| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * derived from drivers/kvm/kvm_main.c |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * Copyright (C) 2008 Qumranet, Inc. |
| * Copyright IBM Corporation, 2008 |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@qumranet.com> |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Amit Shah <amit.shah@qumranet.com> |
| * Ben-Ami Yassour <benami@il.ibm.com> |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kvm_host.h> |
| #include "irq.h" |
| #include "ioapic.h" |
| #include "mmu.h" |
| #include "i8254.h" |
| #include "tss.h" |
| #include "kvm_cache_regs.h" |
| #include "kvm_emulate.h" |
| #include "mmu/page_track.h" |
| #include "x86.h" |
| #include "cpuid.h" |
| #include "pmu.h" |
| #include "hyperv.h" |
| #include "lapic.h" |
| #include "xen.h" |
| #include "smm.h" |
| |
| #include <linux/clocksource.h> |
| #include <linux/interrupt.h> |
| #include <linux/kvm.h> |
| #include <linux/fs.h> |
| #include <linux/vmalloc.h> |
| #include <linux/export.h> |
| #include <linux/moduleparam.h> |
| #include <linux/mman.h> |
| #include <linux/highmem.h> |
| #include <linux/iommu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/user-return-notifier.h> |
| #include <linux/srcu.h> |
| #include <linux/slab.h> |
| #include <linux/perf_event.h> |
| #include <linux/uaccess.h> |
| #include <linux/hash.h> |
| #include <linux/pci.h> |
| #include <linux/timekeeper_internal.h> |
| #include <linux/pvclock_gtod.h> |
| #include <linux/kvm_irqfd.h> |
| #include <linux/irqbypass.h> |
| #include <linux/sched/stat.h> |
| #include <linux/sched/isolation.h> |
| #include <linux/mem_encrypt.h> |
| #include <linux/entry-kvm.h> |
| #include <linux/suspend.h> |
| #include <linux/smp.h> |
| |
| #include <trace/events/ipi.h> |
| #include <trace/events/kvm.h> |
| |
| #include <asm/debugreg.h> |
| #include <asm/msr.h> |
| #include <asm/desc.h> |
| #include <asm/mce.h> |
| #include <asm/pkru.h> |
| #include <linux/kernel_stat.h> |
| #include <asm/fpu/api.h> |
| #include <asm/fpu/xcr.h> |
| #include <asm/fpu/xstate.h> |
| #include <asm/pvclock.h> |
| #include <asm/div64.h> |
| #include <asm/irq_remapping.h> |
| #include <asm/mshyperv.h> |
| #include <asm/hypervisor.h> |
| #include <asm/tlbflush.h> |
| #include <asm/intel_pt.h> |
| #include <asm/emulate_prefix.h> |
| #include <asm/sgx.h> |
| #include <clocksource/hyperv_timer.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace.h" |
| |
| #define MAX_IO_MSRS 256 |
| #define KVM_MAX_MCE_BANKS 32 |
| |
| struct kvm_caps kvm_caps __read_mostly = { |
| .supported_mce_cap = MCG_CTL_P | MCG_SER_P, |
| }; |
| EXPORT_SYMBOL_GPL(kvm_caps); |
| |
| #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) |
| |
| #define emul_to_vcpu(ctxt) \ |
| ((struct kvm_vcpu *)(ctxt)->vcpu) |
| |
| /* EFER defaults: |
| * - enable syscall per default because its emulated by KVM |
| * - enable LME and LMA per default on 64 bit KVM |
| */ |
| #ifdef CONFIG_X86_64 |
| static |
| u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); |
| #else |
| static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); |
| #endif |
| |
| static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; |
| |
| #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) |
| |
| #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE |
| |
| #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ |
| KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
| static void process_nmi(struct kvm_vcpu *vcpu); |
| static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); |
| static void store_regs(struct kvm_vcpu *vcpu); |
| static int sync_regs(struct kvm_vcpu *vcpu); |
| static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); |
| |
| static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); |
| static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); |
| |
| static DEFINE_MUTEX(vendor_module_lock); |
| struct kvm_x86_ops kvm_x86_ops __read_mostly; |
| |
| #define KVM_X86_OP(func) \ |
| DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ |
| *(((struct kvm_x86_ops *)0)->func)); |
| #define KVM_X86_OP_OPTIONAL KVM_X86_OP |
| #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP |
| #include <asm/kvm-x86-ops.h> |
| EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); |
| EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); |
| |
| static bool __read_mostly ignore_msrs = 0; |
| module_param(ignore_msrs, bool, 0644); |
| |
| bool __read_mostly report_ignored_msrs = true; |
| module_param(report_ignored_msrs, bool, 0644); |
| EXPORT_SYMBOL_GPL(report_ignored_msrs); |
| |
| unsigned int min_timer_period_us = 200; |
| module_param(min_timer_period_us, uint, 0644); |
| |
| static bool __read_mostly kvmclock_periodic_sync = true; |
| module_param(kvmclock_periodic_sync, bool, 0444); |
| |
| /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ |
| static u32 __read_mostly tsc_tolerance_ppm = 250; |
| module_param(tsc_tolerance_ppm, uint, 0644); |
| |
| /* |
| * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables |
| * adaptive tuning starting from default advancement of 1000ns. '0' disables |
| * advancement entirely. Any other value is used as-is and disables adaptive |
| * tuning, i.e. allows privileged userspace to set an exact advancement time. |
| */ |
| static int __read_mostly lapic_timer_advance_ns = -1; |
| module_param(lapic_timer_advance_ns, int, 0644); |
| |
| static bool __read_mostly vector_hashing = true; |
| module_param(vector_hashing, bool, 0444); |
| |
| bool __read_mostly enable_vmware_backdoor = false; |
| module_param(enable_vmware_backdoor, bool, 0444); |
| EXPORT_SYMBOL_GPL(enable_vmware_backdoor); |
| |
| /* |
| * Flags to manipulate forced emulation behavior (any non-zero value will |
| * enable forced emulation). |
| */ |
| #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) |
| static int __read_mostly force_emulation_prefix; |
| module_param(force_emulation_prefix, int, 0644); |
| |
| int __read_mostly pi_inject_timer = -1; |
| module_param(pi_inject_timer, bint, 0644); |
| |
| /* Enable/disable PMU virtualization */ |
| bool __read_mostly enable_pmu = true; |
| EXPORT_SYMBOL_GPL(enable_pmu); |
| module_param(enable_pmu, bool, 0444); |
| |
| bool __read_mostly eager_page_split = true; |
| module_param(eager_page_split, bool, 0644); |
| |
| /* Enable/disable SMT_RSB bug mitigation */ |
| static bool __read_mostly mitigate_smt_rsb; |
| module_param(mitigate_smt_rsb, bool, 0444); |
| |
| /* |
| * Restoring the host value for MSRs that are only consumed when running in |
| * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU |
| * returns to userspace, i.e. the kernel can run with the guest's value. |
| */ |
| #define KVM_MAX_NR_USER_RETURN_MSRS 16 |
| |
| struct kvm_user_return_msrs { |
| struct user_return_notifier urn; |
| bool registered; |
| struct kvm_user_return_msr_values { |
| u64 host; |
| u64 curr; |
| } values[KVM_MAX_NR_USER_RETURN_MSRS]; |
| }; |
| |
| u32 __read_mostly kvm_nr_uret_msrs; |
| EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); |
| static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; |
| static struct kvm_user_return_msrs __percpu *user_return_msrs; |
| |
| #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ |
| | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ |
| | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ |
| | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) |
| |
| u64 __read_mostly host_efer; |
| EXPORT_SYMBOL_GPL(host_efer); |
| |
| bool __read_mostly allow_smaller_maxphyaddr = 0; |
| EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); |
| |
| bool __read_mostly enable_apicv = true; |
| EXPORT_SYMBOL_GPL(enable_apicv); |
| |
| u64 __read_mostly host_xss; |
| EXPORT_SYMBOL_GPL(host_xss); |
| |
| u64 __read_mostly host_arch_capabilities; |
| EXPORT_SYMBOL_GPL(host_arch_capabilities); |
| |
| const struct _kvm_stats_desc kvm_vm_stats_desc[] = { |
| KVM_GENERIC_VM_STATS(), |
| STATS_DESC_COUNTER(VM, mmu_shadow_zapped), |
| STATS_DESC_COUNTER(VM, mmu_pte_write), |
| STATS_DESC_COUNTER(VM, mmu_pde_zapped), |
| STATS_DESC_COUNTER(VM, mmu_flooded), |
| STATS_DESC_COUNTER(VM, mmu_recycled), |
| STATS_DESC_COUNTER(VM, mmu_cache_miss), |
| STATS_DESC_ICOUNTER(VM, mmu_unsync), |
| STATS_DESC_ICOUNTER(VM, pages_4k), |
| STATS_DESC_ICOUNTER(VM, pages_2m), |
| STATS_DESC_ICOUNTER(VM, pages_1g), |
| STATS_DESC_ICOUNTER(VM, nx_lpage_splits), |
| STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), |
| STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) |
| }; |
| |
| const struct kvm_stats_header kvm_vm_stats_header = { |
| .name_size = KVM_STATS_NAME_SIZE, |
| .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), |
| .id_offset = sizeof(struct kvm_stats_header), |
| .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, |
| .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + |
| sizeof(kvm_vm_stats_desc), |
| }; |
| |
| const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { |
| KVM_GENERIC_VCPU_STATS(), |
| STATS_DESC_COUNTER(VCPU, pf_taken), |
| STATS_DESC_COUNTER(VCPU, pf_fixed), |
| STATS_DESC_COUNTER(VCPU, pf_emulate), |
| STATS_DESC_COUNTER(VCPU, pf_spurious), |
| STATS_DESC_COUNTER(VCPU, pf_fast), |
| STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), |
| STATS_DESC_COUNTER(VCPU, pf_guest), |
| STATS_DESC_COUNTER(VCPU, tlb_flush), |
| STATS_DESC_COUNTER(VCPU, invlpg), |
| STATS_DESC_COUNTER(VCPU, exits), |
| STATS_DESC_COUNTER(VCPU, io_exits), |
| STATS_DESC_COUNTER(VCPU, mmio_exits), |
| STATS_DESC_COUNTER(VCPU, signal_exits), |
| STATS_DESC_COUNTER(VCPU, irq_window_exits), |
| STATS_DESC_COUNTER(VCPU, nmi_window_exits), |
| STATS_DESC_COUNTER(VCPU, l1d_flush), |
| STATS_DESC_COUNTER(VCPU, halt_exits), |
| STATS_DESC_COUNTER(VCPU, request_irq_exits), |
| STATS_DESC_COUNTER(VCPU, irq_exits), |
| STATS_DESC_COUNTER(VCPU, host_state_reload), |
| STATS_DESC_COUNTER(VCPU, fpu_reload), |
| STATS_DESC_COUNTER(VCPU, insn_emulation), |
| STATS_DESC_COUNTER(VCPU, insn_emulation_fail), |
| STATS_DESC_COUNTER(VCPU, hypercalls), |
| STATS_DESC_COUNTER(VCPU, irq_injections), |
| STATS_DESC_COUNTER(VCPU, nmi_injections), |
| STATS_DESC_COUNTER(VCPU, req_event), |
| STATS_DESC_COUNTER(VCPU, nested_run), |
| STATS_DESC_COUNTER(VCPU, directed_yield_attempted), |
| STATS_DESC_COUNTER(VCPU, directed_yield_successful), |
| STATS_DESC_COUNTER(VCPU, preemption_reported), |
| STATS_DESC_COUNTER(VCPU, preemption_other), |
| STATS_DESC_IBOOLEAN(VCPU, guest_mode), |
| STATS_DESC_COUNTER(VCPU, notify_window_exits), |
| }; |
| |
| const struct kvm_stats_header kvm_vcpu_stats_header = { |
| .name_size = KVM_STATS_NAME_SIZE, |
| .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), |
| .id_offset = sizeof(struct kvm_stats_header), |
| .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, |
| .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + |
| sizeof(kvm_vcpu_stats_desc), |
| }; |
| |
| u64 __read_mostly host_xcr0; |
| |
| static struct kmem_cache *x86_emulator_cache; |
| |
| /* |
| * When called, it means the previous get/set msr reached an invalid msr. |
| * Return true if we want to ignore/silent this failed msr access. |
| */ |
| static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) |
| { |
| const char *op = write ? "wrmsr" : "rdmsr"; |
| |
| if (ignore_msrs) { |
| if (report_ignored_msrs) |
| kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", |
| op, msr, data); |
| /* Mask the error */ |
| return true; |
| } else { |
| kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", |
| op, msr, data); |
| return false; |
| } |
| } |
| |
| static struct kmem_cache *kvm_alloc_emulator_cache(void) |
| { |
| unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); |
| unsigned int size = sizeof(struct x86_emulate_ctxt); |
| |
| return kmem_cache_create_usercopy("x86_emulator", size, |
| __alignof__(struct x86_emulate_ctxt), |
| SLAB_ACCOUNT, useroffset, |
| size - useroffset, NULL); |
| } |
| |
| static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); |
| |
| static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| for (i = 0; i < ASYNC_PF_PER_VCPU; i++) |
| vcpu->arch.apf.gfns[i] = ~0; |
| } |
| |
| static void kvm_on_user_return(struct user_return_notifier *urn) |
| { |
| unsigned slot; |
| struct kvm_user_return_msrs *msrs |
| = container_of(urn, struct kvm_user_return_msrs, urn); |
| struct kvm_user_return_msr_values *values; |
| unsigned long flags; |
| |
| /* |
| * Disabling irqs at this point since the following code could be |
| * interrupted and executed through kvm_arch_hardware_disable() |
| */ |
| local_irq_save(flags); |
| if (msrs->registered) { |
| msrs->registered = false; |
| user_return_notifier_unregister(urn); |
| } |
| local_irq_restore(flags); |
| for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { |
| values = &msrs->values[slot]; |
| if (values->host != values->curr) { |
| wrmsrl(kvm_uret_msrs_list[slot], values->host); |
| values->curr = values->host; |
| } |
| } |
| } |
| |
| static int kvm_probe_user_return_msr(u32 msr) |
| { |
| u64 val; |
| int ret; |
| |
| preempt_disable(); |
| ret = rdmsrl_safe(msr, &val); |
| if (ret) |
| goto out; |
| ret = wrmsrl_safe(msr, val); |
| out: |
| preempt_enable(); |
| return ret; |
| } |
| |
| int kvm_add_user_return_msr(u32 msr) |
| { |
| BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); |
| |
| if (kvm_probe_user_return_msr(msr)) |
| return -1; |
| |
| kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; |
| return kvm_nr_uret_msrs++; |
| } |
| EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); |
| |
| int kvm_find_user_return_msr(u32 msr) |
| { |
| int i; |
| |
| for (i = 0; i < kvm_nr_uret_msrs; ++i) { |
| if (kvm_uret_msrs_list[i] == msr) |
| return i; |
| } |
| return -1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); |
| |
| static void kvm_user_return_msr_cpu_online(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); |
| u64 value; |
| int i; |
| |
| for (i = 0; i < kvm_nr_uret_msrs; ++i) { |
| rdmsrl_safe(kvm_uret_msrs_list[i], &value); |
| msrs->values[i].host = value; |
| msrs->values[i].curr = value; |
| } |
| } |
| |
| int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); |
| int err; |
| |
| value = (value & mask) | (msrs->values[slot].host & ~mask); |
| if (value == msrs->values[slot].curr) |
| return 0; |
| err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); |
| if (err) |
| return 1; |
| |
| msrs->values[slot].curr = value; |
| if (!msrs->registered) { |
| msrs->urn.on_user_return = kvm_on_user_return; |
| user_return_notifier_register(&msrs->urn); |
| msrs->registered = true; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); |
| |
| static void drop_user_return_notifiers(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); |
| |
| if (msrs->registered) |
| kvm_on_user_return(&msrs->urn); |
| } |
| |
| u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.apic_base; |
| } |
| |
| enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) |
| { |
| return kvm_apic_mode(kvm_get_apic_base(vcpu)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_apic_mode); |
| |
| int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); |
| enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); |
| u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | |
| (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); |
| |
| if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) |
| return 1; |
| if (!msr_info->host_initiated) { |
| if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) |
| return 1; |
| if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) |
| return 1; |
| } |
| |
| kvm_lapic_set_base(vcpu, msr_info->data); |
| kvm_recalculate_apic_map(vcpu->kvm); |
| return 0; |
| } |
| |
| /* |
| * Handle a fault on a hardware virtualization (VMX or SVM) instruction. |
| * |
| * Hardware virtualization extension instructions may fault if a reboot turns |
| * off virtualization while processes are running. Usually after catching the |
| * fault we just panic; during reboot instead the instruction is ignored. |
| */ |
| noinstr void kvm_spurious_fault(void) |
| { |
| /* Fault while not rebooting. We want the trace. */ |
| BUG_ON(!kvm_rebooting); |
| } |
| EXPORT_SYMBOL_GPL(kvm_spurious_fault); |
| |
| #define EXCPT_BENIGN 0 |
| #define EXCPT_CONTRIBUTORY 1 |
| #define EXCPT_PF 2 |
| |
| static int exception_class(int vector) |
| { |
| switch (vector) { |
| case PF_VECTOR: |
| return EXCPT_PF; |
| case DE_VECTOR: |
| case TS_VECTOR: |
| case NP_VECTOR: |
| case SS_VECTOR: |
| case GP_VECTOR: |
| return EXCPT_CONTRIBUTORY; |
| default: |
| break; |
| } |
| return EXCPT_BENIGN; |
| } |
| |
| #define EXCPT_FAULT 0 |
| #define EXCPT_TRAP 1 |
| #define EXCPT_ABORT 2 |
| #define EXCPT_INTERRUPT 3 |
| #define EXCPT_DB 4 |
| |
| static int exception_type(int vector) |
| { |
| unsigned int mask; |
| |
| if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) |
| return EXCPT_INTERRUPT; |
| |
| mask = 1 << vector; |
| |
| /* |
| * #DBs can be trap-like or fault-like, the caller must check other CPU |
| * state, e.g. DR6, to determine whether a #DB is a trap or fault. |
| */ |
| if (mask & (1 << DB_VECTOR)) |
| return EXCPT_DB; |
| |
| if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) |
| return EXCPT_TRAP; |
| |
| if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) |
| return EXCPT_ABORT; |
| |
| /* Reserved exceptions will result in fault */ |
| return EXCPT_FAULT; |
| } |
| |
| void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, |
| struct kvm_queued_exception *ex) |
| { |
| if (!ex->has_payload) |
| return; |
| |
| switch (ex->vector) { |
| case DB_VECTOR: |
| /* |
| * "Certain debug exceptions may clear bit 0-3. The |
| * remaining contents of the DR6 register are never |
| * cleared by the processor". |
| */ |
| vcpu->arch.dr6 &= ~DR_TRAP_BITS; |
| /* |
| * In order to reflect the #DB exception payload in guest |
| * dr6, three components need to be considered: active low |
| * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, |
| * DR6_BS and DR6_BT) |
| * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. |
| * In the target guest dr6: |
| * FIXED_1 bits should always be set. |
| * Active low bits should be cleared if 1-setting in payload. |
| * Active high bits should be set if 1-setting in payload. |
| * |
| * Note, the payload is compatible with the pending debug |
| * exceptions/exit qualification under VMX, that active_low bits |
| * are active high in payload. |
| * So they need to be flipped for DR6. |
| */ |
| vcpu->arch.dr6 |= DR6_ACTIVE_LOW; |
| vcpu->arch.dr6 |= ex->payload; |
| vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; |
| |
| /* |
| * The #DB payload is defined as compatible with the 'pending |
| * debug exceptions' field under VMX, not DR6. While bit 12 is |
| * defined in the 'pending debug exceptions' field (enabled |
| * breakpoint), it is reserved and must be zero in DR6. |
| */ |
| vcpu->arch.dr6 &= ~BIT(12); |
| break; |
| case PF_VECTOR: |
| vcpu->arch.cr2 = ex->payload; |
| break; |
| } |
| |
| ex->has_payload = false; |
| ex->payload = 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); |
| |
| static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, |
| bool has_error_code, u32 error_code, |
| bool has_payload, unsigned long payload) |
| { |
| struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; |
| |
| ex->vector = vector; |
| ex->injected = false; |
| ex->pending = true; |
| ex->has_error_code = has_error_code; |
| ex->error_code = error_code; |
| ex->has_payload = has_payload; |
| ex->payload = payload; |
| } |
| |
| /* Forcibly leave the nested mode in cases like a vCPU reset */ |
| static void kvm_leave_nested(struct kvm_vcpu *vcpu) |
| { |
| kvm_x86_ops.nested_ops->leave_nested(vcpu); |
| } |
| |
| static void kvm_multiple_exception(struct kvm_vcpu *vcpu, |
| unsigned nr, bool has_error, u32 error_code, |
| bool has_payload, unsigned long payload, bool reinject) |
| { |
| u32 prev_nr; |
| int class1, class2; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| /* |
| * If the exception is destined for L2 and isn't being reinjected, |
| * morph it to a VM-Exit if L1 wants to intercept the exception. A |
| * previously injected exception is not checked because it was checked |
| * when it was original queued, and re-checking is incorrect if _L1_ |
| * injected the exception, in which case it's exempt from interception. |
| */ |
| if (!reinject && is_guest_mode(vcpu) && |
| kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { |
| kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, |
| has_payload, payload); |
| return; |
| } |
| |
| if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { |
| queue: |
| if (reinject) { |
| /* |
| * On VM-Entry, an exception can be pending if and only |
| * if event injection was blocked by nested_run_pending. |
| * In that case, however, vcpu_enter_guest() requests an |
| * immediate exit, and the guest shouldn't proceed far |
| * enough to need reinjection. |
| */ |
| WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); |
| vcpu->arch.exception.injected = true; |
| if (WARN_ON_ONCE(has_payload)) { |
| /* |
| * A reinjected event has already |
| * delivered its payload. |
| */ |
| has_payload = false; |
| payload = 0; |
| } |
| } else { |
| vcpu->arch.exception.pending = true; |
| vcpu->arch.exception.injected = false; |
| } |
| vcpu->arch.exception.has_error_code = has_error; |
| vcpu->arch.exception.vector = nr; |
| vcpu->arch.exception.error_code = error_code; |
| vcpu->arch.exception.has_payload = has_payload; |
| vcpu->arch.exception.payload = payload; |
| if (!is_guest_mode(vcpu)) |
| kvm_deliver_exception_payload(vcpu, |
| &vcpu->arch.exception); |
| return; |
| } |
| |
| /* to check exception */ |
| prev_nr = vcpu->arch.exception.vector; |
| if (prev_nr == DF_VECTOR) { |
| /* triple fault -> shutdown */ |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return; |
| } |
| class1 = exception_class(prev_nr); |
| class2 = exception_class(nr); |
| if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || |
| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { |
| /* |
| * Synthesize #DF. Clear the previously injected or pending |
| * exception so as not to incorrectly trigger shutdown. |
| */ |
| vcpu->arch.exception.injected = false; |
| vcpu->arch.exception.pending = false; |
| |
| kvm_queue_exception_e(vcpu, DF_VECTOR, 0); |
| } else { |
| /* replace previous exception with a new one in a hope |
| that instruction re-execution will regenerate lost |
| exception */ |
| goto queue; |
| } |
| } |
| |
| void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
| { |
| kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_queue_exception); |
| |
| void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
| { |
| kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); |
| } |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception); |
| |
| void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, |
| unsigned long payload) |
| { |
| kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_p); |
| |
| static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, |
| u32 error_code, unsigned long payload) |
| { |
| kvm_multiple_exception(vcpu, nr, true, error_code, |
| true, payload, false); |
| } |
| |
| int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) |
| { |
| if (err) |
| kvm_inject_gp(vcpu, 0); |
| else |
| return kvm_skip_emulated_instruction(vcpu); |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); |
| |
| static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) |
| { |
| if (err) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | |
| EMULTYPE_COMPLETE_USER_EXIT); |
| } |
| |
| void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
| { |
| ++vcpu->stat.pf_guest; |
| |
| /* |
| * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of |
| * whether or not L1 wants to intercept "regular" #PF. |
| */ |
| if (is_guest_mode(vcpu) && fault->async_page_fault) |
| kvm_queue_exception_vmexit(vcpu, PF_VECTOR, |
| true, fault->error_code, |
| true, fault->address); |
| else |
| kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, |
| fault->address); |
| } |
| |
| void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, |
| struct x86_exception *fault) |
| { |
| struct kvm_mmu *fault_mmu; |
| WARN_ON_ONCE(fault->vector != PF_VECTOR); |
| |
| fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : |
| vcpu->arch.walk_mmu; |
| |
| /* |
| * Invalidate the TLB entry for the faulting address, if it exists, |
| * else the access will fault indefinitely (and to emulate hardware). |
| */ |
| if ((fault->error_code & PFERR_PRESENT_MASK) && |
| !(fault->error_code & PFERR_RSVD_MASK)) |
| kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, |
| KVM_MMU_ROOT_CURRENT); |
| |
| fault_mmu->inject_page_fault(vcpu, fault); |
| } |
| EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); |
| |
| void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
| { |
| atomic_inc(&vcpu->arch.nmi_queued); |
| kvm_make_request(KVM_REQ_NMI, vcpu); |
| } |
| |
| void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
| { |
| kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_e); |
| |
| void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
| { |
| kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); |
| } |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); |
| |
| /* |
| * Checks if cpl <= required_cpl; if true, return true. Otherwise queue |
| * a #GP and return false. |
| */ |
| bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) |
| { |
| if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) |
| return true; |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return false; |
| } |
| |
| bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) |
| { |
| if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) |
| return true; |
| |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(kvm_require_dr); |
| |
| static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); |
| } |
| |
| /* |
| * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. |
| */ |
| int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; |
| gpa_t real_gpa; |
| int i; |
| int ret; |
| u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
| |
| /* |
| * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated |
| * to an L1 GPA. |
| */ |
| real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), |
| PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); |
| if (real_gpa == INVALID_GPA) |
| return 0; |
| |
| /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ |
| ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, |
| cr3 & GENMASK(11, 5), sizeof(pdpte)); |
| if (ret < 0) |
| return 0; |
| |
| for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { |
| if ((pdpte[i] & PT_PRESENT_MASK) && |
| (pdpte[i] & pdptr_rsvd_bits(vcpu))) { |
| return 0; |
| } |
| } |
| |
| /* |
| * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. |
| * Shadow page roots need to be reconstructed instead. |
| */ |
| if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) |
| kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); |
| |
| memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
| kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); |
| kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); |
| vcpu->arch.pdptrs_from_userspace = false; |
| |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(load_pdptrs); |
| |
| static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| #ifdef CONFIG_X86_64 |
| if (cr0 & 0xffffffff00000000UL) |
| return false; |
| #endif |
| |
| if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) |
| return false; |
| |
| if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) |
| return false; |
| |
| return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0); |
| } |
| |
| void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) |
| { |
| /* |
| * CR0.WP is incorporated into the MMU role, but only for non-nested, |
| * indirect shadow MMUs. If paging is disabled, no updates are needed |
| * as there are no permission bits to emulate. If TDP is enabled, the |
| * MMU's metadata needs to be updated, e.g. so that emulating guest |
| * translations does the right thing, but there's no need to unload the |
| * root as CR0.WP doesn't affect SPTEs. |
| */ |
| if ((cr0 ^ old_cr0) == X86_CR0_WP) { |
| if (!(cr0 & X86_CR0_PG)) |
| return; |
| |
| if (tdp_enabled) { |
| kvm_init_mmu(vcpu); |
| return; |
| } |
| } |
| |
| if ((cr0 ^ old_cr0) & X86_CR0_PG) { |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_async_pf_hash_reset(vcpu); |
| |
| /* |
| * Clearing CR0.PG is defined to flush the TLB from the guest's |
| * perspective. |
| */ |
| if (!(cr0 & X86_CR0_PG)) |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| } |
| |
| if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) |
| kvm_mmu_reset_context(vcpu); |
| |
| if (((cr0 ^ old_cr0) & X86_CR0_CD) && |
| kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && |
| !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) |
| kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); |
| } |
| EXPORT_SYMBOL_GPL(kvm_post_set_cr0); |
| |
| int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| { |
| unsigned long old_cr0 = kvm_read_cr0(vcpu); |
| |
| if (!kvm_is_valid_cr0(vcpu, cr0)) |
| return 1; |
| |
| cr0 |= X86_CR0_ET; |
| |
| /* Write to CR0 reserved bits are ignored, even on Intel. */ |
| cr0 &= ~CR0_RESERVED_BITS; |
| |
| #ifdef CONFIG_X86_64 |
| if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && |
| (cr0 & X86_CR0_PG)) { |
| int cs_db, cs_l; |
| |
| if (!is_pae(vcpu)) |
| return 1; |
| static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); |
| if (cs_l) |
| return 1; |
| } |
| #endif |
| if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && |
| is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && |
| !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) |
| return 1; |
| |
| if (!(cr0 & X86_CR0_PG) && |
| (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) |
| return 1; |
| |
| static_call(kvm_x86_set_cr0)(vcpu, cr0); |
| |
| kvm_post_set_cr0(vcpu, old_cr0, cr0); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr0); |
| |
| void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
| { |
| (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_lmsw); |
| |
| void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.guest_state_protected) |
| return; |
| |
| if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { |
| |
| if (vcpu->arch.xcr0 != host_xcr0) |
| xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); |
| |
| if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && |
| vcpu->arch.ia32_xss != host_xss) |
| wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); |
| } |
| |
| if (cpu_feature_enabled(X86_FEATURE_PKU) && |
| vcpu->arch.pkru != vcpu->arch.host_pkru && |
| ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || |
| kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) |
| write_pkru(vcpu->arch.pkru); |
| } |
| EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); |
| |
| void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.guest_state_protected) |
| return; |
| |
| if (cpu_feature_enabled(X86_FEATURE_PKU) && |
| ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || |
| kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { |
| vcpu->arch.pkru = rdpkru(); |
| if (vcpu->arch.pkru != vcpu->arch.host_pkru) |
| write_pkru(vcpu->arch.host_pkru); |
| } |
| |
| if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { |
| |
| if (vcpu->arch.xcr0 != host_xcr0) |
| xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); |
| |
| if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && |
| vcpu->arch.ia32_xss != host_xss) |
| wrmsrl(MSR_IA32_XSS, host_xss); |
| } |
| |
| } |
| EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); |
| |
| #ifdef CONFIG_X86_64 |
| static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; |
| } |
| #endif |
| |
| static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
| { |
| u64 xcr0 = xcr; |
| u64 old_xcr0 = vcpu->arch.xcr0; |
| u64 valid_bits; |
| |
| /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ |
| if (index != XCR_XFEATURE_ENABLED_MASK) |
| return 1; |
| if (!(xcr0 & XFEATURE_MASK_FP)) |
| return 1; |
| if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) |
| return 1; |
| |
| /* |
| * Do not allow the guest to set bits that we do not support |
| * saving. However, xcr0 bit 0 is always set, even if the |
| * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). |
| */ |
| valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; |
| if (xcr0 & ~valid_bits) |
| return 1; |
| |
| if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != |
| (!(xcr0 & XFEATURE_MASK_BNDCSR))) |
| return 1; |
| |
| if (xcr0 & XFEATURE_MASK_AVX512) { |
| if (!(xcr0 & XFEATURE_MASK_YMM)) |
| return 1; |
| if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) |
| return 1; |
| } |
| |
| if ((xcr0 & XFEATURE_MASK_XTILE) && |
| ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) |
| return 1; |
| |
| vcpu->arch.xcr0 = xcr0; |
| |
| if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) |
| kvm_update_cpuid_runtime(vcpu); |
| return 0; |
| } |
| |
| int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) |
| { |
| /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ |
| if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || |
| __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); |
| |
| bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| if (cr4 & cr4_reserved_bits) |
| return false; |
| |
| if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) |
| return false; |
| |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4); |
| |
| static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| return __kvm_is_valid_cr4(vcpu, cr4) && |
| static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); |
| } |
| |
| void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) |
| { |
| if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) |
| kvm_mmu_reset_context(vcpu); |
| |
| /* |
| * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB |
| * according to the SDM; however, stale prev_roots could be reused |
| * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we |
| * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST |
| * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, |
| * so fall through. |
| */ |
| if (!tdp_enabled && |
| (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) |
| kvm_mmu_unload(vcpu); |
| |
| /* |
| * The TLB has to be flushed for all PCIDs if any of the following |
| * (architecturally required) changes happen: |
| * - CR4.PCIDE is changed from 1 to 0 |
| * - CR4.PGE is toggled |
| * |
| * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. |
| */ |
| if (((cr4 ^ old_cr4) & X86_CR4_PGE) || |
| (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| |
| /* |
| * The TLB has to be flushed for the current PCID if any of the |
| * following (architecturally required) changes happen: |
| * - CR4.SMEP is changed from 0 to 1 |
| * - CR4.PAE is toggled |
| */ |
| else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || |
| ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| |
| } |
| EXPORT_SYMBOL_GPL(kvm_post_set_cr4); |
| |
| int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| { |
| unsigned long old_cr4 = kvm_read_cr4(vcpu); |
| |
| if (!kvm_is_valid_cr4(vcpu, cr4)) |
| return 1; |
| |
| if (is_long_mode(vcpu)) { |
| if (!(cr4 & X86_CR4_PAE)) |
| return 1; |
| if ((cr4 ^ old_cr4) & X86_CR4_LA57) |
| return 1; |
| } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
| && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) |
| && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) |
| return 1; |
| |
| if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { |
| /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ |
| if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) |
| return 1; |
| } |
| |
| static_call(kvm_x86_set_cr4)(vcpu, cr4); |
| |
| kvm_post_set_cr4(vcpu, old_cr4, cr4); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr4); |
| |
| static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.mmu; |
| unsigned long roots_to_free = 0; |
| int i; |
| |
| /* |
| * MOV CR3 and INVPCID are usually not intercepted when using TDP, but |
| * this is reachable when running EPT=1 and unrestricted_guest=0, and |
| * also via the emulator. KVM's TDP page tables are not in the scope of |
| * the invalidation, but the guest's TLB entries need to be flushed as |
| * the CPU may have cached entries in its TLB for the target PCID. |
| */ |
| if (unlikely(tdp_enabled)) { |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| return; |
| } |
| |
| /* |
| * If neither the current CR3 nor any of the prev_roots use the given |
| * PCID, then nothing needs to be done here because a resync will |
| * happen anyway before switching to any other CR3. |
| */ |
| if (kvm_get_active_pcid(vcpu) == pcid) { |
| kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
| kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| } |
| |
| /* |
| * If PCID is disabled, there is no need to free prev_roots even if the |
| * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB |
| * with PCIDE=0. |
| */ |
| if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) |
| return; |
| |
| for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) |
| roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); |
| |
| kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); |
| } |
| |
| int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| { |
| bool skip_tlb_flush = false; |
| unsigned long pcid = 0; |
| #ifdef CONFIG_X86_64 |
| if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { |
| skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; |
| cr3 &= ~X86_CR3_PCID_NOFLUSH; |
| pcid = cr3 & X86_CR3_PCID_MASK; |
| } |
| #endif |
| |
| /* PDPTRs are always reloaded for PAE paging. */ |
| if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) |
| goto handle_tlb_flush; |
| |
| /* |
| * Do not condition the GPA check on long mode, this helper is used to |
| * stuff CR3, e.g. for RSM emulation, and there is no guarantee that |
| * the current vCPU mode is accurate. |
| */ |
| if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) |
| return 1; |
| |
| if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) |
| return 1; |
| |
| if (cr3 != kvm_read_cr3(vcpu)) |
| kvm_mmu_new_pgd(vcpu, cr3); |
| |
| vcpu->arch.cr3 = cr3; |
| kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); |
| /* Do not call post_set_cr3, we do not get here for confidential guests. */ |
| |
| handle_tlb_flush: |
| /* |
| * A load of CR3 that flushes the TLB flushes only the current PCID, |
| * even if PCID is disabled, in which case PCID=0 is flushed. It's a |
| * moot point in the end because _disabling_ PCID will flush all PCIDs, |
| * and it's impossible to use a non-zero PCID when PCID is disabled, |
| * i.e. only PCID=0 can be relevant. |
| */ |
| if (!skip_tlb_flush) |
| kvm_invalidate_pcid(vcpu, pcid); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr3); |
| |
| int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
| { |
| if (cr8 & CR8_RESERVED_BITS) |
| return 1; |
| if (lapic_in_kernel(vcpu)) |
| kvm_lapic_set_tpr(vcpu, cr8); |
| else |
| vcpu->arch.cr8 = cr8; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cr8); |
| |
| unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
| { |
| if (lapic_in_kernel(vcpu)) |
| return kvm_lapic_get_cr8(vcpu); |
| else |
| return vcpu->arch.cr8; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_cr8); |
| |
| static void kvm_update_dr0123(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { |
| for (i = 0; i < KVM_NR_DB_REGS; i++) |
| vcpu->arch.eff_db[i] = vcpu->arch.db[i]; |
| } |
| } |
| |
| void kvm_update_dr7(struct kvm_vcpu *vcpu) |
| { |
| unsigned long dr7; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| dr7 = vcpu->arch.guest_debug_dr7; |
| else |
| dr7 = vcpu->arch.dr7; |
| static_call(kvm_x86_set_dr7)(vcpu, dr7); |
| vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; |
| if (dr7 & DR7_BP_EN_MASK) |
| vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; |
| } |
| EXPORT_SYMBOL_GPL(kvm_update_dr7); |
| |
| static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) |
| { |
| u64 fixed = DR6_FIXED_1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) |
| fixed |= DR6_RTM; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) |
| fixed |= DR6_BUS_LOCK; |
| return fixed; |
| } |
| |
| int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
| { |
| size_t size = ARRAY_SIZE(vcpu->arch.db); |
| |
| switch (dr) { |
| case 0 ... 3: |
| vcpu->arch.db[array_index_nospec(dr, size)] = val; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) |
| vcpu->arch.eff_db[dr] = val; |
| break; |
| case 4: |
| case 6: |
| if (!kvm_dr6_valid(val)) |
| return 1; /* #GP */ |
| vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); |
| break; |
| case 5: |
| default: /* 7 */ |
| if (!kvm_dr7_valid(val)) |
| return 1; /* #GP */ |
| vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
| kvm_update_dr7(vcpu); |
| break; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_dr); |
| |
| void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) |
| { |
| size_t size = ARRAY_SIZE(vcpu->arch.db); |
| |
| switch (dr) { |
| case 0 ... 3: |
| *val = vcpu->arch.db[array_index_nospec(dr, size)]; |
| break; |
| case 4: |
| case 6: |
| *val = vcpu->arch.dr6; |
| break; |
| case 5: |
| default: /* 7 */ |
| *val = vcpu->arch.dr7; |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_dr); |
| |
| int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) |
| { |
| u32 ecx = kvm_rcx_read(vcpu); |
| u64 data; |
| |
| if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| kvm_rax_write(vcpu, (u32)data); |
| kvm_rdx_write(vcpu, data >> 32); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); |
| |
| /* |
| * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track |
| * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, |
| * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that |
| * require host support, i.e. should be probed via RDMSR. emulated_msrs holds |
| * MSRs that KVM emulates without strictly requiring host support. |
| * msr_based_features holds MSRs that enumerate features, i.e. are effectively |
| * CPUID leafs. Note, msr_based_features isn't mutually exclusive with |
| * msrs_to_save and emulated_msrs. |
| */ |
| |
| static const u32 msrs_to_save_base[] = { |
| MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, |
| MSR_STAR, |
| #ifdef CONFIG_X86_64 |
| MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, |
| #endif |
| MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, |
| MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, |
| MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, |
| MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, |
| MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, |
| MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, |
| MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, |
| MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, |
| MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, |
| MSR_IA32_UMWAIT_CONTROL, |
| |
| MSR_IA32_XFD, MSR_IA32_XFD_ERR, |
| }; |
| |
| static const u32 msrs_to_save_pmu[] = { |
| MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, |
| MSR_ARCH_PERFMON_FIXED_CTR0 + 2, |
| MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, |
| MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, |
| MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, |
| |
| /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */ |
| MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, |
| MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, |
| MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, |
| MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, |
| MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, |
| MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, |
| MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, |
| MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, |
| |
| MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, |
| MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, |
| |
| /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */ |
| MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, |
| MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, |
| MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, |
| MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, |
| |
| MSR_AMD64_PERF_CNTR_GLOBAL_CTL, |
| MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, |
| MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, |
| }; |
| |
| static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + |
| ARRAY_SIZE(msrs_to_save_pmu)]; |
| static unsigned num_msrs_to_save; |
| |
| static const u32 emulated_msrs_all[] = { |
| MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, |
| MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, |
| HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, |
| HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, |
| HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, |
| HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, |
| HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, |
| HV_X64_MSR_RESET, |
| HV_X64_MSR_VP_INDEX, |
| HV_X64_MSR_VP_RUNTIME, |
| HV_X64_MSR_SCONTROL, |
| HV_X64_MSR_STIMER0_CONFIG, |
| HV_X64_MSR_VP_ASSIST_PAGE, |
| HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, |
| HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, |
| HV_X64_MSR_SYNDBG_OPTIONS, |
| HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, |
| HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, |
| HV_X64_MSR_SYNDBG_PENDING_BUFFER, |
| |
| MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, |
| MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, |
| |
| MSR_IA32_TSC_ADJUST, |
| MSR_IA32_TSC_DEADLINE, |
| MSR_IA32_ARCH_CAPABILITIES, |
| MSR_IA32_PERF_CAPABILITIES, |
| MSR_IA32_MISC_ENABLE, |
| MSR_IA32_MCG_STATUS, |
| MSR_IA32_MCG_CTL, |
| MSR_IA32_MCG_EXT_CTL, |
| MSR_IA32_SMBASE, |
| MSR_SMI_COUNT, |
