blob: c078ce369df9498da3fe2b760eb4c755c20a3133 [file] [log] [blame]
/*
* VME Bridge Framework
*
* Author: Martyn Welch <martyn.welch@ge.com>
* Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
*
* Based on work by Tom Armistead and Ajit Prem
* Copyright 2004 Motorola Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/syscalls.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include "vme.h"
#include "vme_bridge.h"
/* Bitmask and mutex to keep track of bridge numbers */
static unsigned int vme_bus_numbers;
static DEFINE_MUTEX(vme_bus_num_mtx);
static void __exit vme_exit(void);
static int __init vme_init(void);
/*
* Find the bridge resource associated with a specific device resource
*/
static struct vme_bridge *dev_to_bridge(struct device *dev)
{
return dev->platform_data;
}
/*
* Find the bridge that the resource is associated with.
*/
static struct vme_bridge *find_bridge(struct vme_resource *resource)
{
/* Get list to search */
switch (resource->type) {
case VME_MASTER:
return list_entry(resource->entry, struct vme_master_resource,
list)->parent;
break;
case VME_SLAVE:
return list_entry(resource->entry, struct vme_slave_resource,
list)->parent;
break;
case VME_DMA:
return list_entry(resource->entry, struct vme_dma_resource,
list)->parent;
break;
case VME_LM:
return list_entry(resource->entry, struct vme_lm_resource,
list)->parent;
break;
default:
printk(KERN_ERR "Unknown resource type\n");
return NULL;
break;
}
}
/*
* Allocate a contiguous block of memory for use by the driver. This is used to
* create the buffers for the slave windows.
*
* XXX VME bridges could be available on buses other than PCI. At the momment
* this framework only supports PCI devices.
*/
void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
dma_addr_t *dma)
{
struct vme_bridge *bridge;
struct pci_dev *pdev;
if (resource == NULL) {
printk(KERN_ERR "No resource\n");
return NULL;
}
bridge = find_bridge(resource);
if (bridge == NULL) {
printk(KERN_ERR "Can't find bridge\n");
return NULL;
}
/* Find pci_dev container of dev */
if (bridge->parent == NULL) {
printk(KERN_ERR "Dev entry NULL\n");
return NULL;
}
pdev = container_of(bridge->parent, struct pci_dev, dev);
return pci_alloc_consistent(pdev, size, dma);
}
EXPORT_SYMBOL(vme_alloc_consistent);
/*
* Free previously allocated contiguous block of memory.
*
* XXX VME bridges could be available on buses other than PCI. At the momment
* this framework only supports PCI devices.
*/
void vme_free_consistent(struct vme_resource *resource, size_t size,
void *vaddr, dma_addr_t dma)
{
struct vme_bridge *bridge;
struct pci_dev *pdev;
if (resource == NULL) {
printk(KERN_ERR "No resource\n");
return;
}
bridge = find_bridge(resource);
if (bridge == NULL) {
printk(KERN_ERR "Can't find bridge\n");
return;
}
/* Find pci_dev container of dev */
pdev = container_of(bridge->parent, struct pci_dev, dev);
pci_free_consistent(pdev, size, vaddr, dma);
}
EXPORT_SYMBOL(vme_free_consistent);
size_t vme_get_size(struct vme_resource *resource)
{
int enabled, retval;
unsigned long long base, size;
dma_addr_t buf_base;
vme_address_t aspace;
vme_cycle_t cycle;
vme_width_t dwidth;
switch (resource->type) {
case VME_MASTER:
retval = vme_master_get(resource, &enabled, &base, &size,
&aspace, &cycle, &dwidth);
return size;
break;
case VME_SLAVE:
retval = vme_slave_get(resource, &enabled, &base, &size,
&buf_base, &aspace, &cycle);
return size;
break;
case VME_DMA:
return 0;
break;
default:
printk(KERN_ERR "Unknown resource type\n");
return 0;
break;
}
}
EXPORT_SYMBOL(vme_get_size);
static int vme_check_window(vme_address_t aspace, unsigned long long vme_base,
unsigned long long size)
{
int retval = 0;
switch (aspace) {
case VME_A16:
if (((vme_base + size) > VME_A16_MAX) ||
(vme_base > VME_A16_MAX))
retval = -EFAULT;
break;
case VME_A24:
if (((vme_base + size) > VME_A24_MAX) ||
(vme_base > VME_A24_MAX))
retval = -EFAULT;
break;
case VME_A32:
if (((vme_base + size) > VME_A32_MAX) ||
(vme_base > VME_A32_MAX))
retval = -EFAULT;
break;
case VME_A64:
/*
* Any value held in an unsigned long long can be used as the
* base
*/
break;
case VME_CRCSR:
if (((vme_base + size) > VME_CRCSR_MAX) ||
(vme_base > VME_CRCSR_MAX))
retval = -EFAULT;
break;
case VME_USER1:
case VME_USER2:
case VME_USER3:
case VME_USER4:
/* User Defined */
break;
default:
printk(KERN_ERR "Invalid address space\n");
retval = -EINVAL;
break;
}
return retval;
}
/*
* Request a slave image with specific attributes, return some unique
* identifier.
