| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (c) 2017-2018, The Linux foundation. All rights reserved. |
| |
| #include <linux/clk.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dma/qcom-gpi-dma.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/log2.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_opp.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/soc/qcom/geni-se.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spinlock.h> |
| |
| /* SPI SE specific registers and respective register fields */ |
| #define SE_SPI_CPHA 0x224 |
| #define CPHA BIT(0) |
| |
| #define SE_SPI_LOOPBACK 0x22c |
| #define LOOPBACK_ENABLE 0x1 |
| #define NORMAL_MODE 0x0 |
| #define LOOPBACK_MSK GENMASK(1, 0) |
| |
| #define SE_SPI_CPOL 0x230 |
| #define CPOL BIT(2) |
| |
| #define SE_SPI_DEMUX_OUTPUT_INV 0x24c |
| #define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0) |
| |
| #define SE_SPI_DEMUX_SEL 0x250 |
| #define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0) |
| |
| #define SE_SPI_TRANS_CFG 0x25c |
| #define CS_TOGGLE BIT(1) |
| |
| #define SE_SPI_WORD_LEN 0x268 |
| #define WORD_LEN_MSK GENMASK(9, 0) |
| #define MIN_WORD_LEN 4 |
| |
| #define SE_SPI_TX_TRANS_LEN 0x26c |
| #define SE_SPI_RX_TRANS_LEN 0x270 |
| #define TRANS_LEN_MSK GENMASK(23, 0) |
| |
| #define SE_SPI_PRE_POST_CMD_DLY 0x274 |
| |
| #define SE_SPI_DELAY_COUNTERS 0x278 |
| #define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0) |
| #define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10) |
| #define SPI_CS_CLK_DELAY_SHFT 10 |
| |
| /* M_CMD OP codes for SPI */ |
| #define SPI_TX_ONLY 1 |
| #define SPI_RX_ONLY 2 |
| #define SPI_TX_RX 7 |
| #define SPI_CS_ASSERT 8 |
| #define SPI_CS_DEASSERT 9 |
| #define SPI_SCK_ONLY 10 |
| /* M_CMD params for SPI */ |
| #define SPI_PRE_CMD_DELAY BIT(0) |
| #define TIMESTAMP_BEFORE BIT(1) |
| #define FRAGMENTATION BIT(2) |
| #define TIMESTAMP_AFTER BIT(3) |
| #define POST_CMD_DELAY BIT(4) |
| |
| #define GSI_LOOPBACK_EN BIT(0) |
| #define GSI_CS_TOGGLE BIT(3) |
| #define GSI_CPHA BIT(4) |
| #define GSI_CPOL BIT(5) |
| |
| struct spi_geni_master { |
| struct geni_se se; |
| struct device *dev; |
| u32 tx_fifo_depth; |
| u32 fifo_width_bits; |
| u32 tx_wm; |
| u32 last_mode; |
| unsigned long cur_speed_hz; |
| unsigned long cur_sclk_hz; |
| unsigned int cur_bits_per_word; |
| unsigned int tx_rem_bytes; |
| unsigned int rx_rem_bytes; |
| const struct spi_transfer *cur_xfer; |
| struct completion cs_done; |
| struct completion cancel_done; |
| struct completion abort_done; |
| struct completion tx_reset_done; |
| struct completion rx_reset_done; |
| unsigned int oversampling; |
| spinlock_t lock; |
| int irq; |
| bool cs_flag; |
| bool abort_failed; |
| struct dma_chan *tx; |
| struct dma_chan *rx; |
| int cur_xfer_mode; |
| }; |
| |
| static int get_spi_clk_cfg(unsigned int speed_hz, |
| struct spi_geni_master *mas, |
| unsigned int *clk_idx, |
| unsigned int *clk_div) |
| { |
| unsigned long sclk_freq; |
| unsigned int actual_hz; |
| int ret; |
| |
| ret = geni_se_clk_freq_match(&mas->se, |
| speed_hz * mas->oversampling, |
| clk_idx, &sclk_freq, false); |
| if (ret) { |
| dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n", |
| ret, speed_hz); |
| return ret; |
| } |
| |
| *clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz); |
| actual_hz = sclk_freq / (mas->oversampling * *clk_div); |
| |
| dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz, |
| actual_hz, sclk_freq, *clk_idx, *clk_div); |
| ret = dev_pm_opp_set_rate(mas->dev, sclk_freq); |
| if (ret) |
| dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret); |
| else |
| mas->cur_sclk_hz = sclk_freq; |
| |
| return ret; |
| } |
| |
| static void handle_se_timeout(struct spi_master *spi, |
| struct spi_message *msg) |
| { |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| unsigned long time_left; |
| struct geni_se *se = &mas->se; |
| const struct spi_transfer *xfer; |
| |
| spin_lock_irq(&mas->lock); |
| reinit_completion(&mas->cancel_done); |
| if (mas->cur_xfer_mode == GENI_SE_FIFO) |
| writel(0, se->base + SE_GENI_TX_WATERMARK_REG); |
| |
| xfer = mas->cur_xfer; |
| mas->cur_xfer = NULL; |
| geni_se_cancel_m_cmd(se); |
| spin_unlock_irq(&mas->lock); |
| |
| time_left = wait_for_completion_timeout(&mas->cancel_done, HZ); |
| if (time_left) |
| goto unmap_if_dma; |
| |
| spin_lock_irq(&mas->lock); |
| reinit_completion(&mas->abort_done); |
| geni_se_abort_m_cmd(se); |
| spin_unlock_irq(&mas->lock); |