| MSR_PLATFORM_INFO, |
| MSR_MISC_FEATURES_ENABLES, |
| MSR_AMD64_VIRT_SPEC_CTRL, |
| MSR_AMD64_TSC_RATIO, |
| MSR_IA32_POWER_CTL, |
| MSR_IA32_UCODE_REV, |
| |
| /* |
| * KVM always supports the "true" VMX control MSRs, even if the host |
| * does not. The VMX MSRs as a whole are considered "emulated" as KVM |
| * doesn't strictly require them to exist in the host (ignoring that |
| * KVM would refuse to load in the first place if the core set of MSRs |
| * aren't supported). |
| */ |
| MSR_IA32_VMX_BASIC, |
| MSR_IA32_VMX_TRUE_PINBASED_CTLS, |
| MSR_IA32_VMX_TRUE_PROCBASED_CTLS, |
| MSR_IA32_VMX_TRUE_EXIT_CTLS, |
| MSR_IA32_VMX_TRUE_ENTRY_CTLS, |
| MSR_IA32_VMX_MISC, |
| MSR_IA32_VMX_CR0_FIXED0, |
| MSR_IA32_VMX_CR4_FIXED0, |
| MSR_IA32_VMX_VMCS_ENUM, |
| MSR_IA32_VMX_PROCBASED_CTLS2, |
| MSR_IA32_VMX_EPT_VPID_CAP, |
| MSR_IA32_VMX_VMFUNC, |
| |
| MSR_K7_HWCR, |
| MSR_KVM_POLL_CONTROL, |
| }; |
| |
| static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; |
| static unsigned num_emulated_msrs; |
| |
| /* |
| * List of MSRs that control the existence of MSR-based features, i.e. MSRs |
| * that are effectively CPUID leafs. VMX MSRs are also included in the set of |
| * feature MSRs, but are handled separately to allow expedited lookups. |
| */ |
| static const u32 msr_based_features_all_except_vmx[] = { |
| MSR_AMD64_DE_CFG, |
| MSR_IA32_UCODE_REV, |
| MSR_IA32_ARCH_CAPABILITIES, |
| MSR_IA32_PERF_CAPABILITIES, |
| }; |
| |
| static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + |
| (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; |
| static unsigned int num_msr_based_features; |
| |
| /* |
| * All feature MSRs except uCode revID, which tracks the currently loaded uCode |
| * patch, are immutable once the vCPU model is defined. |
| */ |
| static bool kvm_is_immutable_feature_msr(u32 msr) |
| { |
| int i; |
| |
| if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) |
| return true; |
| |
| for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { |
| if (msr == msr_based_features_all_except_vmx[i]) |
| return msr != MSR_IA32_UCODE_REV; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM |
| * does not yet virtualize. These include: |
| * 10 - MISC_PACKAGE_CTRLS |
| * 11 - ENERGY_FILTERING_CTL |
| * 12 - DOITM |
| * 18 - FB_CLEAR_CTRL |
| * 21 - XAPIC_DISABLE_STATUS |
| * 23 - OVERCLOCKING_STATUS |
| */ |
| |
| #define KVM_SUPPORTED_ARCH_CAP \ |
| (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ |
| ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ |
| ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ |
| ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ |
| ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO) |
| |
| static u64 kvm_get_arch_capabilities(void) |
| { |
| u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP; |
| |
| /* |
| * If nx_huge_pages is enabled, KVM's shadow paging will ensure that |
| * the nested hypervisor runs with NX huge pages. If it is not, |
| * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other |
| * L1 guests, so it need not worry about its own (L2) guests. |
| */ |
| data |= ARCH_CAP_PSCHANGE_MC_NO; |
| |
| /* |
| * If we're doing cache flushes (either "always" or "cond") |
| * we will do one whenever the guest does a vmlaunch/vmresume. |
| * If an outer hypervisor is doing the cache flush for us |
| * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that |
| * capability to the guest too, and if EPT is disabled we're not |
| * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will |
| * require a nested hypervisor to do a flush of its own. |
| */ |
| if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) |
| data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; |
| |
| if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) |
| data |= ARCH_CAP_RDCL_NO; |
| if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) |
| data |= ARCH_CAP_SSB_NO; |
| if (!boot_cpu_has_bug(X86_BUG_MDS)) |
| data |= ARCH_CAP_MDS_NO; |
| |
| if (!boot_cpu_has(X86_FEATURE_RTM)) { |
| /* |
| * If RTM=0 because the kernel has disabled TSX, the host might |
| * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 |
| * and therefore knows that there cannot be TAA) but keep |
| * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, |
| * and we want to allow migrating those guests to tsx=off hosts. |
| */ |
| data &= ~ARCH_CAP_TAA_NO; |
| } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { |
| data |= ARCH_CAP_TAA_NO; |
| } else { |
| /* |
| * Nothing to do here; we emulate TSX_CTRL if present on the |
| * host so the guest can choose between disabling TSX or |
| * using VERW to clear CPU buffers. |
| */ |
| } |
| |
| if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) |
| data |= ARCH_CAP_GDS_NO; |
| |
| return data; |
| } |
| |
| static int kvm_get_msr_feature(struct kvm_msr_entry *msr) |
| { |
| switch (msr->index) { |
| case MSR_IA32_ARCH_CAPABILITIES: |
| msr->data = kvm_get_arch_capabilities(); |
| break; |
| case MSR_IA32_PERF_CAPABILITIES: |
| msr->data = kvm_caps.supported_perf_cap; |
| break; |
| case MSR_IA32_UCODE_REV: |
| rdmsrl_safe(msr->index, &msr->data); |
| break; |
| default: |
| return static_call(kvm_x86_get_msr_feature)(msr); |
| } |
| return 0; |
| } |
| |
| static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| struct kvm_msr_entry msr; |
| int r; |
| |
| msr.index = index; |
| r = kvm_get_msr_feature(&msr); |
| |
| if (r == KVM_MSR_RET_INVALID) { |
| /* Unconditionally clear the output for simplicity */ |
| *data = 0; |
| if (kvm_msr_ignored_check(index, 0, false)) |
| r = 0; |
| } |
| |
| if (r) |
| return r; |
| |
| *data = msr.data; |
| |
| return 0; |
| } |
| |
| static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS)) |
| return false; |
| |
| if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) |
| return false; |
| |
| if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) |
| return false; |
| |
| if (efer & (EFER_LME | EFER_LMA) && |
| !guest_cpuid_has(vcpu, X86_FEATURE_LM)) |
| return false; |
| |
| if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) |
| return false; |
| |
| return true; |
| |
| } |
| bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) |
| { |
| if (efer & efer_reserved_bits) |
| return false; |
| |
| return __kvm_valid_efer(vcpu, efer); |
| } |
| EXPORT_SYMBOL_GPL(kvm_valid_efer); |
| |
| static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| u64 old_efer = vcpu->arch.efer; |
| u64 efer = msr_info->data; |
| int r; |
| |
| if (efer & efer_reserved_bits) |
| return 1; |
| |
| if (!msr_info->host_initiated) { |
| if (!__kvm_valid_efer(vcpu, efer)) |
| return 1; |
| |
| if (is_paging(vcpu) && |
| (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) |
| return 1; |
| } |
| |
| efer &= ~EFER_LMA; |
| efer |= vcpu->arch.efer & EFER_LMA; |
| |
| r = static_call(kvm_x86_set_efer)(vcpu, efer); |
| if (r) { |
| WARN_ON(r > 0); |
| return r; |
| } |
| |
| if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) |
| kvm_mmu_reset_context(vcpu); |
| |
| return 0; |
| } |
| |
| void kvm_enable_efer_bits(u64 mask) |
| { |
| efer_reserved_bits &= ~mask; |
| } |
| EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); |
| |
| bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) |
| { |
| struct kvm_x86_msr_filter *msr_filter; |
| struct msr_bitmap_range *ranges; |
| struct kvm *kvm = vcpu->kvm; |
| bool allowed; |
| int idx; |
| u32 i; |
| |
| /* x2APIC MSRs do not support filtering. */ |
| if (index >= 0x800 && index <= 0x8ff) |
| return true; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| |
| msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); |
| if (!msr_filter) { |
| allowed = true; |
| goto out; |
| } |
| |
| allowed = msr_filter->default_allow; |
| ranges = msr_filter->ranges; |
| |
| for (i = 0; i < msr_filter->count; i++) { |
| u32 start = ranges[i].base; |
| u32 end = start + ranges[i].nmsrs; |
| u32 flags = ranges[i].flags; |
| unsigned long *bitmap = ranges[i].bitmap; |
| |
| if ((index >= start) && (index < end) && (flags & type)) { |
| allowed = test_bit(index - start, bitmap); |
| break; |
| } |
| } |
| |
| out: |
| srcu_read_unlock(&kvm->srcu, idx); |
| |
| return allowed; |
| } |
| EXPORT_SYMBOL_GPL(kvm_msr_allowed); |
| |
| /* |
| * Write @data into the MSR specified by @index. Select MSR specific fault |
| * checks are bypassed if @host_initiated is %true. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, |
| bool host_initiated) |
| { |
| struct msr_data msr; |
| |
| switch (index) { |
| case MSR_FS_BASE: |
| case MSR_GS_BASE: |
| case MSR_KERNEL_GS_BASE: |
| case MSR_CSTAR: |
| case MSR_LSTAR: |
| if (is_noncanonical_address(data, vcpu)) |
| return 1; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| case MSR_IA32_SYSENTER_ESP: |
| /* |
| * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if |
| * non-canonical address is written on Intel but not on |
| * AMD (which ignores the top 32-bits, because it does |
| * not implement 64-bit SYSENTER). |
| * |
| * 64-bit code should hence be able to write a non-canonical |
| * value on AMD. Making the address canonical ensures that |
| * vmentry does not fail on Intel after writing a non-canonical |
| * value, and that something deterministic happens if the guest |
| * invokes 64-bit SYSENTER. |
| */ |
| data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); |
| break; |
| case MSR_TSC_AUX: |
| if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) |
| return 1; |
| |
| if (!host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && |
| !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) |
| return 1; |
| |
| /* |
| * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has |
| * incomplete and conflicting architectural behavior. Current |
| * AMD CPUs completely ignore bits 63:32, i.e. they aren't |
| * reserved and always read as zeros. Enforce Intel's reserved |
| * bits check if and only if the guest CPU is Intel, and clear |
| * the bits in all other cases. This ensures cross-vendor |
| * migration will provide consistent behavior for the guest. |
| */ |
| if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) |
| return 1; |
| |
| data = (u32)data; |
| break; |
| } |
| |
| msr.data = data; |
| msr.index = index; |
| msr.host_initiated = host_initiated; |
| |
| return static_call(kvm_x86_set_msr)(vcpu, &msr); |
| } |
| |
| static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, |
| u32 index, u64 data, bool host_initiated) |
| { |
| int ret = __kvm_set_msr(vcpu, index, data, host_initiated); |
| |
| if (ret == KVM_MSR_RET_INVALID) |
| if (kvm_msr_ignored_check(index, data, true)) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| /* |
| * Read the MSR specified by @index into @data. Select MSR specific fault |
| * checks are bypassed if @host_initiated is %true. |
| * Returns 0 on success, non-0 otherwise. |
| * Assumes vcpu_load() was already called. |
| */ |
| int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, |
| bool host_initiated) |
| { |
| struct msr_data msr; |
| int ret; |
| |
| switch (index) { |
| case MSR_TSC_AUX: |
| if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) |
| return 1; |
| |
| if (!host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && |
| !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) |
| return 1; |
| break; |
| } |
| |
| msr.index = index; |
| msr.host_initiated = host_initiated; |
| |
| ret = static_call(kvm_x86_get_msr)(vcpu, &msr); |
| if (!ret) |
| *data = msr.data; |
| return ret; |
| } |
| |
| static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, |
| u32 index, u64 *data, bool host_initiated) |
| { |
| int ret = __kvm_get_msr(vcpu, index, data, host_initiated); |
| |
| if (ret == KVM_MSR_RET_INVALID) { |
| /* Unconditionally clear *data for simplicity */ |
| *data = 0; |
| if (kvm_msr_ignored_check(index, 0, false)) |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) |
| { |
| if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) |
| return KVM_MSR_RET_FILTERED; |
| return kvm_get_msr_ignored_check(vcpu, index, data, false); |
| } |
| |
| static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) |
| { |
| if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) |
| return KVM_MSR_RET_FILTERED; |
| return kvm_set_msr_ignored_check(vcpu, index, data, false); |
| } |
| |
| int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) |
| { |
| return kvm_get_msr_ignored_check(vcpu, index, data, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_msr); |
| |
| int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) |
| { |
| return kvm_set_msr_ignored_check(vcpu, index, data, false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_msr); |
| |
| static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->run->msr.error) { |
| kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); |
| kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); |
| } |
| } |
| |
| static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) |
| { |
| return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); |
| } |
| |
| static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) |
| { |
| complete_userspace_rdmsr(vcpu); |
| return complete_emulated_msr_access(vcpu); |
| } |
| |
| static int complete_fast_msr_access(struct kvm_vcpu *vcpu) |
| { |
| return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); |
| } |
| |
| static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) |
| { |
| complete_userspace_rdmsr(vcpu); |
| return complete_fast_msr_access(vcpu); |
| } |
| |
| static u64 kvm_msr_reason(int r) |
| { |
| switch (r) { |
| case KVM_MSR_RET_INVALID: |
| return KVM_MSR_EXIT_REASON_UNKNOWN; |
| case KVM_MSR_RET_FILTERED: |
| return KVM_MSR_EXIT_REASON_FILTER; |
| default: |
| return KVM_MSR_EXIT_REASON_INVAL; |
| } |
| } |
| |
| static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, |
| u32 exit_reason, u64 data, |
| int (*completion)(struct kvm_vcpu *vcpu), |
| int r) |
| { |
| u64 msr_reason = kvm_msr_reason(r); |
| |
| /* Check if the user wanted to know about this MSR fault */ |
| if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) |
| return 0; |
| |
| vcpu->run->exit_reason = exit_reason; |
| vcpu->run->msr.error = 0; |
| memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); |
| vcpu->run->msr.reason = msr_reason; |
| vcpu->run->msr.index = index; |
| vcpu->run->msr.data = data; |
| vcpu->arch.complete_userspace_io = completion; |
| |
| return 1; |
| } |
| |
| int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) |
| { |
| u32 ecx = kvm_rcx_read(vcpu); |
| u64 data; |
| int r; |
| |
| r = kvm_get_msr_with_filter(vcpu, ecx, &data); |
| |
| if (!r) { |
| trace_kvm_msr_read(ecx, data); |
| |
| kvm_rax_write(vcpu, data & -1u); |
| kvm_rdx_write(vcpu, (data >> 32) & -1u); |
| } else { |
| /* MSR read failed? See if we should ask user space */ |
| if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, |
| complete_fast_rdmsr, r)) |
| return 0; |
| trace_kvm_msr_read_ex(ecx); |
| } |
| |
| return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); |
| |
| int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) |
| { |
| u32 ecx = kvm_rcx_read(vcpu); |
| u64 data = kvm_read_edx_eax(vcpu); |
| int r; |
| |
| r = kvm_set_msr_with_filter(vcpu, ecx, data); |
| |
| if (!r) { |
| trace_kvm_msr_write(ecx, data); |
| } else { |
| /* MSR write failed? See if we should ask user space */ |
| if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, |
| complete_fast_msr_access, r)) |
| return 0; |
| /* Signal all other negative errors to userspace */ |
| if (r < 0) |
| return r; |
| trace_kvm_msr_write_ex(ecx, data); |
| } |
| |
| return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); |
| |
| int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) |
| { |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| int kvm_emulate_invd(struct kvm_vcpu *vcpu) |
| { |
| /* Treat an INVD instruction as a NOP and just skip it. */ |
| return kvm_emulate_as_nop(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_invd); |
| |
| int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) |
| { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); |
| |
| |
| static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) |
| { |
| if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) && |
| !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT)) |
| return kvm_handle_invalid_op(vcpu); |
| |
| pr_warn_once("%s instruction emulated as NOP!\n", insn); |
| return kvm_emulate_as_nop(vcpu); |
| } |
| int kvm_emulate_mwait(struct kvm_vcpu *vcpu) |
| { |
| return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_mwait); |
| |
| int kvm_emulate_monitor(struct kvm_vcpu *vcpu) |
| { |
| return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_monitor); |
| |
| static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) |
| { |
| xfer_to_guest_mode_prepare(); |
| return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || |
| xfer_to_guest_mode_work_pending(); |
| } |
| |
| /* |
| * The fast path for frequent and performance sensitive wrmsr emulation, |
| * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces |
| * the latency of virtual IPI by avoiding the expensive bits of transitioning |
| * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the |
| * other cases which must be called after interrupts are enabled on the host. |
| */ |
| static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) |
| { |
| if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) |
| return 1; |
| |
| if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && |
| ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && |
| ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && |
| ((u32)(data >> 32) != X2APIC_BROADCAST)) |
| return kvm_x2apic_icr_write(vcpu->arch.apic, data); |
| |
| return 1; |
| } |
| |
| static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) |
| { |
| if (!kvm_can_use_hv_timer(vcpu)) |
| return 1; |
| |
| kvm_set_lapic_tscdeadline_msr(vcpu, data); |
| return 0; |
| } |
| |
| fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) |
| { |
| u32 msr = kvm_rcx_read(vcpu); |
| u64 data; |
| fastpath_t ret = EXIT_FASTPATH_NONE; |
| |
| kvm_vcpu_srcu_read_lock(vcpu); |
| |
| switch (msr) { |
| case APIC_BASE_MSR + (APIC_ICR >> 4): |
| data = kvm_read_edx_eax(vcpu); |
| if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { |
| kvm_skip_emulated_instruction(vcpu); |
| ret = EXIT_FASTPATH_EXIT_HANDLED; |
| } |
| break; |
| case MSR_IA32_TSC_DEADLINE: |
| data = kvm_read_edx_eax(vcpu); |
| if (!handle_fastpath_set_tscdeadline(vcpu, data)) { |
| kvm_skip_emulated_instruction(vcpu); |
| ret = EXIT_FASTPATH_REENTER_GUEST; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (ret != EXIT_FASTPATH_NONE) |
| trace_kvm_msr_write(msr, data); |
| |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); |
| |
| /* |
| * Adapt set_msr() to msr_io()'s calling convention |
| */ |
| static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| return kvm_get_msr_ignored_check(vcpu, index, data, true); |
| } |
| |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
| { |
| u64 val; |
| |
| /* |
| * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does |
| * not support modifying the guest vCPU model on the fly, e.g. changing |
| * the nVMX capabilities while L2 is running is nonsensical. Ignore |
| * writes of the same value, e.g. to allow userspace to blindly stuff |
| * all MSRs when emulating RESET. |
| */ |
| if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) { |
| if (do_get_msr(vcpu, index, &val) || *data != val) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| return kvm_set_msr_ignored_check(vcpu, index, *data, true); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| struct pvclock_clock { |
| int vclock_mode; |
| u64 cycle_last; |
| u64 mask; |
| u32 mult; |
| u32 shift; |
| u64 base_cycles; |
| u64 offset; |
| }; |
| |
| struct pvclock_gtod_data { |
| seqcount_t seq; |
| |
| struct pvclock_clock clock; /* extract of a clocksource struct */ |
| struct pvclock_clock raw_clock; /* extract of a clocksource struct */ |
| |
| ktime_t offs_boot; |
| u64 wall_time_sec; |
| }; |
| |
| static struct pvclock_gtod_data pvclock_gtod_data; |
| |
| static void update_pvclock_gtod(struct timekeeper *tk) |
| { |
| struct pvclock_gtod_data *vdata = &pvclock_gtod_data; |
| |
| write_seqcount_begin(&vdata->seq); |
| |
| /* copy pvclock gtod data */ |
| vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; |
| vdata->clock.cycle_last = tk->tkr_mono.cycle_last; |
| vdata->clock.mask = tk->tkr_mono.mask; |
| vdata->clock.mult = tk->tkr_mono.mult; |
| vdata->clock.shift = tk->tkr_mono.shift; |
| vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; |
| vdata->clock.offset = tk->tkr_mono.base; |
| |
| vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; |
| vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; |
| vdata->raw_clock.mask = tk->tkr_raw.mask; |
| vdata->raw_clock.mult = tk->tkr_raw.mult; |
| vdata->raw_clock.shift = tk->tkr_raw.shift; |
| vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; |
| vdata->raw_clock.offset = tk->tkr_raw.base; |
| |
| vdata->wall_time_sec = tk->xtime_sec; |
| |
| vdata->offs_boot = tk->offs_boot; |
| |
| write_seqcount_end(&vdata->seq); |
| } |
| |
| static s64 get_kvmclock_base_ns(void) |
| { |
| /* Count up from boot time, but with the frequency of the raw clock. */ |
| return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); |
| } |
| #else |
| static s64 get_kvmclock_base_ns(void) |
| { |
| /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ |
| return ktime_get_boottime_ns(); |
| } |
| #endif |
| |
| static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) |
| { |
| int version; |
| int r; |
| struct pvclock_wall_clock wc; |
| u32 wc_sec_hi; |
| u64 wall_nsec; |
| |
| if (!wall_clock) |
| return; |
| |
| r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
| if (r) |
| return; |
| |
| if (version & 1) |
| ++version; /* first time write, random junk */ |
| |
| ++version; |
| |
| if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) |
| return; |
| |
| wall_nsec = kvm_get_wall_clock_epoch(kvm); |
| |
| wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); |
| wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ |
| wc.version = version; |
| |
| kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); |
| |
| if (sec_hi_ofs) { |
| wc_sec_hi = wall_nsec >> 32; |
| kvm_write_guest(kvm, wall_clock + sec_hi_ofs, |
| &wc_sec_hi, sizeof(wc_sec_hi)); |
| } |
| |
| version++; |
| kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); |
| } |
| |
| static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, |
| bool old_msr, bool host_initiated) |
| { |
| struct kvm_arch *ka = &vcpu->kvm->arch; |
| |
| if (vcpu->vcpu_id == 0 && !host_initiated) { |
| if (ka->boot_vcpu_runs_old_kvmclock != old_msr) |
| kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
| |
| ka->boot_vcpu_runs_old_kvmclock = old_msr; |
| } |
| |
| vcpu->arch.time = system_time; |
| kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
| |
| /* we verify if the enable bit is set... */ |
| if (system_time & 1) |
| kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, |
| sizeof(struct pvclock_vcpu_time_info)); |
| else |
| kvm_gpc_deactivate(&vcpu->arch.pv_time); |
| |
| return; |
| } |
| |
| static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
| { |
| do_shl32_div32(dividend, divisor); |
| return dividend; |
| } |
| |
| static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, |
| s8 *pshift, u32 *pmultiplier) |
| { |
| uint64_t scaled64; |
| int32_t shift = 0; |
| uint64_t tps64; |
| uint32_t tps32; |
| |
| tps64 = base_hz; |
| scaled64 = scaled_hz; |
| while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
| tps64 >>= 1; |
| shift--; |
| } |
| |
| tps32 = (uint32_t)tps64; |
| while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
| if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) |
| scaled64 >>= 1; |
| else |
| tps32 <<= 1; |
| shift++; |
| } |
| |
| *pshift = shift; |
| *pmultiplier = div_frac(scaled64, tps32); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); |
| #endif |
| |
| static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
| static unsigned long max_tsc_khz; |
| |
| static u32 adjust_tsc_khz(u32 khz, s32 ppm) |
| { |
| u64 v = (u64)khz * (1000000 + ppm); |
| do_div(v, 1000000); |
| return v; |
| } |
| |
| static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); |
| |
| static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) |
| { |
| u64 ratio; |
| |
| /* Guest TSC same frequency as host TSC? */ |
| if (!scale) { |
| kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); |
| return 0; |
| } |
| |
| /* TSC scaling supported? */ |
| if (!kvm_caps.has_tsc_control) { |
| if (user_tsc_khz > tsc_khz) { |
| vcpu->arch.tsc_catchup = 1; |
| vcpu->arch.tsc_always_catchup = 1; |
| return 0; |
| } else { |
| pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); |
| return -1; |
| } |
| } |
| |
| /* TSC scaling required - calculate ratio */ |
| ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, |
| user_tsc_khz, tsc_khz); |
| |
| if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { |
| pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", |
| user_tsc_khz); |
| return -1; |
| } |
| |
| kvm_vcpu_write_tsc_multiplier(vcpu, ratio); |
| return 0; |
| } |
| |
| static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) |
| { |
| u32 thresh_lo, thresh_hi; |
| int use_scaling = 0; |
| |
| /* tsc_khz can be zero if TSC calibration fails */ |
| if (user_tsc_khz == 0) { |
| /* set tsc_scaling_ratio to a safe value */ |
| kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); |
| return -1; |
| } |
| |
| /* Compute a scale to convert nanoseconds in TSC cycles */ |
| kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, |
| &vcpu->arch.virtual_tsc_shift, |
| &vcpu->arch.virtual_tsc_mult); |
| vcpu->arch.virtual_tsc_khz = user_tsc_khz; |
| |
| /* |
| * Compute the variation in TSC rate which is acceptable |
| * within the range of tolerance and decide if the |
| * rate being applied is within that bounds of the hardware |
| * rate. If so, no scaling or compensation need be done. |
| */ |
| thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); |
| thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); |
| if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { |
| pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", |
| user_tsc_khz, thresh_lo, thresh_hi); |
| use_scaling = 1; |
| } |
| return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); |
| } |
| |
| static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) |
| { |
| u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, |
| vcpu->arch.virtual_tsc_mult, |
| vcpu->arch.virtual_tsc_shift); |
| tsc += vcpu->arch.this_tsc_write; |
| return tsc; |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static inline int gtod_is_based_on_tsc(int mode) |
| { |
| return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; |
| } |
| #endif |
| |
| static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_X86_64 |
| bool vcpus_matched; |
| struct kvm_arch *ka = &vcpu->kvm->arch; |
| struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
| |
| vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == |
| atomic_read(&vcpu->kvm->online_vcpus)); |
| |
| /* |
| * Once the masterclock is enabled, always perform request in |
| * order to update it. |
| * |
| * In order to enable masterclock, the host clocksource must be TSC |
| * and the vcpus need to have matched TSCs. When that happens, |
| * perform request to enable masterclock. |
| */ |
| if (ka->use_master_clock || |
| (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) |
| kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
| |
| trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, |
| atomic_read(&vcpu->kvm->online_vcpus), |
| ka->use_master_clock, gtod->clock.vclock_mode); |
| #endif |
| } |
| |
| /* |
| * Multiply tsc by a fixed point number represented by ratio. |
| * |
| * The most significant 64-N bits (mult) of ratio represent the |
| * integral part of the fixed point number; the remaining N bits |
| * (frac) represent the fractional part, ie. ratio represents a fixed |
| * point number (mult + frac * 2^(-N)). |
| * |
| * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. |
| */ |
| static inline u64 __scale_tsc(u64 ratio, u64 tsc) |
| { |
| return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); |
| } |
| |
| u64 kvm_scale_tsc(u64 tsc, u64 ratio) |
| { |
| u64 _tsc = tsc; |
| |
| if (ratio != kvm_caps.default_tsc_scaling_ratio) |
| _tsc = __scale_tsc(ratio, tsc); |
| |
| return _tsc; |
| } |
| |
| static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) |
| { |
| u64 tsc; |
| |
| tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); |
| |
| return target_tsc - tsc; |
| } |
| |
| u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) |
| { |
| return vcpu->arch.l1_tsc_offset + |
| kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); |
| |
| u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) |
| { |
| u64 nested_offset; |
| |
| if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) |
| nested_offset = l1_offset; |
| else |
| nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, |
| kvm_caps.tsc_scaling_ratio_frac_bits); |
| |
| nested_offset += l2_offset; |
| return nested_offset; |
| } |
| EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); |
| |
| u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) |
| { |
| if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) |
| return mul_u64_u64_shr(l1_multiplier, l2_multiplier, |
| kvm_caps.tsc_scaling_ratio_frac_bits); |
| |
| return l1_multiplier; |
| } |
| EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); |
| |
| static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) |
| { |
| trace_kvm_write_tsc_offset(vcpu->vcpu_id, |
| vcpu->arch.l1_tsc_offset, |
| l1_offset); |
| |
| vcpu->arch.l1_tsc_offset = l1_offset; |
| |
| /* |
| * If we are here because L1 chose not to trap WRMSR to TSC then |
| * according to the spec this should set L1's TSC (as opposed to |
| * setting L1's offset for L2). |
| */ |
| if (is_guest_mode(vcpu)) |
| vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( |
| l1_offset, |
| static_call(kvm_x86_get_l2_tsc_offset)(vcpu), |
| static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); |
| else |
| vcpu->arch.tsc_offset = l1_offset; |
| |
| static_call(kvm_x86_write_tsc_offset)(vcpu); |
| } |
| |
| static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) |
| { |
| vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; |
| |
| /* Userspace is changing the multiplier while L2 is active */ |
| if (is_guest_mode(vcpu)) |
| vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( |
| l1_multiplier, |
| static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); |
| else |
| vcpu->arch.tsc_scaling_ratio = l1_multiplier; |
| |
| if (kvm_caps.has_tsc_control) |
| static_call(kvm_x86_write_tsc_multiplier)(vcpu); |
| } |
| |
| static inline bool kvm_check_tsc_unstable(void) |
| { |
| #ifdef CONFIG_X86_64 |
| /* |
| * TSC is marked unstable when we're running on Hyper-V, |
| * 'TSC page' clocksource is good. |
| */ |
| if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) |
| return false; |
| #endif |
| return check_tsc_unstable(); |
| } |
| |
| /* |
| * Infers attempts to synchronize the guest's tsc from host writes. Sets the |
| * offset for the vcpu and tracks the TSC matching generation that the vcpu |
| * participates in. |
| */ |
| static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, |
| u64 ns, bool matched) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| |
| lockdep_assert_held(&kvm->arch.tsc_write_lock); |
| |
| /* |
| * We also track th most recent recorded KHZ, write and time to |
| * allow the matching interval to be extended at each write. |
| */ |
| kvm->arch.last_tsc_nsec = ns; |
| kvm->arch.last_tsc_write = tsc; |
| kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; |
| kvm->arch.last_tsc_offset = offset; |
| |
| vcpu->arch.last_guest_tsc = tsc; |
| |
| kvm_vcpu_write_tsc_offset(vcpu, offset); |
| |
| if (!matched) { |
| /* |
| * We split periods of matched TSC writes into generations. |
| * For each generation, we track the original measured |
| * nanosecond time, offset, and write, so if TSCs are in |
| * sync, we can match exact offset, and if not, we can match |
| * exact software computation in compute_guest_tsc() |
| * |
| * These values are tracked in kvm->arch.cur_xxx variables. |
| */ |
| kvm->arch.cur_tsc_generation++; |
| kvm->arch.cur_tsc_nsec = ns; |
| kvm->arch.cur_tsc_write = tsc; |
| kvm->arch.cur_tsc_offset = offset; |
| kvm->arch.nr_vcpus_matched_tsc = 0; |
| } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { |
| kvm->arch.nr_vcpus_matched_tsc++; |
| } |
| |
| /* Keep track of which generation this VCPU has synchronized to */ |
| vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; |
| vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; |
| vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; |
| |
| kvm_track_tsc_matching(vcpu); |
| } |
| |
| static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) |
| { |
| u64 data = user_value ? *user_value : 0; |
| struct kvm *kvm = vcpu->kvm; |
| u64 offset, ns, elapsed; |
| unsigned long flags; |
| bool matched = false; |
| bool synchronizing = false; |
| |
| raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
| offset = kvm_compute_l1_tsc_offset(vcpu, data); |
| ns = get_kvmclock_base_ns(); |
| elapsed = ns - kvm->arch.last_tsc_nsec; |
| |
| if (vcpu->arch.virtual_tsc_khz) { |
| if (data == 0) { |
| /* |
| * Force synchronization when creating a vCPU, or when |
| * userspace explicitly writes a zero value. |
| */ |
| synchronizing = true; |
| } else if (kvm->arch.user_set_tsc) { |
| u64 tsc_exp = kvm->arch.last_tsc_write + |
| nsec_to_cycles(vcpu, elapsed); |
| u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; |
| /* |
| * Here lies UAPI baggage: when a user-initiated TSC write has |
| * a small delta (1 second) of virtual cycle time against the |
| * previously set vCPU, we assume that they were intended to be |
| * in sync and the delta was only due to the racy nature of the |
| * legacy API. |
| * |
| * This trick falls down when restoring a guest which genuinely |
| * has been running for less time than the 1 second of imprecision |
| * which we allow for in the legacy API. In this case, the first |
| * value written by userspace (on any vCPU) should not be subject |
| * to this 'correction' to make it sync up with values that only |
| * come from the kernel's default vCPU creation. Make the 1-second |
| * slop hack only trigger if the user_set_tsc flag is already set. |
| */ |
| synchronizing = data < tsc_exp + tsc_hz && |
| data + tsc_hz > tsc_exp; |
| } |
| } |
| |
| if (user_value) |
| kvm->arch.user_set_tsc = true; |
| |
| /* |
| * For a reliable TSC, we can match TSC offsets, and for an unstable |
| * TSC, we add elapsed time in this computation. We could let the |
| * compensation code attempt to catch up if we fall behind, but |
| * it's better to try to match offsets from the beginning. |
| */ |
| if (synchronizing && |
| vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { |
| if (!kvm_check_tsc_unstable()) { |
| offset = kvm->arch.cur_tsc_offset; |
| } else { |
| u64 delta = nsec_to_cycles(vcpu, elapsed); |
| data += delta; |
| offset = kvm_compute_l1_tsc_offset(vcpu, data); |
| } |
| matched = true; |
| } |
| |
| __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); |
| raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
| } |
| |
| static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, |
| s64 adjustment) |
| { |
| u64 tsc_offset = vcpu->arch.l1_tsc_offset; |
| kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); |
| } |
| |
| static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) |
| { |
| if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) |
| WARN_ON(adjustment < 0); |
| adjustment = kvm_scale_tsc((u64) adjustment, |
| vcpu->arch.l1_tsc_scaling_ratio); |
| adjust_tsc_offset_guest(vcpu, adjustment); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| |
| static u64 read_tsc(void) |
| { |
| u64 ret = (u64)rdtsc_ordered(); |
| u64 last = pvclock_gtod_data.clock.cycle_last; |
| |
| if (likely(ret >= last)) |
| return ret; |
| |
| /* |
| * GCC likes to generate cmov here, but this branch is extremely |
| * predictable (it's just a function of time and the likely is |
| * very likely) and there's a data dependence, so force GCC |
| * to generate a branch instead. I don't barrier() because |
| * we don't actually need a barrier, and if this function |
| * ever gets inlined it will generate worse code. |
| */ |
| asm volatile (""); |
| return last; |
| } |
| |
| static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, |
| int *mode) |
| { |
| u64 tsc_pg_val; |
| long v; |
| |
| switch (clock->vclock_mode) { |
| case VDSO_CLOCKMODE_HVCLOCK: |
| if (hv_read_tsc_page_tsc(hv_get_tsc_page(), |
| tsc_timestamp, &tsc_pg_val)) { |
| /* TSC page valid */ |
| *mode = VDSO_CLOCKMODE_HVCLOCK; |
| v = (tsc_pg_val - clock->cycle_last) & |
| clock->mask; |
| } else { |
| /* TSC page invalid */ |
| *mode = VDSO_CLOCKMODE_NONE; |
| } |
| break; |
| case VDSO_CLOCKMODE_TSC: |
| *mode = VDSO_CLOCKMODE_TSC; |
| *tsc_timestamp = read_tsc(); |
| v = (*tsc_timestamp - clock->cycle_last) & |
| clock->mask; |
| break; |
| default: |
| *mode = VDSO_CLOCKMODE_NONE; |
| } |
| |
| if (*mode == VDSO_CLOCKMODE_NONE) |
| *tsc_timestamp = v = 0; |
| |
| return v * clock->mult; |
| } |
| |
| static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) |
| { |
| struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
| unsigned long seq; |
| int mode; |
| u64 ns; |
| |
| do { |
| seq = read_seqcount_begin(>od->seq); |
| ns = gtod->raw_clock.base_cycles; |
| ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); |
| ns >>= gtod->raw_clock.shift; |
| ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); |
| } while (unlikely(read_seqcount_retry(>od->seq, seq))); |
| *t = ns; |
| |
| return mode; |
| } |
| |
| static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) |
| { |
| struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
| unsigned long seq; |
| int mode; |
| u64 ns; |
| |
| do { |
| seq = read_seqcount_begin(>od->seq); |
| ts->tv_sec = gtod->wall_time_sec; |
| ns = gtod->clock.base_cycles; |
| ns += vgettsc(>od->clock, tsc_timestamp, &mode); |
| ns >>= gtod->clock.shift; |
| } while (unlikely(read_seqcount_retry(>od->seq, seq))); |
| |
| ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); |
| ts->tv_nsec = ns; |
| |
| return mode; |
| } |
| |
| /* returns true if host is using TSC based clocksource */ |
| static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) |
| { |
| /* checked again under seqlock below */ |
| if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) |
| return false; |
| |
| return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, |
| tsc_timestamp)); |
| } |
| |
| /* returns true if host is using TSC based clocksource */ |
| static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, |
| u64 *tsc_timestamp) |
| { |
| /* checked again under seqlock below */ |
| if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) |
| return false; |
| |
| return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); |
| } |
| #endif |
| |
| /* |
| * |
| * Assuming a stable TSC across physical CPUS, and a stable TSC |
| * across virtual CPUs, the following condition is possible. |
| * Each numbered line represents an event visible to both |
| * CPUs at the next numbered event. |
| * |
| * "timespecX" represents host monotonic time. "tscX" represents |
| * RDTSC value. |
| * |
| * VCPU0 on CPU0 | VCPU1 on CPU1 |
| * |
| * 1. read timespec0,tsc0 |
| * 2. | timespec1 = timespec0 + N |
| * | tsc1 = tsc0 + M |
| * 3. transition to guest | transition to guest |
| * 4. ret0 = timespec0 + (rdtsc - tsc0) | |
| * 5. | ret1 = timespec1 + (rdtsc - tsc1) |
| * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) |
| * |
| * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: |
| * |
| * - ret0 < ret1 |
| * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) |
| * ... |
| * - 0 < N - M => M < N |
| * |
| * That is, when timespec0 != timespec1, M < N. Unfortunately that is not |
| * always the case (the difference between two distinct xtime instances |
| * might be smaller then the difference between corresponding TSC reads, |
| * when updating guest vcpus pvclock areas). |
| * |
| * To avoid that problem, do not allow visibility of distinct |
| * system_timestamp/tsc_timestamp values simultaneously: use a master |
| * copy of host monotonic time values. Update that master copy |
| * in lockstep. |
| * |
| * Rely on synchronization of host TSCs and guest TSCs for monotonicity. |
| * |
| */ |
| |
| static void pvclock_update_vm_gtod_copy(struct kvm *kvm) |
| { |
| #ifdef CONFIG_X86_64 |
| struct kvm_arch *ka = &kvm->arch; |
| int vclock_mode; |
| bool host_tsc_clocksource, vcpus_matched; |
| |
| lockdep_assert_held(&kvm->arch.tsc_write_lock); |
| vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == |
| atomic_read(&kvm->online_vcpus)); |
| |
| /* |
| * If the host uses TSC clock, then passthrough TSC as stable |
| * to the guest. |
| */ |
| host_tsc_clocksource = kvm_get_time_and_clockread( |
| &ka->master_kernel_ns, |
| &ka->master_cycle_now); |
| |
| ka->use_master_clock = host_tsc_clocksource && vcpus_matched |
| && !ka->backwards_tsc_observed |
| && !ka->boot_vcpu_runs_old_kvmclock; |
| |
| if (ka->use_master_clock) |
| atomic_set(&kvm_guest_has_master_clock, 1); |
| |
| vclock_mode = pvclock_gtod_data.clock.vclock_mode; |
| trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, |
| vcpus_matched); |
| #endif |
| } |
| |
| static void kvm_make_mclock_inprogress_request(struct kvm *kvm) |
| { |
| kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); |
| } |
| |
| static void __kvm_start_pvclock_update(struct kvm *kvm) |
| { |
| raw_spin_lock_irq(&kvm->arch.tsc_write_lock); |
| write_seqcount_begin(&kvm->arch.pvclock_sc); |
| } |
| |
| static void kvm_start_pvclock_update(struct kvm *kvm) |
| { |
| kvm_make_mclock_inprogress_request(kvm); |
| |
| /* no guest entries from this point */ |
| __kvm_start_pvclock_update(kvm); |
| } |
| |
| static void kvm_end_pvclock_update(struct kvm *kvm) |
| { |
| struct kvm_arch *ka = &kvm->arch; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| |
| write_seqcount_end(&ka->pvclock_sc); |
| raw_spin_unlock_irq(&ka->tsc_write_lock); |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| |
| /* guest entries allowed */ |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); |
| } |
| |
| static void kvm_update_masterclock(struct kvm *kvm) |
| { |
| kvm_hv_request_tsc_page_update(kvm); |
| kvm_start_pvclock_update(kvm); |
| pvclock_update_vm_gtod_copy(kvm); |
| kvm_end_pvclock_update(kvm); |
| } |
| |
| /* |
| * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's |
| * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz |
| * can change during boot even if the TSC is constant, as it's possible for KVM |
| * to be loaded before TSC calibration completes. Ideally, KVM would get a |
| * notification when calibration completes, but practically speaking calibration |
| * will complete before userspace is alive enough to create VMs. |
| */ |
| static unsigned long get_cpu_tsc_khz(void) |
| { |
| if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| return tsc_khz; |
| else |
| return __this_cpu_read(cpu_tsc_khz); |
| } |
| |
| /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ |
| static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) |
| { |
| struct kvm_arch *ka = &kvm->arch; |
| struct pvclock_vcpu_time_info hv_clock; |
| |
| /* both __this_cpu_read() and rdtsc() should be on the same cpu */ |
| get_cpu(); |
| |
| data->flags = 0; |
| if (ka->use_master_clock && |
| (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { |
| #ifdef CONFIG_X86_64 |
| struct timespec64 ts; |
| |
| if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { |
| data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; |
| data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; |
| } else |
| #endif |
| data->host_tsc = rdtsc(); |
| |
| data->flags |= KVM_CLOCK_TSC_STABLE; |
| hv_clock.tsc_timestamp = ka->master_cycle_now; |
| hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; |
| kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, |
| &hv_clock.tsc_shift, |
| &hv_clock.tsc_to_system_mul); |
| data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); |
| } else { |
| data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; |
| } |
| |
| put_cpu(); |
| } |
| |
| static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) |
| { |
| struct kvm_arch *ka = &kvm->arch; |
| unsigned seq; |
| |
| do { |
| seq = read_seqcount_begin(&ka->pvclock_sc); |
| __get_kvmclock(kvm, data); |
| } while (read_seqcount_retry(&ka->pvclock_sc, seq)); |
| } |
| |
| u64 get_kvmclock_ns(struct kvm *kvm) |
| { |
| struct kvm_clock_data data; |
| |
| get_kvmclock(kvm, &data); |
| return data.clock; |
| } |
| |
| static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, |
| struct gfn_to_pfn_cache *gpc, |
| unsigned int offset) |
| { |
| struct kvm_vcpu_arch *vcpu = &v->arch; |
| struct pvclock_vcpu_time_info *guest_hv_clock; |
| unsigned long flags; |
| |
| read_lock_irqsave(&gpc->lock, flags); |
| while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { |
| read_unlock_irqrestore(&gpc->lock, flags); |
| |
| if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) |
| return; |
| |
| read_lock_irqsave(&gpc->lock, flags); |
| } |
| |
| guest_hv_clock = (void *)(gpc->khva + offset); |
| |
| /* |
| * This VCPU is paused, but it's legal for a guest to read another |
| * VCPU's kvmclock, so we really have to follow the specification where |
| * it says that version is odd if data is being modified, and even after |
| * it is consistent. |
| */ |
| |
| guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; |
| smp_wmb(); |
| |
| /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ |
| vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); |