*/
struct vme_resource *vme_slave_request(struct device *dev,
vme_address_t address, vme_cycle_t cycle)
{
struct vme_bridge *bridge;
struct list_head *slave_pos = NULL;
struct vme_slave_resource *allocated_image = NULL;
struct vme_slave_resource *slave_image = NULL;
struct vme_resource *resource = NULL;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
goto err_bus;
}
/* Loop through slave resources */
list_for_each(slave_pos, &bridge->slave_resources) {
slave_image = list_entry(slave_pos,
struct vme_slave_resource, list);
if (slave_image == NULL) {
printk(KERN_ERR "Registered NULL Slave resource\n");
continue;
}
/* Find an unlocked and compatible image */
mutex_lock(&slave_image->mtx);
if (((slave_image->address_attr & address) == address) &&
((slave_image->cycle_attr & cycle) == cycle) &&
(slave_image->locked == 0)) {
slave_image->locked = 1;
mutex_unlock(&slave_image->mtx);
allocated_image = slave_image;
break;
}
mutex_unlock(&slave_image->mtx);
}
/* No free image */
if (allocated_image == NULL)
goto err_image;
resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
if (resource == NULL) {
printk(KERN_WARNING "Unable to allocate resource structure\n");
goto err_alloc;
}
resource->type = VME_SLAVE;
resource->entry = &allocated_image->list;
return resource;
err_alloc:
/* Unlock image */
mutex_lock(&slave_image->mtx);
slave_image->locked = 0;
mutex_unlock(&slave_image->mtx);
err_image:
err_bus:
return NULL;
}
EXPORT_SYMBOL(vme_slave_request);
int vme_slave_set(struct vme_resource *resource, int enabled,
unsigned long long vme_base, unsigned long long size,
dma_addr_t buf_base, vme_address_t aspace, vme_cycle_t cycle)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_slave_resource *image;
int retval;
if (resource->type != VME_SLAVE) {
printk(KERN_ERR "Not a slave resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_slave_resource, list);
if (bridge->slave_set == NULL) {
printk(KERN_ERR "Function not supported\n");
return -ENOSYS;
}
if (!(((image->address_attr & aspace) == aspace) &&
((image->cycle_attr & cycle) == cycle))) {
printk(KERN_ERR "Invalid attributes\n");
return -EINVAL;
}
retval = vme_check_window(aspace, vme_base, size);
if (retval)
return retval;
return bridge->slave_set(image, enabled, vme_base, size, buf_base,
aspace, cycle);
}
EXPORT_SYMBOL(vme_slave_set);
int vme_slave_get(struct vme_resource *resource, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
dma_addr_t *buf_base, vme_address_t *aspace, vme_cycle_t *cycle)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_slave_resource *image;
if (resource->type != VME_SLAVE) {
printk(KERN_ERR "Not a slave resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_slave_resource, list);
if (bridge->slave_get == NULL) {
printk(KERN_ERR "vme_slave_get not supported\n");
return -EINVAL;
}
return bridge->slave_get(image, enabled, vme_base, size, buf_base,
aspace, cycle);
}
EXPORT_SYMBOL(vme_slave_get);
void vme_slave_free(struct vme_resource *resource)
{
struct vme_slave_resource *slave_image;
if (resource->type != VME_SLAVE) {
printk(KERN_ERR "Not a slave resource\n");
return;
}
slave_image = list_entry(resource->entry, struct vme_slave_resource,
list);
if (slave_image == NULL) {
printk(KERN_ERR "Can't find slave resource\n");
return;
}
/* Unlock image */
mutex_lock(&slave_image->mtx);
if (slave_image->locked == 0)
printk(KERN_ERR "Image is already free\n");
slave_image->locked = 0;
mutex_unlock(&slave_image->mtx);
/* Free up resource memory */
kfree(resource);
}
EXPORT_SYMBOL(vme_slave_free);
/*
* Request a master image with specific attributes, return some unique
* identifier.