| |
| time_left = wait_for_completion_timeout(&mas->abort_done, HZ); |
| if (!time_left) { |
| dev_err(mas->dev, "Failed to cancel/abort m_cmd\n"); |
| |
| /* |
| * No need for a lock since SPI core has a lock and we never |
| * access this from an interrupt. |
| */ |
| mas->abort_failed = true; |
| } |
| |
| unmap_if_dma: |
| if (mas->cur_xfer_mode == GENI_SE_DMA) { |
| if (xfer) { |
| if (xfer->tx_buf) { |
| spin_lock_irq(&mas->lock); |
| reinit_completion(&mas->tx_reset_done); |
| writel(1, se->base + SE_DMA_TX_FSM_RST); |
| spin_unlock_irq(&mas->lock); |
| time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ); |
| if (!time_left) |
| dev_err(mas->dev, "DMA TX RESET failed\n"); |
| } |
| if (xfer->rx_buf) { |
| spin_lock_irq(&mas->lock); |
| reinit_completion(&mas->rx_reset_done); |
| writel(1, se->base + SE_DMA_RX_FSM_RST); |
| spin_unlock_irq(&mas->lock); |
| time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ); |
| if (!time_left) |
| dev_err(mas->dev, "DMA RX RESET failed\n"); |
| } |
| } else { |
| /* |
| * This can happen if a timeout happened and we had to wait |
| * for lock in this function because isr was holding the lock |
| * and handling transfer completion at that time. |
| */ |
| dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n"); |
| } |
| } |
| } |
| |
| static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg) |
| { |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| |
| dmaengine_terminate_sync(mas->tx); |
| dmaengine_terminate_sync(mas->rx); |
| } |
| |
| static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg) |
| { |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| |
| switch (mas->cur_xfer_mode) { |
| case GENI_SE_FIFO: |
| case GENI_SE_DMA: |
| handle_se_timeout(spi, msg); |
| break; |
| case GENI_GPI_DMA: |
| handle_gpi_timeout(spi, msg); |
| break; |
| default: |
| dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode); |
| } |
| } |
| |
| static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas) |
| { |
| struct geni_se *se = &mas->se; |
| u32 m_irq, m_irq_en; |
| |
| if (!mas->abort_failed) |
| return false; |
| |
| /* |
| * The only known case where a transfer times out and then a cancel |
| * times out then an abort times out is if something is blocking our |
| * interrupt handler from running. Avoid starting any new transfers |
| * until that sorts itself out. |
| */ |
| spin_lock_irq(&mas->lock); |
| m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); |
| m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN); |
| spin_unlock_irq(&mas->lock); |
| |
| if (m_irq & m_irq_en) { |
| dev_err(mas->dev, "Interrupts pending after abort: %#010x\n", |
| m_irq & m_irq_en); |
| return true; |
| } |
| |
| /* |
| * If we're here the problem resolved itself so no need to check more |
| * on future transfers. |
| */ |
| mas->abort_failed = false; |
| |
| return false; |
| } |
| |
| static void spi_geni_set_cs(struct spi_device *slv, bool set_flag) |
| { |
| struct spi_geni_master *mas = spi_master_get_devdata(slv->master); |
| struct spi_master *spi = dev_get_drvdata(mas->dev); |
| struct geni_se *se = &mas->se; |
| unsigned long time_left; |
| |
| if (!(slv->mode & SPI_CS_HIGH)) |
| set_flag = !set_flag; |
| |
| if (set_flag == mas->cs_flag) |
| return; |
| |
| pm_runtime_get_sync(mas->dev); |
| |
| if (spi_geni_is_abort_still_pending(mas)) { |
| dev_err(mas->dev, "Can't set chip select\n"); |
| goto exit; |
| } |
| |
| spin_lock_irq(&mas->lock); |
| if (mas->cur_xfer) { |
| dev_err(mas->dev, "Can't set CS when prev xfer running\n"); |
| spin_unlock_irq(&mas->lock); |
| goto exit; |
| } |
| |
| mas->cs_flag = set_flag; |
| /* set xfer_mode to FIFO to complete cs_done in isr */ |
| mas->cur_xfer_mode = GENI_SE_FIFO; |
| geni_se_select_mode(se, mas->cur_xfer_mode); |
| |
| reinit_completion(&mas->cs_done); |
| if (set_flag) |
| geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0); |
| else |
| geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0); |
| spin_unlock_irq(&mas->lock); |
| |
| time_left = wait_for_completion_timeout(&mas->cs_done, HZ); |
| if (!time_left) { |
| dev_warn(mas->dev, "Timeout setting chip select\n"); |
| handle_se_timeout(spi, NULL); |
| } |
| |
| exit: |
| pm_runtime_put(mas->dev); |
| } |
| |
| static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode, |
| unsigned int bits_per_word) |
| { |
| unsigned int pack_words; |
| bool msb_first = (mode & SPI_LSB_FIRST) ? false : true; |