| |
| if (vcpu->pvclock_set_guest_stopped_request) { |
| vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; |
| vcpu->pvclock_set_guest_stopped_request = false; |
| } |
| |
| memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); |
| smp_wmb(); |
| |
| guest_hv_clock->version = ++vcpu->hv_clock.version; |
| |
| mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); |
| read_unlock_irqrestore(&gpc->lock, flags); |
| |
| trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); |
| } |
| |
| static int kvm_guest_time_update(struct kvm_vcpu *v) |
| { |
| unsigned long flags, tgt_tsc_khz; |
| unsigned seq; |
| struct kvm_vcpu_arch *vcpu = &v->arch; |
| struct kvm_arch *ka = &v->kvm->arch; |
| s64 kernel_ns; |
| u64 tsc_timestamp, host_tsc; |
| u8 pvclock_flags; |
| bool use_master_clock; |
| |
| kernel_ns = 0; |
| host_tsc = 0; |
| |
| /* |
| * If the host uses TSC clock, then passthrough TSC as stable |
| * to the guest. |
| */ |
| do { |
| seq = read_seqcount_begin(&ka->pvclock_sc); |
| use_master_clock = ka->use_master_clock; |
| if (use_master_clock) { |
| host_tsc = ka->master_cycle_now; |
| kernel_ns = ka->master_kernel_ns; |
| } |
| } while (read_seqcount_retry(&ka->pvclock_sc, seq)); |
| |
| /* Keep irq disabled to prevent changes to the clock */ |
| local_irq_save(flags); |
| tgt_tsc_khz = get_cpu_tsc_khz(); |
| if (unlikely(tgt_tsc_khz == 0)) { |
| local_irq_restore(flags); |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
| return 1; |
| } |
| if (!use_master_clock) { |
| host_tsc = rdtsc(); |
| kernel_ns = get_kvmclock_base_ns(); |
| } |
| |
| tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); |
| |
| /* |
| * We may have to catch up the TSC to match elapsed wall clock |
| * time for two reasons, even if kvmclock is used. |
| * 1) CPU could have been running below the maximum TSC rate |
| * 2) Broken TSC compensation resets the base at each VCPU |
| * entry to avoid unknown leaps of TSC even when running |
| * again on the same CPU. This may cause apparent elapsed |
| * time to disappear, and the guest to stand still or run |
| * very slowly. |
| */ |
| if (vcpu->tsc_catchup) { |
| u64 tsc = compute_guest_tsc(v, kernel_ns); |
| if (tsc > tsc_timestamp) { |
| adjust_tsc_offset_guest(v, tsc - tsc_timestamp); |
| tsc_timestamp = tsc; |
| } |
| } |
| |
| local_irq_restore(flags); |
| |
| /* With all the info we got, fill in the values */ |
| |
| if (kvm_caps.has_tsc_control) |
| tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, |
| v->arch.l1_tsc_scaling_ratio); |
| |
| if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { |
| kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, |
| &vcpu->hv_clock.tsc_shift, |
| &vcpu->hv_clock.tsc_to_system_mul); |
| vcpu->hw_tsc_khz = tgt_tsc_khz; |
| kvm_xen_update_tsc_info(v); |
| } |
| |
| vcpu->hv_clock.tsc_timestamp = tsc_timestamp; |
| vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; |
| vcpu->last_guest_tsc = tsc_timestamp; |
| |
| /* If the host uses TSC clocksource, then it is stable */ |
| pvclock_flags = 0; |
| if (use_master_clock) |
| pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; |
| |
| vcpu->hv_clock.flags = pvclock_flags; |
| |
| if (vcpu->pv_time.active) |
| kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); |
| #ifdef CONFIG_KVM_XEN |
| if (vcpu->xen.vcpu_info_cache.active) |
| kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, |
| offsetof(struct compat_vcpu_info, time)); |
| if (vcpu->xen.vcpu_time_info_cache.active) |
| kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); |
| #endif |
| kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); |
| return 0; |
| } |
| |
| /* |
| * The pvclock_wall_clock ABI tells the guest the wall clock time at |
| * which it started (i.e. its epoch, when its kvmclock was zero). |
| * |
| * In fact those clocks are subtly different; wall clock frequency is |
| * adjusted by NTP and has leap seconds, while the kvmclock is a |
| * simple function of the TSC without any such adjustment. |
| * |
| * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between |
| * that and kvmclock, but even that would be subject to change over |
| * time. |
| * |
| * Attempt to calculate the epoch at a given moment using the *same* |
| * TSC reading via kvm_get_walltime_and_clockread() to obtain both |
| * wallclock and kvmclock times, and subtracting one from the other. |
| * |
| * Fall back to using their values at slightly different moments by |
| * calling ktime_get_real_ns() and get_kvmclock_ns() separately. |
| */ |
| uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) |
| { |
| #ifdef CONFIG_X86_64 |
| struct pvclock_vcpu_time_info hv_clock; |
| struct kvm_arch *ka = &kvm->arch; |
| unsigned long seq, local_tsc_khz; |
| struct timespec64 ts; |
| uint64_t host_tsc; |
| |
| do { |
| seq = read_seqcount_begin(&ka->pvclock_sc); |
| |
| local_tsc_khz = 0; |
| if (!ka->use_master_clock) |
| break; |
| |
| /* |
| * The TSC read and the call to get_cpu_tsc_khz() must happen |
| * on the same CPU. |
| */ |
| get_cpu(); |
| |
| local_tsc_khz = get_cpu_tsc_khz(); |
| |
| if (local_tsc_khz && |
| !kvm_get_walltime_and_clockread(&ts, &host_tsc)) |
| local_tsc_khz = 0; /* Fall back to old method */ |
| |
| put_cpu(); |
| |
| /* |
| * These values must be snapshotted within the seqcount loop. |
| * After that, it's just mathematics which can happen on any |
| * CPU at any time. |
| */ |
| hv_clock.tsc_timestamp = ka->master_cycle_now; |
| hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; |
| |
| } while (read_seqcount_retry(&ka->pvclock_sc, seq)); |
| |
| /* |
| * If the conditions were right, and obtaining the wallclock+TSC was |
| * successful, calculate the KVM clock at the corresponding time and |
| * subtract one from the other to get the guest's epoch in nanoseconds |
| * since 1970-01-01. |
| */ |
| if (local_tsc_khz) { |
| kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, |
| &hv_clock.tsc_shift, |
| &hv_clock.tsc_to_system_mul); |
| return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - |
| __pvclock_read_cycles(&hv_clock, host_tsc); |
| } |
| #endif |
| return ktime_get_real_ns() - get_kvmclock_ns(kvm); |
| } |
| |
| /* |
| * kvmclock updates which are isolated to a given vcpu, such as |
| * vcpu->cpu migration, should not allow system_timestamp from |
| * the rest of the vcpus to remain static. Otherwise ntp frequency |
| * correction applies to one vcpu's system_timestamp but not |
| * the others. |
| * |
| * So in those cases, request a kvmclock update for all vcpus. |
| * We need to rate-limit these requests though, as they can |
| * considerably slow guests that have a large number of vcpus. |
| * The time for a remote vcpu to update its kvmclock is bound |
| * by the delay we use to rate-limit the updates. |
| */ |
| |
| #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) |
| |
| static void kvmclock_update_fn(struct work_struct *work) |
| { |
| unsigned long i; |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct kvm_arch *ka = container_of(dwork, struct kvm_arch, |
| kvmclock_update_work); |
| struct kvm *kvm = container_of(ka, struct kvm, arch); |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| kvm_vcpu_kick(vcpu); |
| } |
| } |
| |
| static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) |
| { |
| struct kvm *kvm = v->kvm; |
| |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
| schedule_delayed_work(&kvm->arch.kvmclock_update_work, |
| KVMCLOCK_UPDATE_DELAY); |
| } |
| |
| #define KVMCLOCK_SYNC_PERIOD (300 * HZ) |
| |
| static void kvmclock_sync_fn(struct work_struct *work) |
| { |
| struct delayed_work *dwork = to_delayed_work(work); |
| struct kvm_arch *ka = container_of(dwork, struct kvm_arch, |
| kvmclock_sync_work); |
| struct kvm *kvm = container_of(ka, struct kvm, arch); |
| |
| schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); |
| schedule_delayed_work(&kvm->arch.kvmclock_sync_work, |
| KVMCLOCK_SYNC_PERIOD); |
| } |
| |
| /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ |
| static bool is_mci_control_msr(u32 msr) |
| { |
| return (msr & 3) == 0; |
| } |
| static bool is_mci_status_msr(u32 msr) |
| { |
| return (msr & 3) == 1; |
| } |
| |
| /* |
| * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. |
| */ |
| static bool can_set_mci_status(struct kvm_vcpu *vcpu) |
| { |
| /* McStatusWrEn enabled? */ |
| if (guest_cpuid_is_amd_or_hygon(vcpu)) |
| return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); |
| |
| return false; |
| } |
| |
| static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| u32 msr = msr_info->index; |
| u64 data = msr_info->data; |
| u32 offset, last_msr; |
| |
| switch (msr) { |
| case MSR_IA32_MCG_STATUS: |
| vcpu->arch.mcg_status = data; |
| break; |
| case MSR_IA32_MCG_CTL: |
| if (!(mcg_cap & MCG_CTL_P) && |
| (data || !msr_info->host_initiated)) |
| return 1; |
| if (data != 0 && data != ~(u64)0) |
| return 1; |
| vcpu->arch.mcg_ctl = data; |
| break; |
| case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: |
| last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; |
| if (msr > last_msr) |
| return 1; |
| |
| if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) |
| return 1; |
| /* An attempt to write a 1 to a reserved bit raises #GP */ |
| if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) |
| return 1; |
| offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, |
| last_msr + 1 - MSR_IA32_MC0_CTL2); |
| vcpu->arch.mci_ctl2_banks[offset] = data; |
| break; |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
| last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; |
| if (msr > last_msr) |
| return 1; |
| |
| /* |
| * Only 0 or all 1s can be written to IA32_MCi_CTL, all other |
| * values are architecturally undefined. But, some Linux |
| * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB |
| * issue on AMD K8s, allow bit 10 to be clear when setting all |
| * other bits in order to avoid an uncaught #GP in the guest. |
| * |
| * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, |
| * single-bit ECC data errors. |
| */ |
| if (is_mci_control_msr(msr) && |
| data != 0 && (data | (1 << 10) | 1) != ~(u64)0) |
| return 1; |
| |
| /* |
| * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. |
| * AMD-based CPUs allow non-zero values, but if and only if |
| * HWCR[McStatusWrEn] is set. |
| */ |
| if (!msr_info->host_initiated && is_mci_status_msr(msr) && |
| data != 0 && !can_set_mci_status(vcpu)) |
| return 1; |
| |
| offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, |
| last_msr + 1 - MSR_IA32_MC0_CTL); |
| vcpu->arch.mce_banks[offset] = data; |
| break; |
| default: |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) |
| { |
| u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; |
| |
| return (vcpu->arch.apf.msr_en_val & mask) == mask; |
| } |
| |
| static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
| { |
| gpa_t gpa = data & ~0x3f; |
| |
| /* Bits 4:5 are reserved, Should be zero */ |
| if (data & 0x30) |
| return 1; |
| |
| if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && |
| (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) |
| return 1; |
| |
| if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && |
| (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) |
| return 1; |
| |
| if (!lapic_in_kernel(vcpu)) |
| return data ? 1 : 0; |
| |
| vcpu->arch.apf.msr_en_val = data; |
| |
| if (!kvm_pv_async_pf_enabled(vcpu)) { |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_async_pf_hash_reset(vcpu); |
| return 0; |
| } |
| |
| if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, |
| sizeof(u64))) |
| return 1; |
| |
| vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); |
| vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; |
| |
| kvm_async_pf_wakeup_all(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) |
| { |
| /* Bits 8-63 are reserved */ |
| if (data >> 8) |
| return 1; |
| |
| if (!lapic_in_kernel(vcpu)) |
| return 1; |
| |
| vcpu->arch.apf.msr_int_val = data; |
| |
| vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; |
| |
| return 0; |
| } |
| |
| static void kvmclock_reset(struct kvm_vcpu *vcpu) |
| { |
| kvm_gpc_deactivate(&vcpu->arch.pv_time); |
| vcpu->arch.time = 0; |
| } |
| |
| static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.tlb_flush; |
| static_call(kvm_x86_flush_tlb_all)(vcpu); |
| |
| /* Flushing all ASIDs flushes the current ASID... */ |
| kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| } |
| |
| static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.tlb_flush; |
| |
| if (!tdp_enabled) { |
| /* |
| * A TLB flush on behalf of the guest is equivalent to |
| * INVPCID(all), toggling CR4.PGE, etc., which requires |
| * a forced sync of the shadow page tables. Ensure all the |
| * roots are synced and the guest TLB in hardware is clean. |
| */ |
| kvm_mmu_sync_roots(vcpu); |
| kvm_mmu_sync_prev_roots(vcpu); |
| } |
| |
| static_call(kvm_x86_flush_tlb_guest)(vcpu); |
| |
| /* |
| * Flushing all "guest" TLB is always a superset of Hyper-V's fine |
| * grained flushing. |
| */ |
| kvm_hv_vcpu_purge_flush_tlb(vcpu); |
| } |
| |
| |
| static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) |
| { |
| ++vcpu->stat.tlb_flush; |
| static_call(kvm_x86_flush_tlb_current)(vcpu); |
| } |
| |
| /* |
| * Service "local" TLB flush requests, which are specific to the current MMU |
| * context. In addition to the generic event handling in vcpu_enter_guest(), |
| * TLB flushes that are targeted at an MMU context also need to be serviced |
| * prior before nested VM-Enter/VM-Exit. |
| */ |
| void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) |
| kvm_vcpu_flush_tlb_current(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) |
| kvm_vcpu_flush_tlb_guest(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); |
| |
| static void record_steal_time(struct kvm_vcpu *vcpu) |
| { |
| struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; |
| struct kvm_steal_time __user *st; |
| struct kvm_memslots *slots; |
| gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; |
| u64 steal; |
| u32 version; |
| |
| if (kvm_xen_msr_enabled(vcpu->kvm)) { |
| kvm_xen_runstate_set_running(vcpu); |
| return; |
| } |
| |
| if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) |
| return; |
| |
| if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) |
| return; |
| |
| slots = kvm_memslots(vcpu->kvm); |
| |
| if (unlikely(slots->generation != ghc->generation || |
| gpa != ghc->gpa || |
| kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { |
| /* We rely on the fact that it fits in a single page. */ |
| BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); |
| |
| if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || |
| kvm_is_error_hva(ghc->hva) || !ghc->memslot) |
| return; |
| } |
| |
| st = (struct kvm_steal_time __user *)ghc->hva; |
| /* |
| * Doing a TLB flush here, on the guest's behalf, can avoid |
| * expensive IPIs. |
| */ |
| if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { |
| u8 st_preempted = 0; |
| int err = -EFAULT; |
| |
| if (!user_access_begin(st, sizeof(*st))) |
| return; |
| |
| asm volatile("1: xchgb %0, %2\n" |
| "xor %1, %1\n" |
| "2:\n" |
| _ASM_EXTABLE_UA(1b, 2b) |
| : "+q" (st_preempted), |
| "+&r" (err), |
| "+m" (st->preempted)); |
| if (err) |
| goto out; |
| |
| user_access_end(); |
| |
| vcpu->arch.st.preempted = 0; |
| |
| trace_kvm_pv_tlb_flush(vcpu->vcpu_id, |
| st_preempted & KVM_VCPU_FLUSH_TLB); |
| if (st_preempted & KVM_VCPU_FLUSH_TLB) |
| kvm_vcpu_flush_tlb_guest(vcpu); |
| |
| if (!user_access_begin(st, sizeof(*st))) |
| goto dirty; |
| } else { |
| if (!user_access_begin(st, sizeof(*st))) |
| return; |
| |
| unsafe_put_user(0, &st->preempted, out); |
| vcpu->arch.st.preempted = 0; |
| } |
| |
| unsafe_get_user(version, &st->version, out); |
| if (version & 1) |
| version += 1; /* first time write, random junk */ |
| |
| version += 1; |
| unsafe_put_user(version, &st->version, out); |
| |
| smp_wmb(); |
| |
| unsafe_get_user(steal, &st->steal, out); |
| steal += current->sched_info.run_delay - |
| vcpu->arch.st.last_steal; |
| vcpu->arch.st.last_steal = current->sched_info.run_delay; |
| unsafe_put_user(steal, &st->steal, out); |
| |
| version += 1; |
| unsafe_put_user(version, &st->version, out); |
| |
| out: |
| user_access_end(); |
| dirty: |
| mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); |
| } |
| |
| static bool kvm_is_msr_to_save(u32 msr_index) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < num_msrs_to_save; i++) { |
| if (msrs_to_save[i] == msr_index) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| u32 msr = msr_info->index; |
| u64 data = msr_info->data; |
| |
| if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) |
| return kvm_xen_write_hypercall_page(vcpu, data); |
| |
| switch (msr) { |
| case MSR_AMD64_NB_CFG: |
| case MSR_IA32_UCODE_WRITE: |
| case MSR_VM_HSAVE_PA: |
| case MSR_AMD64_PATCH_LOADER: |
| case MSR_AMD64_BU_CFG2: |
| case MSR_AMD64_DC_CFG: |
| case MSR_AMD64_TW_CFG: |
| case MSR_F15H_EX_CFG: |
| break; |
| |
| case MSR_IA32_UCODE_REV: |
| if (msr_info->host_initiated) |
| vcpu->arch.microcode_version = data; |
| break; |
| case MSR_IA32_ARCH_CAPABILITIES: |
| if (!msr_info->host_initiated) |
| return 1; |
| vcpu->arch.arch_capabilities = data; |
| break; |
| case MSR_IA32_PERF_CAPABILITIES: |
| if (!msr_info->host_initiated) |
| return 1; |
| if (data & ~kvm_caps.supported_perf_cap) |
| return 1; |
| |
| /* |
| * Note, this is not just a performance optimization! KVM |
| * disallows changing feature MSRs after the vCPU has run; PMU |
| * refresh will bug the VM if called after the vCPU has run. |
| */ |
| if (vcpu->arch.perf_capabilities == data) |
| break; |
| |
| vcpu->arch.perf_capabilities = data; |
| kvm_pmu_refresh(vcpu); |
| break; |
| case MSR_IA32_PRED_CMD: { |
| u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); |
| |
| if (!msr_info->host_initiated) { |
| if ((!guest_has_pred_cmd_msr(vcpu))) |
| return 1; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && |
| !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) |
| reserved_bits |= PRED_CMD_IBPB; |
| |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) |
| reserved_bits |= PRED_CMD_SBPB; |
| } |
| |
| if (!boot_cpu_has(X86_FEATURE_IBPB)) |
| reserved_bits |= PRED_CMD_IBPB; |
| |
| if (!boot_cpu_has(X86_FEATURE_SBPB)) |
| reserved_bits |= PRED_CMD_SBPB; |
| |
| if (data & reserved_bits) |
| return 1; |
| |
| if (!data) |
| break; |
| |
| wrmsrl(MSR_IA32_PRED_CMD, data); |
| break; |
| } |
| case MSR_IA32_FLUSH_CMD: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) |
| return 1; |
| |
| if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) |
| return 1; |
| if (!data) |
| break; |
| |
| wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); |
| break; |
| case MSR_EFER: |
| return set_efer(vcpu, msr_info); |
| case MSR_K7_HWCR: |
| data &= ~(u64)0x40; /* ignore flush filter disable */ |
| data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
| data &= ~(u64)0x8; /* ignore TLB cache disable */ |
| |
| /* |
| * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 |
| * through at least v6.6 whine if TscFreqSel is clear, |
| * depending on F/M/S. |
| */ |
| if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { |
| kvm_pr_unimpl_wrmsr(vcpu, msr, data); |
| return 1; |
| } |
| vcpu->arch.msr_hwcr = data; |
| break; |
| case MSR_FAM10H_MMIO_CONF_BASE: |
| if (data != 0) { |
| kvm_pr_unimpl_wrmsr(vcpu, msr, data); |
| return 1; |
| } |
| break; |
| case MSR_IA32_CR_PAT: |
| if (!kvm_pat_valid(data)) |
| return 1; |
| |
| vcpu->arch.pat = data; |
| break; |
| case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: |
| case MSR_MTRRdefType: |
| return kvm_mtrr_set_msr(vcpu, msr, data); |
| case MSR_IA32_APICBASE: |
| return kvm_set_apic_base(vcpu, msr_info); |
| case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: |
| return kvm_x2apic_msr_write(vcpu, msr, data); |
| case MSR_IA32_TSC_DEADLINE: |
| kvm_set_lapic_tscdeadline_msr(vcpu, data); |
| break; |
| case MSR_IA32_TSC_ADJUST: |
| if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { |
| if (!msr_info->host_initiated) { |
| s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; |
| adjust_tsc_offset_guest(vcpu, adj); |
| /* Before back to guest, tsc_timestamp must be adjusted |
| * as well, otherwise guest's percpu pvclock time could jump. |
| */ |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| } |
| vcpu->arch.ia32_tsc_adjust_msr = data; |
| } |
| break; |
| case MSR_IA32_MISC_ENABLE: { |
| u64 old_val = vcpu->arch.ia32_misc_enable_msr; |
| |
| if (!msr_info->host_initiated) { |
| /* RO bits */ |
| if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) |
| return 1; |
| |
| /* R bits, i.e. writes are ignored, but don't fault. */ |
| data = data & ~MSR_IA32_MISC_ENABLE_EMON; |
| data |= old_val & MSR_IA32_MISC_ENABLE_EMON; |
| } |
| |
| if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && |
| ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) |
| return 1; |
| vcpu->arch.ia32_misc_enable_msr = data; |
| kvm_update_cpuid_runtime(vcpu); |
| } else { |
| vcpu->arch.ia32_misc_enable_msr = data; |
| } |
| break; |
| } |
| case MSR_IA32_SMBASE: |
| if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) |
| return 1; |
| vcpu->arch.smbase = data; |
| break; |
| case MSR_IA32_POWER_CTL: |
| vcpu->arch.msr_ia32_power_ctl = data; |
| break; |
| case MSR_IA32_TSC: |
| if (msr_info->host_initiated) { |
| kvm_synchronize_tsc(vcpu, &data); |
| } else { |
| u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; |
| adjust_tsc_offset_guest(vcpu, adj); |
| vcpu->arch.ia32_tsc_adjust_msr += adj; |
| } |
| break; |
| case MSR_IA32_XSS: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) |
| return 1; |
| /* |
| * KVM supports exposing PT to the guest, but does not support |
| * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than |
| * XSAVES/XRSTORS to save/restore PT MSRs. |
| */ |
| if (data & ~kvm_caps.supported_xss) |
| return 1; |
| vcpu->arch.ia32_xss = data; |
| kvm_update_cpuid_runtime(vcpu); |
| break; |
| case MSR_SMI_COUNT: |
| if (!msr_info->host_initiated) |
| return 1; |
| vcpu->arch.smi_count = data; |
| break; |
| case MSR_KVM_WALL_CLOCK_NEW: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) |
| return 1; |
| |
| vcpu->kvm->arch.wall_clock = data; |
| kvm_write_wall_clock(vcpu->kvm, data, 0); |
| break; |
| case MSR_KVM_WALL_CLOCK: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) |
| return 1; |
| |
| vcpu->kvm->arch.wall_clock = data; |
| kvm_write_wall_clock(vcpu->kvm, data, 0); |
| break; |
| case MSR_KVM_SYSTEM_TIME_NEW: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) |
| return 1; |
| |
| kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); |
| break; |
| case MSR_KVM_SYSTEM_TIME: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) |
| return 1; |
| |
| kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); |
| break; |
| case MSR_KVM_ASYNC_PF_EN: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) |
| return 1; |
| |
| if (kvm_pv_enable_async_pf(vcpu, data)) |
| return 1; |
| break; |
| case MSR_KVM_ASYNC_PF_INT: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) |
| return 1; |
| |
| if (kvm_pv_enable_async_pf_int(vcpu, data)) |
| return 1; |
| break; |
| case MSR_KVM_ASYNC_PF_ACK: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) |
| return 1; |
| if (data & 0x1) { |
| vcpu->arch.apf.pageready_pending = false; |
| kvm_check_async_pf_completion(vcpu); |
| } |
| break; |
| case MSR_KVM_STEAL_TIME: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) |
| return 1; |
| |
| if (unlikely(!sched_info_on())) |
| return 1; |
| |
| if (data & KVM_STEAL_RESERVED_MASK) |
| return 1; |
| |
| vcpu->arch.st.msr_val = data; |
| |
| if (!(data & KVM_MSR_ENABLED)) |
| break; |
| |
| kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
| |
| break; |
| case MSR_KVM_PV_EOI_EN: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) |
| return 1; |
| |
| if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) |
| return 1; |
| break; |
| |
| case MSR_KVM_POLL_CONTROL: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) |
| return 1; |
| |
| /* only enable bit supported */ |
| if (data & (-1ULL << 1)) |
| return 1; |
| |
| vcpu->arch.msr_kvm_poll_control = data; |
| break; |
| |
| case MSR_IA32_MCG_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
| case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: |
| return set_msr_mce(vcpu, msr_info); |
| |
| case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: |
| case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: |
| case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: |
| case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: |
| if (kvm_pmu_is_valid_msr(vcpu, msr)) |
| return kvm_pmu_set_msr(vcpu, msr_info); |
| |
| if (data) |
| kvm_pr_unimpl_wrmsr(vcpu, msr, data); |
| break; |
| case MSR_K7_CLK_CTL: |
| /* |
| * Ignore all writes to this no longer documented MSR. |
| * Writes are only relevant for old K7 processors, |
| * all pre-dating SVM, but a recommended workaround from |
| * AMD for these chips. It is possible to specify the |
| * affected processor models on the command line, hence |
| * the need to ignore the workaround. |
| */ |
| break; |
| case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
| case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
| case HV_X64_MSR_SYNDBG_OPTIONS: |
| case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
| case HV_X64_MSR_CRASH_CTL: |
| case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
| case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
| case HV_X64_MSR_TSC_EMULATION_CONTROL: |
| case HV_X64_MSR_TSC_EMULATION_STATUS: |
| case HV_X64_MSR_TSC_INVARIANT_CONTROL: |
| return kvm_hv_set_msr_common(vcpu, msr, data, |
| msr_info->host_initiated); |
| case MSR_IA32_BBL_CR_CTL3: |
| /* Drop writes to this legacy MSR -- see rdmsr |
| * counterpart for further detail. |
| */ |
| kvm_pr_unimpl_wrmsr(vcpu, msr, data); |
| break; |
| case MSR_AMD64_OSVW_ID_LENGTH: |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
| return 1; |
| vcpu->arch.osvw.length = data; |
| break; |
| case MSR_AMD64_OSVW_STATUS: |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
| return 1; |
| vcpu->arch.osvw.status = data; |
| break; |
| case MSR_PLATFORM_INFO: |
| if (!msr_info->host_initiated || |
| (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && |
| cpuid_fault_enabled(vcpu))) |
| return 1; |
| vcpu->arch.msr_platform_info = data; |
| break; |
| case MSR_MISC_FEATURES_ENABLES: |
| if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || |
| (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && |
| !supports_cpuid_fault(vcpu))) |
| return 1; |
| vcpu->arch.msr_misc_features_enables = data; |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_IA32_XFD: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) |
| return 1; |
| |
| if (data & ~kvm_guest_supported_xfd(vcpu)) |
| return 1; |
| |
| fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); |
| break; |
| case MSR_IA32_XFD_ERR: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) |
| return 1; |
| |
| if (data & ~kvm_guest_supported_xfd(vcpu)) |
| return 1; |
| |
| vcpu->arch.guest_fpu.xfd_err = data; |
| break; |
| #endif |
| default: |
| if (kvm_pmu_is_valid_msr(vcpu, msr)) |
| return kvm_pmu_set_msr(vcpu, msr_info); |
| |
| /* |
| * Userspace is allowed to write '0' to MSRs that KVM reports |
| * as to-be-saved, even if an MSRs isn't fully supported. |
| */ |
| if (msr_info->host_initiated && !data && |
| kvm_is_msr_to_save(msr)) |
| break; |
| |
| return KVM_MSR_RET_INVALID; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common); |
| |
| static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) |
| { |
| u64 data; |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| u32 offset, last_msr; |
| |
| switch (msr) { |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| data = 0; |
| break; |
| case MSR_IA32_MCG_CAP: |
| data = vcpu->arch.mcg_cap; |
| break; |
| case MSR_IA32_MCG_CTL: |
| if (!(mcg_cap & MCG_CTL_P) && !host) |
| return 1; |
| data = vcpu->arch.mcg_ctl; |
| break; |
| case MSR_IA32_MCG_STATUS: |
| data = vcpu->arch.mcg_status; |
| break; |
| case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: |
| last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; |
| if (msr > last_msr) |
| return 1; |
| |
| if (!(mcg_cap & MCG_CMCI_P) && !host) |
| return 1; |
| offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, |
| last_msr + 1 - MSR_IA32_MC0_CTL2); |
| data = vcpu->arch.mci_ctl2_banks[offset]; |
| break; |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
| last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; |
| if (msr > last_msr) |
| return 1; |
| |
| offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, |
| last_msr + 1 - MSR_IA32_MC0_CTL); |
| data = vcpu->arch.mce_banks[offset]; |
| break; |
| default: |
| return 1; |
| } |
| *pdata = data; |
| return 0; |
| } |
| |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| switch (msr_info->index) { |
| case MSR_IA32_PLATFORM_ID: |
| case MSR_IA32_EBL_CR_POWERON: |
| case MSR_IA32_LASTBRANCHFROMIP: |
| case MSR_IA32_LASTBRANCHTOIP: |
| case MSR_IA32_LASTINTFROMIP: |
| case MSR_IA32_LASTINTTOIP: |
| case MSR_AMD64_SYSCFG: |
| case MSR_K8_TSEG_ADDR: |
| case MSR_K8_TSEG_MASK: |
| case MSR_VM_HSAVE_PA: |
| case MSR_K8_INT_PENDING_MSG: |
| case MSR_AMD64_NB_CFG: |
| case MSR_FAM10H_MMIO_CONF_BASE: |
| case MSR_AMD64_BU_CFG2: |
| case MSR_IA32_PERF_CTL: |
| case MSR_AMD64_DC_CFG: |
| case MSR_AMD64_TW_CFG: |
| case MSR_F15H_EX_CFG: |
| /* |
| * Intel Sandy Bridge CPUs must support the RAPL (running average power |
| * limit) MSRs. Just return 0, as we do not want to expose the host |
| * data here. Do not conditionalize this on CPUID, as KVM does not do |
| * so for existing CPU-specific MSRs. |
| */ |
| case MSR_RAPL_POWER_UNIT: |
| case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ |
| case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ |
| case MSR_PKG_ENERGY_STATUS: /* Total package */ |
| case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ |
| msr_info->data = 0; |
| break; |
| case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: |
| case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: |
| case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: |
| case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: |
| if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
| return kvm_pmu_get_msr(vcpu, msr_info); |
| msr_info->data = 0; |
| break; |
| case MSR_IA32_UCODE_REV: |
| msr_info->data = vcpu->arch.microcode_version; |
| break; |
| case MSR_IA32_ARCH_CAPABILITIES: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) |
| return 1; |
| msr_info->data = vcpu->arch.arch_capabilities; |
| break; |
| case MSR_IA32_PERF_CAPABILITIES: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) |
| return 1; |
| msr_info->data = vcpu->arch.perf_capabilities; |
| break; |
| case MSR_IA32_POWER_CTL: |
| msr_info->data = vcpu->arch.msr_ia32_power_ctl; |
| break; |
| case MSR_IA32_TSC: { |
| /* |
| * Intel SDM states that MSR_IA32_TSC read adds the TSC offset |
| * even when not intercepted. AMD manual doesn't explicitly |
| * state this but appears to behave the same. |
| * |
| * On userspace reads and writes, however, we unconditionally |
| * return L1's TSC value to ensure backwards-compatible |
| * behavior for migration. |
| */ |
| u64 offset, ratio; |
| |
| if (msr_info->host_initiated) { |
| offset = vcpu->arch.l1_tsc_offset; |
| ratio = vcpu->arch.l1_tsc_scaling_ratio; |
| } else { |
| offset = vcpu->arch.tsc_offset; |
| ratio = vcpu->arch.tsc_scaling_ratio; |
| } |
| |
| msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; |
| break; |
| } |
| case MSR_IA32_CR_PAT: |
| msr_info->data = vcpu->arch.pat; |
| break; |
| case MSR_MTRRcap: |
| case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: |
| case MSR_MTRRdefType: |
| return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); |
| case 0xcd: /* fsb frequency */ |
| msr_info->data = 3; |
| break; |
| /* |
| * MSR_EBC_FREQUENCY_ID |
| * Conservative value valid for even the basic CPU models. |
| * Models 0,1: 000 in bits 23:21 indicating a bus speed of |
| * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, |
| * and 266MHz for model 3, or 4. Set Core Clock |
| * Frequency to System Bus Frequency Ratio to 1 (bits |
| * 31:24) even though these are only valid for CPU |
| * models > 2, however guests may end up dividing or |
| * multiplying by zero otherwise. |
| */ |
| case MSR_EBC_FREQUENCY_ID: |
| msr_info->data = 1 << 24; |
| break; |
| case MSR_IA32_APICBASE: |
| msr_info->data = kvm_get_apic_base(vcpu); |
| break; |
| case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: |
| return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); |
| case MSR_IA32_TSC_DEADLINE: |
| msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); |
| break; |
| case MSR_IA32_TSC_ADJUST: |
| msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| msr_info->data = vcpu->arch.ia32_misc_enable_msr; |
| break; |
| case MSR_IA32_SMBASE: |
| if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) |
| return 1; |
| msr_info->data = vcpu->arch.smbase; |
| break; |
| case MSR_SMI_COUNT: |
| msr_info->data = vcpu->arch.smi_count; |
| break; |
| case MSR_IA32_PERF_STATUS: |
| /* TSC increment by tick */ |
| msr_info->data = 1000ULL; |
| /* CPU multiplier */ |
| msr_info->data |= (((uint64_t)4ULL) << 40); |
| break; |
| case MSR_EFER: |
| msr_info->data = vcpu->arch.efer; |
| break; |
| case MSR_KVM_WALL_CLOCK: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) |
| return 1; |
| |
| msr_info->data = vcpu->kvm->arch.wall_clock; |
| break; |
| case MSR_KVM_WALL_CLOCK_NEW: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) |
| return 1; |
| |
| msr_info->data = vcpu->kvm->arch.wall_clock; |
| break; |
| case MSR_KVM_SYSTEM_TIME: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) |
| return 1; |
| |
| msr_info->data = vcpu->arch.time; |
| break; |
| case MSR_KVM_SYSTEM_TIME_NEW: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) |
| return 1; |
| |
| msr_info->data = vcpu->arch.time; |
| break; |
| case MSR_KVM_ASYNC_PF_EN: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) |
| return 1; |
| |
| msr_info->data = vcpu->arch.apf.msr_en_val; |
| break; |
| case MSR_KVM_ASYNC_PF_INT: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) |
| return 1; |
| |
| msr_info->data = vcpu->arch.apf.msr_int_val; |
| break; |
| case MSR_KVM_ASYNC_PF_ACK: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) |
| return 1; |
| |
| msr_info->data = 0; |
| break; |
| case MSR_KVM_STEAL_TIME: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) |
| return 1; |
| |
| msr_info->data = vcpu->arch.st.msr_val; |
| break; |
| case MSR_KVM_PV_EOI_EN: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) |
| return 1; |
| |
| msr_info->data = vcpu->arch.pv_eoi.msr_val; |
| break; |
| case MSR_KVM_POLL_CONTROL: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) |
| return 1; |
| |
| msr_info->data = vcpu->arch.msr_kvm_poll_control; |
| break; |
| case MSR_IA32_P5_MC_ADDR: |
| case MSR_IA32_P5_MC_TYPE: |
| case MSR_IA32_MCG_CAP: |
| case MSR_IA32_MCG_CTL: |
| case MSR_IA32_MCG_STATUS: |
| case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
| case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: |
| return get_msr_mce(vcpu, msr_info->index, &msr_info->data, |
| msr_info->host_initiated); |
| case MSR_IA32_XSS: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) |
| return 1; |
| msr_info->data = vcpu->arch.ia32_xss; |
| break; |
| case MSR_K7_CLK_CTL: |
| /* |
| * Provide expected ramp-up count for K7. All other |
| * are set to zero, indicating minimum divisors for |
| * every field. |
| * |
| * This prevents guest kernels on AMD host with CPU |
| * type 6, model 8 and higher from exploding due to |
| * the rdmsr failing. |
| */ |
| msr_info->data = 0x20000000; |
| break; |
| case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
| case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
| case HV_X64_MSR_SYNDBG_OPTIONS: |
| case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
| case HV_X64_MSR_CRASH_CTL: |
| case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
| case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
| case HV_X64_MSR_TSC_EMULATION_CONTROL: |
| case HV_X64_MSR_TSC_EMULATION_STATUS: |
| case HV_X64_MSR_TSC_INVARIANT_CONTROL: |
| return kvm_hv_get_msr_common(vcpu, |
| msr_info->index, &msr_info->data, |
| msr_info->host_initiated); |
| case MSR_IA32_BBL_CR_CTL3: |
| /* This legacy MSR exists but isn't fully documented in current |
| * silicon. It is however accessed by winxp in very narrow |
| * scenarios where it sets bit #19, itself documented as |
| * a "reserved" bit. Best effort attempt to source coherent |
| * read data here should the balance of the register be |
| * interpreted by the guest: |
| * |
| * L2 cache control register 3: 64GB range, 256KB size, |
| * enabled, latency 0x1, configured |
| */ |
| msr_info->data = 0xbe702111; |
| break; |
| case MSR_AMD64_OSVW_ID_LENGTH: |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
| return 1; |
| msr_info->data = vcpu->arch.osvw.length; |
| break; |
| case MSR_AMD64_OSVW_STATUS: |
| if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) |
| return 1; |
| msr_info->data = vcpu->arch.osvw.status; |
| break; |
| case MSR_PLATFORM_INFO: |
| if (!msr_info->host_initiated && |
| !vcpu->kvm->arch.guest_can_read_msr_platform_info) |
| return 1; |
| msr_info->data = vcpu->arch.msr_platform_info; |
| break; |
| case MSR_MISC_FEATURES_ENABLES: |
| msr_info->data = vcpu->arch.msr_misc_features_enables; |
| break; |
| case MSR_K7_HWCR: |
| msr_info->data = vcpu->arch.msr_hwcr; |
| break; |
| #ifdef CONFIG_X86_64 |
| case MSR_IA32_XFD: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) |
| return 1; |
| |
| msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; |
| break; |
| case MSR_IA32_XFD_ERR: |
| if (!msr_info->host_initiated && |
| !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) |
| return 1; |
| |
| msr_info->data = vcpu->arch.guest_fpu.xfd_err; |
| break; |
| #endif |
| default: |
| if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
| return kvm_pmu_get_msr(vcpu, msr_info); |
| |
| /* |
| * Userspace is allowed to read MSRs that KVM reports as |
| * to-be-saved, even if an MSR isn't fully supported. |
| */ |
| if (msr_info->host_initiated && |
| kvm_is_msr_to_save(msr_info->index)) { |
| msr_info->data = 0; |
| break; |
| } |
| |
| return KVM_MSR_RET_INVALID; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common); |
| |
| /* |
| * Read or write a bunch of msrs. All parameters are kernel addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, |
| struct kvm_msr_entry *entries, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data)) |
| { |
| int i; |
| |
| for (i = 0; i < msrs->nmsrs; ++i) |
| if (do_msr(vcpu, entries[i].index, &entries[i].data)) |
| break; |
| |
| return i; |
| } |
| |
| /* |
| * Read or write a bunch of msrs. Parameters are user addresses. |
| * |
| * @return number of msrs set successfully. |
| */ |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, |
| int (*do_msr)(struct kvm_vcpu *vcpu, |
| unsigned index, u64 *data), |
| int writeback) |
| { |
| struct kvm_msrs msrs; |
| struct kvm_msr_entry *entries; |
| unsigned size; |
| int r; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) |
| goto out; |
| |
| r = -E2BIG; |
| if (msrs.nmsrs >= MAX_IO_MSRS) |
| goto out; |
| |
| size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
| entries = memdup_user(user_msrs->entries, size); |
| if (IS_ERR(entries)) { |
| r = PTR_ERR(entries); |
| goto out; |
| } |
| |
| r = __msr_io(vcpu, &msrs, entries, do_msr); |
| |
| if (writeback && copy_to_user(user_msrs->entries, entries, size)) |
| r = -EFAULT; |
| |
| kfree(entries); |
| out: |
| return r; |
| } |
| |
| static inline bool kvm_can_mwait_in_guest(void) |
| { |
| return boot_cpu_has(X86_FEATURE_MWAIT) && |
| !boot_cpu_has_bug(X86_BUG_MONITOR) && |
| boot_cpu_has(X86_FEATURE_ARAT); |
| } |
| |
| static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 __user *cpuid_arg) |
| { |
| struct kvm_cpuid2 cpuid; |
| int r; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) |
| return r; |
| |
| r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); |
| if (r) |
| return r; |
| |
| r = -EFAULT; |
| if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) |
| return r; |
| |
| return 0; |
| } |
| |
| static bool kvm_is_vm_type_supported(unsigned long type) |
| { |
| return type == KVM_X86_DEFAULT_VM || |
| (type == KVM_X86_SW_PROTECTED_VM && |
| IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_enabled); |
| } |
| |
| int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| { |
| int r = 0; |
| |
| switch (ext) { |
| case KVM_CAP_IRQCHIP: |
| case KVM_CAP_HLT: |
| case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: |
| case KVM_CAP_SET_TSS_ADDR: |
| case KVM_CAP_EXT_CPUID: |
| case KVM_CAP_EXT_EMUL_CPUID: |
| case KVM_CAP_CLOCKSOURCE: |
| case KVM_CAP_PIT: |
| case KVM_CAP_NOP_IO_DELAY: |
| case KVM_CAP_MP_STATE: |
| case KVM_CAP_SYNC_MMU: |
| case KVM_CAP_USER_NMI: |
| case KVM_CAP_REINJECT_CONTROL: |
| case KVM_CAP_IRQ_INJECT_STATUS: |
| case KVM_CAP_IOEVENTFD: |
| case KVM_CAP_IOEVENTFD_NO_LENGTH: |
| case KVM_CAP_PIT2: |
| case KVM_CAP_PIT_STATE2: |
| case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
| case KVM_CAP_VCPU_EVENTS: |
| case KVM_CAP_HYPERV: |
| case KVM_CAP_HYPERV_VAPIC: |
| case KVM_CAP_HYPERV_SPIN: |
| case KVM_CAP_HYPERV_SYNIC: |
| case KVM_CAP_HYPERV_SYNIC2: |
| case KVM_CAP_HYPERV_VP_INDEX: |
| case KVM_CAP_HYPERV_EVENTFD: |
| case KVM_CAP_HYPERV_TLBFLUSH: |
| case KVM_CAP_HYPERV_SEND_IPI: |
| case KVM_CAP_HYPERV_CPUID: |
| case KVM_CAP_HYPERV_ENFORCE_CPUID: |
| case KVM_CAP_SYS_HYPERV_CPUID: |
| case KVM_CAP_PCI_SEGMENT: |
| case KVM_CAP_DEBUGREGS: |
| case KVM_CAP_X86_ROBUST_SINGLESTEP: |
| case KVM_CAP_XSAVE: |
| case KVM_CAP_ASYNC_PF: |
| case KVM_CAP_ASYNC_PF_INT: |
| case KVM_CAP_GET_TSC_KHZ: |
| case KVM_CAP_KVMCLOCK_CTRL: |
| case KVM_CAP_READONLY_MEM: |
| case KVM_CAP_HYPERV_TIME: |
| case KVM_CAP_IOAPIC_POLARITY_IGNORED: |
| case KVM_CAP_TSC_DEADLINE_TIMER: |
| case KVM_CAP_DISABLE_QUIRKS: |
| case KVM_CAP_SET_BOOT_CPU_ID: |
| case KVM_CAP_SPLIT_IRQCHIP: |
| case KVM_CAP_IMMEDIATE_EXIT: |
| case KVM_CAP_PMU_EVENT_FILTER: |
| case KVM_CAP_PMU_EVENT_MASKED_EVENTS: |
| case KVM_CAP_GET_MSR_FEATURES: |
| case KVM_CAP_MSR_PLATFORM_INFO: |
| case KVM_CAP_EXCEPTION_PAYLOAD: |
| case KVM_CAP_X86_TRIPLE_FAULT_EVENT: |
| case KVM_CAP_SET_GUEST_DEBUG: |
| case KVM_CAP_LAST_CPU: |
| case KVM_CAP_X86_USER_SPACE_MSR: |
| case KVM_CAP_X86_MSR_FILTER: |
| case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: |
| #ifdef CONFIG_X86_SGX_KVM |
| case KVM_CAP_SGX_ATTRIBUTE: |
| #endif |
| case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: |
| case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: |
| case KVM_CAP_SREGS2: |
| case KVM_CAP_EXIT_ON_EMULATION_FAILURE: |
| case KVM_CAP_VCPU_ATTRIBUTES: |
| case KVM_CAP_SYS_ATTRIBUTES: |
| case KVM_CAP_VAPIC: |
| case KVM_CAP_ENABLE_CAP: |
| case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: |
| case KVM_CAP_IRQFD_RESAMPLE: |
| case KVM_CAP_MEMORY_FAULT_INFO: |
| r = 1; |
| break; |
| case KVM_CAP_EXIT_HYPERCALL: |
| r = KVM_EXIT_HYPERCALL_VALID_MASK; |
| break; |
| case KVM_CAP_SET_GUEST_DEBUG2: |
| return KVM_GUESTDBG_VALID_MASK; |
| #ifdef CONFIG_KVM_XEN |
| case KVM_CAP_XEN_HVM: |
| r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | |
| KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | |
| KVM_XEN_HVM_CONFIG_SHARED_INFO | |
| KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | |
| KVM_XEN_HVM_CONFIG_EVTCHN_SEND; |
| if (sched_info_on()) |
| r |= KVM_XEN_HVM_CONFIG_RUNSTATE | |
| KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; |
| break; |
| #endif |
| case KVM_CAP_SYNC_REGS: |
| r = KVM_SYNC_X86_VALID_FIELDS; |
| break; |
| case KVM_CAP_ADJUST_CLOCK: |
| r = KVM_CLOCK_VALID_FLAGS; |
| break; |
| case KVM_CAP_X86_DISABLE_EXITS: |
| r = KVM_X86_DISABLE_EXITS_PAUSE; |
| |
| if (!mitigate_smt_rsb) { |
| r |= KVM_X86_DISABLE_EXITS_HLT | |
| KVM_X86_DISABLE_EXITS_CSTATE; |
| |
| if (kvm_can_mwait_in_guest()) |
| r |= KVM_X86_DISABLE_EXITS_MWAIT; |
| } |
| break; |
| case KVM_CAP_X86_SMM: |
| if (!IS_ENABLED(CONFIG_KVM_SMM)) |
| break; |
| |
| /* SMBASE is usually relocated above 1M on modern chipsets, |
| * and SMM handlers might indeed rely on 4G segment limits, |
| * so do not report SMM to be available if real mode is |
| * emulated via vm86 mode. Still, do not go to great lengths |
| * to avoid userspace's usage of the feature, because it is a |
| * fringe case that is not enabled except via specific settings |
| * of the module parameters. |
| */ |
| r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); |
| break; |
| case KVM_CAP_NR_VCPUS: |
| r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); |
| break; |
| case KVM_CAP_MAX_VCPUS: |
| r = KVM_MAX_VCPUS; |
| break; |
| case KVM_CAP_MAX_VCPU_ID: |
| r = KVM_MAX_VCPU_IDS; |
| break; |
| case KVM_CAP_PV_MMU: /* obsolete */ |
| r = 0; |
| break; |
| case KVM_CAP_MCE: |
| r = KVM_MAX_MCE_BANKS; |
| break; |
| case KVM_CAP_XCRS: |
| r = boot_cpu_has(X86_FEATURE_XSAVE); |
| break; |
| case KVM_CAP_TSC_CONTROL: |
| case KVM_CAP_VM_TSC_CONTROL: |
| r = kvm_caps.has_tsc_control; |
| break; |
| case KVM_CAP_X2APIC_API: |
| r = KVM_X2APIC_API_VALID_FLAGS; |
| break; |
| case KVM_CAP_NESTED_STATE: |
| r = kvm_x86_ops.nested_ops->get_state ? |
| kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; |
| break; |
| case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: |
| r = kvm_x86_ops.enable_l2_tlb_flush != NULL; |
| break; |
| case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: |
| r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; |
| break; |
| case KVM_CAP_SMALLER_MAXPHYADDR: |
| r = (int) allow_smaller_maxphyaddr; |
| break; |
| case KVM_CAP_STEAL_TIME: |
| r = sched_info_on(); |
| break; |
| case KVM_CAP_X86_BUS_LOCK_EXIT: |
| if (kvm_caps.has_bus_lock_exit) |
| r = KVM_BUS_LOCK_DETECTION_OFF | |