*/
struct vme_resource *vme_master_request(struct device *dev,
vme_address_t address, vme_cycle_t cycle, vme_width_t dwidth)
{
struct vme_bridge *bridge;
struct list_head *master_pos = NULL;
struct vme_master_resource *allocated_image = NULL;
struct vme_master_resource *master_image = NULL;
struct vme_resource *resource = NULL;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
goto err_bus;
}
/* Loop through master resources */
list_for_each(master_pos, &bridge->master_resources) {
master_image = list_entry(master_pos,
struct vme_master_resource, list);
if (master_image == NULL) {
printk(KERN_WARNING "Registered NULL master resource\n");
continue;
}
/* Find an unlocked and compatible image */
spin_lock(&master_image->lock);
if (((master_image->address_attr & address) == address) &&
((master_image->cycle_attr & cycle) == cycle) &&
((master_image->width_attr & dwidth) == dwidth) &&
(master_image->locked == 0)) {
master_image->locked = 1;
spin_unlock(&master_image->lock);
allocated_image = master_image;
break;
}
spin_unlock(&master_image->lock);
}
/* Check to see if we found a resource */
if (allocated_image == NULL) {
printk(KERN_ERR "Can't find a suitable resource\n");
goto err_image;
}
resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
if (resource == NULL) {
printk(KERN_ERR "Unable to allocate resource structure\n");
goto err_alloc;
}
resource->type = VME_MASTER;
resource->entry = &allocated_image->list;
return resource;
err_alloc:
/* Unlock image */
spin_lock(&master_image->lock);
master_image->locked = 0;
spin_unlock(&master_image->lock);
err_image:
err_bus:
return NULL;
}
EXPORT_SYMBOL(vme_master_request);
int vme_master_set(struct vme_resource *resource, int enabled,
unsigned long long vme_base, unsigned long long size,
vme_address_t aspace, vme_cycle_t cycle, vme_width_t dwidth)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
int retval;
if (resource->type != VME_MASTER) {
printk(KERN_ERR "Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
if (bridge->master_set == NULL) {
printk(KERN_WARNING "vme_master_set not supported\n");
return -EINVAL;
}
if (!(((image->address_attr & aspace) == aspace) &&
((image->cycle_attr & cycle) == cycle) &&
((image->width_attr & dwidth) == dwidth))) {
printk(KERN_WARNING "Invalid attributes\n");
return -EINVAL;
}
retval = vme_check_window(aspace, vme_base, size);
if (retval)
return retval;
return bridge->master_set(image, enabled, vme_base, size, aspace,
cycle, dwidth);
}
EXPORT_SYMBOL(vme_master_set);
int vme_master_get(struct vme_resource *resource, int *enabled,
unsigned long long *vme_base, unsigned long long *size,
vme_address_t *aspace, vme_cycle_t *cycle, vme_width_t *dwidth)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
if (resource->type != VME_MASTER) {
printk(KERN_ERR "Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
if (bridge->master_get == NULL) {
printk(KERN_WARNING "vme_master_set not supported\n");
return -EINVAL;
}
return bridge->master_get(image, enabled, vme_base, size, aspace,
cycle, dwidth);
}
EXPORT_SYMBOL(vme_master_get);
/*
* Read data out of VME space into a buffer.
*/
ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
loff_t offset)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
size_t length;
if (bridge->master_read == NULL) {
printk(KERN_WARNING "Reading from resource not supported\n");
return -EINVAL;
}
if (resource->type != VME_MASTER) {
printk(KERN_ERR "Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
length = vme_get_size(resource);
if (offset > length) {
printk(KERN_WARNING "Invalid Offset\n");
return -EFAULT;
}
if ((offset + count) > length)
count = length - offset;
return bridge->master_read(image, buf, count, offset);
}
EXPORT_SYMBOL(vme_master_read);
/*
* Write data out to VME space from a buffer.
*/
ssize_t vme_master_write(struct vme_resource *resource, void *buf,
size_t count, loff_t offset)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
size_t length;
if (bridge->master_write == NULL) {
printk(KERN_WARNING "Writing to resource not supported\n");
return -EINVAL;
}
if (resource->type != VME_MASTER) {
printk(KERN_ERR "Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
length = vme_get_size(resource);
if (offset > length) {
printk(KERN_WARNING "Invalid Offset\n");
return -EFAULT;
}
if ((offset + count) > length)
count = length - offset;
return bridge->master_write(image, buf, count, offset);
}
EXPORT_SYMBOL(vme_master_write);
/*
* Perform RMW cycle to provided location.