| struct geni_se *se = &mas->se; |
| u32 word_len; |
| |
| /* |
| * If bits_per_word isn't a byte aligned value, set the packing to be |
| * 1 SPI word per FIFO word. |
| */ |
| if (!(mas->fifo_width_bits % bits_per_word)) |
| pack_words = mas->fifo_width_bits / bits_per_word; |
| else |
| pack_words = 1; |
| geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first, |
| true, true); |
| word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK; |
| writel(word_len, se->base + SE_SPI_WORD_LEN); |
| } |
| |
| static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas, |
| unsigned long clk_hz) |
| { |
| u32 clk_sel, m_clk_cfg, idx, div; |
| struct geni_se *se = &mas->se; |
| int ret; |
| |
| if (clk_hz == mas->cur_speed_hz) |
| return 0; |
| |
| ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div); |
| if (ret) { |
| dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret); |
| return ret; |
| } |
| |
| /* |
| * SPI core clock gets configured with the requested frequency |
| * or the frequency closer to the requested frequency. |
| * For that reason requested frequency is stored in the |
| * cur_speed_hz and referred in the consecutive transfer instead |
| * of calling clk_get_rate() API. |
| */ |
| mas->cur_speed_hz = clk_hz; |
| |
| clk_sel = idx & CLK_SEL_MSK; |
| m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN; |
| writel(clk_sel, se->base + SE_GENI_CLK_SEL); |
| writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG); |
| |
| /* Set BW quota for CPU as driver supports FIFO mode only. */ |
| se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz); |
| ret = geni_icc_set_bw(se); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int setup_fifo_params(struct spi_device *spi_slv, |
| struct spi_master *spi) |
| { |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| struct geni_se *se = &mas->se; |
| u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0; |
| u32 demux_sel; |
| |
| if (mas->last_mode != spi_slv->mode) { |
| if (spi_slv->mode & SPI_LOOP) |
| loopback_cfg = LOOPBACK_ENABLE; |
| |
| if (spi_slv->mode & SPI_CPOL) |
| cpol = CPOL; |
| |
| if (spi_slv->mode & SPI_CPHA) |
| cpha = CPHA; |
| |
| if (spi_slv->mode & SPI_CS_HIGH) |
| demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0)); |
| |
| demux_sel = spi_get_chipselect(spi_slv, 0); |
| mas->cur_bits_per_word = spi_slv->bits_per_word; |
| |
| spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word); |
| writel(loopback_cfg, se->base + SE_SPI_LOOPBACK); |
| writel(demux_sel, se->base + SE_SPI_DEMUX_SEL); |
| writel(cpha, se->base + SE_SPI_CPHA); |
| writel(cpol, se->base + SE_SPI_CPOL); |
| writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV); |
| |
| mas->last_mode = spi_slv->mode; |
| } |
| |
| return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz); |
| } |
| |
| static void |
| spi_gsi_callback_result(void *cb, const struct dmaengine_result *result) |
| { |
| struct spi_master *spi = cb; |
| |
| spi->cur_msg->status = -EIO; |
| if (result->result != DMA_TRANS_NOERROR) { |
| dev_err(&spi->dev, "DMA txn failed: %d\n", result->result); |
| spi_finalize_current_transfer(spi); |
| return; |
| } |
| |
| if (!result->residue) { |
| spi->cur_msg->status = 0; |
| dev_dbg(&spi->dev, "DMA txn completed\n"); |
| } else { |
| dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue); |
| } |
| |
| spi_finalize_current_transfer(spi); |
| } |
| |
| static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas, |
| struct spi_device *spi_slv, struct spi_master *spi) |
| { |
| unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; |
| struct dma_slave_config config = {}; |
| struct gpi_spi_config peripheral = {}; |
| struct dma_async_tx_descriptor *tx_desc, *rx_desc; |
| int ret; |
| |
| config.peripheral_config = &peripheral; |
| config.peripheral_size = sizeof(peripheral); |
| peripheral.set_config = true; |
| |
| if (xfer->bits_per_word != mas->cur_bits_per_word || |
| xfer->speed_hz != mas->cur_speed_hz) { |
| mas->cur_bits_per_word = xfer->bits_per_word; |
| mas->cur_speed_hz = xfer->speed_hz; |
| } |
| |
| if (xfer->tx_buf && xfer->rx_buf) { |
| peripheral.cmd = SPI_DUPLEX; |
| } else if (xfer->tx_buf) { |
| peripheral.cmd = SPI_TX; |
| peripheral.rx_len = 0; |
| } else if (xfer->rx_buf) { |
| peripheral.cmd = SPI_RX; |
| if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) { |
| peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word); |
| } else { |
| int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1; |