| KVM_BUS_LOCK_DETECTION_EXIT; |
| else |
| r = 0; |
| break; |
| case KVM_CAP_XSAVE2: { |
| r = xstate_required_size(kvm_get_filtered_xcr0(), false); |
| if (r < sizeof(struct kvm_xsave)) |
| r = sizeof(struct kvm_xsave); |
| break; |
| } |
| case KVM_CAP_PMU_CAPABILITY: |
| r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; |
| break; |
| case KVM_CAP_DISABLE_QUIRKS2: |
| r = KVM_X86_VALID_QUIRKS; |
| break; |
| case KVM_CAP_X86_NOTIFY_VMEXIT: |
| r = kvm_caps.has_notify_vmexit; |
| break; |
| case KVM_CAP_VM_TYPES: |
| r = BIT(KVM_X86_DEFAULT_VM); |
| if (kvm_is_vm_type_supported(KVM_X86_SW_PROTECTED_VM)) |
| r |= BIT(KVM_X86_SW_PROTECTED_VM); |
| break; |
| default: |
| break; |
| } |
| return r; |
| } |
| |
| static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) |
| { |
| void __user *uaddr = (void __user*)(unsigned long)attr->addr; |
| |
| if ((u64)(unsigned long)uaddr != attr->addr) |
| return ERR_PTR_USR(-EFAULT); |
| return uaddr; |
| } |
| |
| static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) |
| { |
| u64 __user *uaddr = kvm_get_attr_addr(attr); |
| |
| if (attr->group) |
| return -ENXIO; |
| |
| if (IS_ERR(uaddr)) |
| return PTR_ERR(uaddr); |
| |
| switch (attr->attr) { |
| case KVM_X86_XCOMP_GUEST_SUPP: |
| if (put_user(kvm_caps.supported_xcr0, uaddr)) |
| return -EFAULT; |
| return 0; |
| default: |
| return -ENXIO; |
| } |
| } |
| |
| static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) |
| { |
| if (attr->group) |
| return -ENXIO; |
| |
| switch (attr->attr) { |
| case KVM_X86_XCOMP_GUEST_SUPP: |
| return 0; |
| default: |
| return -ENXIO; |
| } |
| } |
| |
| long kvm_arch_dev_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| void __user *argp = (void __user *)arg; |
| long r; |
| |
| switch (ioctl) { |
| case KVM_GET_MSR_INDEX_LIST: { |
| struct kvm_msr_list __user *user_msr_list = argp; |
| struct kvm_msr_list msr_list; |
| unsigned n; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) |
| goto out; |
| n = msr_list.nmsrs; |
| msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; |
| if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) |
| goto out; |
| r = -E2BIG; |
| if (n < msr_list.nmsrs) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(user_msr_list->indices, &msrs_to_save, |
| num_msrs_to_save * sizeof(u32))) |
| goto out; |
| if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
| &emulated_msrs, |
| num_emulated_msrs * sizeof(u32))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_SUPPORTED_CPUID: |
| case KVM_GET_EMULATED_CPUID: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) |
| goto out; |
| |
| r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, |
| ioctl); |
| if (r) |
| goto out; |
| |
| r = -EFAULT; |
| if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_X86_GET_MCE_CAP_SUPPORTED: |
| r = -EFAULT; |
| if (copy_to_user(argp, &kvm_caps.supported_mce_cap, |
| sizeof(kvm_caps.supported_mce_cap))) |
| goto out; |
| r = 0; |
| break; |
| case KVM_GET_MSR_FEATURE_INDEX_LIST: { |
| struct kvm_msr_list __user *user_msr_list = argp; |
| struct kvm_msr_list msr_list; |
| unsigned int n; |
| |
| r = -EFAULT; |
| if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) |
| goto out; |
| n = msr_list.nmsrs; |
| msr_list.nmsrs = num_msr_based_features; |
| if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) |
| goto out; |
| r = -E2BIG; |
| if (n < msr_list.nmsrs) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(user_msr_list->indices, &msr_based_features, |
| num_msr_based_features * sizeof(u32))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_MSRS: |
| r = msr_io(NULL, argp, do_get_msr_feature, 1); |
| break; |
| case KVM_GET_SUPPORTED_HV_CPUID: |
| r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); |
| break; |
| case KVM_GET_DEVICE_ATTR: { |
| struct kvm_device_attr attr; |
| r = -EFAULT; |
| if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) |
| break; |
| r = kvm_x86_dev_get_attr(&attr); |
| break; |
| } |
| case KVM_HAS_DEVICE_ATTR: { |
| struct kvm_device_attr attr; |
| r = -EFAULT; |
| if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) |
| break; |
| r = kvm_x86_dev_has_attr(&attr); |
| break; |
| } |
| default: |
| r = -EINVAL; |
| break; |
| } |
| out: |
| return r; |
| } |
| |
| static void wbinvd_ipi(void *garbage) |
| { |
| wbinvd(); |
| } |
| |
| static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) |
| { |
| return kvm_arch_has_noncoherent_dma(vcpu->kvm); |
| } |
| |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| /* Address WBINVD may be executed by guest */ |
| if (need_emulate_wbinvd(vcpu)) { |
| if (static_call(kvm_x86_has_wbinvd_exit)()) |
| cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); |
| else if (vcpu->cpu != -1 && vcpu->cpu != cpu) |
| smp_call_function_single(vcpu->cpu, |
| wbinvd_ipi, NULL, 1); |
| } |
| |
| static_call(kvm_x86_vcpu_load)(vcpu, cpu); |
| |
| /* Save host pkru register if supported */ |
| vcpu->arch.host_pkru = read_pkru(); |
| |
| /* Apply any externally detected TSC adjustments (due to suspend) */ |
| if (unlikely(vcpu->arch.tsc_offset_adjustment)) { |
| adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); |
| vcpu->arch.tsc_offset_adjustment = 0; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| } |
| |
| if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { |
| s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
| rdtsc() - vcpu->arch.last_host_tsc; |
| if (tsc_delta < 0) |
| mark_tsc_unstable("KVM discovered backwards TSC"); |
| |
| if (kvm_check_tsc_unstable()) { |
| u64 offset = kvm_compute_l1_tsc_offset(vcpu, |
| vcpu->arch.last_guest_tsc); |
| kvm_vcpu_write_tsc_offset(vcpu, offset); |
| vcpu->arch.tsc_catchup = 1; |
| } |
| |
| if (kvm_lapic_hv_timer_in_use(vcpu)) |
| kvm_lapic_restart_hv_timer(vcpu); |
| |
| /* |
| * On a host with synchronized TSC, there is no need to update |
| * kvmclock on vcpu->cpu migration |
| */ |
| if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) |
| kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
| if (vcpu->cpu != cpu) |
| kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); |
| vcpu->cpu = cpu; |
| } |
| |
| kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
| } |
| |
| static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) |
| { |
| struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; |
| struct kvm_steal_time __user *st; |
| struct kvm_memslots *slots; |
| static const u8 preempted = KVM_VCPU_PREEMPTED; |
| gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; |
| |
| /* |
| * The vCPU can be marked preempted if and only if the VM-Exit was on |
| * an instruction boundary and will not trigger guest emulation of any |
| * kind (see vcpu_run). Vendor specific code controls (conservatively) |
| * when this is true, for example allowing the vCPU to be marked |
| * preempted if and only if the VM-Exit was due to a host interrupt. |
| */ |
| if (!vcpu->arch.at_instruction_boundary) { |
| vcpu->stat.preemption_other++; |
| return; |
| } |
| |
| vcpu->stat.preemption_reported++; |
| if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) |
| return; |
| |
| if (vcpu->arch.st.preempted) |
| return; |
| |
| /* This happens on process exit */ |
| if (unlikely(current->mm != vcpu->kvm->mm)) |
| return; |
| |
| slots = kvm_memslots(vcpu->kvm); |
| |
| if (unlikely(slots->generation != ghc->generation || |
| gpa != ghc->gpa || |
| kvm_is_error_hva(ghc->hva) || !ghc->memslot)) |
| return; |
| |
| st = (struct kvm_steal_time __user *)ghc->hva; |
| BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); |
| |
| if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) |
| vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; |
| |
| mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); |
| } |
| |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| int idx; |
| |
| if (vcpu->preempted) { |
| if (!vcpu->arch.guest_state_protected) |
| vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); |
| |
| /* |
| * Take the srcu lock as memslots will be accessed to check the gfn |
| * cache generation against the memslots generation. |
| */ |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| if (kvm_xen_msr_enabled(vcpu->kvm)) |
| kvm_xen_runstate_set_preempted(vcpu); |
| else |
| kvm_steal_time_set_preempted(vcpu); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| } |
| |
| static_call(kvm_x86_vcpu_put)(vcpu); |
| vcpu->arch.last_host_tsc = rdtsc(); |
| } |
| |
| static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); |
| |
| return kvm_apic_get_state(vcpu, s); |
| } |
| |
| static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, |
| struct kvm_lapic_state *s) |
| { |
| int r; |
| |
| r = kvm_apic_set_state(vcpu, s); |
| if (r) |
| return r; |
| update_cr8_intercept(vcpu); |
| |
| return 0; |
| } |
| |
| static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * We can accept userspace's request for interrupt injection |
| * as long as we have a place to store the interrupt number. |
| * The actual injection will happen when the CPU is able to |
| * deliver the interrupt. |
| */ |
| if (kvm_cpu_has_extint(vcpu)) |
| return false; |
| |
| /* Acknowledging ExtINT does not happen if LINT0 is masked. */ |
| return (!lapic_in_kernel(vcpu) || |
| kvm_apic_accept_pic_intr(vcpu)); |
| } |
| |
| static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Do not cause an interrupt window exit if an exception |
| * is pending or an event needs reinjection; userspace |
| * might want to inject the interrupt manually using KVM_SET_REGS |
| * or KVM_SET_SREGS. For that to work, we must be at an |
| * instruction boundary and with no events half-injected. |
| */ |
| return (kvm_arch_interrupt_allowed(vcpu) && |
| kvm_cpu_accept_dm_intr(vcpu) && |
| !kvm_event_needs_reinjection(vcpu) && |
| !kvm_is_exception_pending(vcpu)); |
| } |
| |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
| struct kvm_interrupt *irq) |
| { |
| if (irq->irq >= KVM_NR_INTERRUPTS) |
| return -EINVAL; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) { |
| kvm_queue_interrupt(vcpu, irq->irq, false); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| return 0; |
| } |
| |
| /* |
| * With in-kernel LAPIC, we only use this to inject EXTINT, so |
| * fail for in-kernel 8259. |
| */ |
| if (pic_in_kernel(vcpu->kvm)) |
| return -ENXIO; |
| |
| if (vcpu->arch.pending_external_vector != -1) |
| return -EEXIST; |
| |
| vcpu->arch.pending_external_vector = irq->irq; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
| { |
| kvm_inject_nmi(vcpu); |
| |
| return 0; |
| } |
| |
| static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
| struct kvm_tpr_access_ctl *tac) |
| { |
| if (tac->flags) |
| return -EINVAL; |
| vcpu->arch.tpr_access_reporting = !!tac->enabled; |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
| u64 mcg_cap) |
| { |
| int r; |
| unsigned bank_num = mcg_cap & 0xff, bank; |
| |
| r = -EINVAL; |
| if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) |
| goto out; |
| if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) |
| goto out; |
| r = 0; |
| vcpu->arch.mcg_cap = mcg_cap; |
| /* Init IA32_MCG_CTL to all 1s */ |
| if (mcg_cap & MCG_CTL_P) |
| vcpu->arch.mcg_ctl = ~(u64)0; |
| /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ |
| for (bank = 0; bank < bank_num; bank++) { |
| vcpu->arch.mce_banks[bank*4] = ~(u64)0; |
| if (mcg_cap & MCG_CMCI_P) |
| vcpu->arch.mci_ctl2_banks[bank] = 0; |
| } |
| |
| kvm_apic_after_set_mcg_cap(vcpu); |
| |
| static_call(kvm_x86_setup_mce)(vcpu); |
| out: |
| return r; |
| } |
| |
| /* |
| * Validate this is an UCNA (uncorrectable no action) error by checking the |
| * MCG_STATUS and MCi_STATUS registers: |
| * - none of the bits for Machine Check Exceptions are set |
| * - both the VAL (valid) and UC (uncorrectable) bits are set |
| * MCI_STATUS_PCC - Processor Context Corrupted |
| * MCI_STATUS_S - Signaled as a Machine Check Exception |
| * MCI_STATUS_AR - Software recoverable Action Required |
| */ |
| static bool is_ucna(struct kvm_x86_mce *mce) |
| { |
| return !mce->mcg_status && |
| !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && |
| (mce->status & MCI_STATUS_VAL) && |
| (mce->status & MCI_STATUS_UC); |
| } |
| |
| static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) |
| { |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| |
| banks[1] = mce->status; |
| banks[2] = mce->addr; |
| banks[3] = mce->misc; |
| vcpu->arch.mcg_status = mce->mcg_status; |
| |
| if (!(mcg_cap & MCG_CMCI_P) || |
| !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) |
| return 0; |
| |
| if (lapic_in_kernel(vcpu)) |
| kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); |
| |
| return 0; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, |
| struct kvm_x86_mce *mce) |
| { |
| u64 mcg_cap = vcpu->arch.mcg_cap; |
| unsigned bank_num = mcg_cap & 0xff; |
| u64 *banks = vcpu->arch.mce_banks; |
| |
| if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) |
| return -EINVAL; |
| |
| banks += array_index_nospec(4 * mce->bank, 4 * bank_num); |
| |
| if (is_ucna(mce)) |
| return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); |
| |
| /* |
| * if IA32_MCG_CTL is not all 1s, the uncorrected error |
| * reporting is disabled |
| */ |
| if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && |
| vcpu->arch.mcg_ctl != ~(u64)0) |
| return 0; |
| /* |
| * if IA32_MCi_CTL is not all 1s, the uncorrected error |
| * reporting is disabled for the bank |
| */ |
| if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) |
| return 0; |
| if (mce->status & MCI_STATUS_UC) { |
| if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || |
| !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| return 0; |
| } |
| if (banks[1] & MCI_STATUS_VAL) |
| mce->status |= MCI_STATUS_OVER; |
| banks[2] = mce->addr; |
| banks[3] = mce->misc; |
| vcpu->arch.mcg_status = mce->mcg_status; |
| banks[1] = mce->status; |
| kvm_queue_exception(vcpu, MC_VECTOR); |
| } else if (!(banks[1] & MCI_STATUS_VAL) |
| || !(banks[1] & MCI_STATUS_UC)) { |
| if (banks[1] & MCI_STATUS_VAL) |
| mce->status |= MCI_STATUS_OVER; |
| banks[2] = mce->addr; |
| banks[3] = mce->misc; |
| banks[1] = mce->status; |
| } else |
| banks[1] |= MCI_STATUS_OVER; |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| struct kvm_queued_exception *ex; |
| |
| process_nmi(vcpu); |
| |
| #ifdef CONFIG_KVM_SMM |
| if (kvm_check_request(KVM_REQ_SMI, vcpu)) |
| process_smi(vcpu); |
| #endif |
| |
| /* |
| * KVM's ABI only allows for one exception to be migrated. Luckily, |
| * the only time there can be two queued exceptions is if there's a |
| * non-exiting _injected_ exception, and a pending exiting exception. |
| * In that case, ignore the VM-Exiting exception as it's an extension |
| * of the injected exception. |
| */ |
| if (vcpu->arch.exception_vmexit.pending && |
| !vcpu->arch.exception.pending && |
| !vcpu->arch.exception.injected) |
| ex = &vcpu->arch.exception_vmexit; |
| else |
| ex = &vcpu->arch.exception; |
| |
| /* |
| * In guest mode, payload delivery should be deferred if the exception |
| * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 |
| * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, |
| * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not |
| * propagate the payload and so it cannot be safely deferred. Deliver |
| * the payload if the capability hasn't been requested. |
| */ |
| if (!vcpu->kvm->arch.exception_payload_enabled && |
| ex->pending && ex->has_payload) |
| kvm_deliver_exception_payload(vcpu, ex); |
| |
| memset(events, 0, sizeof(*events)); |
| |
| /* |
| * The API doesn't provide the instruction length for software |
| * exceptions, so don't report them. As long as the guest RIP |
| * isn't advanced, we should expect to encounter the exception |
| * again. |
| */ |
| if (!kvm_exception_is_soft(ex->vector)) { |
| events->exception.injected = ex->injected; |
| events->exception.pending = ex->pending; |
| /* |
| * For ABI compatibility, deliberately conflate |
| * pending and injected exceptions when |
| * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. |
| */ |
| if (!vcpu->kvm->arch.exception_payload_enabled) |
| events->exception.injected |= ex->pending; |
| } |
| events->exception.nr = ex->vector; |
| events->exception.has_error_code = ex->has_error_code; |
| events->exception.error_code = ex->error_code; |
| events->exception_has_payload = ex->has_payload; |
| events->exception_payload = ex->payload; |
| |
| events->interrupt.injected = |
| vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; |
| events->interrupt.nr = vcpu->arch.interrupt.nr; |
| events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); |
| |
| events->nmi.injected = vcpu->arch.nmi_injected; |
| events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); |
| events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); |
| |
| /* events->sipi_vector is never valid when reporting to user space */ |
| |
| #ifdef CONFIG_KVM_SMM |
| events->smi.smm = is_smm(vcpu); |
| events->smi.pending = vcpu->arch.smi_pending; |
| events->smi.smm_inside_nmi = |
| !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); |
| #endif |
| events->smi.latched_init = kvm_lapic_latched_init(vcpu); |
| |
| events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
| | KVM_VCPUEVENT_VALID_SHADOW |
| | KVM_VCPUEVENT_VALID_SMM); |
| if (vcpu->kvm->arch.exception_payload_enabled) |
| events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; |
| if (vcpu->kvm->arch.triple_fault_event) { |
| events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; |
| } |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events) |
| { |
| if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
| | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
| | KVM_VCPUEVENT_VALID_SHADOW |
| | KVM_VCPUEVENT_VALID_SMM |
| | KVM_VCPUEVENT_VALID_PAYLOAD |
| | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) |
| return -EINVAL; |
| |
| if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { |
| if (!vcpu->kvm->arch.exception_payload_enabled) |
| return -EINVAL; |
| if (events->exception.pending) |
| events->exception.injected = 0; |
| else |
| events->exception_has_payload = 0; |
| } else { |
| events->exception.pending = 0; |
| events->exception_has_payload = 0; |
| } |
| |
| if ((events->exception.injected || events->exception.pending) && |
| (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) |
| return -EINVAL; |
| |
| /* INITs are latched while in SMM */ |
| if (events->flags & KVM_VCPUEVENT_VALID_SMM && |
| (events->smi.smm || events->smi.pending) && |
| vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) |
| return -EINVAL; |
| |
| process_nmi(vcpu); |
| |
| /* |
| * Flag that userspace is stuffing an exception, the next KVM_RUN will |
| * morph the exception to a VM-Exit if appropriate. Do this only for |
| * pending exceptions, already-injected exceptions are not subject to |
| * intercpetion. Note, userspace that conflates pending and injected |
| * is hosed, and will incorrectly convert an injected exception into a |
| * pending exception, which in turn may cause a spurious VM-Exit. |
| */ |
| vcpu->arch.exception_from_userspace = events->exception.pending; |
| |
| vcpu->arch.exception_vmexit.pending = false; |
| |
| vcpu->arch.exception.injected = events->exception.injected; |
| vcpu->arch.exception.pending = events->exception.pending; |
| vcpu->arch.exception.vector = events->exception.nr; |
| vcpu->arch.exception.has_error_code = events->exception.has_error_code; |
| vcpu->arch.exception.error_code = events->exception.error_code; |
| vcpu->arch.exception.has_payload = events->exception_has_payload; |
| vcpu->arch.exception.payload = events->exception_payload; |
| |
| vcpu->arch.interrupt.injected = events->interrupt.injected; |
| vcpu->arch.interrupt.nr = events->interrupt.nr; |
| vcpu->arch.interrupt.soft = events->interrupt.soft; |
| if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
| static_call(kvm_x86_set_interrupt_shadow)(vcpu, |
| events->interrupt.shadow); |
| |
| vcpu->arch.nmi_injected = events->nmi.injected; |
| if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { |
| vcpu->arch.nmi_pending = 0; |
| atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); |
| kvm_make_request(KVM_REQ_NMI, vcpu); |
| } |
| static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); |
| |
| if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && |
| lapic_in_kernel(vcpu)) |
| vcpu->arch.apic->sipi_vector = events->sipi_vector; |
| |
| if (events->flags & KVM_VCPUEVENT_VALID_SMM) { |
| #ifdef CONFIG_KVM_SMM |
| if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { |
| kvm_leave_nested(vcpu); |
| kvm_smm_changed(vcpu, events->smi.smm); |
| } |
| |
| vcpu->arch.smi_pending = events->smi.pending; |
| |
| if (events->smi.smm) { |
| if (events->smi.smm_inside_nmi) |
| vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; |
| else |
| vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; |
| } |
| |
| #else |
| if (events->smi.smm || events->smi.pending || |
| events->smi.smm_inside_nmi) |
| return -EINVAL; |
| #endif |
| |
| if (lapic_in_kernel(vcpu)) { |
| if (events->smi.latched_init) |
| set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); |
| else |
| clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); |
| } |
| } |
| |
| if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { |
| if (!vcpu->kvm->arch.triple_fault_event) |
| return -EINVAL; |
| if (events->triple_fault.pending) |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| else |
| kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| } |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| return 0; |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
| struct kvm_debugregs *dbgregs) |
| { |
| unsigned long val; |
| |
| memset(dbgregs, 0, sizeof(*dbgregs)); |
| memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); |
| kvm_get_dr(vcpu, 6, &val); |
| dbgregs->dr6 = val; |
| dbgregs->dr7 = vcpu->arch.dr7; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, |
| struct kvm_debugregs *dbgregs) |
| { |
| if (dbgregs->flags) |
| return -EINVAL; |
| |
| if (!kvm_dr6_valid(dbgregs->dr6)) |
| return -EINVAL; |
| if (!kvm_dr7_valid(dbgregs->dr7)) |
| return -EINVAL; |
| |
| memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); |
| kvm_update_dr0123(vcpu); |
| vcpu->arch.dr6 = dbgregs->dr6; |
| vcpu->arch.dr7 = dbgregs->dr7; |
| kvm_update_dr7(vcpu); |
| |
| return 0; |
| } |
| |
| |
| static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, |
| u8 *state, unsigned int size) |
| { |
| /* |
| * Only copy state for features that are enabled for the guest. The |
| * state itself isn't problematic, but setting bits in the header for |
| * features that are supported in *this* host but not exposed to the |
| * guest can result in KVM_SET_XSAVE failing when live migrating to a |
| * compatible host without the features that are NOT exposed to the |
| * guest. |
| * |
| * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if |
| * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't |
| * supported by the host. |
| */ |
| u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | |
| XFEATURE_MASK_FPSSE; |
| |
| if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) |
| return; |
| |
| fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, |
| supported_xcr0, vcpu->arch.pkru); |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
| struct kvm_xsave *guest_xsave) |
| { |
| return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, |
| sizeof(guest_xsave->region)); |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, |
| struct kvm_xsave *guest_xsave) |
| { |
| if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) |
| return 0; |
| |
| return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, |
| guest_xsave->region, |
| kvm_caps.supported_xcr0, |
| &vcpu->arch.pkru); |
| } |
| |
| static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, |
| struct kvm_xcrs *guest_xcrs) |
| { |
| if (!boot_cpu_has(X86_FEATURE_XSAVE)) { |
| guest_xcrs->nr_xcrs = 0; |
| return; |
| } |
| |
| guest_xcrs->nr_xcrs = 1; |
| guest_xcrs->flags = 0; |
| guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; |
| guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; |
| } |
| |
| static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, |
| struct kvm_xcrs *guest_xcrs) |
| { |
| int i, r = 0; |
| |
| if (!boot_cpu_has(X86_FEATURE_XSAVE)) |
| return -EINVAL; |
| |
| if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) |
| return -EINVAL; |
| |
| for (i = 0; i < guest_xcrs->nr_xcrs; i++) |
| /* Only support XCR0 currently */ |
| if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { |
| r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, |
| guest_xcrs->xcrs[i].value); |
| break; |
| } |
| if (r) |
| r = -EINVAL; |
| return r; |
| } |
| |
| /* |
| * kvm_set_guest_paused() indicates to the guest kernel that it has been |
| * stopped by the hypervisor. This function will be called from the host only. |
| * EINVAL is returned when the host attempts to set the flag for a guest that |
| * does not support pv clocks. |
| */ |
| static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu->arch.pv_time.active) |
| return -EINVAL; |
| vcpu->arch.pvclock_set_guest_stopped_request = true; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| return 0; |
| } |
| |
| static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| int r; |
| |
| switch (attr->attr) { |
| case KVM_VCPU_TSC_OFFSET: |
| r = 0; |
| break; |
| default: |
| r = -ENXIO; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| u64 __user *uaddr = kvm_get_attr_addr(attr); |
| int r; |
| |
| if (IS_ERR(uaddr)) |
| return PTR_ERR(uaddr); |
| |
| switch (attr->attr) { |
| case KVM_VCPU_TSC_OFFSET: |
| r = -EFAULT; |
| if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) |
| break; |
| r = 0; |
| break; |
| default: |
| r = -ENXIO; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr) |
| { |
| u64 __user *uaddr = kvm_get_attr_addr(attr); |
| struct kvm *kvm = vcpu->kvm; |
| int r; |
| |
| if (IS_ERR(uaddr)) |
| return PTR_ERR(uaddr); |
| |
| switch (attr->attr) { |
| case KVM_VCPU_TSC_OFFSET: { |
| u64 offset, tsc, ns; |
| unsigned long flags; |
| bool matched; |
| |
| r = -EFAULT; |
| if (get_user(offset, uaddr)) |
| break; |
| |
| raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
| |
| matched = (vcpu->arch.virtual_tsc_khz && |
| kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && |
| kvm->arch.last_tsc_offset == offset); |
| |
| tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; |
| ns = get_kvmclock_base_ns(); |
| |
| kvm->arch.user_set_tsc = true; |
| __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); |
| raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
| |
| r = 0; |
| break; |
| } |
| default: |
| r = -ENXIO; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, |
| unsigned int ioctl, |
| void __user *argp) |
| { |
| struct kvm_device_attr attr; |
| int r; |
| |
| if (copy_from_user(&attr, argp, sizeof(attr))) |
| return -EFAULT; |
| |
| if (attr.group != KVM_VCPU_TSC_CTRL) |
| return -ENXIO; |
| |
| switch (ioctl) { |
| case KVM_HAS_DEVICE_ATTR: |
| r = kvm_arch_tsc_has_attr(vcpu, &attr); |
| break; |
| case KVM_GET_DEVICE_ATTR: |
| r = kvm_arch_tsc_get_attr(vcpu, &attr); |
| break; |
| case KVM_SET_DEVICE_ATTR: |
| r = kvm_arch_tsc_set_attr(vcpu, &attr); |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, |
| struct kvm_enable_cap *cap) |
| { |
| int r; |
| uint16_t vmcs_version; |
| void __user *user_ptr; |
| |
| if (cap->flags) |
| return -EINVAL; |
| |
| switch (cap->cap) { |
| case KVM_CAP_HYPERV_SYNIC2: |
| if (cap->args[0]) |
| return -EINVAL; |
| fallthrough; |
| |
| case KVM_CAP_HYPERV_SYNIC: |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return -EINVAL; |
| return kvm_hv_activate_synic(vcpu, cap->cap == |
| KVM_CAP_HYPERV_SYNIC2); |
| case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: |
| if (!kvm_x86_ops.nested_ops->enable_evmcs) |
| return -ENOTTY; |
| r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); |
| if (!r) { |
| user_ptr = (void __user *)(uintptr_t)cap->args[0]; |
| if (copy_to_user(user_ptr, &vmcs_version, |
| sizeof(vmcs_version))) |
| r = -EFAULT; |
| } |
| return r; |
| case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: |
| if (!kvm_x86_ops.enable_l2_tlb_flush) |
| return -ENOTTY; |
| |
| return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu); |
| |
| case KVM_CAP_HYPERV_ENFORCE_CPUID: |
| return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); |
| |
| case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: |
| vcpu->arch.pv_cpuid.enforce = cap->args[0]; |
| if (vcpu->arch.pv_cpuid.enforce) |
| kvm_update_pv_runtime(vcpu); |
| |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| long kvm_arch_vcpu_ioctl(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm_vcpu *vcpu = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r; |
| union { |
| struct kvm_sregs2 *sregs2; |
| struct kvm_lapic_state *lapic; |
| struct kvm_xsave *xsave; |
| struct kvm_xcrs *xcrs; |
| void *buffer; |
| } u; |
| |
| vcpu_load(vcpu); |
| |
| u.buffer = NULL; |
| switch (ioctl) { |
| case KVM_GET_LAPIC: { |
| r = -EINVAL; |
| if (!lapic_in_kernel(vcpu)) |
| goto out; |
| u.lapic = kzalloc(sizeof(struct kvm_lapic_state), |
| GFP_KERNEL_ACCOUNT); |
| |
| r = -ENOMEM; |
| if (!u.lapic) |
| goto out; |
| r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_LAPIC: { |
| r = -EINVAL; |
| if (!lapic_in_kernel(vcpu)) |
| goto out; |
| u.lapic = memdup_user(argp, sizeof(*u.lapic)); |
| if (IS_ERR(u.lapic)) { |
| r = PTR_ERR(u.lapic); |
| goto out_nofree; |
| } |
| |
| r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
| break; |
| } |
| case KVM_INTERRUPT: { |
| struct kvm_interrupt irq; |
| |
| r = -EFAULT; |
| if (copy_from_user(&irq, argp, sizeof(irq))) |
| goto out; |
| r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); |
| break; |
| } |
| case KVM_NMI: { |
| r = kvm_vcpu_ioctl_nmi(vcpu); |
| break; |
| } |
| case KVM_SMI: { |
| r = kvm_inject_smi(vcpu); |
| break; |
| } |
| case KVM_SET_CPUID: { |
| struct kvm_cpuid __user *cpuid_arg = argp; |
| struct kvm_cpuid cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); |
| break; |
| } |
| case KVM_SET_CPUID2: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) |
| goto out; |
| r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, |
| cpuid_arg->entries); |
| break; |
| } |
| case KVM_GET_CPUID2: { |
| struct kvm_cpuid2 __user *cpuid_arg = argp; |
| struct kvm_cpuid2 cpuid; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) |
| goto out; |
| r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, |
| cpuid_arg->entries); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_GET_MSRS: { |
| int idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = msr_io(vcpu, argp, do_get_msr, 1); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| break; |
| } |
| case KVM_SET_MSRS: { |
| int idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = msr_io(vcpu, argp, do_set_msr, 0); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| break; |
| } |
| case KVM_TPR_ACCESS_REPORTING: { |
| struct kvm_tpr_access_ctl tac; |
| |
| r = -EFAULT; |
| if (copy_from_user(&tac, argp, sizeof(tac))) |
| goto out; |
| r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &tac, sizeof(tac))) |
| goto out; |
| r = 0; |
| break; |
| }; |
| case KVM_SET_VAPIC_ADDR: { |
| struct kvm_vapic_addr va; |
| int idx; |
| |
| r = -EINVAL; |
| if (!lapic_in_kernel(vcpu)) |
| goto out; |
| r = -EFAULT; |
| if (copy_from_user(&va, argp, sizeof(va))) |
| goto out; |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| break; |
| } |
| case KVM_X86_SETUP_MCE: { |
| u64 mcg_cap; |
| |
| r = -EFAULT; |
| if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) |
| goto out; |
| r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); |
| break; |
| } |
| case KVM_X86_SET_MCE: { |
| struct kvm_x86_mce mce; |
| |
| r = -EFAULT; |
| if (copy_from_user(&mce, argp, sizeof(mce))) |
| goto out; |
| r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); |
| break; |
| } |
| case KVM_GET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_VCPU_EVENTS: { |
| struct kvm_vcpu_events events; |
| |
| r = -EFAULT; |
| if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) |
| break; |
| |
| r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); |
| break; |
| } |
| case KVM_GET_DEBUGREGS: { |
| struct kvm_debugregs dbgregs; |
| |
| kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, &dbgregs, |
| sizeof(struct kvm_debugregs))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_DEBUGREGS: { |
| struct kvm_debugregs dbgregs; |
| |
| r = -EFAULT; |
| if (copy_from_user(&dbgregs, argp, |
| sizeof(struct kvm_debugregs))) |
| break; |
| |
| r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); |
| break; |
| } |
| case KVM_GET_XSAVE: { |
| r = -EINVAL; |
| if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) |
| break; |
| |
| u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); |
| r = -ENOMEM; |
| if (!u.xsave) |
| break; |
| |
| kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_XSAVE: { |
| int size = vcpu->arch.guest_fpu.uabi_size; |
| |
| u.xsave = memdup_user(argp, size); |
| if (IS_ERR(u.xsave)) { |
| r = PTR_ERR(u.xsave); |
| goto out_nofree; |
| } |
| |
| r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
| break; |
| } |
| |
| case KVM_GET_XSAVE2: { |
| int size = vcpu->arch.guest_fpu.uabi_size; |
| |
| u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); |
| r = -ENOMEM; |
| if (!u.xsave) |
| break; |
| |
| kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, u.xsave, size)) |
| break; |
| |
| r = 0; |
| break; |
| } |
| |
| case KVM_GET_XCRS: { |
| u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); |
| r = -ENOMEM; |
| if (!u.xcrs) |
| break; |
| |
| kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
| |
| r = -EFAULT; |
| if (copy_to_user(argp, u.xcrs, |
| sizeof(struct kvm_xcrs))) |
| break; |
| r = 0; |
| break; |
| } |
| case KVM_SET_XCRS: { |
| u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); |
| if (IS_ERR(u.xcrs)) { |
| r = PTR_ERR(u.xcrs); |
| goto out_nofree; |
| } |
| |
| r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
| break; |
| } |
| case KVM_SET_TSC_KHZ: { |
| u32 user_tsc_khz; |
| |
| r = -EINVAL; |
| user_tsc_khz = (u32)arg; |
| |
| if (kvm_caps.has_tsc_control && |
| user_tsc_khz >= kvm_caps.max_guest_tsc_khz) |
| goto out; |
| |
| if (user_tsc_khz == 0) |
| user_tsc_khz = tsc_khz; |
| |
| if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) |
| r = 0; |
| |
| goto out; |
| } |
| case KVM_GET_TSC_KHZ: { |
| r = vcpu->arch.virtual_tsc_khz; |
| goto out; |
| } |
| case KVM_KVMCLOCK_CTRL: { |
| r = kvm_set_guest_paused(vcpu); |
| goto out; |
| } |
| case KVM_ENABLE_CAP: { |
| struct kvm_enable_cap cap; |
| |
| r = -EFAULT; |
| if (copy_from_user(&cap, argp, sizeof(cap))) |
| goto out; |
| r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); |
| break; |
| } |
| case KVM_GET_NESTED_STATE: { |
| struct kvm_nested_state __user *user_kvm_nested_state = argp; |
| u32 user_data_size; |
| |
| r = -EINVAL; |
| if (!kvm_x86_ops.nested_ops->get_state) |
| break; |
| |
| BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); |
| r = -EFAULT; |
| if (get_user(user_data_size, &user_kvm_nested_state->size)) |
| break; |
| |
| r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, |
| user_data_size); |
| if (r < 0) |
| break; |
| |
| if (r > user_data_size) { |
| if (put_user(r, &user_kvm_nested_state->size)) |
| r = -EFAULT; |
| else |
| r = -E2BIG; |
| break; |
| } |
| |
| r = 0; |
| break; |
| } |
| case KVM_SET_NESTED_STATE: { |
| struct kvm_nested_state __user *user_kvm_nested_state = argp; |
| struct kvm_nested_state kvm_state; |
| int idx; |
| |
| r = -EINVAL; |
| if (!kvm_x86_ops.nested_ops->set_state) |
| break; |
| |
| r = -EFAULT; |
| if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) |
| break; |
| |
| r = -EINVAL; |
| if (kvm_state.size < sizeof(kvm_state)) |
| break; |
| |
| if (kvm_state.flags & |
| ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE |
| | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING |
| | KVM_STATE_NESTED_GIF_SET)) |
| break; |
| |
| /* nested_run_pending implies guest_mode. */ |
| if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) |
| && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) |
| break; |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| break; |
| } |
| case KVM_GET_SUPPORTED_HV_CPUID: |
| r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); |
| break; |
| #ifdef CONFIG_KVM_XEN |
| case KVM_XEN_VCPU_GET_ATTR: { |
| struct kvm_xen_vcpu_attr xva; |
| |
| r = -EFAULT; |
| if (copy_from_user(&xva, argp, sizeof(xva))) |
| goto out; |
| r = kvm_xen_vcpu_get_attr(vcpu, &xva); |
| if (!r && copy_to_user(argp, &xva, sizeof(xva))) |
| r = -EFAULT; |
| break; |
| } |
| case KVM_XEN_VCPU_SET_ATTR: { |
| struct kvm_xen_vcpu_attr xva; |
| |
| r = -EFAULT; |
| if (copy_from_user(&xva, argp, sizeof(xva))) |
| goto out; |
| r = kvm_xen_vcpu_set_attr(vcpu, &xva); |
| break; |
| } |
| #endif |
| case KVM_GET_SREGS2: { |
| u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); |
| r = -ENOMEM; |
| if (!u.sregs2) |
| goto out; |
| __get_sregs2(vcpu, u.sregs2); |
| r = -EFAULT; |
| if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_SREGS2: { |
| u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); |
| if (IS_ERR(u.sregs2)) { |
| r = PTR_ERR(u.sregs2); |
| u.sregs2 = NULL; |
| goto out; |
| } |
| r = __set_sregs2(vcpu, u.sregs2); |
| break; |
| } |
| case KVM_HAS_DEVICE_ATTR: |
| case KVM_GET_DEVICE_ATTR: |
| case KVM_SET_DEVICE_ATTR: |
| r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); |
| break; |
| default: |
| r = -EINVAL; |
| } |
| out: |
| kfree(u.buffer); |
| out_nofree: |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| { |
| return VM_FAULT_SIGBUS; |
| } |
| |
| static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
| { |
| int ret; |
| |
| if (addr > (unsigned int)(-3 * PAGE_SIZE)) |
| return -EINVAL; |
| ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); |
| return ret; |
| } |
| |
| static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
| u64 ident_addr) |
| { |
| return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); |
| } |
| |
| static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
| unsigned long kvm_nr_mmu_pages) |
| { |
| if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); |
| kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
| |
| mutex_unlock(&kvm->slots_lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| struct kvm_pic *pic = kvm->arch.vpic; |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| memcpy(&chip->chip.pic, &pic->pics[0], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| memcpy(&chip->chip.pic, &pic->pics[1], |
| sizeof(struct kvm_pic_state)); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| kvm_get_ioapic(kvm, &chip->chip.ioapic); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
| { |
| struct kvm_pic *pic = kvm->arch.vpic; |
| int r; |
| |
| r = 0; |
| switch (chip->chip_id) { |
| case KVM_IRQCHIP_PIC_MASTER: |
| spin_lock(&pic->lock); |
| memcpy(&pic->pics[0], &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| spin_unlock(&pic->lock); |
| break; |
| case KVM_IRQCHIP_PIC_SLAVE: |
| spin_lock(&pic->lock); |
| memcpy(&pic->pics[1], &chip->chip.pic, |
| sizeof(struct kvm_pic_state)); |
| spin_unlock(&pic->lock); |
| break; |
| case KVM_IRQCHIP_IOAPIC: |
| kvm_set_ioapic(kvm, &chip->chip.ioapic); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| kvm_pic_update_irq(pic); |
| return r; |
| } |
| |
| static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
| { |
| struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; |
| |
| BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); |
| |
| mutex_lock(&kps->lock); |
| memcpy(ps, &kps->channels, sizeof(*ps)); |
| mutex_unlock(&kps->lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
| { |
| int i; |
| struct kvm_pit *pit = kvm->arch.vpit; |
| |
| mutex_lock(&pit->pit_state.lock); |
| memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); |
| for (i = 0; i < 3; i++) |
| kvm_pit_load_count(pit, i, ps->channels[i].count, 0); |
| mutex_unlock(&pit->pit_state.lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
| { |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, |
| sizeof(ps->channels)); |
| ps->flags = kvm->arch.vpit->pit_state.flags; |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| memset(&ps->reserved, 0, sizeof(ps->reserved)); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) |
| { |
| int start = 0; |
| int i; |
| u32 prev_legacy, cur_legacy; |
| struct kvm_pit *pit = kvm->arch.vpit; |
| |
| mutex_lock(&pit->pit_state.lock); |
| prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; |
| cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; |
| if (!prev_legacy && cur_legacy) |
| start = 1; |
| memcpy(&pit->pit_state.channels, &ps->channels, |
| sizeof(pit->pit_state.channels)); |
| pit->pit_state.flags = ps->flags; |
| for (i = 0; i < 3; i++) |
| kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, |
| start && i == 0); |
| mutex_unlock(&pit->pit_state.lock); |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
| struct kvm_reinject_control *control) |
| { |
| struct kvm_pit *pit = kvm->arch.vpit; |
| |
| /* pit->pit_state.lock was overloaded to prevent userspace from getting |
| * an inconsistent state after running multiple KVM_REINJECT_CONTROL |
| * ioctls in parallel. Use a separate lock if that ioctl isn't rare. |
| */ |
| mutex_lock(&pit->pit_state.lock); |
| kvm_pit_set_reinject(pit, control->pit_reinject); |
| mutex_unlock(&pit->pit_state.lock); |
| |
| return 0; |
| } |
| |
| void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) |
| { |
| |
| /* |
| * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called |
| * before reporting dirty_bitmap to userspace. KVM flushes the buffers |
| * on all VM-Exits, thus we only need to kick running vCPUs to force a |
| * VM-Exit. |
| */ |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| |
| if (!kvm_x86_ops.cpu_dirty_log_size) |
| return; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, |
| bool line_status) |
| { |
| if (!irqchip_in_kernel(kvm)) |
| return -ENXIO; |
| |
| irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, |
| irq_event->irq, irq_event->level, |
| line_status); |
| return 0; |
| } |
| |
| int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
| struct kvm_enable_cap *cap) |
| { |
| int r; |
| |
| if (cap->flags) |
| return -EINVAL; |
| |
| switch (cap->cap) { |
| case KVM_CAP_DISABLE_QUIRKS2: |
| r = -EINVAL; |
| if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) |
| break; |
| fallthrough; |
| case KVM_CAP_DISABLE_QUIRKS: |
| kvm->arch.disabled_quirks = cap->args[0]; |
| r = 0; |
| break; |
| case KVM_CAP_SPLIT_IRQCHIP: { |
| mutex_lock(&kvm->lock); |
| r = -EINVAL; |
| if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) |
| goto split_irqchip_unlock; |
| r = -EEXIST; |
| if (irqchip_in_kernel(kvm)) |
| goto split_irqchip_unlock; |
| if (kvm->created_vcpus) |
| goto split_irqchip_unlock; |
| r = kvm_setup_empty_irq_routing(kvm); |
| if (r) |
| goto split_irqchip_unlock; |
| /* Pairs with irqchip_in_kernel. */ |
| smp_wmb(); |
| kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; |
| kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; |
| kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); |
| r = 0; |
| split_irqchip_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_CAP_X2APIC_API: |
| r = -EINVAL; |
| if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) |
| break; |
| |
| if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) |
| kvm->arch.x2apic_format = true; |
| if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) |
| kvm->arch.x2apic_broadcast_quirk_disabled = true; |
| |
| r = 0; |
| break; |
| case KVM_CAP_X86_DISABLE_EXITS: |
| r = -EINVAL; |
| if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) |
| break; |
| |
| if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) |
| kvm->arch.pause_in_guest = true; |
| |
| #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ |
| "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." |
| |
| if (!mitigate_smt_rsb) { |
| if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() && |
| (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) |
| pr_warn_once(SMT_RSB_MSG); |
| |
| if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && |
| kvm_can_mwait_in_guest()) |
| kvm->arch.mwait_in_guest = true; |
| if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) |
| kvm->arch.hlt_in_guest = true; |
| if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) |
| kvm->arch.cstate_in_guest = true; |
| } |
| |
| r = 0; |
| break; |
| case KVM_CAP_MSR_PLATFORM_INFO: |
| kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; |
| r = 0; |
| break; |
| case KVM_CAP_EXCEPTION_PAYLOAD: |
| kvm->arch.exception_payload_enabled = cap->args[0]; |
| r = 0; |
| break; |
| case KVM_CAP_X86_TRIPLE_FAULT_EVENT: |
| kvm->arch.triple_fault_event = cap->args[0]; |
| r = 0; |
| break; |
| case KVM_CAP_X86_USER_SPACE_MSR: |
| r = -EINVAL; |
| if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) |
| break; |
| kvm->arch.user_space_msr_mask = cap->args[0]; |
| r = 0; |
| break; |
| case KVM_CAP_X86_BUS_LOCK_EXIT: |
| r = -EINVAL; |
| if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) |
| break; |
| |
| if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && |
| (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) |
| break; |
| |
| if (kvm_caps.has_bus_lock_exit && |
| cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) |
| kvm->arch.bus_lock_detection_enabled = true; |
| r = 0; |
| break; |
| #ifdef CONFIG_X86_SGX_KVM |
| case KVM_CAP_SGX_ATTRIBUTE: { |
| unsigned long allowed_attributes = 0; |
| |
| r = sgx_set_attribute(&allowed_attributes, cap->args[0]); |
| if (r) |
| break; |
| |
| /* KVM only supports the PROVISIONKEY privileged attribute. */ |
| if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && |
| !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) |
