ce->chanlist[e].engine; |
| |
| return crypto_transfer_skcipher_request_to_engine(engine, areq); |
| } |
| |
| int sun8i_ce_skencrypt(struct skcipher_request *areq) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun8i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| struct crypto_engine *engine; |
| int e; |
| |
| rctx->op_dir = CE_ENCRYPTION; |
| if (sun8i_ce_cipher_need_fallback(areq)) |
| return sun8i_ce_cipher_fallback(areq); |
| |
| e = sun8i_ce_get_engine_number(op->ce); |
| rctx->flow = e; |
| engine = op->ce->chanlist[e].engine; |
| |
| return crypto_transfer_skcipher_request_to_engine(engine, areq); |
| } |
| |
| int sun8i_ce_cipher_init(struct crypto_tfm *tfm) |
| { |
| struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm); |
| struct sun8i_ce_alg_template *algt; |
| const char *name = crypto_tfm_alg_name(tfm); |
| struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm); |
| struct skcipher_alg *alg = crypto_skcipher_alg(sktfm); |
| int err; |
| |
| memset(op, 0, sizeof(struct sun8i_cipher_tfm_ctx)); |
| |
| algt = container_of(alg, struct sun8i_ce_alg_template, alg.skcipher); |
| op->ce = algt->ce; |
| |
| op->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(op->fallback_tfm)) { |
| dev_err(op->ce->dev, "ERROR: Cannot allocate fallback for %s %ld\n", |
| name, PTR_ERR(op->fallback_tfm)); |
| return PTR_ERR(op->fallback_tfm); |
| } |
| |
| sktfm->reqsize = sizeof(struct sun8i_cipher_req_ctx) + |
| crypto_skcipher_reqsize(op->fallback_tfm); |
| |
| memcpy(algt->fbname, |
| crypto_tfm_alg_driver_name(crypto_skcipher_tfm(op->fallback_tfm)), |
| CRYPTO_MAX_ALG_NAME); |
| |
| op->enginectx.op.do_one_request = sun8i_ce_cipher_run; |
| op->enginectx.op.prepare_request = sun8i_ce_cipher_prepare; |
| op->enginectx.op.unprepare_request = sun8i_ce_cipher_unprepare; |
| |
| err = pm_runtime_get_sync(op->ce->dev); |
| if (err < 0) |
| goto error_pm; |
| |
| return 0; |
| error_pm: |
| pm_runtime_put_noidle(op->ce->dev); |
| crypto_free_skcipher(op->fallback_tfm); |
| return err; |
| } |
| |
| void sun8i_ce_cipher_exit(struct crypto_tfm *tfm) |
| { |
| struct sun8i_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm); |
| |
| kfree_sensitive(op->key); |
| crypto_free_skcipher(op->fallback_tfm); |
| pm_runtime_put_sync_suspend(op->ce->dev); |
| } |
| |
| int sun8i_ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| struct sun8i_ce_dev *ce = op->ce; |
| |
| switch (keylen) { |
| case 128 / 8: |
| break; |
| case 192 / 8: |
| break; |
| case 256 / 8: |
| break; |
| default: |
| dev_dbg(ce->dev, "ERROR: Invalid keylen %u\n", keylen); |
| return -EINVAL; |
| } |
| kfree_sensitive(op->key); |
| op->keylen = keylen; |
| op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA); |
| if (!op->key) |
| return -ENOMEM; |
| |
| crypto_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); |
| |
| return crypto_skcipher_setkey(op->fallback_tfm, key, keylen); |
| } |
| |
| int sun8i_ce_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen) |
| { |
| struct sun8i_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| int err; |
| |
| err = verify_skcipher_des3_key(tfm, key); |
| if (err) |
| return err; |
| |
| kfree_sensitive(op->key); |
| op->keylen = keylen; |
| op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA); |
| if (!op->key) |
| return -ENOMEM; |
| |
| crypto_skcipher_clear_flags(op->fallback_tfm, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(op->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); |
| |
| return crypto_skcipher_setkey(op->fallback_tfm, key, keylen); |
| } |