| |
| peripheral.rx_len = (xfer->len / bytes_per_word); |
| } |
| } |
| |
| peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP); |
| peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL); |
| peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA); |
| peripheral.cs = spi_get_chipselect(spi_slv, 0); |
| peripheral.pack_en = true; |
| peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN; |
| |
| ret = get_spi_clk_cfg(mas->cur_speed_hz, mas, |
| &peripheral.clk_src, &peripheral.clk_div); |
| if (ret) { |
| dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret); |
| return ret; |
| } |
| |
| if (!xfer->cs_change) { |
| if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers)) |
| peripheral.fragmentation = FRAGMENTATION; |
| } |
| |
| if (peripheral.cmd & SPI_RX) { |
| dmaengine_slave_config(mas->rx, &config); |
| rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents, |
| DMA_DEV_TO_MEM, flags); |
| if (!rx_desc) { |
| dev_err(mas->dev, "Err setting up rx desc\n"); |
| return -EIO; |
| } |
| } |
| |
| /* |
| * Prepare the TX always, even for RX or tx_buf being null, we would |
| * need TX to be prepared per GSI spec |
| */ |
| dmaengine_slave_config(mas->tx, &config); |
| tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents, |
| DMA_MEM_TO_DEV, flags); |
| if (!tx_desc) { |
| dev_err(mas->dev, "Err setting up tx desc\n"); |
| return -EIO; |
| } |
| |
| tx_desc->callback_result = spi_gsi_callback_result; |
| tx_desc->callback_param = spi; |
| |
| if (peripheral.cmd & SPI_RX) |
| dmaengine_submit(rx_desc); |
| dmaengine_submit(tx_desc); |
| |
| if (peripheral.cmd & SPI_RX) |
| dma_async_issue_pending(mas->rx); |
| |
| dma_async_issue_pending(mas->tx); |
| return 1; |
| } |
| |
| static u32 get_xfer_len_in_words(struct spi_transfer *xfer, |
| struct spi_geni_master *mas) |
| { |
| u32 len; |
| |
| if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) |
| len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word; |
| else |
| len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1); |
| len &= TRANS_LEN_MSK; |
| |
| return len; |
| } |
| |
| static bool geni_can_dma(struct spi_controller *ctlr, |
| struct spi_device *slv, struct spi_transfer *xfer) |
| { |
| struct spi_geni_master *mas = spi_master_get_devdata(slv->master); |
| u32 len, fifo_size; |
| |
| if (mas->cur_xfer_mode == GENI_GPI_DMA) |
| return true; |
| |
| len = get_xfer_len_in_words(xfer, mas); |
| fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word; |
| |
| if (len > fifo_size) |
| return true; |
| else |
| return false; |
| } |
| |
| static int spi_geni_prepare_message(struct spi_master *spi, |
| struct spi_message *spi_msg) |
| { |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| int ret; |
| |
| switch (mas->cur_xfer_mode) { |
| case GENI_SE_FIFO: |
| case GENI_SE_DMA: |
| if (spi_geni_is_abort_still_pending(mas)) |
| return -EBUSY; |
| ret = setup_fifo_params(spi_msg->spi, spi); |
| if (ret) |
| dev_err(mas->dev, "Couldn't select mode %d\n", ret); |
| return ret; |
| |
| case GENI_GPI_DMA: |
| /* nothing to do for GPI DMA */ |
| return 0; |
| } |
| |
| dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode); |
| return -EINVAL; |
| } |
| |
| static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas) |
| { |
| int ret; |
| |
| mas->tx = dma_request_chan(mas->dev, "tx"); |
| if (IS_ERR(mas->tx)) { |
| ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx), |
| "Failed to get tx DMA ch\n"); |
| goto err_tx; |
| } |
| |
| mas->rx = dma_request_chan(mas->dev, "rx"); |
| if (IS_ERR(mas->rx)) { |
| ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx), |
| "Failed to get rx DMA ch\n"); |
| goto err_rx; |
| } |
| |
| return 0; |
| |
| err_rx: |
| mas->rx = NULL; |
| dma_release_channel(mas->tx); |
| err_tx: |
| mas->tx = NULL; |
| return ret; |
| } |
| |
| static void spi_geni_release_dma_chan(struct spi_geni_master *mas) |
| { |
| if (mas->rx) { |
| dma_release_channel(mas->rx); |
| mas->rx = NULL; |
| } |
| |
| if (mas->tx) { |
| dma_release_channel(mas->tx); |
| mas->tx = NULL; |
| } |
| } |
| |
| static int spi_geni_init(struct spi_geni_master *mas) |
| { |
| struct geni_se *se = &mas->se; |
| unsigned int proto, major, minor, ver; |
| u32 spi_tx_cfg, fifo_disable; |
| int ret = -ENXIO; |
| |
| pm_runtime_get_sync(mas->dev); |
| |
| proto = geni_se_read_proto(se); |
| if (proto != GENI_SE_SPI) { |
| dev_err(mas->dev, "Invalid proto %d\n", proto); |
| goto out_pm; |