| kvm->arch.sgx_provisioning_allowed = true; |
| else |
| r = -EINVAL; |
| break; |
| } |
| #endif |
| case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: |
| r = -EINVAL; |
| if (!kvm_x86_ops.vm_copy_enc_context_from) |
| break; |
| |
| r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); |
| break; |
| case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: |
| r = -EINVAL; |
| if (!kvm_x86_ops.vm_move_enc_context_from) |
| break; |
| |
| r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); |
| break; |
| case KVM_CAP_EXIT_HYPERCALL: |
| if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { |
| r = -EINVAL; |
| break; |
| } |
| kvm->arch.hypercall_exit_enabled = cap->args[0]; |
| r = 0; |
| break; |
| case KVM_CAP_EXIT_ON_EMULATION_FAILURE: |
| r = -EINVAL; |
| if (cap->args[0] & ~1) |
| break; |
| kvm->arch.exit_on_emulation_error = cap->args[0]; |
| r = 0; |
| break; |
| case KVM_CAP_PMU_CAPABILITY: |
| r = -EINVAL; |
| if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) |
| break; |
| |
| mutex_lock(&kvm->lock); |
| if (!kvm->created_vcpus) { |
| kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); |
| r = 0; |
| } |
| mutex_unlock(&kvm->lock); |
| break; |
| case KVM_CAP_MAX_VCPU_ID: |
| r = -EINVAL; |
| if (cap->args[0] > KVM_MAX_VCPU_IDS) |
| break; |
| |
| mutex_lock(&kvm->lock); |
| if (kvm->arch.max_vcpu_ids == cap->args[0]) { |
| r = 0; |
| } else if (!kvm->arch.max_vcpu_ids) { |
| kvm->arch.max_vcpu_ids = cap->args[0]; |
| r = 0; |
| } |
| mutex_unlock(&kvm->lock); |
| break; |
| case KVM_CAP_X86_NOTIFY_VMEXIT: |
| r = -EINVAL; |
| if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) |
| break; |
| if (!kvm_caps.has_notify_vmexit) |
| break; |
| if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) |
| break; |
| mutex_lock(&kvm->lock); |
| if (!kvm->created_vcpus) { |
| kvm->arch.notify_window = cap->args[0] >> 32; |
| kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; |
| r = 0; |
| } |
| mutex_unlock(&kvm->lock); |
| break; |
| case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: |
| r = -EINVAL; |
| |
| /* |
| * Since the risk of disabling NX hugepages is a guest crashing |
| * the system, ensure the userspace process has permission to |
| * reboot the system. |
| * |
| * Note that unlike the reboot() syscall, the process must have |
| * this capability in the root namespace because exposing |
| * /dev/kvm into a container does not limit the scope of the |
| * iTLB multihit bug to that container. In other words, |
| * this must use capable(), not ns_capable(). |
| */ |
| if (!capable(CAP_SYS_BOOT)) { |
| r = -EPERM; |
| break; |
| } |
| |
| if (cap->args[0]) |
| break; |
| |
| mutex_lock(&kvm->lock); |
| if (!kvm->created_vcpus) { |
| kvm->arch.disable_nx_huge_pages = true; |
| r = 0; |
| } |
| mutex_unlock(&kvm->lock); |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| return r; |
| } |
| |
| static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) |
| { |
| struct kvm_x86_msr_filter *msr_filter; |
| |
| msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); |
| if (!msr_filter) |
| return NULL; |
| |
| msr_filter->default_allow = default_allow; |
| return msr_filter; |
| } |
| |
| static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) |
| { |
| u32 i; |
| |
| if (!msr_filter) |
| return; |
| |
| for (i = 0; i < msr_filter->count; i++) |
| kfree(msr_filter->ranges[i].bitmap); |
| |
| kfree(msr_filter); |
| } |
| |
| static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, |
| struct kvm_msr_filter_range *user_range) |
| { |
| unsigned long *bitmap; |
| size_t bitmap_size; |
| |
| if (!user_range->nmsrs) |
| return 0; |
| |
| if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) |
| return -EINVAL; |
| |
| if (!user_range->flags) |
| return -EINVAL; |
| |
| bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); |
| if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) |
| return -EINVAL; |
| |
| bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); |
| if (IS_ERR(bitmap)) |
| return PTR_ERR(bitmap); |
| |
| msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { |
| .flags = user_range->flags, |
| .base = user_range->base, |
| .nmsrs = user_range->nmsrs, |
| .bitmap = bitmap, |
| }; |
| |
| msr_filter->count++; |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, |
| struct kvm_msr_filter *filter) |
| { |
| struct kvm_x86_msr_filter *new_filter, *old_filter; |
| bool default_allow; |
| bool empty = true; |
| int r; |
| u32 i; |
| |
| if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) |
| return -EINVAL; |
| |
| for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) |
| empty &= !filter->ranges[i].nmsrs; |
| |
| default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); |
| if (empty && !default_allow) |
| return -EINVAL; |
| |
| new_filter = kvm_alloc_msr_filter(default_allow); |
| if (!new_filter) |
| return -ENOMEM; |
| |
| for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { |
| r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); |
| if (r) { |
| kvm_free_msr_filter(new_filter); |
| return r; |
| } |
| } |
| |
| mutex_lock(&kvm->lock); |
| old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, |
| mutex_is_locked(&kvm->lock)); |
| mutex_unlock(&kvm->lock); |
| synchronize_srcu(&kvm->srcu); |
| |
| kvm_free_msr_filter(old_filter); |
| |
| kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_KVM_COMPAT |
| /* for KVM_X86_SET_MSR_FILTER */ |
| struct kvm_msr_filter_range_compat { |
| __u32 flags; |
| __u32 nmsrs; |
| __u32 base; |
| __u32 bitmap; |
| }; |
| |
| struct kvm_msr_filter_compat { |
| __u32 flags; |
| struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; |
| }; |
| |
| #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) |
| |
| long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, |
| unsigned long arg) |
| { |
| void __user *argp = (void __user *)arg; |
| struct kvm *kvm = filp->private_data; |
| long r = -ENOTTY; |
| |
| switch (ioctl) { |
| case KVM_X86_SET_MSR_FILTER_COMPAT: { |
| struct kvm_msr_filter __user *user_msr_filter = argp; |
| struct kvm_msr_filter_compat filter_compat; |
| struct kvm_msr_filter filter; |
| int i; |
| |
| if (copy_from_user(&filter_compat, user_msr_filter, |
| sizeof(filter_compat))) |
| return -EFAULT; |
| |
| filter.flags = filter_compat.flags; |
| for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { |
| struct kvm_msr_filter_range_compat *cr; |
| |
| cr = &filter_compat.ranges[i]; |
| filter.ranges[i] = (struct kvm_msr_filter_range) { |
| .flags = cr->flags, |
| .nmsrs = cr->nmsrs, |
| .base = cr->base, |
| .bitmap = (__u8 *)(ulong)cr->bitmap, |
| }; |
| } |
| |
| r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); |
| break; |
| } |
| } |
| |
| return r; |
| } |
| #endif |
| |
| #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER |
| static int kvm_arch_suspend_notifier(struct kvm *kvm) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| int ret = 0; |
| |
| mutex_lock(&kvm->lock); |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!vcpu->arch.pv_time.active) |
| continue; |
| |
| ret = kvm_set_guest_paused(vcpu); |
| if (ret) { |
| kvm_err("Failed to pause guest VCPU%d: %d\n", |
| vcpu->vcpu_id, ret); |
| break; |
| } |
| } |
| mutex_unlock(&kvm->lock); |
| |
| return ret ? NOTIFY_BAD : NOTIFY_DONE; |
| } |
| |
| int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) |
| { |
| switch (state) { |
| case PM_HIBERNATION_PREPARE: |
| case PM_SUSPEND_PREPARE: |
| return kvm_arch_suspend_notifier(kvm); |
| } |
| |
| return NOTIFY_DONE; |
| } |
| #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ |
| |
| static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) |
| { |
| struct kvm_clock_data data = { 0 }; |
| |
| get_kvmclock(kvm, &data); |
| if (copy_to_user(argp, &data, sizeof(data))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) |
| { |
| struct kvm_arch *ka = &kvm->arch; |
| struct kvm_clock_data data; |
| u64 now_raw_ns; |
| |
| if (copy_from_user(&data, argp, sizeof(data))) |
| return -EFAULT; |
| |
| /* |
| * Only KVM_CLOCK_REALTIME is used, but allow passing the |
| * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. |
| */ |
| if (data.flags & ~KVM_CLOCK_VALID_FLAGS) |
| return -EINVAL; |
| |
| kvm_hv_request_tsc_page_update(kvm); |
| kvm_start_pvclock_update(kvm); |
| pvclock_update_vm_gtod_copy(kvm); |
| |
| /* |
| * This pairs with kvm_guest_time_update(): when masterclock is |
| * in use, we use master_kernel_ns + kvmclock_offset to set |
| * unsigned 'system_time' so if we use get_kvmclock_ns() (which |
| * is slightly ahead) here we risk going negative on unsigned |
| * 'system_time' when 'data.clock' is very small. |
| */ |
| if (data.flags & KVM_CLOCK_REALTIME) { |
| u64 now_real_ns = ktime_get_real_ns(); |
| |
| /* |
| * Avoid stepping the kvmclock backwards. |
| */ |
| if (now_real_ns > data.realtime) |
| data.clock += now_real_ns - data.realtime; |
| } |
| |
| if (ka->use_master_clock) |
| now_raw_ns = ka->master_kernel_ns; |
| else |
| now_raw_ns = get_kvmclock_base_ns(); |
| ka->kvmclock_offset = data.clock - now_raw_ns; |
| kvm_end_pvclock_update(kvm); |
| return 0; |
| } |
| |
| int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) |
| { |
| struct kvm *kvm = filp->private_data; |
| void __user *argp = (void __user *)arg; |
| int r = -ENOTTY; |
| /* |
| * This union makes it completely explicit to gcc-3.x |
| * that these two variables' stack usage should be |
| * combined, not added together. |
| */ |
| union { |
| struct kvm_pit_state ps; |
| struct kvm_pit_state2 ps2; |
| struct kvm_pit_config pit_config; |
| } u; |
| |
| switch (ioctl) { |
| case KVM_SET_TSS_ADDR: |
| r = kvm_vm_ioctl_set_tss_addr(kvm, arg); |
| break; |
| case KVM_SET_IDENTITY_MAP_ADDR: { |
| u64 ident_addr; |
| |
| mutex_lock(&kvm->lock); |
| r = -EINVAL; |
| if (kvm->created_vcpus) |
| goto set_identity_unlock; |
| r = -EFAULT; |
| if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) |
| goto set_identity_unlock; |
| r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); |
| set_identity_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_SET_NR_MMU_PAGES: |
| r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); |
| break; |
| case KVM_CREATE_IRQCHIP: { |
| mutex_lock(&kvm->lock); |
| |
| r = -EEXIST; |
| if (irqchip_in_kernel(kvm)) |
| goto create_irqchip_unlock; |
| |
| r = -EINVAL; |
| if (kvm->created_vcpus) |
| goto create_irqchip_unlock; |
| |
| r = kvm_pic_init(kvm); |
| if (r) |
| goto create_irqchip_unlock; |
| |
| r = kvm_ioapic_init(kvm); |
| if (r) { |
| kvm_pic_destroy(kvm); |
| goto create_irqchip_unlock; |
| } |
| |
| r = kvm_setup_default_irq_routing(kvm); |
| if (r) { |
| kvm_ioapic_destroy(kvm); |
| kvm_pic_destroy(kvm); |
| goto create_irqchip_unlock; |
| } |
| /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ |
| smp_wmb(); |
| kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; |
| kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); |
| create_irqchip_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_CREATE_PIT: |
| u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
| goto create_pit; |
| case KVM_CREATE_PIT2: |
| r = -EFAULT; |
| if (copy_from_user(&u.pit_config, argp, |
| sizeof(struct kvm_pit_config))) |
| goto out; |
| create_pit: |
| mutex_lock(&kvm->lock); |
| r = -EEXIST; |
| if (kvm->arch.vpit) |
| goto create_pit_unlock; |
| r = -ENOMEM; |
| kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
| if (kvm->arch.vpit) |
| r = 0; |
| create_pit_unlock: |
| mutex_unlock(&kvm->lock); |
| break; |
| case KVM_GET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip *chip; |
| |
| chip = memdup_user(argp, sizeof(*chip)); |
| if (IS_ERR(chip)) { |
| r = PTR_ERR(chip); |
| goto out; |
| } |
| |
| r = -ENXIO; |
| if (!irqchip_kernel(kvm)) |
| goto get_irqchip_out; |
| r = kvm_vm_ioctl_get_irqchip(kvm, chip); |
| if (r) |
| goto get_irqchip_out; |
| r = -EFAULT; |
| if (copy_to_user(argp, chip, sizeof(*chip))) |
| goto get_irqchip_out; |
| r = 0; |
| get_irqchip_out: |
| kfree(chip); |
| break; |
| } |
| case KVM_SET_IRQCHIP: { |
| /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ |
| struct kvm_irqchip *chip; |
| |
| chip = memdup_user(argp, sizeof(*chip)); |
| if (IS_ERR(chip)) { |
| r = PTR_ERR(chip); |
| goto out; |
| } |
| |
| r = -ENXIO; |
| if (!irqchip_kernel(kvm)) |
| goto set_irqchip_out; |
| r = kvm_vm_ioctl_set_irqchip(kvm, chip); |
| set_irqchip_out: |
| kfree(chip); |
| break; |
| } |
| case KVM_GET_PIT: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_PIT: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps, argp, sizeof(u.ps))) |
| goto out; |
| mutex_lock(&kvm->lock); |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto set_pit_out; |
| r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
| set_pit_out: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_GET_PIT2: { |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); |
| if (r) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) |
| goto out; |
| r = 0; |
| break; |
| } |
| case KVM_SET_PIT2: { |
| r = -EFAULT; |
| if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) |
| goto out; |
| mutex_lock(&kvm->lock); |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto set_pit2_out; |
| r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); |
| set_pit2_out: |
| mutex_unlock(&kvm->lock); |
| break; |
| } |
| case KVM_REINJECT_CONTROL: { |
| struct kvm_reinject_control control; |
| r = -EFAULT; |
| if (copy_from_user(&control, argp, sizeof(control))) |
| goto out; |
| r = -ENXIO; |
| if (!kvm->arch.vpit) |
| goto out; |
| r = kvm_vm_ioctl_reinject(kvm, &control); |
| break; |
| } |
| case KVM_SET_BOOT_CPU_ID: |
| r = 0; |
| mutex_lock(&kvm->lock); |
| if (kvm->created_vcpus) |
| r = -EBUSY; |
| else |
| kvm->arch.bsp_vcpu_id = arg; |
| mutex_unlock(&kvm->lock); |
| break; |
| #ifdef CONFIG_KVM_XEN |
| case KVM_XEN_HVM_CONFIG: { |
| struct kvm_xen_hvm_config xhc; |
| r = -EFAULT; |
| if (copy_from_user(&xhc, argp, sizeof(xhc))) |
| goto out; |
| r = kvm_xen_hvm_config(kvm, &xhc); |
| break; |
| } |
| case KVM_XEN_HVM_GET_ATTR: { |
| struct kvm_xen_hvm_attr xha; |
| |
| r = -EFAULT; |
| if (copy_from_user(&xha, argp, sizeof(xha))) |
| goto out; |
| r = kvm_xen_hvm_get_attr(kvm, &xha); |
| if (!r && copy_to_user(argp, &xha, sizeof(xha))) |
| r = -EFAULT; |
| break; |
| } |
| case KVM_XEN_HVM_SET_ATTR: { |
| struct kvm_xen_hvm_attr xha; |
| |
| r = -EFAULT; |
| if (copy_from_user(&xha, argp, sizeof(xha))) |
| goto out; |
| r = kvm_xen_hvm_set_attr(kvm, &xha); |
| break; |
| } |
| case KVM_XEN_HVM_EVTCHN_SEND: { |
| struct kvm_irq_routing_xen_evtchn uxe; |
| |
| r = -EFAULT; |
| if (copy_from_user(&uxe, argp, sizeof(uxe))) |
| goto out; |
| r = kvm_xen_hvm_evtchn_send(kvm, &uxe); |
| break; |
| } |
| #endif |
| case KVM_SET_CLOCK: |
| r = kvm_vm_ioctl_set_clock(kvm, argp); |
| break; |
| case KVM_GET_CLOCK: |
| r = kvm_vm_ioctl_get_clock(kvm, argp); |
| break; |
| case KVM_SET_TSC_KHZ: { |
| u32 user_tsc_khz; |
| |
| r = -EINVAL; |
| user_tsc_khz = (u32)arg; |
| |
| if (kvm_caps.has_tsc_control && |
| user_tsc_khz >= kvm_caps.max_guest_tsc_khz) |
| goto out; |
| |
| if (user_tsc_khz == 0) |
| user_tsc_khz = tsc_khz; |
| |
| WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); |
| r = 0; |
| |
| goto out; |
| } |
| case KVM_GET_TSC_KHZ: { |
| r = READ_ONCE(kvm->arch.default_tsc_khz); |
| goto out; |
| } |
| case KVM_MEMORY_ENCRYPT_OP: { |
| r = -ENOTTY; |
| if (!kvm_x86_ops.mem_enc_ioctl) |
| goto out; |
| |
| r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); |
| break; |
| } |
| case KVM_MEMORY_ENCRYPT_REG_REGION: { |
| struct kvm_enc_region region; |
| |
| r = -EFAULT; |
| if (copy_from_user(®ion, argp, sizeof(region))) |
| goto out; |
| |
| r = -ENOTTY; |
| if (!kvm_x86_ops.mem_enc_register_region) |
| goto out; |
| |
| r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); |
| break; |
| } |
| case KVM_MEMORY_ENCRYPT_UNREG_REGION: { |
| struct kvm_enc_region region; |
| |
| r = -EFAULT; |
| if (copy_from_user(®ion, argp, sizeof(region))) |
| goto out; |
| |
| r = -ENOTTY; |
| if (!kvm_x86_ops.mem_enc_unregister_region) |
| goto out; |
| |
| r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); |
| break; |
| } |
| case KVM_HYPERV_EVENTFD: { |
| struct kvm_hyperv_eventfd hvevfd; |
| |
| r = -EFAULT; |
| if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) |
| goto out; |
| r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); |
| break; |
| } |
| case KVM_SET_PMU_EVENT_FILTER: |
| r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); |
| break; |
| case KVM_X86_SET_MSR_FILTER: { |
| struct kvm_msr_filter __user *user_msr_filter = argp; |
| struct kvm_msr_filter filter; |
| |
| if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) |
| return -EFAULT; |
| |
| r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); |
| break; |
| } |
| default: |
| r = -ENOTTY; |
| } |
| out: |
| return r; |
| } |
| |
| static void kvm_probe_feature_msr(u32 msr_index) |
| { |
| struct kvm_msr_entry msr = { |
| .index = msr_index, |
| }; |
| |
| if (kvm_get_msr_feature(&msr)) |
| return; |
| |
| msr_based_features[num_msr_based_features++] = msr_index; |
| } |
| |
| static void kvm_probe_msr_to_save(u32 msr_index) |
| { |
| u32 dummy[2]; |
| |
| if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) |
| return; |
| |
| /* |
| * Even MSRs that are valid in the host may not be exposed to guests in |
| * some cases. |
| */ |
| switch (msr_index) { |
| case MSR_IA32_BNDCFGS: |
| if (!kvm_mpx_supported()) |
| return; |
| break; |
| case MSR_TSC_AUX: |
| if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && |
| !kvm_cpu_cap_has(X86_FEATURE_RDPID)) |
| return; |
| break; |
| case MSR_IA32_UMWAIT_CONTROL: |
| if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) |
| return; |
| break; |
| case MSR_IA32_RTIT_CTL: |
| case MSR_IA32_RTIT_STATUS: |
| if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) |
| return; |
| break; |
| case MSR_IA32_RTIT_CR3_MATCH: |
| if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || |
| !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) |
| return; |
| break; |
| case MSR_IA32_RTIT_OUTPUT_BASE: |
| case MSR_IA32_RTIT_OUTPUT_MASK: |
| if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || |
| (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && |
| !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) |
| return; |
| break; |
| case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: |
| if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || |
| (msr_index - MSR_IA32_RTIT_ADDR0_A >= |
| intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) |
| return; |
| break; |
| case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX: |
| if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= |
| kvm_pmu_cap.num_counters_gp) |
| return; |
| break; |
| case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX: |
| if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= |
| kvm_pmu_cap.num_counters_gp) |
| return; |
| break; |
| case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX: |
| if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= |
| kvm_pmu_cap.num_counters_fixed) |
| return; |
| break; |
| case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: |
| case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: |
| case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: |
| if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) |
| return; |
| break; |
| case MSR_IA32_XFD: |
| case MSR_IA32_XFD_ERR: |
| if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) |
| return; |
| break; |
| case MSR_IA32_TSX_CTRL: |
| if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) |
| return; |
| break; |
| default: |
| break; |
| } |
| |
| msrs_to_save[num_msrs_to_save++] = msr_index; |
| } |
| |
| static void kvm_init_msr_lists(void) |
| { |
| unsigned i; |
| |
| BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, |
| "Please update the fixed PMCs in msrs_to_save_pmu[]"); |
| |
| num_msrs_to_save = 0; |
| num_emulated_msrs = 0; |
| num_msr_based_features = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) |
| kvm_probe_msr_to_save(msrs_to_save_base[i]); |
| |
| if (enable_pmu) { |
| for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) |
| kvm_probe_msr_to_save(msrs_to_save_pmu[i]); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { |
| if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) |
| continue; |
| |
| emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; |
| } |
| |
| for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) |
| kvm_probe_feature_msr(i); |
| |
| for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) |
| kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); |
| } |
| |
| static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
| const void *v) |
| { |
| int handled = 0; |
| int n; |
| |
| do { |
| n = min(len, 8); |
| if (!(lapic_in_kernel(vcpu) && |
| !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) |
| && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) |
| break; |
| handled += n; |
| addr += n; |
| len -= n; |
| v += n; |
| } while (len); |
| |
| return handled; |
| } |
| |
| static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
| { |
| int handled = 0; |
| int n; |
| |
| do { |
| n = min(len, 8); |
| if (!(lapic_in_kernel(vcpu) && |
| !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, |
| addr, n, v)) |
| && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) |
| break; |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); |
| handled += n; |
| addr += n; |
| len -= n; |
| v += n; |
| } while (len); |
| |
| return handled; |
| } |
| |
| void kvm_set_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| static_call(kvm_x86_set_segment)(vcpu, var, seg); |
| } |
| |
| void kvm_get_segment(struct kvm_vcpu *vcpu, |
| struct kvm_segment *var, int seg) |
| { |
| static_call(kvm_x86_get_segment)(vcpu, var, seg); |
| } |
| |
| gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, |
| struct x86_exception *exception) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.mmu; |
| gpa_t t_gpa; |
| |
| BUG_ON(!mmu_is_nested(vcpu)); |
| |
| /* NPT walks are always user-walks */ |
| access |= PFERR_USER_MASK; |
| t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); |
| |
| return t_gpa; |
| } |
| |
| gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, |
| struct x86_exception *exception) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| |
| u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); |
| |
| gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, |
| struct x86_exception *exception) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| |
| u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| access |= PFERR_WRITE_MASK; |
| return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); |
| } |
| EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); |
| |
| /* uses this to access any guest's mapped memory without checking CPL */ |
| gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, |
| struct x86_exception *exception) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| |
| return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); |
| } |
| |
| static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, |
| struct kvm_vcpu *vcpu, u64 access, |
| struct x86_exception *exception) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| void *data = val; |
| int r = X86EMUL_CONTINUE; |
| |
| while (bytes) { |
| gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
| int ret; |
| |
| if (gpa == INVALID_GPA) |
| return X86EMUL_PROPAGATE_FAULT; |
| ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, |
| offset, toread); |
| if (ret < 0) { |
| r = X86EMUL_IO_NEEDED; |
| goto out; |
| } |
| |
| bytes -= toread; |
| data += toread; |
| addr += toread; |
| } |
| out: |
| return r; |
| } |
| |
| /* used for instruction fetching */ |
| static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, |
| gva_t addr, void *val, unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| unsigned offset; |
| int ret; |
| |
| /* Inline kvm_read_guest_virt_helper for speed. */ |
| gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, |
| exception); |
| if (unlikely(gpa == INVALID_GPA)) |
| return X86EMUL_PROPAGATE_FAULT; |
| |
| offset = addr & (PAGE_SIZE-1); |
| if (WARN_ON(offset + bytes > PAGE_SIZE)) |
| bytes = (unsigned)PAGE_SIZE - offset; |
| ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, |
| offset, bytes); |
| if (unlikely(ret < 0)) |
| return X86EMUL_IO_NEEDED; |
| |
| return X86EMUL_CONTINUE; |
| } |
| |
| int kvm_read_guest_virt(struct kvm_vcpu *vcpu, |
| gva_t addr, void *val, unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; |
| |
| /* |
| * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED |
| * is returned, but our callers are not ready for that and they blindly |
| * call kvm_inject_page_fault. Ensure that they at least do not leak |
| * uninitialized kernel stack memory into cr2 and error code. |
| */ |
| memset(exception, 0, sizeof(*exception)); |
| return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
| exception); |
| } |
| EXPORT_SYMBOL_GPL(kvm_read_guest_virt); |
| |
| static int emulator_read_std(struct x86_emulate_ctxt *ctxt, |
| gva_t addr, void *val, unsigned int bytes, |
| struct x86_exception *exception, bool system) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| u64 access = 0; |
| |
| if (system) |
| access |= PFERR_IMPLICIT_ACCESS; |
| else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) |
| access |= PFERR_USER_MASK; |
| |
| return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); |
| } |
| |
| static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, |
| struct kvm_vcpu *vcpu, u64 access, |
| struct x86_exception *exception) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| void *data = val; |
| int r = X86EMUL_CONTINUE; |
| |
| while (bytes) { |
| gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); |
| unsigned offset = addr & (PAGE_SIZE-1); |
| unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); |
| int ret; |
| |
| if (gpa == INVALID_GPA) |
| return X86EMUL_PROPAGATE_FAULT; |
| ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); |
| if (ret < 0) { |
| r = X86EMUL_IO_NEEDED; |
| goto out; |
| } |
| |
| bytes -= towrite; |
| data += towrite; |
| addr += towrite; |
| } |
| out: |
| return r; |
| } |
| |
| static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, |
| unsigned int bytes, struct x86_exception *exception, |
| bool system) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| u64 access = PFERR_WRITE_MASK; |
| |
| if (system) |
| access |= PFERR_IMPLICIT_ACCESS; |
| else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) |
| access |= PFERR_USER_MASK; |
| |
| return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, |
| access, exception); |
| } |
| |
| int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, |
| unsigned int bytes, struct x86_exception *exception) |
| { |
| /* kvm_write_guest_virt_system can pull in tons of pages. */ |
| vcpu->arch.l1tf_flush_l1d = true; |
| |
| return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, |
| PFERR_WRITE_MASK, exception); |
| } |
| EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); |
| |
| static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, |
| void *insn, int insn_len) |
| { |
| return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, |
| insn, insn_len); |
| } |
| |
| int handle_ud(struct kvm_vcpu *vcpu) |
| { |
| static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; |
| int fep_flags = READ_ONCE(force_emulation_prefix); |
| int emul_type = EMULTYPE_TRAP_UD; |
| char sig[5]; /* ud2; .ascii "kvm" */ |
| struct x86_exception e; |
| int r; |
| |
| r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); |
| if (r != X86EMUL_CONTINUE) |
| return 1; |
| |
| if (fep_flags && |
| kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), |
| sig, sizeof(sig), &e) == 0 && |
| memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { |
| if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) |
| kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); |
| kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); |
| emul_type = EMULTYPE_TRAP_UD_FORCED; |
| } |
| |
| return kvm_emulate_instruction(vcpu, emul_type); |
| } |
| EXPORT_SYMBOL_GPL(handle_ud); |
| |
| static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
| gpa_t gpa, bool write) |
| { |
| /* For APIC access vmexit */ |
| if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| return 1; |
| |
| if (vcpu_match_mmio_gpa(vcpu, gpa)) { |
| trace_vcpu_match_mmio(gva, gpa, write, true); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
| gpa_t *gpa, struct x86_exception *exception, |
| bool write) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) |
| | (write ? PFERR_WRITE_MASK : 0); |
| |
| /* |
| * currently PKRU is only applied to ept enabled guest so |
| * there is no pkey in EPT page table for L1 guest or EPT |
| * shadow page table for L2 guest. |
| */ |
| if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || |
| !permission_fault(vcpu, vcpu->arch.walk_mmu, |
| vcpu->arch.mmio_access, 0, access))) { |
| *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | |
| (gva & (PAGE_SIZE - 1)); |
| trace_vcpu_match_mmio(gva, *gpa, write, false); |
| return 1; |
| } |
| |
| *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); |
| |
| if (*gpa == INVALID_GPA) |
| return -1; |
| |
| return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); |
| } |
| |
| int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
| const void *val, int bytes) |
| { |
| int ret; |
| |
| ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); |
| if (ret < 0) |
| return 0; |
| kvm_page_track_write(vcpu, gpa, val, bytes); |
| return 1; |
| } |
| |
| struct read_write_emulator_ops { |
| int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, |
| int bytes); |
| int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes); |
| int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, |
| int bytes, void *val); |
| int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes); |
| bool write; |
| }; |
| |
| static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) |
| { |
| if (vcpu->mmio_read_completed) { |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
| vcpu->mmio_fragments[0].gpa, val); |
| vcpu->mmio_read_completed = 0; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes) |
| { |
| return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); |
| } |
| |
| static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes) |
| { |
| return emulator_write_phys(vcpu, gpa, val, bytes); |
| } |
| |
| static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) |
| { |
| trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); |
| return vcpu_mmio_write(vcpu, gpa, bytes, val); |
| } |
| |
| static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes) |
| { |
| trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); |
| return X86EMUL_IO_NEEDED; |
| } |
| |
| static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, |
| void *val, int bytes) |
| { |
| struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; |
| |
| memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
| return X86EMUL_CONTINUE; |
| } |
| |
| static const struct read_write_emulator_ops read_emultor = { |
| .read_write_prepare = read_prepare, |
| .read_write_emulate = read_emulate, |
| .read_write_mmio = vcpu_mmio_read, |
| .read_write_exit_mmio = read_exit_mmio, |
| }; |
| |
| static const struct read_write_emulator_ops write_emultor = { |
| .read_write_emulate = write_emulate, |
| .read_write_mmio = write_mmio, |
| .read_write_exit_mmio = write_exit_mmio, |
| .write = true, |
| }; |
| |
| static int emulator_read_write_onepage(unsigned long addr, void *val, |
| unsigned int bytes, |
| struct x86_exception *exception, |
| struct kvm_vcpu *vcpu, |
| const struct read_write_emulator_ops *ops) |
| { |
| gpa_t gpa; |
| int handled, ret; |
| bool write = ops->write; |
| struct kvm_mmio_fragment *frag; |
| struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
| |
| /* |
| * If the exit was due to a NPF we may already have a GPA. |
| * If the GPA is present, use it to avoid the GVA to GPA table walk. |
| * Note, this cannot be used on string operations since string |
| * operation using rep will only have the initial GPA from the NPF |
| * occurred. |
| */ |
| if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && |
| (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { |
| gpa = ctxt->gpa_val; |
| ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); |
| } else { |
| ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); |
| if (ret < 0) |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) |
| return X86EMUL_CONTINUE; |
| |
| /* |
| * Is this MMIO handled locally? |
| */ |
| handled = ops->read_write_mmio(vcpu, gpa, bytes, val); |
| if (handled == bytes) |
| return X86EMUL_CONTINUE; |
| |
| gpa += handled; |
| bytes -= handled; |
| val += handled; |
| |
| WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); |
| frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; |
| frag->gpa = gpa; |
| frag->data = val; |
| frag->len = bytes; |
| return X86EMUL_CONTINUE; |
| } |
| |
| static int emulator_read_write(struct x86_emulate_ctxt *ctxt, |
| unsigned long addr, |
| void *val, unsigned int bytes, |
| struct x86_exception *exception, |
| const struct read_write_emulator_ops *ops) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| gpa_t gpa; |
| int rc; |
| |
| if (ops->read_write_prepare && |
| ops->read_write_prepare(vcpu, val, bytes)) |
| return X86EMUL_CONTINUE; |
| |
| vcpu->mmio_nr_fragments = 0; |
| |
| /* Crossing a page boundary? */ |
| if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { |
| int now; |
| |
| now = -addr & ~PAGE_MASK; |
| rc = emulator_read_write_onepage(addr, val, now, exception, |
| vcpu, ops); |
| |
| if (rc != X86EMUL_CONTINUE) |
| return rc; |
| addr += now; |
| if (ctxt->mode != X86EMUL_MODE_PROT64) |
| addr = (u32)addr; |
| val += now; |
| bytes -= now; |
| } |
| |
| rc = emulator_read_write_onepage(addr, val, bytes, exception, |
| vcpu, ops); |
| if (rc != X86EMUL_CONTINUE) |
| return rc; |
| |
| if (!vcpu->mmio_nr_fragments) |
| return rc; |
| |
| gpa = vcpu->mmio_fragments[0].gpa; |
| |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_cur_fragment = 0; |
| |
| vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); |
| vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; |
| vcpu->run->exit_reason = KVM_EXIT_MMIO; |
| vcpu->run->mmio.phys_addr = gpa; |
| |
| return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); |
| } |
| |
| static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, |
| unsigned long addr, |
| void *val, |
| unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| return emulator_read_write(ctxt, addr, val, bytes, |
| exception, &read_emultor); |
| } |
| |
| static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, |
| unsigned long addr, |
| const void *val, |
| unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| return emulator_read_write(ctxt, addr, (void *)val, bytes, |
| exception, &write_emultor); |
| } |
| |
| #define emulator_try_cmpxchg_user(t, ptr, old, new) \ |
| (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) |
| |
| static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, |
| unsigned long addr, |
| const void *old, |
| const void *new, |
| unsigned int bytes, |
| struct x86_exception *exception) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| u64 page_line_mask; |
| unsigned long hva; |
| gpa_t gpa; |
| int r; |
| |
| /* guests cmpxchg8b have to be emulated atomically */ |
| if (bytes > 8 || (bytes & (bytes - 1))) |
| goto emul_write; |
| |
| gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
| |
| if (gpa == INVALID_GPA || |
| (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
| goto emul_write; |
| |
| /* |
| * Emulate the atomic as a straight write to avoid #AC if SLD is |
| * enabled in the host and the access splits a cache line. |
| */ |
| if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) |
| page_line_mask = ~(cache_line_size() - 1); |
| else |
| page_line_mask = PAGE_MASK; |
| |
| if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) |
| goto emul_write; |
| |
| hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); |
| if (kvm_is_error_hva(hva)) |
| goto emul_write; |
| |
| hva += offset_in_page(gpa); |
| |
| switch (bytes) { |
| case 1: |
| r = emulator_try_cmpxchg_user(u8, hva, old, new); |
| break; |
| case 2: |
| r = emulator_try_cmpxchg_user(u16, hva, old, new); |
| break; |
| case 4: |
| r = emulator_try_cmpxchg_user(u32, hva, old, new); |
| break; |
| case 8: |
| r = emulator_try_cmpxchg_user(u64, hva, old, new); |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (r < 0) |
| return X86EMUL_UNHANDLEABLE; |
| if (r) |
| return X86EMUL_CMPXCHG_FAILED; |
| |
| kvm_page_track_write(vcpu, gpa, new, bytes); |
| |
| return X86EMUL_CONTINUE; |
| |
| emul_write: |
| pr_warn_once("emulating exchange as write\n"); |
| |
| return emulator_write_emulated(ctxt, addr, new, bytes, exception); |
| } |
| |
| static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, |
| unsigned short port, void *data, |
| unsigned int count, bool in) |
| { |
| unsigned i; |
| int r; |
| |
| WARN_ON_ONCE(vcpu->arch.pio.count); |
| for (i = 0; i < count; i++) { |
| if (in) |
| r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); |
| else |
| r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); |
| |
| if (r) { |
| if (i == 0) |
| goto userspace_io; |
| |
| /* |
| * Userspace must have unregistered the device while PIO |
| * was running. Drop writes / read as 0. |
| */ |
| if (in) |
| memset(data, 0, size * (count - i)); |
| break; |
| } |
| |
| data += size; |
| } |
| return 1; |
| |
| userspace_io: |
| vcpu->arch.pio.port = port; |
| vcpu->arch.pio.in = in; |
| vcpu->arch.pio.count = count; |
| vcpu->arch.pio.size = size; |
| |
| if (in) |
| memset(vcpu->arch.pio_data, 0, size * count); |
| else |
| memcpy(vcpu->arch.pio_data, data, size * count); |
| |
| vcpu->run->exit_reason = KVM_EXIT_IO; |
| vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
| vcpu->run->io.size = size; |
| vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; |
| vcpu->run->io.count = count; |
| vcpu->run->io.port = port; |
| return 0; |
| } |
| |
| static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, |
| unsigned short port, void *val, unsigned int count) |
| { |
| int r = emulator_pio_in_out(vcpu, size, port, val, count, true); |
| if (r) |
| trace_kvm_pio(KVM_PIO_IN, port, size, count, val); |
| |
| return r; |
| } |
| |
| static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) |
| { |
| int size = vcpu->arch.pio.size; |
| unsigned int count = vcpu->arch.pio.count; |
| memcpy(val, vcpu->arch.pio_data, size * count); |
| trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); |
| vcpu->arch.pio.count = 0; |
| } |
| |
| static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, |
| int size, unsigned short port, void *val, |
| unsigned int count) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| if (vcpu->arch.pio.count) { |
| /* |
| * Complete a previous iteration that required userspace I/O. |
| * Note, @count isn't guaranteed to match pio.count as userspace |
| * can modify ECX before rerunning the vCPU. Ignore any such |
| * shenanigans as KVM doesn't support modifying the rep count, |
| * and the emulator ensures @count doesn't overflow the buffer. |
| */ |
| complete_emulator_pio_in(vcpu, val); |
| return 1; |
| } |
| |
| return emulator_pio_in(vcpu, size, port, val, count); |
| } |
| |
| static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, |
| unsigned short port, const void *val, |
| unsigned int count) |
| { |
| trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); |
| return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); |
| } |
| |
| static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, |
| int size, unsigned short port, |
| const void *val, unsigned int count) |
| { |
| return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); |
| } |
| |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| { |
| return static_call(kvm_x86_get_segment_base)(vcpu, seg); |
| } |
| |
| static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) |
| { |
| kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); |
| } |
| |
| static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) |
| { |
| if (!need_emulate_wbinvd(vcpu)) |
| return X86EMUL_CONTINUE; |
| |
| if (static_call(kvm_x86_has_wbinvd_exit)()) { |
| int cpu = get_cpu(); |
| |
| cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); |
| on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, |
| wbinvd_ipi, NULL, 1); |
| put_cpu(); |
| cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
| } else |
| wbinvd(); |
| return X86EMUL_CONTINUE; |
| } |
| |
| int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) |
| { |
| kvm_emulate_wbinvd_noskip(vcpu); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); |
| |
| |
| |
| static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) |
| { |
| kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); |
| } |
| |
| static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, |
| unsigned long *dest) |
| { |
| kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); |
| } |
| |
| static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, |
| unsigned long value) |
| { |
| |
| return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); |
| } |
| |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
| { |
| return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
| } |
| |
| static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| unsigned long value; |
| |
| switch (cr) { |
| case 0: |
| value = kvm_read_cr0(vcpu); |
| break; |
| case 2: |
| value = vcpu->arch.cr2; |
| break; |
| case 3: |
| value = kvm_read_cr3(vcpu); |
| break; |
| case 4: |
| value = kvm_read_cr4(vcpu); |
| break; |
| case 8: |
| value = kvm_get_cr8(vcpu); |
| break; |
| default: |
| kvm_err("%s: unexpected cr %u\n", __func__, cr); |
| return 0; |
| } |
| |
| return value; |
| } |
| |
| static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| int res = 0; |
| |
| switch (cr) { |
| case 0: |
| res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
| break; |
| case 2: |
| vcpu->arch.cr2 = val; |
| break; |
| case 3: |
| res = kvm_set_cr3(vcpu, val); |
| break; |
| case 4: |
| res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
| break; |
| case 8: |
| res = kvm_set_cr8(vcpu, val); |
| break; |
| default: |
| kvm_err("%s: unexpected cr %u\n", __func__, cr); |
| res = -1; |
| } |
| |
| return res; |
| } |
| |
| static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) |
| { |
| return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); |
| } |
| |
| static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
| { |
| static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); |
| } |
| |
| static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
| { |
| static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); |
| } |
| |
| static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
| { |
| static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); |
| } |
| |
| static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
| { |
| static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); |
| } |
| |
| static unsigned long emulator_get_cached_segment_base( |
| struct x86_emulate_ctxt *ctxt, int seg) |
| { |
| return get_segment_base(emul_to_vcpu(ctxt), seg); |
| } |
| |
| static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, |
| struct desc_struct *desc, u32 *base3, |
| int seg) |
| { |
| struct kvm_segment var; |
| |
| kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); |
| *selector = var.selector; |
| |
| if (var.unusable) { |
| memset(desc, 0, sizeof(*desc)); |
| if (base3) |
| *base3 = 0; |
| return false; |
| } |
| |
| if (var.g) |
| var.limit >>= 12; |
| set_desc_limit(desc, var.limit); |
| set_desc_base(desc, (unsigned long)var.base); |
| #ifdef CONFIG_X86_64 |
| if (base3) |
| *base3 = var.base >> 32; |
| #endif |
| desc->type = var.type; |
| desc->s = var.s; |
| desc->dpl = var.dpl; |
| desc->p = var.present; |
| desc->avl = var.avl; |
| desc->l = var.l; |
| desc->d = var.db; |
| desc->g = var.g; |
| |
| return true; |
| } |
| |
| static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, |
| struct desc_struct *desc, u32 base3, |
| int seg) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| struct kvm_segment var; |
| |
| var.selector = selector; |
| var.base = get_desc_base(desc); |
| #ifdef CONFIG_X86_64 |
| var.base |= ((u64)base3) << 32; |
| #endif |
| var.limit = get_desc_limit(desc); |
| if (desc->g) |
| var.limit = (var.limit << 12) | 0xfff; |
| var.type = desc->type; |
| var.dpl = desc->dpl; |
| var.db = desc->d; |
| var.s = desc->s; |
| var.l = desc->l; |
| var.g = desc->g; |
| var.avl = desc->avl; |
| var.present = desc->p; |
| var.unusable = !var.present; |
| var.padding = 0; |
| |
| kvm_set_segment(vcpu, &var, seg); |
| return; |
| } |
| |
| static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, |
| u32 msr_index, u64 *pdata) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| int r; |
| |
| r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); |
| if (r < 0) |
| return X86EMUL_UNHANDLEABLE; |
| |
| if (r) { |
| if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, |
| complete_emulated_rdmsr, r)) |
| return X86EMUL_IO_NEEDED; |
| |
| trace_kvm_msr_read_ex(msr_index); |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| trace_kvm_msr_read(msr_index, *pdata); |
| return X86EMUL_CONTINUE; |
| } |
| |
| static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, |
| u32 msr_index, u64 data) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| int r; |
| |
| r = kvm_set_msr_with_filter(vcpu, msr_index, data); |
| if (r < 0) |
| return X86EMUL_UNHANDLEABLE; |
| |
| if (r) { |
| if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, |
| complete_emulated_msr_access, r)) |
| return X86EMUL_IO_NEEDED; |
| |