*/
unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
unsigned int compare, unsigned int swap, loff_t offset)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_master_resource *image;
if (bridge->master_rmw == NULL) {
printk(KERN_WARNING "Writing to resource not supported\n");
return -EINVAL;
}
if (resource->type != VME_MASTER) {
printk(KERN_ERR "Not a master resource\n");
return -EINVAL;
}
image = list_entry(resource->entry, struct vme_master_resource, list);
return bridge->master_rmw(image, mask, compare, swap, offset);
}
EXPORT_SYMBOL(vme_master_rmw);
void vme_master_free(struct vme_resource *resource)
{
struct vme_master_resource *master_image;
if (resource->type != VME_MASTER) {
printk(KERN_ERR "Not a master resource\n");
return;
}
master_image = list_entry(resource->entry, struct vme_master_resource,
list);
if (master_image == NULL) {
printk(KERN_ERR "Can't find master resource\n");
return;
}
/* Unlock image */
spin_lock(&master_image->lock);
if (master_image->locked == 0)
printk(KERN_ERR "Image is already free\n");
master_image->locked = 0;
spin_unlock(&master_image->lock);
/* Free up resource memory */
kfree(resource);
}
EXPORT_SYMBOL(vme_master_free);
/*
* Request a DMA controller with specific attributes, return some unique
* identifier.
*/
struct vme_resource *vme_dma_request(struct device *dev, vme_dma_route_t route)
{
struct vme_bridge *bridge;
struct list_head *dma_pos = NULL;
struct vme_dma_resource *allocated_ctrlr = NULL;
struct vme_dma_resource *dma_ctrlr = NULL;
struct vme_resource *resource = NULL;
/* XXX Not checking resource attributes */
printk(KERN_ERR "No VME resource Attribute tests done\n");
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
goto err_bus;
}
/* Loop through DMA resources */
list_for_each(dma_pos, &bridge->dma_resources) {
dma_ctrlr = list_entry(dma_pos,
struct vme_dma_resource, list);
if (dma_ctrlr == NULL) {
printk(KERN_ERR "Registered NULL DMA resource\n");
continue;
}
/* Find an unlocked and compatible controller */
mutex_lock(&dma_ctrlr->mtx);
if (((dma_ctrlr->route_attr & route) == route) &&
(dma_ctrlr->locked == 0)) {
dma_ctrlr->locked = 1;
mutex_unlock(&dma_ctrlr->mtx);
allocated_ctrlr = dma_ctrlr;
break;
}
mutex_unlock(&dma_ctrlr->mtx);
}
/* Check to see if we found a resource */
if (allocated_ctrlr == NULL)
goto err_ctrlr;
resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
if (resource == NULL) {
printk(KERN_WARNING "Unable to allocate resource structure\n");
goto err_alloc;
}
resource->type = VME_DMA;
resource->entry = &allocated_ctrlr->list;
return resource;
err_alloc:
/* Unlock image */
mutex_lock(&dma_ctrlr->mtx);
dma_ctrlr->locked = 0;
mutex_unlock(&dma_ctrlr->mtx);
err_ctrlr:
err_bus:
return NULL;
}
EXPORT_SYMBOL(vme_dma_request);
/*
* Start new list
*/
struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
{
struct vme_dma_resource *ctrlr;
struct vme_dma_list *dma_list;
if (resource->type != VME_DMA) {
printk(KERN_ERR "Not a DMA resource\n");
return NULL;
}
ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
if (dma_list == NULL) {
printk(KERN_ERR "Unable to allocate memory for new dma list\n");
return NULL;
}
INIT_LIST_HEAD(&dma_list->entries);
dma_list->parent = ctrlr;
mutex_init(&dma_list->mtx);
return dma_list;
}
EXPORT_SYMBOL(vme_new_dma_list);
/*
* Create "Pattern" type attributes
*/
struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern,
vme_pattern_t type)
{
struct vme_dma_attr *attributes;
struct vme_dma_pattern *pattern_attr;
attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
if (attributes == NULL) {
printk(KERN_ERR "Unable to allocate memory for attributes "