| } |
| mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se); |
| |
| /* Width of Tx and Rx FIFO is same */ |
| mas->fifo_width_bits = geni_se_get_tx_fifo_width(se); |
| |
| /* |
| * Hardware programming guide suggests to configure |
| * RX FIFO RFR level to fifo_depth-2. |
| */ |
| geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2); |
| /* Transmit an entire FIFO worth of data per IRQ */ |
| mas->tx_wm = 1; |
| ver = geni_se_get_qup_hw_version(se); |
| major = GENI_SE_VERSION_MAJOR(ver); |
| minor = GENI_SE_VERSION_MINOR(ver); |
| |
| if (major == 1 && minor == 0) |
| mas->oversampling = 2; |
| else |
| mas->oversampling = 1; |
| |
| fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE; |
| switch (fifo_disable) { |
| case 1: |
| ret = spi_geni_grab_gpi_chan(mas); |
| if (!ret) { /* success case */ |
| mas->cur_xfer_mode = GENI_GPI_DMA; |
| geni_se_select_mode(se, GENI_GPI_DMA); |
| dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n"); |
| break; |
| } else if (ret == -EPROBE_DEFER) { |
| goto out_pm; |
| } |
| /* |
| * in case of failure to get gpi dma channel, we can still do the |
| * FIFO mode, so fallthrough |
| */ |
| dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n"); |
| fallthrough; |
| |
| case 0: |
| mas->cur_xfer_mode = GENI_SE_FIFO; |
| geni_se_select_mode(se, GENI_SE_FIFO); |
| ret = 0; |
| break; |
| } |
| |
| /* We always control CS manually */ |
| spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG); |
| spi_tx_cfg &= ~CS_TOGGLE; |
| writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG); |
| |
| out_pm: |
| pm_runtime_put(mas->dev); |
| return ret; |
| } |
| |
| static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas) |
| { |
| /* |
| * Calculate how many bytes we'll put in each FIFO word. If the |
| * transfer words don't pack cleanly into a FIFO word we'll just put |
| * one transfer word in each FIFO word. If they do pack we'll pack 'em. |
| */ |
| if (mas->fifo_width_bits % mas->cur_bits_per_word) |
| return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word, |
| BITS_PER_BYTE)); |
| |
| return mas->fifo_width_bits / BITS_PER_BYTE; |
| } |
| |
| static bool geni_spi_handle_tx(struct spi_geni_master *mas) |
| { |
| struct geni_se *se = &mas->se; |
| unsigned int max_bytes; |
| const u8 *tx_buf; |
| unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); |
| unsigned int i = 0; |
| |
| /* Stop the watermark IRQ if nothing to send */ |
| if (!mas->cur_xfer) { |
| writel(0, se->base + SE_GENI_TX_WATERMARK_REG); |
| return false; |
| } |
| |
| max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word; |
| if (mas->tx_rem_bytes < max_bytes) |
| max_bytes = mas->tx_rem_bytes; |
| |
| tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes; |
| while (i < max_bytes) { |
| unsigned int j; |
| unsigned int bytes_to_write; |
| u32 fifo_word = 0; |
| u8 *fifo_byte = (u8 *)&fifo_word; |
| |
| bytes_to_write = min(bytes_per_fifo_word, max_bytes - i); |
| for (j = 0; j < bytes_to_write; j++) |
| fifo_byte[j] = tx_buf[i++]; |
| iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1); |
| } |
| mas->tx_rem_bytes -= max_bytes; |
| if (!mas->tx_rem_bytes) { |
| writel(0, se->base + SE_GENI_TX_WATERMARK_REG); |
| return false; |
| } |
| return true; |
| } |
| |
| static void geni_spi_handle_rx(struct spi_geni_master *mas) |
| { |
| struct geni_se *se = &mas->se; |
| u32 rx_fifo_status; |
| unsigned int rx_bytes; |
| unsigned int rx_last_byte_valid; |
| u8 *rx_buf; |
| unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); |
| unsigned int i = 0; |
| |
| rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS); |
| rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word; |
| if (rx_fifo_status & RX_LAST) { |
| rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK; |
| rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT; |
| if (rx_last_byte_valid && rx_last_byte_valid < 4) |
| rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid; |
| } |
| |
| /* Clear out the FIFO and bail if nowhere to put it */ |
| if (!mas->cur_xfer) { |
| for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++) |
| readl(se->base + SE_GENI_RX_FIFOn); |
| return; |
| } |
| |
| if (mas->rx_rem_bytes < rx_bytes) |
| rx_bytes = mas->rx_rem_bytes; |
| |
| rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes; |
| while (i < rx_bytes) { |
| u32 fifo_word = 0; |
| u8 *fifo_byte = (u8 *)&fifo_word; |
| unsigned int bytes_to_read; |
| unsigned int j; |
| |
| bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i); |
| ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1); |
| for (j = 0; j < bytes_to_read; j++) |
| rx_buf[i++] = fifo_byte[j]; |
| } |
| mas->rx_rem_bytes -= rx_bytes; |
| } |
| |
| static int setup_se_xfer(struct spi_transfer *xfer, |
| struct spi_geni_master *mas, |
| u16 mode, struct spi_master *spi) |
| { |
| u32 m_cmd = 0; |
| u32 len; |
| struct geni_se *se = &mas->se; |
| int ret; |
| |
| /* |
| * Ensure that our interrupt handler isn't still running from some |
| * prior command before we start messing with the hardware behind |
| * its back. We don't need to _keep_ the lock here since we're only |
| * worried about racing with out interrupt handler. The SPI core |
| * already handles making sure that we're not trying to do two |
| * transfers at once or setting a chip select and doing a transfer |
| * concurrently. |
| * |
| * NOTE: we actually _can't_ hold the lock here because possibly we |
| * might call clk_set_rate() which needs to be able to sleep. |
| */ |
| spin_lock_irq(&mas->lock); |
| spin_unlock_irq(&mas->lock); |
| |
| if (xfer->bits_per_word != mas->cur_bits_per_word) { |
| spi_setup_word_len(mas, mode, xfer->bits_per_word); |
| mas->cur_bits_per_word = xfer->bits_per_word; |
| } |
| |
| /* Speed and bits per word can be overridden per transfer */ |
| ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz); |
| if (ret) |
| return ret; |
| |
| mas->tx_rem_bytes = 0; |
| mas->rx_rem_bytes = 0; |
| |
| len = get_xfer_len_in_words(xfer, mas); |
| |
| mas->cur_xfer = xfer; |
| if (xfer->tx_buf) { |
| m_cmd |= SPI_TX_ONLY; |
| mas->tx_rem_bytes = xfer->len; |
| writel(len, se->base + SE_SPI_TX_TRANS_LEN); |
| } |
| |
| if (xfer->rx_buf) { |
| m_cmd |= SPI_RX_ONLY; |
| writel(len, se->base + SE_SPI_RX_TRANS_LEN); |
| mas->rx_rem_bytes = xfer->len; |
| } |
| |
| /* |
| * Select DMA mode if sgt are present; and with only 1 entry |
| * This is not a serious limitation because the xfer buffers are |
| * expected to fit into in 1 entry almost always, and if any |
| * doesn't for any reason we fall back to FIFO mode anyway |
| */ |
| if (!xfer->tx_sg.nents && !xfer->rx_sg.nents) |
| mas->cur_xfer_mode = GENI_SE_FIFO; |
| else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) { |
| dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n", |
| xfer->tx_sg.nents, xfer->rx_sg.nents); |
| mas->cur_xfer_mode = GENI_SE_FIFO; |
| } else |
| mas->cur_xfer_mode = GENI_SE_DMA; |
| geni_se_select_mode(se, mas->cur_xfer_mode); |
| |
| /* |
| * Lock around right before we start the transfer since our |
| * interrupt could come in at any time now. |
| */ |
| spin_lock_irq(&mas->lock); |
| geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION); |
| |
| if (mas->cur_xfer_mode == GENI_SE_DMA) { |
| if (m_cmd & SPI_RX_ONLY) |
| geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl), |
| sg_dma_len(xfer->rx_sg.sgl)); |
| if (m_cmd & SPI_TX_ONLY) |
| geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl), |
| sg_dma_len(xfer->tx_sg.sgl)); |
| } else if (m_cmd & SPI_TX_ONLY) { |
| if (geni_spi_handle_tx(mas)) |
| writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG); |
| } |
| |
| spin_unlock_irq(&mas->lock); |
| return ret; |
| } |
| |
| static int spi_geni_transfer_one(struct spi_master *spi, |
| struct spi_device *slv, |
| struct spi_transfer *xfer) |
| { |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| int ret; |
| |
| if (spi_geni_is_abort_still_pending(mas)) |
| return -EBUSY; |
| |
| /* Terminate and return success for 0 byte length transfer */ |
| if (!xfer->len) |
| return 0; |
| |
| if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) { |
| ret = setup_se_xfer(xfer, mas, slv->mode, spi); |
| /* SPI framework expects +ve ret code to wait for transfer complete */ |
| if (!ret) |
| ret = 1; |
| return ret; |
| } |
| return setup_gsi_xfer(xfer, mas, slv, spi); |
| } |
| |
| static irqreturn_t geni_spi_isr(int irq, void *data) |
| { |
| struct spi_master *spi = data; |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| struct geni_se *se = &mas->se; |
| u32 m_irq; |
| |
| m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); |
| if (!m_irq) |
| return IRQ_NONE; |
| |
| if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN | |
| M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN | |
| M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN)) |
| dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq); |