| trace_kvm_msr_write_ex(msr_index, data); |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| trace_kvm_msr_write(msr_index, data); |
| return X86EMUL_CONTINUE; |
| } |
| |
| static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, |
| u32 msr_index, u64 *pdata) |
| { |
| return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); |
| } |
| |
| static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, |
| u32 pmc) |
| { |
| if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) |
| return 0; |
| return -EINVAL; |
| } |
| |
| static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, |
| u32 pmc, u64 *pdata) |
| { |
| return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); |
| } |
| |
| static void emulator_halt(struct x86_emulate_ctxt *ctxt) |
| { |
| emul_to_vcpu(ctxt)->arch.halt_request = 1; |
| } |
| |
| static int emulator_intercept(struct x86_emulate_ctxt *ctxt, |
| struct x86_instruction_info *info, |
| enum x86_intercept_stage stage) |
| { |
| return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, |
| &ctxt->exception); |
| } |
| |
| static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, |
| u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, |
| bool exact_only) |
| { |
| return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); |
| } |
| |
| static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) |
| { |
| return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); |
| } |
| |
| static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) |
| { |
| return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); |
| } |
| |
| static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) |
| { |
| return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); |
| } |
| |
| static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) |
| { |
| return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); |
| } |
| |
| static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) |
| { |
| kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); |
| } |
| |
| static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) |
| { |
| static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); |
| } |
| |
| static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) |
| { |
| return is_smm(emul_to_vcpu(ctxt)); |
| } |
| |
| static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) |
| { |
| return is_guest_mode(emul_to_vcpu(ctxt)); |
| } |
| |
| #ifndef CONFIG_KVM_SMM |
| static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) |
| { |
| WARN_ON_ONCE(1); |
| return X86EMUL_UNHANDLEABLE; |
| } |
| #endif |
| |
| static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) |
| { |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); |
| } |
| |
| static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) |
| { |
| return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); |
| } |
| |
| static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) |
| { |
| struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; |
| |
| if (!kvm->vm_bugged) |
| kvm_vm_bugged(kvm); |
| } |
| |
| static const struct x86_emulate_ops emulate_ops = { |
| .vm_bugged = emulator_vm_bugged, |
| .read_gpr = emulator_read_gpr, |
| .write_gpr = emulator_write_gpr, |
| .read_std = emulator_read_std, |
| .write_std = emulator_write_std, |
| .fetch = kvm_fetch_guest_virt, |
| .read_emulated = emulator_read_emulated, |
| .write_emulated = emulator_write_emulated, |
| .cmpxchg_emulated = emulator_cmpxchg_emulated, |
| .invlpg = emulator_invlpg, |
| .pio_in_emulated = emulator_pio_in_emulated, |
| .pio_out_emulated = emulator_pio_out_emulated, |
| .get_segment = emulator_get_segment, |
| .set_segment = emulator_set_segment, |
| .get_cached_segment_base = emulator_get_cached_segment_base, |
| .get_gdt = emulator_get_gdt, |
| .get_idt = emulator_get_idt, |
| .set_gdt = emulator_set_gdt, |
| .set_idt = emulator_set_idt, |
| .get_cr = emulator_get_cr, |
| .set_cr = emulator_set_cr, |
| .cpl = emulator_get_cpl, |
| .get_dr = emulator_get_dr, |
| .set_dr = emulator_set_dr, |
| .set_msr_with_filter = emulator_set_msr_with_filter, |
| .get_msr_with_filter = emulator_get_msr_with_filter, |
| .get_msr = emulator_get_msr, |
| .check_pmc = emulator_check_pmc, |
| .read_pmc = emulator_read_pmc, |
| .halt = emulator_halt, |
| .wbinvd = emulator_wbinvd, |
| .fix_hypercall = emulator_fix_hypercall, |
| .intercept = emulator_intercept, |
| .get_cpuid = emulator_get_cpuid, |
| .guest_has_movbe = emulator_guest_has_movbe, |
| .guest_has_fxsr = emulator_guest_has_fxsr, |
| .guest_has_rdpid = emulator_guest_has_rdpid, |
| .set_nmi_mask = emulator_set_nmi_mask, |
| .is_smm = emulator_is_smm, |
| .is_guest_mode = emulator_is_guest_mode, |
| .leave_smm = emulator_leave_smm, |
| .triple_fault = emulator_triple_fault, |
| .set_xcr = emulator_set_xcr, |
| }; |
| |
| static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
| { |
| u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); |
| /* |
| * an sti; sti; sequence only disable interrupts for the first |
| * instruction. So, if the last instruction, be it emulated or |
| * not, left the system with the INT_STI flag enabled, it |
| * means that the last instruction is an sti. We should not |
| * leave the flag on in this case. The same goes for mov ss |
| */ |
| if (int_shadow & mask) |
| mask = 0; |
| if (unlikely(int_shadow || mask)) { |
| static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); |
| if (!mask) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| } |
| |
| static void inject_emulated_exception(struct kvm_vcpu *vcpu) |
| { |
| struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
| |
| if (ctxt->exception.vector == PF_VECTOR) |
| kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); |
| else if (ctxt->exception.error_code_valid) |
| kvm_queue_exception_e(vcpu, ctxt->exception.vector, |
| ctxt->exception.error_code); |
| else |
| kvm_queue_exception(vcpu, ctxt->exception.vector); |
| } |
| |
| static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) |
| { |
| struct x86_emulate_ctxt *ctxt; |
| |
| ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); |
| if (!ctxt) { |
| pr_err("failed to allocate vcpu's emulator\n"); |
| return NULL; |
| } |
| |
| ctxt->vcpu = vcpu; |
| ctxt->ops = &emulate_ops; |
| vcpu->arch.emulate_ctxt = ctxt; |
| |
| return ctxt; |
| } |
| |
| static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
| { |
| struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
| int cs_db, cs_l; |
| |
| static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); |
| |
| ctxt->gpa_available = false; |
| ctxt->eflags = kvm_get_rflags(vcpu); |
| ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; |
| |
| ctxt->eip = kvm_rip_read(vcpu); |
| ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : |
| (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : |
| (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : |
| cs_db ? X86EMUL_MODE_PROT32 : |
| X86EMUL_MODE_PROT16; |
| ctxt->interruptibility = 0; |
| ctxt->have_exception = false; |
| ctxt->exception.vector = -1; |
| ctxt->perm_ok = false; |
| |
| init_decode_cache(ctxt); |
| vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
| } |
| |
| void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) |
| { |
| struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
| int ret; |
| |
| init_emulate_ctxt(vcpu); |
| |
| ctxt->op_bytes = 2; |
| ctxt->ad_bytes = 2; |
| ctxt->_eip = ctxt->eip + inc_eip; |
| ret = emulate_int_real(ctxt, irq); |
| |
| if (ret != X86EMUL_CONTINUE) { |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| } else { |
| ctxt->eip = ctxt->_eip; |
| kvm_rip_write(vcpu, ctxt->eip); |
| kvm_set_rflags(vcpu, ctxt->eflags); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); |
| |
| static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, |
| u8 ndata, u8 *insn_bytes, u8 insn_size) |
| { |
| struct kvm_run *run = vcpu->run; |
| u64 info[5]; |
| u8 info_start; |
| |
| /* |
| * Zero the whole array used to retrieve the exit info, as casting to |
| * u32 for select entries will leave some chunks uninitialized. |
| */ |
| memset(&info, 0, sizeof(info)); |
| |
| static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], |
| &info[2], (u32 *)&info[3], |
| (u32 *)&info[4]); |
| |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| |
| /* |
| * There's currently space for 13 entries, but 5 are used for the exit |
| * reason and info. Restrict to 4 to reduce the maintenance burden |
| * when expanding kvm_run.emulation_failure in the future. |
| */ |
| if (WARN_ON_ONCE(ndata > 4)) |
| ndata = 4; |
| |
| /* Always include the flags as a 'data' entry. */ |
| info_start = 1; |
| run->emulation_failure.flags = 0; |
| |
| if (insn_size) { |
| BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + |
| sizeof(run->emulation_failure.insn_bytes) != 16)); |
| info_start += 2; |
| run->emulation_failure.flags |= |
| KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; |
| run->emulation_failure.insn_size = insn_size; |
| memset(run->emulation_failure.insn_bytes, 0x90, |
| sizeof(run->emulation_failure.insn_bytes)); |
| memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); |
| } |
| |
| memcpy(&run->internal.data[info_start], info, sizeof(info)); |
| memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, |
| ndata * sizeof(data[0])); |
| |
| run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; |
| } |
| |
| static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) |
| { |
| struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
| |
| prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, |
| ctxt->fetch.end - ctxt->fetch.data); |
| } |
| |
| void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, |
| u8 ndata) |
| { |
| prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); |
| } |
| EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); |
| |
| void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) |
| { |
| __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); |
| } |
| EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); |
| |
| static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| |
| ++vcpu->stat.insn_emulation_fail; |
| trace_kvm_emulate_insn_failed(vcpu); |
| |
| if (emulation_type & EMULTYPE_VMWARE_GP) { |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return 1; |
| } |
| |
| if (kvm->arch.exit_on_emulation_error || |
| (emulation_type & EMULTYPE_SKIP)) { |
| prepare_emulation_ctxt_failure_exit(vcpu); |
| return 0; |
| } |
| |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| |
| if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { |
| prepare_emulation_ctxt_failure_exit(vcpu); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, |
| int emulation_type) |
| { |
| gpa_t gpa = cr2_or_gpa; |
| kvm_pfn_t pfn; |
| |
| if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) |
| return false; |
| |
| if (WARN_ON_ONCE(is_guest_mode(vcpu)) || |
| WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) |
| return false; |
| |
| if (!vcpu->arch.mmu->root_role.direct) { |
| /* |
| * Write permission should be allowed since only |
| * write access need to be emulated. |
| */ |
| gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); |
| |
| /* |
| * If the mapping is invalid in guest, let cpu retry |
| * it to generate fault. |
| */ |
| if (gpa == INVALID_GPA) |
| return true; |
| } |
| |
| /* |
| * Do not retry the unhandleable instruction if it faults on the |
| * readonly host memory, otherwise it will goto a infinite loop: |
| * retry instruction -> write #PF -> emulation fail -> retry |
| * instruction -> ... |
| */ |
| pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); |
| |
| /* |
| * If the instruction failed on the error pfn, it can not be fixed, |
| * report the error to userspace. |
| */ |
| if (is_error_noslot_pfn(pfn)) |
| return false; |
| |
| kvm_release_pfn_clean(pfn); |
| |
| /* The instructions are well-emulated on direct mmu. */ |
| if (vcpu->arch.mmu->root_role.direct) { |
| unsigned int indirect_shadow_pages; |
| |
| write_lock(&vcpu->kvm->mmu_lock); |
| indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; |
| write_unlock(&vcpu->kvm->mmu_lock); |
| |
| if (indirect_shadow_pages) |
| kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
| |
| return true; |
| } |
| |
| /* |
| * if emulation was due to access to shadowed page table |
| * and it failed try to unshadow page and re-enter the |
| * guest to let CPU execute the instruction. |
| */ |
| kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
| |
| /* |
| * If the access faults on its page table, it can not |
| * be fixed by unprotecting shadow page and it should |
| * be reported to userspace. |
| */ |
| return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP); |
| } |
| |
| static bool retry_instruction(struct x86_emulate_ctxt *ctxt, |
| gpa_t cr2_or_gpa, int emulation_type) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; |
| |
| last_retry_eip = vcpu->arch.last_retry_eip; |
| last_retry_addr = vcpu->arch.last_retry_addr; |
| |
| /* |
| * If the emulation is caused by #PF and it is non-page_table |
| * writing instruction, it means the VM-EXIT is caused by shadow |
| * page protected, we can zap the shadow page and retry this |
| * instruction directly. |
| * |
| * Note: if the guest uses a non-page-table modifying instruction |
| * on the PDE that points to the instruction, then we will unmap |
| * the instruction and go to an infinite loop. So, we cache the |
| * last retried eip and the last fault address, if we meet the eip |
| * and the address again, we can break out of the potential infinite |
| * loop. |
| */ |
| vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; |
| |
| if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) |
| return false; |
| |
| if (WARN_ON_ONCE(is_guest_mode(vcpu)) || |
| WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) |
| return false; |
| |
| if (x86_page_table_writing_insn(ctxt)) |
| return false; |
| |
| if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) |
| return false; |
| |
| vcpu->arch.last_retry_eip = ctxt->eip; |
| vcpu->arch.last_retry_addr = cr2_or_gpa; |
| |
| if (!vcpu->arch.mmu->root_role.direct) |
| gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); |
| |
| kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); |
| |
| return true; |
| } |
| |
| static int complete_emulated_mmio(struct kvm_vcpu *vcpu); |
| static int complete_emulated_pio(struct kvm_vcpu *vcpu); |
| |
| static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, |
| unsigned long *db) |
| { |
| u32 dr6 = 0; |
| int i; |
| u32 enable, rwlen; |
| |
| enable = dr7; |
| rwlen = dr7 >> 16; |
| for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) |
| if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) |
| dr6 |= (1 << i); |
| return dr6; |
| } |
| |
| static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *kvm_run = vcpu->run; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; |
| kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); |
| kvm_run->debug.arch.exception = DB_VECTOR; |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| return 0; |
| } |
| kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); |
| return 1; |
| } |
| |
| int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); |
| int r; |
| |
| r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); |
| if (unlikely(!r)) |
| return 0; |
| |
| kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); |
| |
| /* |
| * rflags is the old, "raw" value of the flags. The new value has |
| * not been saved yet. |
| * |
| * This is correct even for TF set by the guest, because "the |
| * processor will not generate this exception after the instruction |
| * that sets the TF flag". |
| */ |
| if (unlikely(rflags & X86_EFLAGS_TF)) |
| r = kvm_vcpu_do_singlestep(vcpu); |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); |
| |
| static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) |
| { |
| u32 shadow; |
| |
| if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) |
| return true; |
| |
| /* |
| * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active, |
| * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first |
| * to avoid the relatively expensive CPUID lookup. |
| */ |
| shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); |
| return (shadow & KVM_X86_SHADOW_INT_MOV_SS) && |
| guest_cpuid_is_intel(vcpu); |
| } |
| |
| static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, |
| int emulation_type, int *r) |
| { |
| WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); |
| |
| /* |
| * Do not check for code breakpoints if hardware has already done the |
| * checks, as inferred from the emulation type. On NO_DECODE and SKIP, |
| * the instruction has passed all exception checks, and all intercepted |
| * exceptions that trigger emulation have lower priority than code |
| * breakpoints, i.e. the fact that the intercepted exception occurred |
| * means any code breakpoints have already been serviced. |
| * |
| * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as |
| * hardware has checked the RIP of the magic prefix, but not the RIP of |
| * the instruction being emulated. The intent of forced emulation is |
| * to behave as if KVM intercepted the instruction without an exception |
| * and without a prefix. |
| */ |
| if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | |
| EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) |
| return false; |
| |
| if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && |
| (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { |
| struct kvm_run *kvm_run = vcpu->run; |
| unsigned long eip = kvm_get_linear_rip(vcpu); |
| u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, |
| vcpu->arch.guest_debug_dr7, |
| vcpu->arch.eff_db); |
| |
| if (dr6 != 0) { |
| kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; |
| kvm_run->debug.arch.pc = eip; |
| kvm_run->debug.arch.exception = DB_VECTOR; |
| kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| *r = 0; |
| return true; |
| } |
| } |
| |
| if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && |
| !kvm_is_code_breakpoint_inhibited(vcpu)) { |
| unsigned long eip = kvm_get_linear_rip(vcpu); |
| u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, |
| vcpu->arch.dr7, |
| vcpu->arch.db); |
| |
| if (dr6 != 0) { |
| kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); |
| *r = 1; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) |
| { |
| switch (ctxt->opcode_len) { |
| case 1: |
| switch (ctxt->b) { |
| case 0xe4: /* IN */ |
| case 0xe5: |
| case 0xec: |
| case 0xed: |
| case 0xe6: /* OUT */ |
| case 0xe7: |
| case 0xee: |
| case 0xef: |
| case 0x6c: /* INS */ |
| case 0x6d: |
| case 0x6e: /* OUTS */ |
| case 0x6f: |
| return true; |
| } |
| break; |
| case 2: |
| switch (ctxt->b) { |
| case 0x33: /* RDPMC */ |
| return true; |
| } |
| break; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Decode an instruction for emulation. The caller is responsible for handling |
| * code breakpoints. Note, manually detecting code breakpoints is unnecessary |
| * (and wrong) when emulating on an intercepted fault-like exception[*], as |
| * code breakpoints have higher priority and thus have already been done by |
| * hardware. |
| * |
| * [*] Except #MC, which is higher priority, but KVM should never emulate in |
| * response to a machine check. |
| */ |
| int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, |
| void *insn, int insn_len) |
| { |
| struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
| int r; |
| |
| init_emulate_ctxt(vcpu); |
| |
| r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); |
| |
| trace_kvm_emulate_insn_start(vcpu); |
| ++vcpu->stat.insn_emulation; |
| |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); |
| |
| int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, |
| int emulation_type, void *insn, int insn_len) |
| { |
| int r; |
| struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
| bool writeback = true; |
| |
| r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); |
| if (r != X86EMUL_CONTINUE) { |
| if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) |
| return 1; |
| |
| WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); |
| return handle_emulation_failure(vcpu, emulation_type); |
| } |
| |
| vcpu->arch.l1tf_flush_l1d = true; |
| |
| if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
| kvm_clear_exception_queue(vcpu); |
| |
| /* |
| * Return immediately if RIP hits a code breakpoint, such #DBs |
| * are fault-like and are higher priority than any faults on |
| * the code fetch itself. |
| */ |
| if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) |
| return r; |
| |
| r = x86_decode_emulated_instruction(vcpu, emulation_type, |
| insn, insn_len); |
| if (r != EMULATION_OK) { |
| if ((emulation_type & EMULTYPE_TRAP_UD) || |
| (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| if (reexecute_instruction(vcpu, cr2_or_gpa, |
| emulation_type)) |
| return 1; |
| |
| if (ctxt->have_exception && |
| !(emulation_type & EMULTYPE_SKIP)) { |
| /* |
| * #UD should result in just EMULATION_FAILED, and trap-like |
| * exception should not be encountered during decode. |
| */ |
| WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || |
| exception_type(ctxt->exception.vector) == EXCPT_TRAP); |
| inject_emulated_exception(vcpu); |
| return 1; |
| } |
| return handle_emulation_failure(vcpu, emulation_type); |
| } |
| } |
| |
| if ((emulation_type & EMULTYPE_VMWARE_GP) && |
| !is_vmware_backdoor_opcode(ctxt)) { |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return 1; |
| } |
| |
| /* |
| * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for |
| * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). |
| * The caller is responsible for updating interruptibility state and |
| * injecting single-step #DBs. |
| */ |
| if (emulation_type & EMULTYPE_SKIP) { |
| if (ctxt->mode != X86EMUL_MODE_PROT64) |
| ctxt->eip = (u32)ctxt->_eip; |
| else |
| ctxt->eip = ctxt->_eip; |
| |
| if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { |
| r = 1; |
| goto writeback; |
| } |
| |
| kvm_rip_write(vcpu, ctxt->eip); |
| if (ctxt->eflags & X86_EFLAGS_RF) |
| kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); |
| return 1; |
| } |
| |
| if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) |
| return 1; |
| |
| /* this is needed for vmware backdoor interface to work since it |
| changes registers values during IO operation */ |
| if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { |
| vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
| emulator_invalidate_register_cache(ctxt); |
| } |
| |
| restart: |
| if (emulation_type & EMULTYPE_PF) { |
| /* Save the faulting GPA (cr2) in the address field */ |
| ctxt->exception.address = cr2_or_gpa; |
| |
| /* With shadow page tables, cr2 contains a GVA or nGPA. */ |
| if (vcpu->arch.mmu->root_role.direct) { |
| ctxt->gpa_available = true; |
| ctxt->gpa_val = cr2_or_gpa; |
| } |
| } else { |
| /* Sanitize the address out of an abundance of paranoia. */ |
| ctxt->exception.address = 0; |
| } |
| |
| r = x86_emulate_insn(ctxt); |
| |
| if (r == EMULATION_INTERCEPTED) |
| return 1; |
| |
| if (r == EMULATION_FAILED) { |
| if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type)) |
| return 1; |
| |
| return handle_emulation_failure(vcpu, emulation_type); |
| } |
| |
| if (ctxt->have_exception) { |
| WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); |
| vcpu->mmio_needed = false; |
| r = 1; |
| inject_emulated_exception(vcpu); |
| } else if (vcpu->arch.pio.count) { |
| if (!vcpu->arch.pio.in) { |
| /* FIXME: return into emulator if single-stepping. */ |
| vcpu->arch.pio.count = 0; |
| } else { |
| writeback = false; |
| vcpu->arch.complete_userspace_io = complete_emulated_pio; |
| } |
| r = 0; |
| } else if (vcpu->mmio_needed) { |
| ++vcpu->stat.mmio_exits; |
| |
| if (!vcpu->mmio_is_write) |
| writeback = false; |
| r = 0; |
| vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
| } else if (vcpu->arch.complete_userspace_io) { |
| writeback = false; |
| r = 0; |
| } else if (r == EMULATION_RESTART) |
| goto restart; |
| else |
| r = 1; |
| |
| writeback: |
| if (writeback) { |
| unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); |
| toggle_interruptibility(vcpu, ctxt->interruptibility); |
| vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
| |
| /* |
| * Note, EXCPT_DB is assumed to be fault-like as the emulator |
| * only supports code breakpoints and general detect #DB, both |
| * of which are fault-like. |
| */ |
| if (!ctxt->have_exception || |
| exception_type(ctxt->exception.vector) == EXCPT_TRAP) { |
| kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); |
| if (ctxt->is_branch) |
| kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); |
| kvm_rip_write(vcpu, ctxt->eip); |
| if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) |
| r = kvm_vcpu_do_singlestep(vcpu); |
| static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); |
| __kvm_set_rflags(vcpu, ctxt->eflags); |
| } |
| |
| /* |
| * For STI, interrupts are shadowed; so KVM_REQ_EVENT will |
| * do nothing, and it will be requested again as soon as |
| * the shadow expires. But we still need to check here, |
| * because POPF has no interrupt shadow. |
| */ |
| if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } else |
| vcpu->arch.emulate_regs_need_sync_to_vcpu = true; |
| |
| return r; |
| } |
| |
| int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) |
| { |
| return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_instruction); |
| |
| int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, |
| void *insn, int insn_len) |
| { |
| return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); |
| |
| static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.pio.count = 0; |
| return 1; |
| } |
| |
| static int complete_fast_pio_out(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.pio.count = 0; |
| |
| if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) |
| return 1; |
| |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, |
| unsigned short port) |
| { |
| unsigned long val = kvm_rax_read(vcpu); |
| int ret = emulator_pio_out(vcpu, size, port, &val, 1); |
| |
| if (ret) |
| return ret; |
| |
| /* |
| * Workaround userspace that relies on old KVM behavior of %rip being |
| * incremented prior to exiting to userspace to handle "OUT 0x7e". |
| */ |
| if (port == 0x7e && |
| kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { |
| vcpu->arch.complete_userspace_io = |
| complete_fast_pio_out_port_0x7e; |
| kvm_skip_emulated_instruction(vcpu); |
| } else { |
| vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); |
| vcpu->arch.complete_userspace_io = complete_fast_pio_out; |
| } |
| return 0; |
| } |
| |
| static int complete_fast_pio_in(struct kvm_vcpu *vcpu) |
| { |
| unsigned long val; |
| |
| /* We should only ever be called with arch.pio.count equal to 1 */ |
| BUG_ON(vcpu->arch.pio.count != 1); |
| |
| if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { |
| vcpu->arch.pio.count = 0; |
| return 1; |
| } |
| |
| /* For size less than 4 we merge, else we zero extend */ |
| val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; |
| |
| complete_emulator_pio_in(vcpu, &val); |
| kvm_rax_write(vcpu, val); |
| |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, |
| unsigned short port) |
| { |
| unsigned long val; |
| int ret; |
| |
| /* For size less than 4 we merge, else we zero extend */ |
| val = (size < 4) ? kvm_rax_read(vcpu) : 0; |
| |
| ret = emulator_pio_in(vcpu, size, port, &val, 1); |
| if (ret) { |
| kvm_rax_write(vcpu, val); |
| return ret; |
| } |
| |
| vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); |
| vcpu->arch.complete_userspace_io = complete_fast_pio_in; |
| |
| return 0; |
| } |
| |
| int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) |
| { |
| int ret; |
| |
| if (in) |
| ret = kvm_fast_pio_in(vcpu, size, port); |
| else |
| ret = kvm_fast_pio_out(vcpu, size, port); |
| return ret && kvm_skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_fast_pio); |
| |
| static int kvmclock_cpu_down_prep(unsigned int cpu) |
| { |
| __this_cpu_write(cpu_tsc_khz, 0); |
| return 0; |
| } |
| |
| static void tsc_khz_changed(void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| unsigned long khz; |
| |
| WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); |
| |
| if (data) |
| khz = freq->new; |
| else |
| khz = cpufreq_quick_get(raw_smp_processor_id()); |
| if (!khz) |
| khz = tsc_khz; |
| __this_cpu_write(cpu_tsc_khz, khz); |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void kvm_hyperv_tsc_notifier(void) |
| { |
| struct kvm *kvm; |
| int cpu; |
| |
| mutex_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) |
| kvm_make_mclock_inprogress_request(kvm); |
| |
| /* no guest entries from this point */ |
| hyperv_stop_tsc_emulation(); |
| |
| /* TSC frequency always matches when on Hyper-V */ |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
| for_each_present_cpu(cpu) |
| per_cpu(cpu_tsc_khz, cpu) = tsc_khz; |
| } |
| kvm_caps.max_guest_tsc_khz = tsc_khz; |
| |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| __kvm_start_pvclock_update(kvm); |
| pvclock_update_vm_gtod_copy(kvm); |
| kvm_end_pvclock_update(kvm); |
| } |
| |
| mutex_unlock(&kvm_lock); |
| } |
| #endif |
| |
| static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) |
| { |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| int send_ipi = 0; |
| unsigned long i; |
| |
| /* |
| * We allow guests to temporarily run on slowing clocks, |
| * provided we notify them after, or to run on accelerating |
| * clocks, provided we notify them before. Thus time never |
| * goes backwards. |
| * |
| * However, we have a problem. We can't atomically update |
| * the frequency of a given CPU from this function; it is |
| * merely a notifier, which can be called from any CPU. |
| * Changing the TSC frequency at arbitrary points in time |
| * requires a recomputation of local variables related to |
| * the TSC for each VCPU. We must flag these local variables |
| * to be updated and be sure the update takes place with the |
| * new frequency before any guests proceed. |
| * |
| * Unfortunately, the combination of hotplug CPU and frequency |
| * change creates an intractable locking scenario; the order |
| * of when these callouts happen is undefined with respect to |
| * CPU hotplug, and they can race with each other. As such, |
| * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is |
| * undefined; you can actually have a CPU frequency change take |
| * place in between the computation of X and the setting of the |
| * variable. To protect against this problem, all updates of |
| * the per_cpu tsc_khz variable are done in an interrupt |
| * protected IPI, and all callers wishing to update the value |
| * must wait for a synchronous IPI to complete (which is trivial |
| * if the caller is on the CPU already). This establishes the |
| * necessary total order on variable updates. |
| * |
| * Note that because a guest time update may take place |
| * anytime after the setting of the VCPU's request bit, the |
| * correct TSC value must be set before the request. However, |
| * to ensure the update actually makes it to any guest which |
| * starts running in hardware virtualization between the set |
| * and the acquisition of the spinlock, we must also ping the |
| * CPU after setting the request bit. |
| * |
| */ |
| |
| smp_call_function_single(cpu, tsc_khz_changed, freq, 1); |
| |
| mutex_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (vcpu->cpu != cpu) |
| continue; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| if (vcpu->cpu != raw_smp_processor_id()) |
| send_ipi = 1; |
| } |
| } |
| mutex_unlock(&kvm_lock); |
| |
| if (freq->old < freq->new && send_ipi) { |
| /* |
| * We upscale the frequency. Must make the guest |
| * doesn't see old kvmclock values while running with |
| * the new frequency, otherwise we risk the guest sees |
| * time go backwards. |
| * |
| * In case we update the frequency for another cpu |
| * (which might be in guest context) send an interrupt |
| * to kick the cpu out of guest context. Next time |
| * guest context is entered kvmclock will be updated, |
| * so the guest will not see stale values. |
| */ |
| smp_call_function_single(cpu, tsc_khz_changed, freq, 1); |
| } |
| } |
| |
| static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| int cpu; |
| |
| if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) |
| return 0; |
| if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) |
| return 0; |
| |
| for_each_cpu(cpu, freq->policy->cpus) |
| __kvmclock_cpufreq_notifier(freq, cpu); |
| |
| return 0; |
| } |
| |
| static struct notifier_block kvmclock_cpufreq_notifier_block = { |
| .notifier_call = kvmclock_cpufreq_notifier |
| }; |
| |
| static int kvmclock_cpu_online(unsigned int cpu) |
| { |
| tsc_khz_changed(NULL); |
| return 0; |
| } |
| |
| static void kvm_timer_init(void) |
| { |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
| max_tsc_khz = tsc_khz; |
| |
| if (IS_ENABLED(CONFIG_CPU_FREQ)) { |
| struct cpufreq_policy *policy; |
| int cpu; |
| |
| cpu = get_cpu(); |
| policy = cpufreq_cpu_get(cpu); |
| if (policy) { |
| if (policy->cpuinfo.max_freq) |
| max_tsc_khz = policy->cpuinfo.max_freq; |
| cpufreq_cpu_put(policy); |
| } |
| put_cpu(); |
| } |
| cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| |
| cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", |
| kvmclock_cpu_online, kvmclock_cpu_down_prep); |
| } |
| } |
| |
| #ifdef CONFIG_X86_64 |
| static void pvclock_gtod_update_fn(struct work_struct *work) |
| { |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| |
| mutex_lock(&kvm_lock); |
| list_for_each_entry(kvm, &vm_list, vm_list) |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
| atomic_set(&kvm_guest_has_master_clock, 0); |
| mutex_unlock(&kvm_lock); |
| } |
| |
| static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); |
| |
| /* |
| * Indirection to move queue_work() out of the tk_core.seq write held |
| * region to prevent possible deadlocks against time accessors which |
| * are invoked with work related locks held. |
| */ |
| static void pvclock_irq_work_fn(struct irq_work *w) |
| { |
| queue_work(system_long_wq, &pvclock_gtod_work); |
| } |
| |
| static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); |
| |
| /* |
| * Notification about pvclock gtod data update. |
| */ |
| static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, |
| void *priv) |
| { |
| struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
| struct timekeeper *tk = priv; |
| |
| update_pvclock_gtod(tk); |
| |
| /* |
| * Disable master clock if host does not trust, or does not use, |
| * TSC based clocksource. Delegate queue_work() to irq_work as |
| * this is invoked with tk_core.seq write held. |
| */ |
| if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && |
| atomic_read(&kvm_guest_has_master_clock) != 0) |
| irq_work_queue(&pvclock_irq_work); |
| return 0; |
| } |
| |
| static struct notifier_block pvclock_gtod_notifier = { |
| .notifier_call = pvclock_gtod_notify, |
| }; |
| #endif |
| |
| static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) |
| { |
| memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); |
| |
| #define __KVM_X86_OP(func) \ |
| static_call_update(kvm_x86_##func, kvm_x86_ops.func); |
| #define KVM_X86_OP(func) \ |
| WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) |
| #define KVM_X86_OP_OPTIONAL __KVM_X86_OP |
| #define KVM_X86_OP_OPTIONAL_RET0(func) \ |
| static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ |
| (void *)__static_call_return0); |
| #include <asm/kvm-x86-ops.h> |
| #undef __KVM_X86_OP |
| |
| kvm_pmu_ops_update(ops->pmu_ops); |
| } |
| |
| static int kvm_x86_check_processor_compatibility(void) |
| { |
| int cpu = smp_processor_id(); |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| /* |
| * Compatibility checks are done when loading KVM and when enabling |
| * hardware, e.g. during CPU hotplug, to ensure all online CPUs are |
| * compatible, i.e. KVM should never perform a compatibility check on |
| * an offline CPU. |
| */ |
| WARN_ON(!cpu_online(cpu)); |
| |
| if (__cr4_reserved_bits(cpu_has, c) != |
| __cr4_reserved_bits(cpu_has, &boot_cpu_data)) |
| return -EIO; |
| |
| return static_call(kvm_x86_check_processor_compatibility)(); |
| } |
| |
| static void kvm_x86_check_cpu_compat(void *ret) |
| { |
| *(int *)ret = kvm_x86_check_processor_compatibility(); |
| } |
| |
| static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) |
| { |
| u64 host_pat; |
| int r, cpu; |
| |
| if (kvm_x86_ops.hardware_enable) { |
| pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); |
| return -EEXIST; |
| } |
| |
| /* |
| * KVM explicitly assumes that the guest has an FPU and |
| * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the |
| * vCPU's FPU state as a fxregs_state struct. |
| */ |
| if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { |
| pr_err("inadequate fpu\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
| pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| /* |
| * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes |
| * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something |
| * other than WB. Note, EPT doesn't utilize the PAT, but don't bother |
| * with an exception. PAT[0] is set to WB on RESET and also by the |
| * kernel, i.e. failure indicates a kernel bug or broken firmware. |
| */ |
| if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) || |
| (host_pat & GENMASK(2, 0)) != 6) { |
| pr_err("host PAT[0] is not WB\n"); |
| return -EIO; |
| } |
| |
| x86_emulator_cache = kvm_alloc_emulator_cache(); |
| if (!x86_emulator_cache) { |
| pr_err("failed to allocate cache for x86 emulator\n"); |
| return -ENOMEM; |
| } |
| |
| user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); |
| if (!user_return_msrs) { |
| pr_err("failed to allocate percpu kvm_user_return_msrs\n"); |
| r = -ENOMEM; |
| goto out_free_x86_emulator_cache; |
| } |
| kvm_nr_uret_msrs = 0; |
| |
| r = kvm_mmu_vendor_module_init(); |
| if (r) |
| goto out_free_percpu; |
| |
| if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
| host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
| kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; |
| } |
| |
| rdmsrl_safe(MSR_EFER, &host_efer); |
| |
| if (boot_cpu_has(X86_FEATURE_XSAVES)) |
| rdmsrl(MSR_IA32_XSS, host_xss); |
| |
| kvm_init_pmu_capability(ops->pmu_ops); |
| |
| if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) |
| rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities); |
| |
| r = ops->hardware_setup(); |
| if (r != 0) |
| goto out_mmu_exit; |
| |
| kvm_ops_update(ops); |
| |
| for_each_online_cpu(cpu) { |
| smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); |
| if (r < 0) |
| goto out_unwind_ops; |
| } |
| |
| /* |
| * Point of no return! DO NOT add error paths below this point unless |
| * absolutely necessary, as most operations from this point forward |
| * require unwinding. |
| */ |
| kvm_timer_init(); |
| |
| if (pi_inject_timer == -1) |
| pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); |
| #ifdef CONFIG_X86_64 |
| pvclock_gtod_register_notifier(&pvclock_gtod_notifier); |
| |
| if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) |
| set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); |
| #endif |
| |
| kvm_register_perf_callbacks(ops->handle_intel_pt_intr); |
| |
| if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) |
| kvm_caps.supported_xss = 0; |
| |
| #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) |
| cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); |
| #undef __kvm_cpu_cap_has |
| |
| if (kvm_caps.has_tsc_control) { |
| /* |
| * Make sure the user can only configure tsc_khz values that |
| * fit into a signed integer. |
| * A min value is not calculated because it will always |
| * be 1 on all machines. |
| */ |
| u64 max = min(0x7fffffffULL, |
| __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); |
| kvm_caps.max_guest_tsc_khz = max; |
| } |
| kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; |
| kvm_init_msr_lists(); |
| return 0; |
| |
| out_unwind_ops: |
| kvm_x86_ops.hardware_enable = NULL; |
| static_call(kvm_x86_hardware_unsetup)(); |
| out_mmu_exit: |
| kvm_mmu_vendor_module_exit(); |
| out_free_percpu: |
| free_percpu(user_return_msrs); |
| out_free_x86_emulator_cache: |
| kmem_cache_destroy(x86_emulator_cache); |
| return r; |
| } |
| |
| int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) |
| { |
| int r; |
| |
| mutex_lock(&vendor_module_lock); |
| r = __kvm_x86_vendor_init(ops); |
| mutex_unlock(&vendor_module_lock); |
| |
| return r; |
| } |
| EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); |
| |
| void kvm_x86_vendor_exit(void) |
| { |
| kvm_unregister_perf_callbacks(); |
| |
| #ifdef CONFIG_X86_64 |
| if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) |
| clear_hv_tscchange_cb(); |
| #endif |
| kvm_lapic_exit(); |
| |
| if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
| cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); |
| } |
| #ifdef CONFIG_X86_64 |
| pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); |
| irq_work_sync(&pvclock_irq_work); |
| cancel_work_sync(&pvclock_gtod_work); |
| #endif |
| static_call(kvm_x86_hardware_unsetup)(); |
| kvm_mmu_vendor_module_exit(); |
| free_percpu(user_return_msrs); |
| kmem_cache_destroy(x86_emulator_cache); |
| #ifdef CONFIG_KVM_XEN |
| static_key_deferred_flush(&kvm_xen_enabled); |
| WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); |
| #endif |
| mutex_lock(&vendor_module_lock); |
| kvm_x86_ops.hardware_enable = NULL; |
| mutex_unlock(&vendor_module_lock); |
| } |
| EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); |
| |
| static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) |
| { |
| /* |
| * The vCPU has halted, e.g. executed HLT. Update the run state if the |
| * local APIC is in-kernel, the run loop will detect the non-runnable |
| * state and halt the vCPU. Exit to userspace if the local APIC is |
| * managed by userspace, in which case userspace is responsible for |
| * handling wake events. |
| */ |
| ++vcpu->stat.halt_exits; |
| if (lapic_in_kernel(vcpu)) { |
| vcpu->arch.mp_state = state; |
| return 1; |
| } else { |
| vcpu->run->exit_reason = reason; |
| return 0; |
| } |
| } |
| |
| int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) |
| { |
| return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); |
| |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu) |
| { |
| int ret = kvm_skip_emulated_instruction(vcpu); |
| /* |
| * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered |
| * KVM_EXIT_DEBUG here. |
| */ |
| return kvm_emulate_halt_noskip(vcpu) && ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt); |
| |
| int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) |
| { |
| int ret = kvm_skip_emulated_instruction(vcpu); |
| |
| return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, |
| KVM_EXIT_AP_RESET_HOLD) && ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); |
| |
| #ifdef CONFIG_X86_64 |
| static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, |
| unsigned long clock_type) |
| { |
| struct kvm_clock_pairing clock_pairing; |
| struct timespec64 ts; |
| u64 cycle; |
| int ret; |
| |
| if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) |
| return -KVM_EOPNOTSUPP; |
| |
| /* |
| * When tsc is in permanent catchup mode guests won't be able to use |
| * pvclock_read_retry loop to get consistent view of pvclock |
| */ |
| if (vcpu->arch.tsc_always_catchup) |
| return -KVM_EOPNOTSUPP; |
| |
| if (!kvm_get_walltime_and_clockread(&ts, &cycle)) |
| return -KVM_EOPNOTSUPP; |
| |
| clock_pairing.sec = ts.tv_sec; |
| clock_pairing.nsec = ts.tv_nsec; |
| clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); |
| clock_pairing.flags = 0; |
| memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); |
| |
| ret = 0; |
| if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, |
| sizeof(struct kvm_clock_pairing))) |
| ret = -KVM_EFAULT; |
| |
| return ret; |
| } |
| #endif |
| |
| /* |
| * kvm_pv_kick_cpu_op: Kick a vcpu. |
| * |
| * @apicid - apicid of vcpu to be kicked. |
| */ |
| static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) |
| { |
| /* |
| * All other fields are unused for APIC_DM_REMRD, but may be consumed by |
| * common code, e.g. for tracing. Defer initialization to the compiler. |
| */ |
| struct kvm_lapic_irq lapic_irq = { |
| .delivery_mode = APIC_DM_REMRD, |
| .dest_mode = APIC_DEST_PHYSICAL, |
| .shorthand = APIC_DEST_NOSHORT, |
| .dest_id = apicid, |
| }; |
| |
| kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); |
| } |
| |
| bool kvm_apicv_activated(struct kvm *kvm) |
| { |
| return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); |
| } |
| EXPORT_SYMBOL_GPL(kvm_apicv_activated); |
| |
| bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) |
| { |
| ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); |
| ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); |
| |
| return (vm_reasons | vcpu_reasons) == 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); |
| |
| static void set_or_clear_apicv_inhibit(unsigned long *inhibits, |
| enum kvm_apicv_inhibit reason, bool set) |
| { |
| if (set) |
| __set_bit(reason, inhibits); |
| else |
| __clear_bit(reason, inhibits); |
| |
| trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); |
| } |
| |
| static void kvm_apicv_init(struct kvm *kvm) |
| { |
| unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; |
| |
| init_rwsem(&kvm->arch.apicv_update_lock); |
| |
| set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); |
| |
| if (!enable_apicv) |
| set_or_clear_apicv_inhibit(inhibits, |
| APICV_INHIBIT_REASON_DISABLE, true); |
| } |
| |
| static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) |
| { |
| struct kvm_vcpu *target = NULL; |
| struct kvm_apic_map *map; |
| |
| vcpu->stat.directed_yield_attempted++; |
| |
| if (single_task_running()) |
| goto no_yield; |
| |
| rcu_read_lock(); |
| map = rcu_dereference(vcpu->kvm->arch.apic_map); |
| |
| if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) |