"structure\n");
goto err_attr;
}
pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
if (pattern_attr == NULL) {
printk(KERN_ERR "Unable to allocate memory for pattern "
"attributes\n");
goto err_pat;
}
attributes->type = VME_DMA_PATTERN;
attributes->private = (void *)pattern_attr;
pattern_attr->pattern = pattern;
pattern_attr->type = type;
return attributes;
err_pat:
kfree(attributes);
err_attr:
return NULL;
}
EXPORT_SYMBOL(vme_dma_pattern_attribute);
/*
* Create "PCI" type attributes
*/
struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
{
struct vme_dma_attr *attributes;
struct vme_dma_pci *pci_attr;
/* XXX Run some sanity checks here */
attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
if (attributes == NULL) {
printk(KERN_ERR "Unable to allocate memory for attributes "
"structure\n");
goto err_attr;
}
pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
if (pci_attr == NULL) {
printk(KERN_ERR "Unable to allocate memory for pci "
"attributes\n");
goto err_pci;
}
attributes->type = VME_DMA_PCI;
attributes->private = (void *)pci_attr;
pci_attr->address = address;
return attributes;
err_pci:
kfree(attributes);
err_attr:
return NULL;
}
EXPORT_SYMBOL(vme_dma_pci_attribute);
/*
* Create "VME" type attributes
*/
struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
vme_address_t aspace, vme_cycle_t cycle, vme_width_t dwidth)
{
struct vme_dma_attr *attributes;
struct vme_dma_vme *vme_attr;
attributes = kmalloc(
sizeof(struct vme_dma_attr), GFP_KERNEL);
if (attributes == NULL) {
printk(KERN_ERR "Unable to allocate memory for attributes "
"structure\n");
goto err_attr;
}
vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
if (vme_attr == NULL) {
printk(KERN_ERR "Unable to allocate memory for vme "
"attributes\n");
goto err_vme;
}
attributes->type = VME_DMA_VME;
attributes->private = (void *)vme_attr;
vme_attr->address = address;
vme_attr->aspace = aspace;
vme_attr->cycle = cycle;
vme_attr->dwidth = dwidth;
return attributes;
err_vme:
kfree(attributes);
err_attr:
return NULL;
}
EXPORT_SYMBOL(vme_dma_vme_attribute);
/*
* Free attribute
*/
void vme_dma_free_attribute(struct vme_dma_attr *attributes)
{
kfree(attributes->private);
kfree(attributes);
}
EXPORT_SYMBOL(vme_dma_free_attribute);
int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
struct vme_dma_attr *dest, size_t count)
{
struct vme_bridge *bridge = list->parent->parent;
int retval;
if (bridge->dma_list_add == NULL) {
printk(KERN_WARNING "Link List DMA generation not supported\n");
return -EINVAL;
}
if (!mutex_trylock(&list->mtx)) {
printk(KERN_ERR "Link List already submitted\n");
return -EINVAL;
}
retval = bridge->dma_list_add(list, src, dest, count);
mutex_unlock(&list->mtx);
return retval;
}
EXPORT_SYMBOL(vme_dma_list_add);
int vme_dma_list_exec(struct vme_dma_list *list)
{
struct vme_bridge *bridge = list->parent->parent;
int retval;
if (bridge->dma_list_exec == NULL) {
printk(KERN_ERR "Link List DMA execution not supported\n");
return -EINVAL;
}
mutex_lock(&list->mtx);
retval = bridge->dma_list_exec(list);
mutex_unlock(&list->mtx);
return retval;
}
EXPORT_SYMBOL(vme_dma_list_exec);
int vme_dma_list_free(struct vme_dma_list *list)
{
struct vme_bridge *bridge = list->parent->parent;
int retval;
if (bridge->dma_list_empty == NULL) {
printk(KERN_WARNING "Emptying of Link Lists not supported\n");
return -EINVAL;
}
if (!mutex_trylock(&list->mtx)) {
printk(KERN_ERR "Link List in use\n");
return -EINVAL;
}
/*
* Empty out all of the entries from the dma list. We need to go to the
* low level driver as dma entries are driver specific.