| |
| spin_lock(&mas->lock); |
| |
| if (mas->cur_xfer_mode == GENI_SE_FIFO) { |
| if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN)) |
| geni_spi_handle_rx(mas); |
| |
| if (m_irq & M_TX_FIFO_WATERMARK_EN) |
| geni_spi_handle_tx(mas); |
| |
| if (m_irq & M_CMD_DONE_EN) { |
| if (mas->cur_xfer) { |
| spi_finalize_current_transfer(spi); |
| mas->cur_xfer = NULL; |
| /* |
| * If this happens, then a CMD_DONE came before all the |
| * Tx buffer bytes were sent out. This is unusual, log |
| * this condition and disable the WM interrupt to |
| * prevent the system from stalling due an interrupt |
| * storm. |
| * |
| * If this happens when all Rx bytes haven't been |
| * received, log the condition. The only known time |
| * this can happen is if bits_per_word != 8 and some |
| * registers that expect xfer lengths in num spi_words |
| * weren't written correctly. |
| */ |
| if (mas->tx_rem_bytes) { |
| writel(0, se->base + SE_GENI_TX_WATERMARK_REG); |
| dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n", |
| mas->tx_rem_bytes, mas->cur_bits_per_word); |
| } |
| if (mas->rx_rem_bytes) |
| dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n", |
| mas->rx_rem_bytes, mas->cur_bits_per_word); |
| } else { |
| complete(&mas->cs_done); |
| } |
| } |
| } else if (mas->cur_xfer_mode == GENI_SE_DMA) { |
| const struct spi_transfer *xfer = mas->cur_xfer; |
| u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT); |
| u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT); |
| |
| if (dma_tx_status) |
| writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR); |
| if (dma_rx_status) |
| writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR); |
| if (dma_tx_status & TX_DMA_DONE) |
| mas->tx_rem_bytes = 0; |
| if (dma_rx_status & RX_DMA_DONE) |
| mas->rx_rem_bytes = 0; |
| if (dma_tx_status & TX_RESET_DONE) |
| complete(&mas->tx_reset_done); |
| if (dma_rx_status & RX_RESET_DONE) |
| complete(&mas->rx_reset_done); |
| if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) { |
| spi_finalize_current_transfer(spi); |
| mas->cur_xfer = NULL; |
| } |
| } |
| |
| if (m_irq & M_CMD_CANCEL_EN) |
| complete(&mas->cancel_done); |
| if (m_irq & M_CMD_ABORT_EN) |
| complete(&mas->abort_done); |
| |
| /* |
| * It's safe or a good idea to Ack all of our interrupts at the end |
| * of the function. Specifically: |
| * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and |
| * clearing Acks. Clearing at the end relies on nobody else having |
| * started a new transfer yet or else we could be clearing _their_ |
| * done bit, but everyone grabs the spinlock before starting a new |
| * transfer. |
| * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear |
| * to be "latched level" interrupts so it's important to clear them |
| * _after_ you've handled the condition and always safe to do so |
| * since they'll re-assert if they're still happening. |
| */ |
| writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR); |
| |
| spin_unlock(&mas->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int spi_geni_probe(struct platform_device *pdev) |
| { |
| int ret, irq; |
| struct spi_master *spi; |
| struct spi_geni_master *mas; |
| void __iomem *base; |
| struct clk *clk; |
| struct device *dev = &pdev->dev; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); |
| if (ret) |
| return dev_err_probe(dev, ret, "could not set DMA mask\n"); |
| |
| base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(base)) |
| return PTR_ERR(base); |
| |
| clk = devm_clk_get(dev, "se"); |
| if (IS_ERR(clk)) |
| return PTR_ERR(clk); |
| |
| spi = devm_spi_alloc_master(dev, sizeof(*mas)); |
| if (!spi) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, spi); |
| mas = spi_master_get_devdata(spi); |
| mas->irq = irq; |
| mas->dev = dev; |
| mas->se.dev = dev; |
| mas->se.wrapper = dev_get_drvdata(dev->parent); |
| mas->se.base = base; |
| mas->se.clk = clk; |
| |
| ret = devm_pm_opp_set_clkname(&pdev->dev, "se"); |
| if (ret) |
| return ret; |
| /* OPP table is optional */ |
| ret = devm_pm_opp_of_add_table(&pdev->dev); |
| if (ret && ret != -ENODEV) { |
| dev_err(&pdev->dev, "invalid OPP table in device tree\n"); |
| return ret; |
| } |
| |
| spi->bus_num = -1; |
| spi->dev.of_node = dev->of_node; |
| spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH; |
| spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| spi->num_chipselect = 4; |
| spi->max_speed_hz = 50000000; |
| spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */ |
| spi->prepare_message = spi_geni_prepare_message; |
| spi->transfer_one = spi_geni_transfer_one; |
| spi->can_dma = geni_can_dma; |
| spi->dma_map_dev = dev->parent; |
| spi->auto_runtime_pm = true; |
| spi->handle_err = spi_geni_handle_err; |
| spi->use_gpio_descriptors = true; |
| |
| init_completion(&mas->cs_done); |
| init_completion(&mas->cancel_done); |
| init_completion(&mas->abort_done); |
| init_completion(&mas->tx_reset_done); |
| init_completion(&mas->rx_reset_done); |
| spin_lock_init(&mas->lock); |
| pm_runtime_use_autosuspend(&pdev->dev); |
| pm_runtime_set_autosuspend_delay(&pdev->dev, 250); |
| pm_runtime_enable(dev); |
| |
| ret = geni_icc_get(&mas->se, NULL); |
| if (ret) |
| goto spi_geni_probe_runtime_disable; |
| /* Set the bus quota to a reasonable value for register access */ |
| mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ); |
| mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW; |
| |
| ret = geni_icc_set_bw(&mas->se); |
| if (ret) |
| goto spi_geni_probe_runtime_disable; |
| |
| ret = spi_geni_init(mas); |
| if (ret) |
| goto spi_geni_probe_runtime_disable; |
| |
| /* |
| * check the mode supported and set_cs for fifo mode only |
| * for dma (gsi) mode, the gsi will set cs based on params passed in |
| * TRE |
| */ |
| if (mas->cur_xfer_mode == GENI_SE_FIFO) |
| spi->set_cs = spi_geni_set_cs; |
| |
| ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi); |
| if (ret) |
| goto spi_geni_release_dma; |
| |
| ret = spi_register_master(spi); |
| if (ret) |
| goto spi_geni_probe_free_irq; |
| |
| return 0; |
| spi_geni_probe_free_irq: |
| free_irq(mas->irq, spi); |
| spi_geni_release_dma: |
| spi_geni_release_dma_chan(mas); |
| spi_geni_probe_runtime_disable: |
| pm_runtime_disable(dev); |
| return ret; |
| } |
| |
| static void spi_geni_remove(struct platform_device *pdev) |
| { |
| struct spi_master *spi = platform_get_drvdata(pdev); |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| |
| /* Unregister _before_ disabling pm_runtime() so we stop transfers */ |
| spi_unregister_master(spi); |
| |
| spi_geni_release_dma_chan(mas); |
| |
| free_irq(mas->irq, spi); |
| pm_runtime_disable(&pdev->dev); |
| } |
| |
| static int __maybe_unused spi_geni_runtime_suspend(struct device *dev) |
| { |
| struct spi_master *spi = dev_get_drvdata(dev); |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| int ret; |
| |
| /* Drop the performance state vote */ |
| dev_pm_opp_set_rate(dev, 0); |
| |
| ret = geni_se_resources_off(&mas->se); |
| if (ret) |
| return ret; |
| |
| return geni_icc_disable(&mas->se); |
| } |
| |
| static int __maybe_unused spi_geni_runtime_resume(struct device *dev) |
| { |
| struct spi_master *spi = dev_get_drvdata(dev); |
| struct spi_geni_master *mas = spi_master_get_devdata(spi); |
| int ret; |
| |
| ret = geni_icc_enable(&mas->se); |
| if (ret) |
| return ret; |
| |
| ret = geni_se_resources_on(&mas->se); |
| if (ret) |
| return ret; |
| |
| return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz); |
| } |
| |
| static int __maybe_unused spi_geni_suspend(struct device *dev) |
| { |
| struct spi_master *spi = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = spi_master_suspend(spi); |
| if (ret) |
| return ret; |
| |
| ret = pm_runtime_force_suspend(dev); |
| if (ret) |
| spi_master_resume(spi); |
| |
| return ret; |
| } |
| |
| static int __maybe_unused spi_geni_resume(struct device *dev) |
| { |
| struct spi_master *spi = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = pm_runtime_force_resume(dev); |
| if (ret) |
| return ret; |
| |
| ret = spi_master_resume(spi); |
| if (ret) |
| pm_runtime_force_suspend(dev); |
| |
| return ret; |
| } |
| |
| static const struct dev_pm_ops spi_geni_pm_ops = { |
| SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend, |
| spi_geni_runtime_resume, NULL) |
| SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume) |
| }; |
| |
| static const struct of_device_id spi_geni_dt_match[] = { |
| { .compatible = "qcom,geni-spi" }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, spi_geni_dt_match); |
| |
| static struct platform_driver spi_geni_driver = { |
| .probe = spi_geni_probe, |
| .remove_new = spi_geni_remove, |
| .driver = { |
| .name = "geni_spi", |
| .pm = &spi_geni_pm_ops, |
| .of_match_table = spi_geni_dt_match, |
| }, |
| }; |
| module_platform_driver(spi_geni_driver); |
| |
| MODULE_DESCRIPTION("SPI driver for GENI based QUP cores"); |
| MODULE_LICENSE("GPL v2"); |