| target = map->phys_map[dest_id]->vcpu; |
| |
| rcu_read_unlock(); |
| |
| if (!target || !READ_ONCE(target->ready)) |
| goto no_yield; |
| |
| /* Ignore requests to yield to self */ |
| if (vcpu == target) |
| goto no_yield; |
| |
| if (kvm_vcpu_yield_to(target) <= 0) |
| goto no_yield; |
| |
| vcpu->stat.directed_yield_successful++; |
| |
| no_yield: |
| return; |
| } |
| |
| static int complete_hypercall_exit(struct kvm_vcpu *vcpu) |
| { |
| u64 ret = vcpu->run->hypercall.ret; |
| |
| if (!is_64_bit_mode(vcpu)) |
| ret = (u32)ret; |
| kvm_rax_write(vcpu, ret); |
| ++vcpu->stat.hypercalls; |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) |
| { |
| unsigned long nr, a0, a1, a2, a3, ret; |
| int op_64_bit; |
| |
| if (kvm_xen_hypercall_enabled(vcpu->kvm)) |
| return kvm_xen_hypercall(vcpu); |
| |
| if (kvm_hv_hypercall_enabled(vcpu)) |
| return kvm_hv_hypercall(vcpu); |
| |
| nr = kvm_rax_read(vcpu); |
| a0 = kvm_rbx_read(vcpu); |
| a1 = kvm_rcx_read(vcpu); |
| a2 = kvm_rdx_read(vcpu); |
| a3 = kvm_rsi_read(vcpu); |
| |
| trace_kvm_hypercall(nr, a0, a1, a2, a3); |
| |
| op_64_bit = is_64_bit_hypercall(vcpu); |
| if (!op_64_bit) { |
| nr &= 0xFFFFFFFF; |
| a0 &= 0xFFFFFFFF; |
| a1 &= 0xFFFFFFFF; |
| a2 &= 0xFFFFFFFF; |
| a3 &= 0xFFFFFFFF; |
| } |
| |
| if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { |
| ret = -KVM_EPERM; |
| goto out; |
| } |
| |
| ret = -KVM_ENOSYS; |
| |
| switch (nr) { |
| case KVM_HC_VAPIC_POLL_IRQ: |
| ret = 0; |
| break; |
| case KVM_HC_KICK_CPU: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) |
| break; |
| |
| kvm_pv_kick_cpu_op(vcpu->kvm, a1); |
| kvm_sched_yield(vcpu, a1); |
| ret = 0; |
| break; |
| #ifdef CONFIG_X86_64 |
| case KVM_HC_CLOCK_PAIRING: |
| ret = kvm_pv_clock_pairing(vcpu, a0, a1); |
| break; |
| #endif |
| case KVM_HC_SEND_IPI: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) |
| break; |
| |
| ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); |
| break; |
| case KVM_HC_SCHED_YIELD: |
| if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) |
| break; |
| |
| kvm_sched_yield(vcpu, a0); |
| ret = 0; |
| break; |
| case KVM_HC_MAP_GPA_RANGE: { |
| u64 gpa = a0, npages = a1, attrs = a2; |
| |
| ret = -KVM_ENOSYS; |
| if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) |
| break; |
| |
| if (!PAGE_ALIGNED(gpa) || !npages || |
| gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { |
| ret = -KVM_EINVAL; |
| break; |
| } |
| |
| vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; |
| vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; |
| vcpu->run->hypercall.args[0] = gpa; |
| vcpu->run->hypercall.args[1] = npages; |
| vcpu->run->hypercall.args[2] = attrs; |
| vcpu->run->hypercall.flags = 0; |
| if (op_64_bit) |
| vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; |
| |
| WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); |
| vcpu->arch.complete_userspace_io = complete_hypercall_exit; |
| return 0; |
| } |
| default: |
| ret = -KVM_ENOSYS; |
| break; |
| } |
| out: |
| if (!op_64_bit) |
| ret = (u32)ret; |
| kvm_rax_write(vcpu, ret); |
| |
| ++vcpu->stat.hypercalls; |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); |
| |
| static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) |
| { |
| struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
| char instruction[3]; |
| unsigned long rip = kvm_rip_read(vcpu); |
| |
| /* |
| * If the quirk is disabled, synthesize a #UD and let the guest pick up |
| * the pieces. |
| */ |
| if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { |
| ctxt->exception.error_code_valid = false; |
| ctxt->exception.vector = UD_VECTOR; |
| ctxt->have_exception = true; |
| return X86EMUL_PROPAGATE_FAULT; |
| } |
| |
| static_call(kvm_x86_patch_hypercall)(vcpu, instruction); |
| |
| return emulator_write_emulated(ctxt, rip, instruction, 3, |
| &ctxt->exception); |
| } |
| |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->run->request_interrupt_window && |
| likely(!pic_in_kernel(vcpu->kvm)); |
| } |
| |
| /* Called within kvm->srcu read side. */ |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *kvm_run = vcpu->run; |
| |
| kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); |
| kvm_run->cr8 = kvm_get_cr8(vcpu); |
| kvm_run->apic_base = kvm_get_apic_base(vcpu); |
| |
| kvm_run->ready_for_interrupt_injection = |
| pic_in_kernel(vcpu->kvm) || |
| kvm_vcpu_ready_for_interrupt_injection(vcpu); |
| |
| if (is_smm(vcpu)) |
| kvm_run->flags |= KVM_RUN_X86_SMM; |
| } |
| |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
| { |
| int max_irr, tpr; |
| |
| if (!kvm_x86_ops.update_cr8_intercept) |
| return; |
| |
| if (!lapic_in_kernel(vcpu)) |
| return; |
| |
| if (vcpu->arch.apic->apicv_active) |
| return; |
| |
| if (!vcpu->arch.apic->vapic_addr) |
| max_irr = kvm_lapic_find_highest_irr(vcpu); |
| else |
| max_irr = -1; |
| |
| if (max_irr != -1) |
| max_irr >>= 4; |
| |
| tpr = kvm_lapic_get_cr8(vcpu); |
| |
| static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); |
| } |
| |
| |
| int kvm_check_nested_events(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
| kvm_x86_ops.nested_ops->triple_fault(vcpu); |
| return 1; |
| } |
| |
| return kvm_x86_ops.nested_ops->check_events(vcpu); |
| } |
| |
| static void kvm_inject_exception(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * Suppress the error code if the vCPU is in Real Mode, as Real Mode |
| * exceptions don't report error codes. The presence of an error code |
| * is carried with the exception and only stripped when the exception |
| * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do |
| * report an error code despite the CPU being in Real Mode. |
| */ |
| vcpu->arch.exception.has_error_code &= is_protmode(vcpu); |
| |
| trace_kvm_inj_exception(vcpu->arch.exception.vector, |
| vcpu->arch.exception.has_error_code, |
| vcpu->arch.exception.error_code, |
| vcpu->arch.exception.injected); |
| |
| static_call(kvm_x86_inject_exception)(vcpu); |
| } |
| |
| /* |
| * Check for any event (interrupt or exception) that is ready to be injected, |
| * and if there is at least one event, inject the event with the highest |
| * priority. This handles both "pending" events, i.e. events that have never |
| * been injected into the guest, and "injected" events, i.e. events that were |
| * injected as part of a previous VM-Enter, but weren't successfully delivered |
| * and need to be re-injected. |
| * |
| * Note, this is not guaranteed to be invoked on a guest instruction boundary, |
| * i.e. doesn't guarantee that there's an event window in the guest. KVM must |
| * be able to inject exceptions in the "middle" of an instruction, and so must |
| * also be able to re-inject NMIs and IRQs in the middle of an instruction. |
| * I.e. for exceptions and re-injected events, NOT invoking this on instruction |
| * boundaries is necessary and correct. |
| * |
| * For simplicity, KVM uses a single path to inject all events (except events |
| * that are injected directly from L1 to L2) and doesn't explicitly track |
| * instruction boundaries for asynchronous events. However, because VM-Exits |
| * that can occur during instruction execution typically result in KVM skipping |
| * the instruction or injecting an exception, e.g. instruction and exception |
| * intercepts, and because pending exceptions have higher priority than pending |
| * interrupts, KVM still honors instruction boundaries in most scenarios. |
| * |
| * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip |
| * the instruction or inject an exception, then KVM can incorrecty inject a new |
| * asynchrounous event if the event became pending after the CPU fetched the |
| * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) |
| * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be |
| * injected on the restarted instruction instead of being deferred until the |
| * instruction completes. |
| * |
| * In practice, this virtualization hole is unlikely to be observed by the |
| * guest, and even less likely to cause functional problems. To detect the |
| * hole, the guest would have to trigger an event on a side effect of an early |
| * phase of instruction execution, e.g. on the instruction fetch from memory. |
| * And for it to be a functional problem, the guest would need to depend on the |
| * ordering between that side effect, the instruction completing, _and_ the |
| * delivery of the asynchronous event. |
| */ |
| static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, |
| bool *req_immediate_exit) |
| { |
| bool can_inject; |
| int r; |
| |
| /* |
| * Process nested events first, as nested VM-Exit supercedes event |
| * re-injection. If there's an event queued for re-injection, it will |
| * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. |
| */ |
| if (is_guest_mode(vcpu)) |
| r = kvm_check_nested_events(vcpu); |
| else |
| r = 0; |
| |
| /* |
| * Re-inject exceptions and events *especially* if immediate entry+exit |
| * to/from L2 is needed, as any event that has already been injected |
| * into L2 needs to complete its lifecycle before injecting a new event. |
| * |
| * Don't re-inject an NMI or interrupt if there is a pending exception. |
| * This collision arises if an exception occurred while vectoring the |
| * injected event, KVM intercepted said exception, and KVM ultimately |
| * determined the fault belongs to the guest and queues the exception |
| * for injection back into the guest. |
| * |
| * "Injected" interrupts can also collide with pending exceptions if |
| * userspace ignores the "ready for injection" flag and blindly queues |
| * an interrupt. In that case, prioritizing the exception is correct, |
| * as the exception "occurred" before the exit to userspace. Trap-like |
| * exceptions, e.g. most #DBs, have higher priority than interrupts. |
| * And while fault-like exceptions, e.g. #GP and #PF, are the lowest |
| * priority, they're only generated (pended) during instruction |
| * execution, and interrupts are recognized at instruction boundaries. |
| * Thus a pending fault-like exception means the fault occurred on the |
| * *previous* instruction and must be serviced prior to recognizing any |
| * new events in order to fully complete the previous instruction. |
| */ |
| if (vcpu->arch.exception.injected) |
| kvm_inject_exception(vcpu); |
| else if (kvm_is_exception_pending(vcpu)) |
| ; /* see above */ |
| else if (vcpu->arch.nmi_injected) |
| static_call(kvm_x86_inject_nmi)(vcpu); |
| else if (vcpu->arch.interrupt.injected) |
| static_call(kvm_x86_inject_irq)(vcpu, true); |
| |
| /* |
| * Exceptions that morph to VM-Exits are handled above, and pending |
| * exceptions on top of injected exceptions that do not VM-Exit should |
| * either morph to #DF or, sadly, override the injected exception. |
| */ |
| WARN_ON_ONCE(vcpu->arch.exception.injected && |
| vcpu->arch.exception.pending); |
| |
| /* |
| * Bail if immediate entry+exit to/from the guest is needed to complete |
| * nested VM-Enter or event re-injection so that a different pending |
| * event can be serviced (or if KVM needs to exit to userspace). |
| * |
| * Otherwise, continue processing events even if VM-Exit occurred. The |
| * VM-Exit will have cleared exceptions that were meant for L2, but |
| * there may now be events that can be injected into L1. |
| */ |
| if (r < 0) |
| goto out; |
| |
| /* |
| * A pending exception VM-Exit should either result in nested VM-Exit |
| * or force an immediate re-entry and exit to/from L2, and exception |
| * VM-Exits cannot be injected (flag should _never_ be set). |
| */ |
| WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || |
| vcpu->arch.exception_vmexit.pending); |
| |
| /* |
| * New events, other than exceptions, cannot be injected if KVM needs |
| * to re-inject a previous event. See above comments on re-injecting |
| * for why pending exceptions get priority. |
| */ |
| can_inject = !kvm_event_needs_reinjection(vcpu); |
| |
| if (vcpu->arch.exception.pending) { |
| /* |
| * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS |
| * value pushed on the stack. Trap-like exception and all #DBs |
| * leave RF as-is (KVM follows Intel's behavior in this regard; |
| * AMD states that code breakpoint #DBs excplitly clear RF=0). |
| * |
| * Note, most versions of Intel's SDM and AMD's APM incorrectly |
| * describe the behavior of General Detect #DBs, which are |
| * fault-like. They do _not_ set RF, a la code breakpoints. |
| */ |
| if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) |
| __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | |
| X86_EFLAGS_RF); |
| |
| if (vcpu->arch.exception.vector == DB_VECTOR) { |
| kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); |
| if (vcpu->arch.dr7 & DR7_GD) { |
| vcpu->arch.dr7 &= ~DR7_GD; |
| kvm_update_dr7(vcpu); |
| } |
| } |
| |
| kvm_inject_exception(vcpu); |
| |
| vcpu->arch.exception.pending = false; |
| vcpu->arch.exception.injected = true; |
| |
| can_inject = false; |
| } |
| |
| /* Don't inject interrupts if the user asked to avoid doing so */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) |
| return 0; |
| |
| /* |
| * Finally, inject interrupt events. If an event cannot be injected |
| * due to architectural conditions (e.g. IF=0) a window-open exit |
| * will re-request KVM_REQ_EVENT. Sometimes however an event is pending |
| * and can architecturally be injected, but we cannot do it right now: |
| * an interrupt could have arrived just now and we have to inject it |
| * as a vmexit, or there could already an event in the queue, which is |
| * indicated by can_inject. In that case we request an immediate exit |
| * in order to make progress and get back here for another iteration. |
| * The kvm_x86_ops hooks communicate this by returning -EBUSY. |
| */ |
| #ifdef CONFIG_KVM_SMM |
| if (vcpu->arch.smi_pending) { |
| r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; |
| if (r < 0) |
| goto out; |
| if (r) { |
| vcpu->arch.smi_pending = false; |
| ++vcpu->arch.smi_count; |
| enter_smm(vcpu); |
| can_inject = false; |
| } else |
| static_call(kvm_x86_enable_smi_window)(vcpu); |
| } |
| #endif |
| |
| if (vcpu->arch.nmi_pending) { |
| r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; |
| if (r < 0) |
| goto out; |
| if (r) { |
| --vcpu->arch.nmi_pending; |
| vcpu->arch.nmi_injected = true; |
| static_call(kvm_x86_inject_nmi)(vcpu); |
| can_inject = false; |
| WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); |
| } |
| if (vcpu->arch.nmi_pending) |
| static_call(kvm_x86_enable_nmi_window)(vcpu); |
| } |
| |
| if (kvm_cpu_has_injectable_intr(vcpu)) { |
| r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; |
| if (r < 0) |
| goto out; |
| if (r) { |
| int irq = kvm_cpu_get_interrupt(vcpu); |
| |
| if (!WARN_ON_ONCE(irq == -1)) { |
| kvm_queue_interrupt(vcpu, irq, false); |
| static_call(kvm_x86_inject_irq)(vcpu, false); |
| WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); |
| } |
| } |
| if (kvm_cpu_has_injectable_intr(vcpu)) |
| static_call(kvm_x86_enable_irq_window)(vcpu); |
| } |
| |
| if (is_guest_mode(vcpu) && |
| kvm_x86_ops.nested_ops->has_events && |
| kvm_x86_ops.nested_ops->has_events(vcpu)) |
| *req_immediate_exit = true; |
| |
| /* |
| * KVM must never queue a new exception while injecting an event; KVM |
| * is done emulating and should only propagate the to-be-injected event |
| * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an |
| * infinite loop as KVM will bail from VM-Enter to inject the pending |
| * exception and start the cycle all over. |
| * |
| * Exempt triple faults as they have special handling and won't put the |
| * vCPU into an infinite loop. Triple fault can be queued when running |
| * VMX without unrestricted guest, as that requires KVM to emulate Real |
| * Mode events (see kvm_inject_realmode_interrupt()). |
| */ |
| WARN_ON_ONCE(vcpu->arch.exception.pending || |
| vcpu->arch.exception_vmexit.pending); |
| return 0; |
| |
| out: |
| if (r == -EBUSY) { |
| *req_immediate_exit = true; |
| r = 0; |
| } |
| return r; |
| } |
| |
| static void process_nmi(struct kvm_vcpu *vcpu) |
| { |
| unsigned int limit; |
| |
| /* |
| * x86 is limited to one NMI pending, but because KVM can't react to |
| * incoming NMIs as quickly as bare metal, e.g. if the vCPU is |
| * scheduled out, KVM needs to play nice with two queued NMIs showing |
| * up at the same time. To handle this scenario, allow two NMIs to be |
| * (temporarily) pending so long as NMIs are not blocked and KVM is not |
| * waiting for a previous NMI injection to complete (which effectively |
| * blocks NMIs). KVM will immediately inject one of the two NMIs, and |
| * will request an NMI window to handle the second NMI. |
| */ |
| if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) |
| limit = 1; |
| else |
| limit = 2; |
| |
| /* |
| * Adjust the limit to account for pending virtual NMIs, which aren't |
| * tracked in vcpu->arch.nmi_pending. |
| */ |
| if (static_call(kvm_x86_is_vnmi_pending)(vcpu)) |
| limit--; |
| |
| vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); |
| vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); |
| |
| if (vcpu->arch.nmi_pending && |
| (static_call(kvm_x86_set_vnmi_pending)(vcpu))) |
| vcpu->arch.nmi_pending--; |
| |
| if (vcpu->arch.nmi_pending) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| |
| /* Return total number of NMIs pending injection to the VM */ |
| int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->arch.nmi_pending + |
| static_call(kvm_x86_is_vnmi_pending)(vcpu); |
| } |
| |
| void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, |
| unsigned long *vcpu_bitmap) |
| { |
| kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); |
| } |
| |
| void kvm_make_scan_ioapic_request(struct kvm *kvm) |
| { |
| kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); |
| } |
| |
| void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| bool activate; |
| |
| if (!lapic_in_kernel(vcpu)) |
| return; |
| |
| down_read(&vcpu->kvm->arch.apicv_update_lock); |
| preempt_disable(); |
| |
| /* Do not activate APICV when APIC is disabled */ |
| activate = kvm_vcpu_apicv_activated(vcpu) && |
| (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); |
| |
| if (apic->apicv_active == activate) |
| goto out; |
| |
| apic->apicv_active = activate; |
| kvm_apic_update_apicv(vcpu); |
| static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); |
| |
| /* |
| * When APICv gets disabled, we may still have injected interrupts |
| * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was |
| * still active when the interrupt got accepted. Make sure |
| * kvm_check_and_inject_events() is called to check for that. |
| */ |
| if (!apic->apicv_active) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| out: |
| preempt_enable(); |
| up_read(&vcpu->kvm->arch.apicv_update_lock); |
| } |
| EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); |
| |
| static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) |
| { |
| if (!lapic_in_kernel(vcpu)) |
| return; |
| |
| /* |
| * Due to sharing page tables across vCPUs, the xAPIC memslot must be |
| * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but |
| * and hardware doesn't support x2APIC virtualization. E.g. some AMD |
| * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in |
| * this case so that KVM can the AVIC doorbell to inject interrupts to |
| * running vCPUs, but KVM must not create SPTEs for the APIC base as |
| * the vCPU would incorrectly be able to access the vAPIC page via MMIO |
| * despite being in x2APIC mode. For simplicity, inhibiting the APIC |
| * access page is sticky. |
| */ |
| if (apic_x2apic_mode(vcpu->arch.apic) && |
| kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) |
| kvm_inhibit_apic_access_page(vcpu); |
| |
| __kvm_vcpu_update_apicv(vcpu); |
| } |
| |
| void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, |
| enum kvm_apicv_inhibit reason, bool set) |
| { |
| unsigned long old, new; |
| |
| lockdep_assert_held_write(&kvm->arch.apicv_update_lock); |
| |
| if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) |
| return; |
| |
| old = new = kvm->arch.apicv_inhibit_reasons; |
| |
| set_or_clear_apicv_inhibit(&new, reason, set); |
| |
| if (!!old != !!new) { |
| /* |
| * Kick all vCPUs before setting apicv_inhibit_reasons to avoid |
| * false positives in the sanity check WARN in svm_vcpu_run(). |
| * This task will wait for all vCPUs to ack the kick IRQ before |
| * updating apicv_inhibit_reasons, and all other vCPUs will |
| * block on acquiring apicv_update_lock so that vCPUs can't |
| * redo svm_vcpu_run() without seeing the new inhibit state. |
| * |
| * Note, holding apicv_update_lock and taking it in the read |
| * side (handling the request) also prevents other vCPUs from |
| * servicing the request with a stale apicv_inhibit_reasons. |
| */ |
| kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); |
| kvm->arch.apicv_inhibit_reasons = new; |
| if (new) { |
| unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); |
| int idx = srcu_read_lock(&kvm->srcu); |
| |
| kvm_zap_gfn_range(kvm, gfn, gfn+1); |
| srcu_read_unlock(&kvm->srcu, idx); |
| } |
| } else { |
| kvm->arch.apicv_inhibit_reasons = new; |
| } |
| } |
| |
| void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, |
| enum kvm_apicv_inhibit reason, bool set) |
| { |
| if (!enable_apicv) |
| return; |
| |
| down_write(&kvm->arch.apicv_update_lock); |
| __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); |
| up_write(&kvm->arch.apicv_update_lock); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); |
| |
| static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) |
| { |
| if (!kvm_apic_present(vcpu)) |
| return; |
| |
| bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); |
| |
| if (irqchip_split(vcpu->kvm)) |
| kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); |
| else { |
| static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); |
| if (ioapic_in_kernel(vcpu->kvm)) |
| kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); |
| } |
| |
| if (is_guest_mode(vcpu)) |
| vcpu->arch.load_eoi_exitmap_pending = true; |
| else |
| kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); |
| } |
| |
| static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) |
| { |
| u64 eoi_exit_bitmap[4]; |
| |
| if (!kvm_apic_hw_enabled(vcpu->arch.apic)) |
| return; |
| |
| if (to_hv_vcpu(vcpu)) { |
| bitmap_or((ulong *)eoi_exit_bitmap, |
| vcpu->arch.ioapic_handled_vectors, |
| to_hv_synic(vcpu)->vec_bitmap, 256); |
| static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); |
| return; |
| } |
| |
| static_call_cond(kvm_x86_load_eoi_exitmap)( |
| vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); |
| } |
| |
| void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) |
| { |
| static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm); |
| } |
| |
| static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) |
| { |
| if (!lapic_in_kernel(vcpu)) |
| return; |
| |
| static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); |
| } |
| |
| void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) |
| { |
| smp_send_reschedule(vcpu->cpu); |
| } |
| EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); |
| |
| /* |
| * Called within kvm->srcu read side. |
| * Returns 1 to let vcpu_run() continue the guest execution loop without |
| * exiting to the userspace. Otherwise, the value will be returned to the |
| * userspace. |
| */ |
| static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| bool req_int_win = |
| dm_request_for_irq_injection(vcpu) && |
| kvm_cpu_accept_dm_intr(vcpu); |
| fastpath_t exit_fastpath; |
| |
| bool req_immediate_exit = false; |
| |
| if (kvm_request_pending(vcpu)) { |
| if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { |
| r = -EIO; |
| goto out; |
| } |
| |
| if (kvm_dirty_ring_check_request(vcpu)) { |
| r = 0; |
| goto out; |
| } |
| |
| if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { |
| if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { |
| r = 0; |
| goto out; |
| } |
| } |
| if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) |
| kvm_mmu_free_obsolete_roots(vcpu); |
| if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
| __kvm_migrate_timers(vcpu); |
| if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) |
| kvm_update_masterclock(vcpu->kvm); |
| if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) |
| kvm_gen_kvmclock_update(vcpu); |
| if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
| r = kvm_guest_time_update(vcpu); |
| if (unlikely(r)) |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
| kvm_mmu_sync_roots(vcpu); |
| if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) |
| kvm_mmu_load_pgd(vcpu); |
| |
| /* |
| * Note, the order matters here, as flushing "all" TLB entries |
| * also flushes the "current" TLB entries, i.e. servicing the |
| * flush "all" will clear any request to flush "current". |
| */ |
| if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
| kvm_vcpu_flush_tlb_all(vcpu); |
| |
| kvm_service_local_tlb_flush_requests(vcpu); |
| |
| /* |
| * Fall back to a "full" guest flush if Hyper-V's precise |
| * flushing fails. Note, Hyper-V's flushing is per-vCPU, but |
| * the flushes are considered "remote" and not "local" because |
| * the requests can be initiated from other vCPUs. |
| */ |
| if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && |
| kvm_hv_vcpu_flush_tlb(vcpu)) |
| kvm_vcpu_flush_tlb_guest(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
| r = 0; |
| goto out; |
| } |
| if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
| if (is_guest_mode(vcpu)) |
| kvm_x86_ops.nested_ops->triple_fault(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
| vcpu->mmio_needed = 0; |
| r = 0; |
| goto out; |
| } |
| } |
| if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
| /* Page is swapped out. Do synthetic halt */ |
| vcpu->arch.apf.halted = true; |
| r = 1; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) |
| record_steal_time(vcpu); |
| if (kvm_check_request(KVM_REQ_PMU, vcpu)) |
| kvm_pmu_handle_event(vcpu); |
| if (kvm_check_request(KVM_REQ_PMI, vcpu)) |
| kvm_pmu_deliver_pmi(vcpu); |
| #ifdef CONFIG_KVM_SMM |
| if (kvm_check_request(KVM_REQ_SMI, vcpu)) |
| process_smi(vcpu); |
| #endif |
| if (kvm_check_request(KVM_REQ_NMI, vcpu)) |
| process_nmi(vcpu); |
| if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { |
| BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); |
| if (test_bit(vcpu->arch.pending_ioapic_eoi, |
| vcpu->arch.ioapic_handled_vectors)) { |
| vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; |
| vcpu->run->eoi.vector = |
| vcpu->arch.pending_ioapic_eoi; |
| r = 0; |
| goto out; |
| } |
| } |
| if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) |
| vcpu_scan_ioapic(vcpu); |
| if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) |
| vcpu_load_eoi_exitmap(vcpu); |
| if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) |
| kvm_vcpu_reload_apic_access_page(vcpu); |
| if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; |
| vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; |
| vcpu->run->system_event.ndata = 0; |
| r = 0; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { |
| vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; |
| vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; |
| vcpu->run->system_event.ndata = 0; |
| r = 0; |
| goto out; |
| } |
| if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { |
| struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
| |
| vcpu->run->exit_reason = KVM_EXIT_HYPERV; |
| vcpu->run->hyperv = hv_vcpu->exit; |
| r = 0; |
| goto out; |
| } |
| |
| /* |
| * KVM_REQ_HV_STIMER has to be processed after |
| * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers |
| * depend on the guest clock being up-to-date |
| */ |
| if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) |
| kvm_hv_process_stimers(vcpu); |
| if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) |
| kvm_vcpu_update_apicv(vcpu); |
| if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) |
| kvm_check_async_pf_completion(vcpu); |
| if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) |
| static_call(kvm_x86_msr_filter_changed)(vcpu); |
| |
| if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) |
| static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); |
| } |
| |
| if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || |
| kvm_xen_has_interrupt(vcpu)) { |
| ++vcpu->stat.req_event; |
| r = kvm_apic_accept_events(vcpu); |
| if (r < 0) { |
| r = 0; |
| goto out; |
| } |
| if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { |
| r = 1; |
| goto out; |
| } |
| |
| r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); |
| if (r < 0) { |
| r = 0; |
| goto out; |
| } |
| if (req_int_win) |
| static_call(kvm_x86_enable_irq_window)(vcpu); |
| |
| if (kvm_lapic_enabled(vcpu)) { |
| update_cr8_intercept(vcpu); |
| kvm_lapic_sync_to_vapic(vcpu); |
| } |
| } |
| |
| r = kvm_mmu_reload(vcpu); |
| if (unlikely(r)) { |
| goto cancel_injection; |
| } |
| |
| preempt_disable(); |
| |
| static_call(kvm_x86_prepare_switch_to_guest)(vcpu); |
| |
| /* |
| * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt |
| * IPI are then delayed after guest entry, which ensures that they |
| * result in virtual interrupt delivery. |
| */ |
| local_irq_disable(); |
| |
| /* Store vcpu->apicv_active before vcpu->mode. */ |
| smp_store_release(&vcpu->mode, IN_GUEST_MODE); |
| |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| |
| /* |
| * 1) We should set ->mode before checking ->requests. Please see |
| * the comment in kvm_vcpu_exiting_guest_mode(). |
| * |
| * 2) For APICv, we should set ->mode before checking PID.ON. This |
| * pairs with the memory barrier implicit in pi_test_and_set_on |
| * (see vmx_deliver_posted_interrupt). |
| * |
| * 3) This also orders the write to mode from any reads to the page |
| * tables done while the VCPU is running. Please see the comment |
| * in kvm_flush_remote_tlbs. |
| */ |
| smp_mb__after_srcu_read_unlock(); |
| |
| /* |
| * Process pending posted interrupts to handle the case where the |
| * notification IRQ arrived in the host, or was never sent (because the |
| * target vCPU wasn't running). Do this regardless of the vCPU's APICv |
| * status, KVM doesn't update assigned devices when APICv is inhibited, |
| * i.e. they can post interrupts even if APICv is temporarily disabled. |
| */ |
| if (kvm_lapic_enabled(vcpu)) |
| static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); |
| |
| if (kvm_vcpu_exit_request(vcpu)) { |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| smp_wmb(); |
| local_irq_enable(); |
| preempt_enable(); |
| kvm_vcpu_srcu_read_lock(vcpu); |
| r = 1; |
| goto cancel_injection; |
| } |
| |
| if (req_immediate_exit) { |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| static_call(kvm_x86_request_immediate_exit)(vcpu); |
| } |
| |
| fpregs_assert_state_consistent(); |
| if (test_thread_flag(TIF_NEED_FPU_LOAD)) |
| switch_fpu_return(); |
| |
| if (vcpu->arch.guest_fpu.xfd_err) |
| wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); |
| |
| if (unlikely(vcpu->arch.switch_db_regs)) { |
| set_debugreg(0, 7); |
| set_debugreg(vcpu->arch.eff_db[0], 0); |
| set_debugreg(vcpu->arch.eff_db[1], 1); |
| set_debugreg(vcpu->arch.eff_db[2], 2); |
| set_debugreg(vcpu->arch.eff_db[3], 3); |
| } else if (unlikely(hw_breakpoint_active())) { |
| set_debugreg(0, 7); |
| } |
| |
| guest_timing_enter_irqoff(); |
| |
| for (;;) { |
| /* |
| * Assert that vCPU vs. VM APICv state is consistent. An APICv |
| * update must kick and wait for all vCPUs before toggling the |
| * per-VM state, and responsing vCPUs must wait for the update |
| * to complete before servicing KVM_REQ_APICV_UPDATE. |
| */ |
| WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && |
| (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); |
| |
| exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); |
| if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) |
| break; |
| |
| if (kvm_lapic_enabled(vcpu)) |
| static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); |
| |
| if (unlikely(kvm_vcpu_exit_request(vcpu))) { |
| exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; |
| break; |
| } |
| |
| /* Note, VM-Exits that go down the "slow" path are accounted below. */ |
| ++vcpu->stat.exits; |
| } |
| |
| /* |
| * Do this here before restoring debug registers on the host. And |
| * since we do this before handling the vmexit, a DR access vmexit |
| * can (a) read the correct value of the debug registers, (b) set |
| * KVM_DEBUGREG_WONT_EXIT again. |
| */ |
| if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { |
| WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); |
| static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); |
| kvm_update_dr0123(vcpu); |
| kvm_update_dr7(vcpu); |
| } |
| |
| /* |
| * If the guest has used debug registers, at least dr7 |
| * will be disabled while returning to the host. |
| * If we don't have active breakpoints in the host, we don't |
| * care about the messed up debug address registers. But if |
| * we have some of them active, restore the old state. |
| */ |
| if (hw_breakpoint_active()) |
| hw_breakpoint_restore(); |
| |
| vcpu->arch.last_vmentry_cpu = vcpu->cpu; |
| vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
| |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| smp_wmb(); |
| |
| /* |
| * Sync xfd before calling handle_exit_irqoff() which may |
| * rely on the fact that guest_fpu::xfd is up-to-date (e.g. |
| * in #NM irqoff handler). |
| */ |
| if (vcpu->arch.xfd_no_write_intercept) |
| fpu_sync_guest_vmexit_xfd_state(); |
| |
| static_call(kvm_x86_handle_exit_irqoff)(vcpu); |
| |
| if (vcpu->arch.guest_fpu.xfd_err) |
| wrmsrl(MSR_IA32_XFD_ERR, 0); |
| |
| /* |
| * Consume any pending interrupts, including the possible source of |
| * VM-Exit on SVM and any ticks that occur between VM-Exit and now. |
| * An instruction is required after local_irq_enable() to fully unblock |
| * interrupts on processors that implement an interrupt shadow, the |
| * stat.exits increment will do nicely. |
| */ |
| kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); |
| local_irq_enable(); |
| ++vcpu->stat.exits; |
| local_irq_disable(); |
| kvm_after_interrupt(vcpu); |
| |
| /* |
| * Wait until after servicing IRQs to account guest time so that any |
| * ticks that occurred while running the guest are properly accounted |
| * to the guest. Waiting until IRQs are enabled degrades the accuracy |
| * of accounting via context tracking, but the loss of accuracy is |
| * acceptable for all known use cases. |
| */ |
| guest_timing_exit_irqoff(); |
| |
| local_irq_enable(); |
| preempt_enable(); |
| |
| kvm_vcpu_srcu_read_lock(vcpu); |
| |
| /* |
| * Profile KVM exit RIPs: |
| */ |
| if (unlikely(prof_on == KVM_PROFILING)) { |
| unsigned long rip = kvm_rip_read(vcpu); |
| profile_hit(KVM_PROFILING, (void *)rip); |
| } |
| |
| if (unlikely(vcpu->arch.tsc_always_catchup)) |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| |
| if (vcpu->arch.apic_attention) |
| kvm_lapic_sync_from_vapic(vcpu); |
| |
| r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); |
| return r; |
| |
| cancel_injection: |
| if (req_immediate_exit) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| static_call(kvm_x86_cancel_injection)(vcpu); |
| if (unlikely(vcpu->arch.apic_attention)) |
| kvm_lapic_sync_from_vapic(vcpu); |
| out: |
| return r; |
| } |
| |
| /* Called within kvm->srcu read side. */ |
| static inline int vcpu_block(struct kvm_vcpu *vcpu) |
| { |
| bool hv_timer; |
| |
| if (!kvm_arch_vcpu_runnable(vcpu)) { |
| /* |
| * Switch to the software timer before halt-polling/blocking as |
| * the guest's timer may be a break event for the vCPU, and the |
| * hypervisor timer runs only when the CPU is in guest mode. |
| * Switch before halt-polling so that KVM recognizes an expired |
| * timer before blocking. |
| */ |
| hv_timer = kvm_lapic_hv_timer_in_use(vcpu); |
| if (hv_timer) |
| kvm_lapic_switch_to_sw_timer(vcpu); |
| |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) |
| kvm_vcpu_halt(vcpu); |
| else |
| kvm_vcpu_block(vcpu); |
| kvm_vcpu_srcu_read_lock(vcpu); |
| |
| if (hv_timer) |
| kvm_lapic_switch_to_hv_timer(vcpu); |
| |
| /* |
| * If the vCPU is not runnable, a signal or another host event |
| * of some kind is pending; service it without changing the |
| * vCPU's activity state. |
| */ |
| if (!kvm_arch_vcpu_runnable(vcpu)) |
| return 1; |
| } |
| |
| /* |
| * Evaluate nested events before exiting the halted state. This allows |
| * the halt state to be recorded properly in the VMCS12's activity |
| * state field (AMD does not have a similar field and a VM-Exit always |
| * causes a spurious wakeup from HLT). |
| */ |
| if (is_guest_mode(vcpu)) { |
| if (kvm_check_nested_events(vcpu) < 0) |
| return 0; |
| } |
| |
| if (kvm_apic_accept_events(vcpu) < 0) |
| return 0; |
| switch(vcpu->arch.mp_state) { |
| case KVM_MP_STATE_HALTED: |
| case KVM_MP_STATE_AP_RESET_HOLD: |
| vcpu->arch.pv.pv_unhalted = false; |
| vcpu->arch.mp_state = |
| KVM_MP_STATE_RUNNABLE; |
| fallthrough; |
| case KVM_MP_STATE_RUNNABLE: |
| vcpu->arch.apf.halted = false; |
| break; |
| case KVM_MP_STATE_INIT_RECEIVED: |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| break; |
| } |
| return 1; |
| } |
| |
| static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) |
| { |
| return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && |
| !vcpu->arch.apf.halted); |
| } |
| |
| /* Called within kvm->srcu read side. */ |
| static int vcpu_run(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; |
| vcpu->arch.l1tf_flush_l1d = true; |
| |
| for (;;) { |
| /* |
| * If another guest vCPU requests a PV TLB flush in the middle |
| * of instruction emulation, the rest of the emulation could |
| * use a stale page translation. Assume that any code after |
| * this point can start executing an instruction. |
| */ |
| vcpu->arch.at_instruction_boundary = false; |
| if (kvm_vcpu_running(vcpu)) { |
| r = vcpu_enter_guest(vcpu); |
| } else { |
| r = vcpu_block(vcpu); |
| } |
| |
| if (r <= 0) |
| break; |
| |
| kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); |
| if (kvm_xen_has_pending_events(vcpu)) |
| kvm_xen_inject_pending_events(vcpu); |
| |
| if (kvm_cpu_has_pending_timer(vcpu)) |
| kvm_inject_pending_timer_irqs(vcpu); |
| |
| if (dm_request_for_irq_injection(vcpu) && |
| kvm_vcpu_ready_for_interrupt_injection(vcpu)) { |
| r = 0; |
| vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; |
| ++vcpu->stat.request_irq_exits; |
| break; |
| } |
| |
| if (__xfer_to_guest_mode_work_pending()) { |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| r = xfer_to_guest_mode_handle_work(vcpu); |
| kvm_vcpu_srcu_read_lock(vcpu); |
| if (r) |
| return r; |
| } |
| } |
| |
| return r; |
| } |
| |
| static inline int complete_emulated_io(struct kvm_vcpu *vcpu) |
| { |
| return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); |
| } |
| |
| static int complete_emulated_pio(struct kvm_vcpu *vcpu) |
| { |
| BUG_ON(!vcpu->arch.pio.count); |
| |
| return complete_emulated_io(vcpu); |
| } |
| |
| /* |
| * Implements the following, as a state machine: |
| * |
| * read: |
| * for each fragment |
| * for each mmio piece in the fragment |
| * write gpa, len |
| * exit |
| * copy data |
| * execute insn |
| * |
| * write: |
| * for each fragment |
| * for each mmio piece in the fragment |
| * write gpa, len |
| * copy data |
| * exit |
| */ |
| static int complete_emulated_mmio(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| struct kvm_mmio_fragment *frag; |
| unsigned len; |
| |
| BUG_ON(!vcpu->mmio_needed); |
| |
| /* Complete previous fragment */ |
| frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
| len = min(8u, frag->len); |
| if (!vcpu->mmio_is_write) |
| memcpy(frag->data, run->mmio.data, len); |
| |
| if (frag->len <= 8) { |
| /* Switch to the next fragment. */ |
| frag++; |
| vcpu->mmio_cur_fragment++; |
| } else { |
| /* Go forward to the next mmio piece. */ |
| frag->data += len; |
| frag->gpa += len; |
| frag->len -= len; |
| } |
| |
| if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { |
| vcpu->mmio_needed = 0; |
| |
| /* FIXME: return into emulator if single-stepping. */ |
| if (vcpu->mmio_is_write) |
| return 1; |
| vcpu->mmio_read_completed = 1; |
| return complete_emulated_io(vcpu); |
| } |
| |
| run->exit_reason = KVM_EXIT_MMIO; |
| run->mmio.phys_addr = frag->gpa; |
| if (vcpu->mmio_is_write) |
| memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
| run->mmio.len = min(8u, frag->len); |
| run->mmio.is_write = vcpu->mmio_is_write; |
| vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
| return 0; |
| } |
| |
| /* Swap (qemu) user FPU context for the guest FPU context. */ |
| static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ |
| fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); |
| trace_kvm_fpu(1); |
| } |
| |
| /* When vcpu_run ends, restore user space FPU context. */ |
| static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) |
| { |
| fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); |
| ++vcpu->stat.fpu_reload; |
| trace_kvm_fpu(0); |
| } |
| |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_queued_exception *ex = &vcpu->arch.exception; |
| struct kvm_run *kvm_run = vcpu->run; |
| int r; |
| |
| vcpu_load(vcpu); |
| kvm_sigset_activate(vcpu); |
| kvm_run->flags = 0; |
| kvm_load_guest_fpu(vcpu); |
| |
| kvm_vcpu_srcu_read_lock(vcpu); |
| if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
| if (kvm_run->immediate_exit) { |
| r = -EINTR; |
| goto out; |
| } |
| |
| /* |
| * Don't bother switching APIC timer emulation from the |
| * hypervisor timer to the software timer, the only way for the |
| * APIC timer to be active is if userspace stuffed vCPU state, |
| * i.e. put the vCPU into a nonsensical state. Only an INIT |
| * will transition the vCPU out of UNINITIALIZED (without more |
| * state stuffing from userspace), which will reset the local |
| * APIC and thus cancel the timer or drop the IRQ (if the timer |
| * already expired). |
| */ |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| kvm_vcpu_block(vcpu); |
| kvm_vcpu_srcu_read_lock(vcpu); |
| |
| if (kvm_apic_accept_events(vcpu) < 0) { |
| r = 0; |
| goto out; |
| } |
| r = -EAGAIN; |
| if (signal_pending(current)) { |
| r = -EINTR; |
| kvm_run->exit_reason = KVM_EXIT_INTR; |
| ++vcpu->stat.signal_exits; |
| } |
| goto out; |
| } |
| |
| if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || |
| (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| if (kvm_run->kvm_dirty_regs) { |
| r = sync_regs(vcpu); |
| if (r != 0) |
| goto out; |
| } |
| |
| /* re-sync apic's tpr */ |
| if (!lapic_in_kernel(vcpu)) { |
| if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { |
| r = -EINVAL; |
| goto out; |
| } |
| } |
| |
| /* |
| * If userspace set a pending exception and L2 is active, convert it to |
| * a pending VM-Exit if L1 wants to intercept the exception. |
| */ |
| if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && |
| kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, |
| ex->error_code)) { |
| kvm_queue_exception_vmexit(vcpu, ex->vector, |
| ex->has_error_code, ex->error_code, |
| ex->has_payload, ex->payload); |
| ex->injected = false; |
| ex->pending = false; |
| } |
| vcpu->arch.exception_from_userspace = false; |
| |
| if (unlikely(vcpu->arch.complete_userspace_io)) { |
| int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; |
| vcpu->arch.complete_userspace_io = NULL; |
| r = cui(vcpu); |
| if (r <= 0) |
| goto out; |
| } else { |
| WARN_ON_ONCE(vcpu->arch.pio.count); |
| WARN_ON_ONCE(vcpu->mmio_needed); |
| } |
| |
| if (kvm_run->immediate_exit) { |
| r = -EINTR; |
| goto out; |
| } |
| |
| r = static_call(kvm_x86_vcpu_pre_run)(vcpu); |
| if (r <= 0) |
| goto out; |
| |
| r = vcpu_run(vcpu); |
| |
| out: |
| kvm_put_guest_fpu(vcpu); |
| if (kvm_run->kvm_valid_regs) |
| store_regs(vcpu); |
| post_kvm_run_save(vcpu); |
| kvm_vcpu_srcu_read_unlock(vcpu); |
| |
| kvm_sigset_deactivate(vcpu); |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { |
| /* |
| * We are here if userspace calls get_regs() in the middle of |
| * instruction emulation. Registers state needs to be copied |
| * back from emulation context to vcpu. Userspace shouldn't do |
| * that usually, but some bad designed PV devices (vmware |
| * backdoor interface) need this to work |
| */ |
| emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); |
| vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
| } |
| regs->rax = kvm_rax_read(vcpu); |
| regs->rbx = kvm_rbx_read(vcpu); |
| regs->rcx = kvm_rcx_read(vcpu); |
| regs->rdx = kvm_rdx_read(vcpu); |
| regs->rsi = kvm_rsi_read(vcpu); |
| regs->rdi = kvm_rdi_read(vcpu); |
| regs->rsp = kvm_rsp_read(vcpu); |
| regs->rbp = kvm_rbp_read(vcpu); |
| #ifdef CONFIG_X86_64 |
| regs->r8 = kvm_r8_read(vcpu); |
| regs->r9 = kvm_r9_read(vcpu); |
| regs->r10 = kvm_r10_read(vcpu); |
| regs->r11 = kvm_r11_read(vcpu); |
| regs->r12 = kvm_r12_read(vcpu); |
| regs->r13 = kvm_r13_read(vcpu); |
| regs->r14 = kvm_r14_read(vcpu); |
| regs->r15 = kvm_r15_read(vcpu); |
| #endif |
| |
| regs->rip = kvm_rip_read(vcpu); |
| regs->rflags = kvm_get_rflags(vcpu); |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| __get_regs(vcpu, regs); |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| vcpu->arch.emulate_regs_need_sync_from_vcpu = true; |
| vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
| |
| kvm_rax_write(vcpu, regs->rax); |
| kvm_rbx_write(vcpu, regs->rbx); |
| kvm_rcx_write(vcpu, regs->rcx); |
| kvm_rdx_write(vcpu, regs->rdx); |
| kvm_rsi_write(vcpu, regs->rsi); |
| kvm_rdi_write(vcpu, regs->rdi); |
| kvm_rsp_write(vcpu, regs->rsp); |
| kvm_rbp_write(vcpu, regs->rbp); |
| #ifdef CONFIG_X86_64 |
| kvm_r8_write(vcpu, regs->r8); |
| kvm_r9_write(vcpu, regs->r9); |
| kvm_r10_write(vcpu, regs->r10); |
| kvm_r11_write(vcpu, regs->r11); |
| kvm_r12_write(vcpu, regs->r12); |
| kvm_r13_write(vcpu, regs->r13); |
| kvm_r14_write(vcpu, regs->r14); |
| kvm_r15_write(vcpu, regs->r15); |
| #endif |
| |
| kvm_rip_write(vcpu, regs->rip); |
| kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); |
| |
| vcpu->arch.exception.pending = false; |