*/
retval = bridge->dma_list_empty(list);
if (retval) {
printk(KERN_ERR "Unable to empty link-list entries\n");
mutex_unlock(&list->mtx);
return retval;
}
mutex_unlock(&list->mtx);
kfree(list);
return retval;
}
EXPORT_SYMBOL(vme_dma_list_free);
int vme_dma_free(struct vme_resource *resource)
{
struct vme_dma_resource *ctrlr;
if (resource->type != VME_DMA) {
printk(KERN_ERR "Not a DMA resource\n");
return -EINVAL;
}
ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
if (!mutex_trylock(&ctrlr->mtx)) {
printk(KERN_ERR "Resource busy, can't free\n");
return -EBUSY;
}
if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
printk(KERN_WARNING "Resource still processing transfers\n");
mutex_unlock(&ctrlr->mtx);
return -EBUSY;
}
ctrlr->locked = 0;
mutex_unlock(&ctrlr->mtx);
return 0;
}
EXPORT_SYMBOL(vme_dma_free);
void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
{
void (*call)(int, int, void *);
void *priv_data;
call = bridge->irq[level - 1].callback[statid].func;
priv_data = bridge->irq[level - 1].callback[statid].priv_data;
if (call != NULL)
call(level, statid, priv_data);
else
printk(KERN_WARNING "Spurilous VME interrupt, level:%x, "
"vector:%x\n", level, statid);
}
EXPORT_SYMBOL(vme_irq_handler);
int vme_irq_request(struct device *dev, int level, int statid,
void (*callback)(int, int, void *),
void *priv_data)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if ((level < 1) || (level > 7)) {
printk(KERN_ERR "Invalid interrupt level\n");
return -EINVAL;
}
if (bridge->irq_set == NULL) {
printk(KERN_ERR "Configuring interrupts not supported\n");
return -EINVAL;
}
mutex_lock(&bridge->irq_mtx);
if (bridge->irq[level - 1].callback[statid].func) {
mutex_unlock(&bridge->irq_mtx);
printk(KERN_WARNING "VME Interrupt already taken\n");
return -EBUSY;
}
bridge->irq[level - 1].count++;
bridge->irq[level - 1].callback[statid].priv_data = priv_data;
bridge->irq[level - 1].callback[statid].func = callback;
/* Enable IRQ level */
bridge->irq_set(bridge, level, 1, 1);
mutex_unlock(&bridge->irq_mtx);
return 0;
}
EXPORT_SYMBOL(vme_irq_request);
void vme_irq_free(struct device *dev, int level, int statid)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return;
}
if ((level < 1) || (level > 7)) {
printk(KERN_ERR "Invalid interrupt level\n");
return;
}
if (bridge->irq_set == NULL) {
printk(KERN_ERR "Configuring interrupts not supported\n");
return;
}
mutex_lock(&bridge->irq_mtx);
bridge->irq[level - 1].count--;
/* Disable IRQ level if no more interrupts attached at this level*/
if (bridge->irq[level - 1].count == 0)
bridge->irq_set(bridge, level, 0, 1);
bridge->irq[level - 1].callback[statid].func = NULL;
bridge->irq[level - 1].callback[statid].priv_data = NULL;
mutex_unlock(&bridge->irq_mtx);
}
EXPORT_SYMBOL(vme_irq_free);
int vme_irq_generate(struct device *dev, int level, int statid)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if ((level < 1) || (level > 7)) {
printk(KERN_WARNING "Invalid interrupt level\n");
return -EINVAL;
}
if (bridge->irq_generate == NULL) {
printk(KERN_WARNING "Interrupt generation not supported\n");
return -EINVAL;
}
return bridge->irq_generate(bridge, level, statid);
}
EXPORT_SYMBOL(vme_irq_generate);
/*
* Request the location monitor, return resource or NULL
*/
struct vme_resource *vme_lm_request(struct device *dev)
{
struct vme_bridge *bridge;
struct list_head *lm_pos = NULL;
struct vme_lm_resource *allocated_lm = NULL;
struct vme_lm_resource *lm = NULL;
struct vme_resource *resource = NULL;
bridge = dev_to_bridge(dev);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
goto err_bus;
}
/* Loop through DMA resources */
list_for_each(lm_pos, &bridge->lm_resources) {
lm = list_entry(lm_pos,
struct vme_lm_resource, list);
if (lm == NULL) {
printk(KERN_ERR "Registered NULL Location Monitor "
"resource\n");
continue;
}
/* Find an unlocked controller */
mutex_lock(&lm->mtx);
if (lm->locked == 0) {
lm->locked = 1;
mutex_unlock(&lm->mtx);
allocated_lm = lm;
break;
}
mutex_unlock(&lm->mtx);
}
/* Check to see if we found a resource */
if (allocated_lm == NULL)
goto err_lm;
resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
if (resource == NULL) {
printk(KERN_ERR "Unable to allocate resource structure\n");
goto err_alloc;
}
resource->type = VME_LM;
resource->entry = &allocated_lm->list;
return resource;
err_alloc:
/* Unlock image */
mutex_lock(&lm->mtx);
lm->locked = 0;
mutex_unlock(&lm->mtx);
err_lm:
err_bus:
return NULL;
}
EXPORT_SYMBOL(vme_lm_request);
int vme_lm_count(struct vme_resource *resource)
{
struct vme_lm_resource *lm;
if (resource->type != VME_LM) {
printk(KERN_ERR "Not a Location Monitor resource\n");
return -EINVAL;
}
lm = list_entry(resource->entry, struct vme_lm_resource, list);
return lm->monitors;
}
EXPORT_SYMBOL(vme_lm_count);
int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
vme_address_t aspace, vme_cycle_t cycle)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_lm_resource *lm;
if (resource->type != VME_LM) {
printk(KERN_ERR "Not a Location Monitor resource\n");
return -EINVAL;
}
lm = list_entry(resource->entry, struct vme_lm_resource, list);
if (bridge->lm_set == NULL) {
printk(KERN_ERR "vme_lm_set not supported\n");
return -EINVAL;
}
return bridge->lm_set(lm, lm_base, aspace, cycle);
}
EXPORT_SYMBOL(vme_lm_set);
int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
vme_address_t *aspace, vme_cycle_t *cycle)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_lm_resource *lm;
if (resource->type != VME_LM) {
printk(KERN_ERR "Not a Location Monitor resource\n");
return -EINVAL;
}
lm = list_entry(resource->entry, struct vme_lm_resource, list);
if (bridge->lm_get == NULL) {
printk(KERN_ERR "vme_lm_get not supported\n");
return -EINVAL;
}
return bridge->lm_get(lm, lm_base, aspace, cycle);
}
EXPORT_SYMBOL(vme_lm_get);
int vme_lm_attach(struct vme_resource *resource, int monitor,
void (*callback)(int))
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_lm_resource *lm;
if (resource->type != VME_LM) {
printk(KERN_ERR "Not a Location Monitor resource\n");
return -EINVAL;
}
lm = list_entry(resource->entry, struct vme_lm_resource, list);
if (bridge->lm_attach == NULL) {
printk(KERN_ERR "vme_lm_attach not supported\n");
return -EINVAL;
}
return bridge->lm_attach(lm, monitor, callback);
}
EXPORT_SYMBOL(vme_lm_attach);
int vme_lm_detach(struct vme_resource *resource, int monitor)
{
struct vme_bridge *bridge = find_bridge(resource);
struct vme_lm_resource *lm;
if (resource->type != VME_LM) {
printk(KERN_ERR "Not a Location Monitor resource\n");
return -EINVAL;
}
lm = list_entry(resource->entry, struct vme_lm_resource, list);
if (bridge->lm_detach == NULL) {
printk(KERN_ERR "vme_lm_detach not supported\n");
return -EINVAL;
}
return bridge->lm_detach(lm, monitor);
}
EXPORT_SYMBOL(vme_lm_detach);
void vme_lm_free(struct vme_resource *resource)
{
struct vme_lm_resource *lm;
if (resource->type != VME_LM) {
printk(KERN_ERR "Not a Location Monitor resource\n");
return;
}
lm = list_entry(resource->entry, struct vme_lm_resource, list);
mutex_lock(&lm->mtx);
/* XXX
* Check to see that there aren't any callbacks still attached, if
* there are we should probably be detaching them!
*/
lm->locked = 0;
mutex_unlock(&lm->mtx);
kfree(resource);
}
EXPORT_SYMBOL(vme_lm_free);
int vme_slot_get(struct device *bus)
{
struct vme_bridge *bridge;
bridge = dev_to_bridge(bus);
if (bridge == NULL) {
printk(KERN_ERR "Can't find VME bus\n");
return -EINVAL;
}
if (bridge->slot_get == NULL) {
printk(KERN_WARNING "vme_slot_get not supported\n");
return -EINVAL;
}
return bridge->slot_get(bridge);
}
EXPORT_SYMBOL(vme_slot_get);
/* - Bridge Registration --------------------------------------------------- */
static int vme_alloc_bus_num(void)
{
int i;
mutex_lock(&vme_bus_num_mtx);
for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
if (((vme_bus_numbers >> i) & 0x1) == 0) {
vme_bus_numbers |= (0x1 << i);
break;
}
}
mutex_unlock(&vme_bus_num_mtx);
return i;
}
static void vme_free_bus_num(int bus)
{
mutex_lock(&vme_bus_num_mtx);
vme_bus_numbers &= ~(0x1 << bus);
mutex_unlock(&vme_bus_num_mtx);
}
int vme_register_bridge(struct vme_bridge *bridge)
{
struct device *dev;
int retval;
int i;
bridge->num = vme_alloc_bus_num();
/* This creates 32 vme "slot" devices. This equates to a slot for each
* ID available in a system conforming to the ANSI/VITA 1-1994
* specification.
*/
for (i = 0; i < VME_SLOTS_MAX; i++) {
dev = &bridge->dev[i];
memset(dev, 0, sizeof(struct device));
dev->parent = bridge->parent;
dev->bus = &vme_bus_type;
/*
* We save a pointer to the bridge in platform_data so that we
* can get to it later. We keep driver_data for use by the
* driver that binds against the slot
*/
dev->platform_data = bridge;
dev_set_name(dev, "vme-%x.%x", bridge->num, i + 1);
retval = device_register(dev);
if (retval)
goto err_reg;
}
return retval;
err_reg:
while (--i >= 0) {
dev = &bridge->dev[i];
device_unregister(dev);
}
vme_free_bus_num(bridge->num);
return retval;
}
EXPORT_SYMBOL(vme_register_bridge);
void vme_unregister_bridge(struct vme_bridge *bridge)
{
int i;
struct device *dev;
for (i = 0; i < VME_SLOTS_MAX; i++) {
dev = &bridge->dev[i];
device_unregister(dev);
}
vme_free_bus_num(bridge->num);
}
EXPORT_SYMBOL(vme_unregister_bridge);
/* - Driver Registration --------------------------------------------------- */
int vme_register_driver(struct vme_driver *drv)
{
drv->driver.name = drv->name;
drv->driver.bus = &vme_bus_type;
return driver_register(&drv->driver);
}
EXPORT_SYMBOL(vme_register_driver);
void vme_unregister_driver(struct vme_driver *drv)
{
driver_unregister(&drv->driver);
}
EXPORT_SYMBOL(vme_unregister_driver);
/* - Bus Registration ------------------------------------------------------ */
static int vme_calc_slot(struct device *dev)
{
struct vme_bridge *bridge;
int num;
bridge = dev_to_bridge(dev);
/* Determine slot number */
num = 0;
while (num < VME_SLOTS_MAX) {
if (&bridge->dev[num] == dev)
break;
num++;
}
if (num == VME_SLOTS_MAX) {
dev_err(dev, "Failed to identify slot\n");
num = 0;
goto err_dev;
}
num++;
err_dev:
return num;
}
static struct vme_driver *dev_to_vme_driver(struct device *dev)
{
if (dev->driver == NULL)
printk(KERN_ERR "Bugger dev->driver is NULL\n");
return container_of(dev->driver, struct vme_driver, driver);
}
static int vme_bus_match(struct device *dev, struct device_driver *drv)
{
struct vme_bridge *bridge;
struct vme_driver *driver;
int i, num;
bridge = dev_to_bridge(dev);
driver = container_of(drv, struct vme_driver, driver);
num = vme_calc_slot(dev);
if (!num)
goto err_dev;
if (driver->bind_table == NULL) {
dev_err(dev, "Bind table NULL\n");
goto err_table;
}
i = 0;
while ((driver->bind_table[i].bus != 0) ||
(driver->bind_table[i].slot != 0)) {
if (bridge->num == driver->bind_table[i].bus) {
if (num == driver->bind_table[i].slot)
return 1;
if (driver->bind_table[i].slot == VME_SLOT_ALL)
return 1;
if ((driver->bind_table[i].slot == VME_SLOT_CURRENT) &&
(num == vme_slot_get(dev)))
return 1;
}
i++;
}
err_dev:
err_table:
return 0;
}
static int vme_bus_probe(struct device *dev)
{
struct vme_bridge *bridge;
struct vme_driver *driver;
int retval = -ENODEV;
driver = dev_to_vme_driver(dev);
bridge = dev_to_bridge(dev);
if (driver->probe != NULL)
retval = driver->probe(dev, bridge->num, vme_calc_slot(dev));
return retval;
}
static int vme_bus_remove(struct device *dev)
{
struct vme_bridge *bridge;
struct vme_driver *driver;
int retval = -ENODEV;
driver = dev_to_vme_driver(dev);
bridge = dev_to_bridge(dev);
if (driver->remove != NULL)
retval = driver->remove(dev, bridge->num, vme_calc_slot(dev));
return retval;
}
struct bus_type vme_bus_type = {
.name = "vme",
.match = vme_bus_match,
.probe = vme_bus_probe,
.remove = vme_bus_remove,
};
EXPORT_SYMBOL(vme_bus_type);
static int __init vme_init(void)
{
return bus_register(&vme_bus_type);
}
static void __exit vme_exit(void)
{
bus_unregister(&vme_bus_type);
}
MODULE_DESCRIPTION("VME bridge driver framework");
MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com");
MODULE_LICENSE("GPL");
module_init(vme_init);
module_exit(vme_exit);