| vcpu->arch.exception_vmexit.pending = false; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
| { |
| vcpu_load(vcpu); |
| __set_regs(vcpu, regs); |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
| { |
| struct desc_ptr dt; |
| |
| if (vcpu->arch.guest_state_protected) |
| goto skip_protected_regs; |
| |
| kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| static_call(kvm_x86_get_idt)(vcpu, &dt); |
| sregs->idt.limit = dt.size; |
| sregs->idt.base = dt.address; |
| static_call(kvm_x86_get_gdt)(vcpu, &dt); |
| sregs->gdt.limit = dt.size; |
| sregs->gdt.base = dt.address; |
| |
| sregs->cr2 = vcpu->arch.cr2; |
| sregs->cr3 = kvm_read_cr3(vcpu); |
| |
| skip_protected_regs: |
| sregs->cr0 = kvm_read_cr0(vcpu); |
| sregs->cr4 = kvm_read_cr4(vcpu); |
| sregs->cr8 = kvm_get_cr8(vcpu); |
| sregs->efer = vcpu->arch.efer; |
| sregs->apic_base = kvm_get_apic_base(vcpu); |
| } |
| |
| static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
| { |
| __get_sregs_common(vcpu, sregs); |
| |
| if (vcpu->arch.guest_state_protected) |
| return; |
| |
| if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) |
| set_bit(vcpu->arch.interrupt.nr, |
| (unsigned long *)sregs->interrupt_bitmap); |
| } |
| |
| static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) |
| { |
| int i; |
| |
| __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); |
| |
| if (vcpu->arch.guest_state_protected) |
| return; |
| |
| if (is_pae_paging(vcpu)) { |
| for (i = 0 ; i < 4 ; i++) |
| sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); |
| sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; |
| } |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| vcpu_load(vcpu); |
| __get_sregs(vcpu, sregs); |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| int r; |
| |
| vcpu_load(vcpu); |
| if (kvm_mpx_supported()) |
| kvm_load_guest_fpu(vcpu); |
| |
| r = kvm_apic_accept_events(vcpu); |
| if (r < 0) |
| goto out; |
| r = 0; |
| |
| if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || |
| vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && |
| vcpu->arch.pv.pv_unhalted) |
| mp_state->mp_state = KVM_MP_STATE_RUNNABLE; |
| else |
| mp_state->mp_state = vcpu->arch.mp_state; |
| |
| out: |
| if (kvm_mpx_supported()) |
| kvm_put_guest_fpu(vcpu); |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| struct kvm_mp_state *mp_state) |
| { |
| int ret = -EINVAL; |
| |
| vcpu_load(vcpu); |
| |
| switch (mp_state->mp_state) { |
| case KVM_MP_STATE_UNINITIALIZED: |
| case KVM_MP_STATE_HALTED: |
| case KVM_MP_STATE_AP_RESET_HOLD: |
| case KVM_MP_STATE_INIT_RECEIVED: |
| case KVM_MP_STATE_SIPI_RECEIVED: |
| if (!lapic_in_kernel(vcpu)) |
| goto out; |
| break; |
| |
| case KVM_MP_STATE_RUNNABLE: |
| break; |
| |
| default: |
| goto out; |
| } |
| |
| /* |
| * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow |
| * forcing the guest into INIT/SIPI if those events are supposed to be |
| * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state |
| * if an SMI is pending as well. |
| */ |
| if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && |
| (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || |
| mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) |
| goto out; |
| |
| if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { |
| vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; |
| set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); |
| } else |
| vcpu->arch.mp_state = mp_state->mp_state; |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| ret = 0; |
| out: |
| vcpu_put(vcpu); |
| return ret; |
| } |
| |
| int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, |
| int reason, bool has_error_code, u32 error_code) |
| { |
| struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
| int ret; |
| |
| init_emulate_ctxt(vcpu); |
| |
| ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, |
| has_error_code, error_code); |
| if (ret) { |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| vcpu->run->internal.ndata = 0; |
| return 0; |
| } |
| |
| kvm_rip_write(vcpu, ctxt->eip); |
| kvm_set_rflags(vcpu, ctxt->eflags); |
| return 1; |
| } |
| EXPORT_SYMBOL_GPL(kvm_task_switch); |
| |
| static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
| { |
| if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { |
| /* |
| * When EFER.LME and CR0.PG are set, the processor is in |
| * 64-bit mode (though maybe in a 32-bit code segment). |
| * CR4.PAE and EFER.LMA must be set. |
| */ |
| if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) |
| return false; |
| if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) |
| return false; |
| } else { |
| /* |
| * Not in 64-bit mode: EFER.LMA is clear and the code |
| * segment cannot be 64-bit. |
| */ |
| if (sregs->efer & EFER_LMA || sregs->cs.l) |
| return false; |
| } |
| |
| return kvm_is_valid_cr4(vcpu, sregs->cr4) && |
| kvm_is_valid_cr0(vcpu, sregs->cr0); |
| } |
| |
| static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, |
| int *mmu_reset_needed, bool update_pdptrs) |
| { |
| struct msr_data apic_base_msr; |
| int idx; |
| struct desc_ptr dt; |
| |
| if (!kvm_is_valid_sregs(vcpu, sregs)) |
| return -EINVAL; |
| |
| apic_base_msr.data = sregs->apic_base; |
| apic_base_msr.host_initiated = true; |
| if (kvm_set_apic_base(vcpu, &apic_base_msr)) |
| return -EINVAL; |
| |
| if (vcpu->arch.guest_state_protected) |
| return 0; |
| |
| dt.size = sregs->idt.limit; |
| dt.address = sregs->idt.base; |
| static_call(kvm_x86_set_idt)(vcpu, &dt); |
| dt.size = sregs->gdt.limit; |
| dt.address = sregs->gdt.base; |
| static_call(kvm_x86_set_gdt)(vcpu, &dt); |
| |
| vcpu->arch.cr2 = sregs->cr2; |
| *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; |
| vcpu->arch.cr3 = sregs->cr3; |
| kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); |
| static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); |
| |
| kvm_set_cr8(vcpu, sregs->cr8); |
| |
| *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
| static_call(kvm_x86_set_efer)(vcpu, sregs->efer); |
| |
| *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
| static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); |
| |
| *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
| static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); |
| |
| if (update_pdptrs) { |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| if (is_pae_paging(vcpu)) { |
| load_pdptrs(vcpu, kvm_read_cr3(vcpu)); |
| *mmu_reset_needed = 1; |
| } |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| } |
| |
| kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
| kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); |
| kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); |
| kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); |
| kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); |
| kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); |
| |
| kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
| kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); |
| |
| update_cr8_intercept(vcpu); |
| |
| /* Older userspace won't unhalt the vcpu on reset. */ |
| if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
| sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
| !is_protmode(vcpu)) |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| return 0; |
| } |
| |
| static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
| { |
| int pending_vec, max_bits; |
| int mmu_reset_needed = 0; |
| int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); |
| |
| if (ret) |
| return ret; |
| |
| if (mmu_reset_needed) { |
| kvm_mmu_reset_context(vcpu); |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| } |
| |
| max_bits = KVM_NR_INTERRUPTS; |
| pending_vec = find_first_bit( |
| (const unsigned long *)sregs->interrupt_bitmap, max_bits); |
| |
| if (pending_vec < max_bits) { |
| kvm_queue_interrupt(vcpu, pending_vec, false); |
| pr_debug("Set back pending irq %d\n", pending_vec); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| return 0; |
| } |
| |
| static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) |
| { |
| int mmu_reset_needed = 0; |
| bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; |
| bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && |
| !(sregs2->efer & EFER_LMA); |
| int i, ret; |
| |
| if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) |
| return -EINVAL; |
| |
| if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) |
| return -EINVAL; |
| |
| ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, |
| &mmu_reset_needed, !valid_pdptrs); |
| if (ret) |
| return ret; |
| |
| if (valid_pdptrs) { |
| for (i = 0; i < 4 ; i++) |
| kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); |
| |
| kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); |
| mmu_reset_needed = 1; |
| vcpu->arch.pdptrs_from_userspace = true; |
| } |
| if (mmu_reset_needed) { |
| kvm_mmu_reset_context(vcpu); |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| } |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int ret; |
| |
| vcpu_load(vcpu); |
| ret = __set_sregs(vcpu, sregs); |
| vcpu_put(vcpu); |
| return ret; |
| } |
| |
| static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) |
| { |
| bool set = false; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| |
| if (!enable_apicv) |
| return; |
| |
| down_write(&kvm->arch.apicv_update_lock); |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { |
| set = true; |
| break; |
| } |
| } |
| __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); |
| up_write(&kvm->arch.apicv_update_lock); |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
| struct kvm_guest_debug *dbg) |
| { |
| unsigned long rflags; |
| int i, r; |
| |
| if (vcpu->arch.guest_state_protected) |
| return -EINVAL; |
| |
| vcpu_load(vcpu); |
| |
| if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
| r = -EBUSY; |
| if (kvm_is_exception_pending(vcpu)) |
| goto out; |
| if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
| kvm_queue_exception(vcpu, DB_VECTOR); |
| else |
| kvm_queue_exception(vcpu, BP_VECTOR); |
| } |
| |
| /* |
| * Read rflags as long as potentially injected trace flags are still |
| * filtered out. |
| */ |
| rflags = kvm_get_rflags(vcpu); |
| |
| vcpu->guest_debug = dbg->control; |
| if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) |
| vcpu->guest_debug = 0; |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { |
| for (i = 0; i < KVM_NR_DB_REGS; ++i) |
| vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; |
| vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; |
| } else { |
| for (i = 0; i < KVM_NR_DB_REGS; i++) |
| vcpu->arch.eff_db[i] = vcpu->arch.db[i]; |
| } |
| kvm_update_dr7(vcpu); |
| |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); |
| |
| /* |
| * Trigger an rflags update that will inject or remove the trace |
| * flags. |
| */ |
| kvm_set_rflags(vcpu, rflags); |
| |
| static_call(kvm_x86_update_exception_bitmap)(vcpu); |
| |
| kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); |
| |
| r = 0; |
| |
| out: |
| vcpu_put(vcpu); |
| return r; |
| } |
| |
| /* |
| * Translate a guest virtual address to a guest physical address. |
| */ |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, |
| struct kvm_translation *tr) |
| { |
| unsigned long vaddr = tr->linear_address; |
| gpa_t gpa; |
| int idx; |
| |
| vcpu_load(vcpu); |
| |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| tr->physical_address = gpa; |
| tr->valid = gpa != INVALID_GPA; |
| tr->writeable = 1; |
| tr->usermode = 0; |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxregs_state *fxsave; |
| |
| if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) |
| return 0; |
| |
| vcpu_load(vcpu); |
| |
| fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; |
| memcpy(fpu->fpr, fxsave->st_space, 128); |
| fpu->fcw = fxsave->cwd; |
| fpu->fsw = fxsave->swd; |
| fpu->ftwx = fxsave->twd; |
| fpu->last_opcode = fxsave->fop; |
| fpu->last_ip = fxsave->rip; |
| fpu->last_dp = fxsave->rdp; |
| memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
| { |
| struct fxregs_state *fxsave; |
| |
| if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) |
| return 0; |
| |
| vcpu_load(vcpu); |
| |
| fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; |
| |
| memcpy(fxsave->st_space, fpu->fpr, 128); |
| fxsave->cwd = fpu->fcw; |
| fxsave->swd = fpu->fsw; |
| fxsave->twd = fpu->ftwx; |
| fxsave->fop = fpu->last_opcode; |
| fxsave->rip = fpu->last_ip; |
| fxsave->rdp = fpu->last_dp; |
| memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); |
| |
| vcpu_put(vcpu); |
| return 0; |
| } |
| |
| static void store_regs(struct kvm_vcpu *vcpu) |
| { |
| BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); |
| |
| if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) |
| __get_regs(vcpu, &vcpu->run->s.regs.regs); |
| |
| if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) |
| __get_sregs(vcpu, &vcpu->run->s.regs.sregs); |
| |
| if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) |
| kvm_vcpu_ioctl_x86_get_vcpu_events( |
| vcpu, &vcpu->run->s.regs.events); |
| } |
| |
| static int sync_regs(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { |
| __set_regs(vcpu, &vcpu->run->s.regs.regs); |
| vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; |
| } |
| |
| if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { |
| struct kvm_sregs sregs = vcpu->run->s.regs.sregs; |
| |
| if (__set_sregs(vcpu, &sregs)) |
| return -EINVAL; |
| |
| vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; |
| } |
| |
| if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { |
| struct kvm_vcpu_events events = vcpu->run->s.regs.events; |
| |
| if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) |
| return -EINVAL; |
| |
| vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) |
| { |
| if (kvm_check_tsc_unstable() && kvm->created_vcpus) |
| pr_warn_once("SMP vm created on host with unstable TSC; " |
| "guest TSC will not be reliable\n"); |
| |
| if (!kvm->arch.max_vcpu_ids) |
| kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; |
| |
| if (id >= kvm->arch.max_vcpu_ids) |
| return -EINVAL; |
| |
| return static_call(kvm_x86_vcpu_precreate)(kvm); |
| } |
| |
| int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) |
| { |
| struct page *page; |
| int r; |
| |
| vcpu->arch.last_vmentry_cpu = -1; |
| vcpu->arch.regs_avail = ~0; |
| vcpu->arch.regs_dirty = ~0; |
| |
| kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN); |
| |
| if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| else |
| vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; |
| |
| r = kvm_mmu_create(vcpu); |
| if (r < 0) |
| return r; |
| |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); |
| if (r < 0) |
| goto fail_mmu_destroy; |
| |
| /* |
| * Defer evaluating inhibits until the vCPU is first run, as |
| * this vCPU will not get notified of any changes until this |
| * vCPU is visible to other vCPUs (marked online and added to |
| * the set of vCPUs). Opportunistically mark APICv active as |
| * VMX in particularly is highly unlikely to have inhibits. |
| * Ignore the current per-VM APICv state so that vCPU creation |
| * is guaranteed to run with a deterministic value, the request |
| * will ensure the vCPU gets the correct state before VM-Entry. |
| */ |
| if (enable_apicv) { |
| vcpu->arch.apic->apicv_active = true; |
| kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); |
| } |
| } else |
| static_branch_inc(&kvm_has_noapic_vcpu); |
| |
| r = -ENOMEM; |
| |
| page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| if (!page) |
| goto fail_free_lapic; |
| vcpu->arch.pio_data = page_address(page); |
| |
| vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), |
| GFP_KERNEL_ACCOUNT); |
| vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), |
| GFP_KERNEL_ACCOUNT); |
| if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) |
| goto fail_free_mce_banks; |
| vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; |
| |
| if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, |
| GFP_KERNEL_ACCOUNT)) |
| goto fail_free_mce_banks; |
| |
| if (!alloc_emulate_ctxt(vcpu)) |
| goto free_wbinvd_dirty_mask; |
| |
| if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { |
| pr_err("failed to allocate vcpu's fpu\n"); |
| goto free_emulate_ctxt; |
| } |
| |
| vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); |
| vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); |
| |
| vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; |
| |
| kvm_async_pf_hash_reset(vcpu); |
| |
| vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; |
| kvm_pmu_init(vcpu); |
| |
| vcpu->arch.pending_external_vector = -1; |
| vcpu->arch.preempted_in_kernel = false; |
| |
| #if IS_ENABLED(CONFIG_HYPERV) |
| vcpu->arch.hv_root_tdp = INVALID_PAGE; |
| #endif |
| |
| r = static_call(kvm_x86_vcpu_create)(vcpu); |
| if (r) |
| goto free_guest_fpu; |
| |
| vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); |
| vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; |
| kvm_xen_init_vcpu(vcpu); |
| kvm_vcpu_mtrr_init(vcpu); |
| vcpu_load(vcpu); |
| kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); |
| kvm_vcpu_reset(vcpu, false); |
| kvm_init_mmu(vcpu); |
| vcpu_put(vcpu); |
| return 0; |
| |
| free_guest_fpu: |
| fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); |
| free_emulate_ctxt: |
| kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); |
| free_wbinvd_dirty_mask: |
| free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); |
| fail_free_mce_banks: |
| kfree(vcpu->arch.mce_banks); |
| kfree(vcpu->arch.mci_ctl2_banks); |
| free_page((unsigned long)vcpu->arch.pio_data); |
| fail_free_lapic: |
| kvm_free_lapic(vcpu); |
| fail_mmu_destroy: |
| kvm_mmu_destroy(vcpu); |
| return r; |
| } |
| |
| void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| |
| if (mutex_lock_killable(&vcpu->mutex)) |
| return; |
| vcpu_load(vcpu); |
| kvm_synchronize_tsc(vcpu, NULL); |
| vcpu_put(vcpu); |
| |
| /* poll control enabled by default */ |
| vcpu->arch.msr_kvm_poll_control = 1; |
| |
| mutex_unlock(&vcpu->mutex); |
| |
| if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) |
| schedule_delayed_work(&kvm->arch.kvmclock_sync_work, |
| KVMCLOCK_SYNC_PERIOD); |
| } |
| |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| { |
| int idx; |
| |
| kvmclock_reset(vcpu); |
| |
| static_call(kvm_x86_vcpu_free)(vcpu); |
| |
| kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); |
| free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); |
| fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); |
| |
| kvm_xen_destroy_vcpu(vcpu); |
| kvm_hv_vcpu_uninit(vcpu); |
| kvm_pmu_destroy(vcpu); |
| kfree(vcpu->arch.mce_banks); |
| kfree(vcpu->arch.mci_ctl2_banks); |
| kvm_free_lapic(vcpu); |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| kvm_mmu_destroy(vcpu); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| free_page((unsigned long)vcpu->arch.pio_data); |
| kvfree(vcpu->arch.cpuid_entries); |
| if (!lapic_in_kernel(vcpu)) |
| static_branch_dec(&kvm_has_noapic_vcpu); |
| } |
| |
| void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
| { |
| struct kvm_cpuid_entry2 *cpuid_0x1; |
| unsigned long old_cr0 = kvm_read_cr0(vcpu); |
| unsigned long new_cr0; |
| |
| /* |
| * Several of the "set" flows, e.g. ->set_cr0(), read other registers |
| * to handle side effects. RESET emulation hits those flows and relies |
| * on emulated/virtualized registers, including those that are loaded |
| * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel |
| * to detect improper or missing initialization. |
| */ |
| WARN_ON_ONCE(!init_event && |
| (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); |
| |
| /* |
| * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's |
| * possible to INIT the vCPU while L2 is active. Force the vCPU back |
| * into L1 as EFER.SVME is cleared on INIT (along with all other EFER |
| * bits), i.e. virtualization is disabled. |
| */ |
| if (is_guest_mode(vcpu)) |
| kvm_leave_nested(vcpu); |
| |
| kvm_lapic_reset(vcpu, init_event); |
| |
| WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); |
| vcpu->arch.hflags = 0; |
| |
| vcpu->arch.smi_pending = 0; |
| vcpu->arch.smi_count = 0; |
| atomic_set(&vcpu->arch.nmi_queued, 0); |
| vcpu->arch.nmi_pending = 0; |
| vcpu->arch.nmi_injected = false; |
| kvm_clear_interrupt_queue(vcpu); |
| kvm_clear_exception_queue(vcpu); |
| |
| memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
| kvm_update_dr0123(vcpu); |
| vcpu->arch.dr6 = DR6_ACTIVE_LOW; |
| vcpu->arch.dr7 = DR7_FIXED_1; |
| kvm_update_dr7(vcpu); |
| |
| vcpu->arch.cr2 = 0; |
| |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| vcpu->arch.apf.msr_en_val = 0; |
| vcpu->arch.apf.msr_int_val = 0; |
| vcpu->arch.st.msr_val = 0; |
| |
| kvmclock_reset(vcpu); |
| |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_async_pf_hash_reset(vcpu); |
| vcpu->arch.apf.halted = false; |
| |
| if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { |
| struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; |
| |
| /* |
| * All paths that lead to INIT are required to load the guest's |
| * FPU state (because most paths are buried in KVM_RUN). |
| */ |
| if (init_event) |
| kvm_put_guest_fpu(vcpu); |
| |
| fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); |
| fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); |
| |
| if (init_event) |
| kvm_load_guest_fpu(vcpu); |
| } |
| |
| if (!init_event) { |
| kvm_pmu_reset(vcpu); |
| vcpu->arch.smbase = 0x30000; |
| |
| vcpu->arch.msr_misc_features_enables = 0; |
| vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | |
| MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; |
| |
| __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); |
| __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); |
| } |
| |
| /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ |
| memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
| kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); |
| |
| /* |
| * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) |
| * if no CPUID match is found. Note, it's impossible to get a match at |
| * RESET since KVM emulates RESET before exposing the vCPU to userspace, |
| * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry |
| * on RESET. But, go through the motions in case that's ever remedied. |
| */ |
| cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); |
| kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); |
| |
| static_call(kvm_x86_vcpu_reset)(vcpu, init_event); |
| |
| kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); |
| kvm_rip_write(vcpu, 0xfff0); |
| |
| vcpu->arch.cr3 = 0; |
| kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); |
| |
| /* |
| * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions |
| * of Intel's SDM list CD/NW as being set on INIT, but they contradict |
| * (or qualify) that with a footnote stating that CD/NW are preserved. |
| */ |
| new_cr0 = X86_CR0_ET; |
| if (init_event) |
| new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); |
| else |
| new_cr0 |= X86_CR0_NW | X86_CR0_CD; |
| |
| static_call(kvm_x86_set_cr0)(vcpu, new_cr0); |
| static_call(kvm_x86_set_cr4)(vcpu, 0); |
| static_call(kvm_x86_set_efer)(vcpu, 0); |
| static_call(kvm_x86_update_exception_bitmap)(vcpu); |
| |
| /* |
| * On the standard CR0/CR4/EFER modification paths, there are several |
| * complex conditions determining whether the MMU has to be reset and/or |
| * which PCIDs have to be flushed. However, CR0.WP and the paging-related |
| * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush |
| * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as |
| * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. |
| */ |
| if (old_cr0 & X86_CR0_PG) { |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| kvm_mmu_reset_context(vcpu); |
| } |
| |
| /* |
| * Intel's SDM states that all TLB entries are flushed on INIT. AMD's |
| * APM states the TLBs are untouched by INIT, but it also states that |
| * the TLBs are flushed on "External initialization of the processor." |
| * Flush the guest TLB regardless of vendor, there is no meaningful |
| * benefit in relying on the guest to flush the TLB immediately after |
| * INIT. A spurious TLB flush is benign and likely negligible from a |
| * performance perspective. |
| */ |
| if (init_event) |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_reset); |
| |
| void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) |
| { |
| struct kvm_segment cs; |
| |
| kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| cs.selector = vector << 8; |
| cs.base = vector << 12; |
| kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); |
| kvm_rip_write(vcpu, 0); |
| } |
| EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); |
| |
| int kvm_arch_hardware_enable(void) |
| { |
| struct kvm *kvm; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| int ret; |
| u64 local_tsc; |
| u64 max_tsc = 0; |
| bool stable, backwards_tsc = false; |
| |
| kvm_user_return_msr_cpu_online(); |
| |
| ret = kvm_x86_check_processor_compatibility(); |
| if (ret) |
| return ret; |
| |
| ret = static_call(kvm_x86_hardware_enable)(); |
| if (ret != 0) |
| return ret; |
| |
| local_tsc = rdtsc(); |
| stable = !kvm_check_tsc_unstable(); |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| if (!stable && vcpu->cpu == smp_processor_id()) |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| if (stable && vcpu->arch.last_host_tsc > local_tsc) { |
| backwards_tsc = true; |
| if (vcpu->arch.last_host_tsc > max_tsc) |
| max_tsc = vcpu->arch.last_host_tsc; |
| } |
| } |
| } |
| |
| /* |
| * Sometimes, even reliable TSCs go backwards. This happens on |
| * platforms that reset TSC during suspend or hibernate actions, but |
| * maintain synchronization. We must compensate. Fortunately, we can |
| * detect that condition here, which happens early in CPU bringup, |
| * before any KVM threads can be running. Unfortunately, we can't |
| * bring the TSCs fully up to date with real time, as we aren't yet far |
| * enough into CPU bringup that we know how much real time has actually |
| * elapsed; our helper function, ktime_get_boottime_ns() will be using boot |
| * variables that haven't been updated yet. |
| * |
| * So we simply find the maximum observed TSC above, then record the |
| * adjustment to TSC in each VCPU. When the VCPU later gets loaded, |
| * the adjustment will be applied. Note that we accumulate |
| * adjustments, in case multiple suspend cycles happen before some VCPU |
| * gets a chance to run again. In the event that no KVM threads get a |
| * chance to run, we will miss the entire elapsed period, as we'll have |
| * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may |
| * loose cycle time. This isn't too big a deal, since the loss will be |
| * uniform across all VCPUs (not to mention the scenario is extremely |
| * unlikely). It is possible that a second hibernate recovery happens |
| * much faster than a first, causing the observed TSC here to be |
| * smaller; this would require additional padding adjustment, which is |
| * why we set last_host_tsc to the local tsc observed here. |
| * |
| * N.B. - this code below runs only on platforms with reliable TSC, |
| * as that is the only way backwards_tsc is set above. Also note |
| * that this runs for ALL vcpus, which is not a bug; all VCPUs should |
| * have the same delta_cyc adjustment applied if backwards_tsc |
| * is detected. Note further, this adjustment is only done once, |
| * as we reset last_host_tsc on all VCPUs to stop this from being |
| * called multiple times (one for each physical CPU bringup). |
| * |
| * Platforms with unreliable TSCs don't have to deal with this, they |
| * will be compensated by the logic in vcpu_load, which sets the TSC to |
| * catchup mode. This will catchup all VCPUs to real time, but cannot |
| * guarantee that they stay in perfect synchronization. |
| */ |
| if (backwards_tsc) { |
| u64 delta_cyc = max_tsc - local_tsc; |
| list_for_each_entry(kvm, &vm_list, vm_list) { |
| kvm->arch.backwards_tsc_observed = true; |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| vcpu->arch.tsc_offset_adjustment += delta_cyc; |
| vcpu->arch.last_host_tsc = local_tsc; |
| kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
| } |
| |
| /* |
| * We have to disable TSC offset matching.. if you were |
| * booting a VM while issuing an S4 host suspend.... |
| * you may have some problem. Solving this issue is |
| * left as an exercise to the reader. |
| */ |
| kvm->arch.last_tsc_nsec = 0; |
| kvm->arch.last_tsc_write = 0; |
| } |
| |
| } |
| return 0; |
| } |
| |
| void kvm_arch_hardware_disable(void) |
| { |
| static_call(kvm_x86_hardware_disable)(); |
| drop_user_return_notifiers(); |
| } |
| |
| bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) |
| { |
| return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; |
| } |
| |
| bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) |
| { |
| return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; |
| } |
| |
| __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); |
| EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); |
| |
| void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| |
| vcpu->arch.l1tf_flush_l1d = true; |
| if (pmu->version && unlikely(pmu->event_count)) { |
| pmu->need_cleanup = true; |
| kvm_make_request(KVM_REQ_PMU, vcpu); |
| } |
| static_call(kvm_x86_sched_in)(vcpu, cpu); |
| } |
| |
| void kvm_arch_free_vm(struct kvm *kvm) |
| { |
| kfree(to_kvm_hv(kvm)->hv_pa_pg); |
| __kvm_arch_free_vm(kvm); |
| } |
| |
| |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| { |
| int ret; |
| unsigned long flags; |
| |
| if (!kvm_is_vm_type_supported(type)) |
| return -EINVAL; |
| |
| kvm->arch.vm_type = type; |
| |
| ret = kvm_page_track_init(kvm); |
| if (ret) |
| goto out; |
| |
| kvm_mmu_init_vm(kvm); |
| |
| ret = static_call(kvm_x86_vm_init)(kvm); |
| if (ret) |
| goto out_uninit_mmu; |
| |
| INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); |
| atomic_set(&kvm->arch.noncoherent_dma_count, 0); |
| |
| /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
| set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); |
| /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ |
| set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, |
| &kvm->arch.irq_sources_bitmap); |
| |
| raw_spin_lock_init(&kvm->arch.tsc_write_lock); |
| mutex_init(&kvm->arch.apic_map_lock); |
| seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); |
| kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); |
| |
| raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
| pvclock_update_vm_gtod_copy(kvm); |
| raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
| |
| kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; |
| kvm->arch.guest_can_read_msr_platform_info = true; |
| kvm->arch.enable_pmu = enable_pmu; |
| |
| #if IS_ENABLED(CONFIG_HYPERV) |
| spin_lock_init(&kvm->arch.hv_root_tdp_lock); |
| kvm->arch.hv_root_tdp = INVALID_PAGE; |
| #endif |
| |
| INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); |
| INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); |
| |
| kvm_apicv_init(kvm); |
| kvm_hv_init_vm(kvm); |
| kvm_xen_init_vm(kvm); |
| |
| return 0; |
| |
| out_uninit_mmu: |
| kvm_mmu_uninit_vm(kvm); |
| kvm_page_track_cleanup(kvm); |
| out: |
| return ret; |
| } |
| |
| int kvm_arch_post_init_vm(struct kvm *kvm) |
| { |
| return kvm_mmu_post_init_vm(kvm); |
| } |
| |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| kvm_mmu_unload(vcpu); |
| vcpu_put(vcpu); |
| } |
| |
| static void kvm_unload_vcpu_mmus(struct kvm *kvm) |
| { |
| unsigned long i; |
| struct kvm_vcpu *vcpu; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| kvm_clear_async_pf_completion_queue(vcpu); |
| kvm_unload_vcpu_mmu(vcpu); |
| } |
| } |
| |
| void kvm_arch_sync_events(struct kvm *kvm) |
| { |
| cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); |
| cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); |
| kvm_free_pit(kvm); |
| } |
| |
| /** |
| * __x86_set_memory_region: Setup KVM internal memory slot |
| * |
| * @kvm: the kvm pointer to the VM. |
| * @id: the slot ID to setup. |
| * @gpa: the GPA to install the slot (unused when @size == 0). |
| * @size: the size of the slot. Set to zero to uninstall a slot. |
| * |
| * This function helps to setup a KVM internal memory slot. Specify |
| * @size > 0 to install a new slot, while @size == 0 to uninstall a |
| * slot. The return code can be one of the following: |
| * |
| * HVA: on success (uninstall will return a bogus HVA) |
| * -errno: on error |
| * |
| * The caller should always use IS_ERR() to check the return value |
| * before use. Note, the KVM internal memory slots are guaranteed to |
| * remain valid and unchanged until the VM is destroyed, i.e., the |
| * GPA->HVA translation will not change. However, the HVA is a user |
| * address, i.e. its accessibility is not guaranteed, and must be |
| * accessed via __copy_{to,from}_user(). |
| */ |
| void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, |
| u32 size) |
| { |
| int i, r; |
| unsigned long hva, old_npages; |
| struct kvm_memslots *slots = kvm_memslots(kvm); |
| struct kvm_memory_slot *slot; |
| |
| /* Called with kvm->slots_lock held. */ |
| if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) |
| return ERR_PTR_USR(-EINVAL); |
| |
| slot = id_to_memslot(slots, id); |
| if (size) { |
| if (slot && slot->npages) |
| return ERR_PTR_USR(-EEXIST); |
| |
| /* |
| * MAP_SHARED to prevent internal slot pages from being moved |
| * by fork()/COW. |
| */ |
| hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, |
| MAP_SHARED | MAP_ANONYMOUS, 0); |
| if (IS_ERR_VALUE(hva)) |
| return (void __user *)hva; |
| } else { |
| if (!slot || !slot->npages) |
| return NULL; |
| |
| old_npages = slot->npages; |
| hva = slot->userspace_addr; |
| } |
| |
| for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { |
| struct kvm_userspace_memory_region2 m; |
| |
| m.slot = id | (i << 16); |
| m.flags = 0; |
| m.guest_phys_addr = gpa; |
| m.userspace_addr = hva; |
| m.memory_size = size; |
| r = __kvm_set_memory_region(kvm, &m); |
| if (r < 0) |
| return ERR_PTR_USR(r); |
| } |
| |
| if (!size) |
| vm_munmap(hva, old_npages * PAGE_SIZE); |
| |
| return (void __user *)hva; |
| } |
| EXPORT_SYMBOL_GPL(__x86_set_memory_region); |
| |
| void kvm_arch_pre_destroy_vm(struct kvm *kvm) |
| { |
| kvm_mmu_pre_destroy_vm(kvm); |
| } |
| |
| void kvm_arch_destroy_vm(struct kvm *kvm) |
| { |
| if (current->mm == kvm->mm) { |
| /* |
| * Free memory regions allocated on behalf of userspace, |
| * unless the memory map has changed due to process exit |
| * or fd copying. |
| */ |
| mutex_lock(&kvm->slots_lock); |
| __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, |
| 0, 0); |
| __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, |
| 0, 0); |
| __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); |
| mutex_unlock(&kvm->slots_lock); |
| } |
| kvm_unload_vcpu_mmus(kvm); |
| static_call_cond(kvm_x86_vm_destroy)(kvm); |
| kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); |
| kvm_pic_destroy(kvm); |
| kvm_ioapic_destroy(kvm); |
| kvm_destroy_vcpus(kvm); |
| kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); |
| kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); |
| kvm_mmu_uninit_vm(kvm); |
| kvm_page_track_cleanup(kvm); |
| kvm_xen_destroy_vm(kvm); |
| kvm_hv_destroy_vm(kvm); |
| } |
| |
| static void memslot_rmap_free(struct kvm_memory_slot *slot) |
| { |
| int i; |
| |
| for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
| kvfree(slot->arch.rmap[i]); |
| slot->arch.rmap[i] = NULL; |
| } |
| } |
| |
| void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) |
| { |
| int i; |
| |
| memslot_rmap_free(slot); |
| |
| for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { |
| kvfree(slot->arch.lpage_info[i - 1]); |
| slot->arch.lpage_info[i - 1] = NULL; |
| } |
| |
| kvm_page_track_free_memslot(slot); |
| } |
| |
| int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) |
| { |
| const int sz = sizeof(*slot->arch.rmap[0]); |
| int i; |
| |
| for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
| int level = i + 1; |
| int lpages = __kvm_mmu_slot_lpages(slot, npages, level); |
| |
| if (slot->arch.rmap[i]) |
| continue; |
| |
| slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); |
| if (!slot->arch.rmap[i]) { |
| memslot_rmap_free(slot); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_alloc_memslot_metadata(struct kvm *kvm, |
| struct kvm_memory_slot *slot) |
| { |
| unsigned long npages = slot->npages; |
| int i, r; |
| |
| /* |
| * Clear out the previous array pointers for the KVM_MR_MOVE case. The |
| * old arrays will be freed by __kvm_set_memory_region() if installing |
| * the new memslot is successful. |
| */ |
| memset(&slot->arch, 0, sizeof(slot->arch)); |
| |
| if (kvm_memslots_have_rmaps(kvm)) { |
| r = memslot_rmap_alloc(slot, npages); |
| if (r) |
| return r; |
| } |
| |
| for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { |
| struct kvm_lpage_info *linfo; |
| unsigned long ugfn; |
| int lpages; |
| int level = i + 1; |
| |
| lpages = __kvm_mmu_slot_lpages(slot, npages, level); |
| |
| linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); |
| if (!linfo) |
| goto out_free; |
| |
| slot->arch.lpage_info[i - 1] = linfo; |
| |
| if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) |
| linfo[0].disallow_lpage = 1; |
| if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) |
| linfo[lpages - 1].disallow_lpage = 1; |
| ugfn = slot->userspace_addr >> PAGE_SHIFT; |
| /* |
| * If the gfn and userspace address are not aligned wrt each |
| * other, disable large page support for this slot. |
| */ |
| if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { |
| unsigned long j; |
| |
| for (j = 0; j < lpages; ++j) |
| linfo[j].disallow_lpage = 1; |
| } |
| } |
| |
| #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES |
| kvm_mmu_init_memslot_memory_attributes(kvm, slot); |
| #endif |
| |
| if (kvm_page_track_create_memslot(kvm, slot, npages)) |
| goto out_free; |
| |
| return 0; |
| |
| out_free: |
| memslot_rmap_free(slot); |
| |
| for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { |
| kvfree(slot->arch.lpage_info[i - 1]); |
| slot->arch.lpage_info[i - 1] = NULL; |
| } |
| return -ENOMEM; |
| } |
| |
| void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) |
| { |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| |
| /* |
| * memslots->generation has been incremented. |
| * mmio generation may have reached its maximum value. |
| */ |
| kvm_mmu_invalidate_mmio_sptes(kvm, gen); |
| |
| /* Force re-initialization of steal_time cache */ |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| const struct kvm_memory_slot *old, |
| struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| /* |
| * KVM doesn't support moving memslots when there are external page |
| * trackers attached to the VM, i.e. if KVMGT is in use. |
| */ |
| if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) |
| return -EINVAL; |
| |
| if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { |
| if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) |
| return -EINVAL; |
| |
| return kvm_alloc_memslot_metadata(kvm, new); |
| } |
| |
| if (change == KVM_MR_FLAGS_ONLY) |
| memcpy(&new->arch, &old->arch, sizeof(old->arch)); |
| else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| |
| static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) |
| { |
| int nr_slots; |
| |
| if (!kvm_x86_ops.cpu_dirty_log_size) |
| return; |
| |
| nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); |
| if ((enable && nr_slots == 1) || !nr_slots) |
| kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); |
| } |
| |
| static void kvm_mmu_slot_apply_flags(struct kvm *kvm, |
| struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| u32 old_flags = old ? old->flags : 0; |
| u32 new_flags = new ? new->flags : 0; |
| bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; |
| |
| /* |
| * Update CPU dirty logging if dirty logging is being toggled. This |
| * applies to all operations. |
| */ |
| if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) |
| kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); |
| |
| /* |
| * Nothing more to do for RO slots (which can't be dirtied and can't be |
| * made writable) or CREATE/MOVE/DELETE of a slot. |
| * |
| * For a memslot with dirty logging disabled: |
| * CREATE: No dirty mappings will already exist. |
| * MOVE/DELETE: The old mappings will already have been cleaned up by |
| * kvm_arch_flush_shadow_memslot() |
| * |
| * For a memslot with dirty logging enabled: |
| * CREATE: No shadow pages exist, thus nothing to write-protect |
| * and no dirty bits to clear. |
| * MOVE/DELETE: The old mappings will already have been cleaned up by |
| * kvm_arch_flush_shadow_memslot(). |
| */ |
| if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) |
| return; |
| |
| /* |
| * READONLY and non-flags changes were filtered out above, and the only |
| * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty |
| * logging isn't being toggled on or off. |
| */ |
| if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) |
| return; |
| |
| if (!log_dirty_pages) { |
| /* |
| * Dirty logging tracks sptes in 4k granularity, meaning that |
| * large sptes have to be split. If live migration succeeds, |
| * the guest in the source machine will be destroyed and large |
| * sptes will be created in the destination. However, if the |
| * guest continues to run in the source machine (for example if |
| * live migration fails), small sptes will remain around and |
| * cause bad performance. |
| * |
| * Scan sptes if dirty logging has been stopped, dropping those |
| * which can be collapsed into a single large-page spte. Later |
| * page faults will create the large-page sptes. |
| */ |
| kvm_mmu_zap_collapsible_sptes(kvm, new); |
| } else { |
| /* |
| * Initially-all-set does not require write protecting any page, |
| * because they're all assumed to be dirty. |
| */ |
| if (kvm_dirty_log_manual_protect_and_init_set(kvm)) |
| return; |
| |
| if (READ_ONCE(eager_page_split)) |
| kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); |
| |
| if (kvm_x86_ops.cpu_dirty_log_size) { |
| kvm_mmu_slot_leaf_clear_dirty(kvm, new); |
| kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); |
| } else { |
| kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); |
| } |
| |
| /* |
| * Unconditionally flush the TLBs after enabling dirty logging. |
| * A flush is almost always going to be necessary (see below), |
| * and unconditionally flushing allows the helpers to omit |
| * the subtly complex checks when removing write access. |
| * |
| * Do the flush outside of mmu_lock to reduce the amount of |
| * time mmu_lock is held. Flushing after dropping mmu_lock is |
| * safe as KVM only needs to guarantee the slot is fully |
| * write-protected before returning to userspace, i.e. before |
| * userspace can consume the dirty status. |
| * |
| * Flushing outside of mmu_lock requires KVM to be careful when |
| * making decisions based on writable status of an SPTE, e.g. a |
| * !writable SPTE doesn't guarantee a CPU can't perform writes. |
| * |
| * Specifically, KVM also write-protects guest page tables to |
| * monitor changes when using shadow paging, and must guarantee |
| * no CPUs can write to those page before mmu_lock is dropped. |
| * Because CPUs may have stale TLB entries at this point, a |
| * !writable SPTE doesn't guarantee CPUs can't perform writes. |
| * |
| * KVM also allows making SPTES writable outside of mmu_lock, |
| * e.g. to allow dirty logging without taking mmu_lock. |
| * |
| * To handle these scenarios, KVM uses a separate software-only |
| * bit (MMU-writable) to track if a SPTE is !writable due to |
| * a guest page table being write-protected (KVM clears the |
| * MMU-writable flag when write-protecting for shadow paging). |
| * |
| * The use of MMU-writable is also the primary motivation for |
| * the unconditional flush. Because KVM must guarantee that a |
| * CPU doesn't contain stale, writable TLB entries for a |
| * !MMU-writable SPTE, KVM must flush if it encounters any |
| * MMU-writable SPTE regardless of whether the actual hardware |
| * writable bit was set. I.e. KVM is almost guaranteed to need |
| * to flush, while unconditionally flushing allows the "remove |
| * write access" helpers to ignore MMU-writable entirely. |
| * |
| * See is_writable_pte() for more details (the case involving |
| * access-tracked SPTEs is particularly relevant). |
| */ |
| kvm_flush_remote_tlbs_memslot(kvm, new); |
| } |
| } |
| |
| void kvm_arch_commit_memory_region(struct kvm *kvm, |
| struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| if (change == KVM_MR_DELETE) |
| kvm_page_track_delete_slot(kvm, old); |
| |
| if (!kvm->arch.n_requested_mmu_pages && |
| (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { |
| unsigned long nr_mmu_pages; |
| |
| nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; |
| nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); |
| kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); |
| } |
| |
| kvm_mmu_slot_apply_flags(kvm, old, new, change); |
| |
| /* Free the arrays associated with the old memslot. */ |
| if (change == KVM_MR_MOVE) |
| kvm_arch_free_memslot(kvm, old); |
| } |
| |
| static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) |
| { |
| return (is_guest_mode(vcpu) && |
| static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); |
| } |
| |
| static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) |
| { |
| if (!list_empty_careful(&vcpu->async_pf.done)) |
| return true; |
| |
| if (kvm_apic_has_pending_init_or_sipi(vcpu) && |
| kvm_apic_init_sipi_allowed(vcpu)) |
| return true; |
| |
| if (vcpu->arch.pv.pv_unhalted) |
| return true; |
| |
| if (kvm_is_exception_pending(vcpu)) |
| return true; |
| |
| if (kvm_test_request(KVM_REQ_NMI, vcpu) || |
| (vcpu->arch.nmi_pending && |
| static_call(kvm_x86_nmi_allowed)(vcpu, false))) |
| return true; |
| |
| #ifdef CONFIG_KVM_SMM |
| if (kvm_test_request(KVM_REQ_SMI, vcpu) || |
| (vcpu->arch.smi_pending && |
| static_call(kvm_x86_smi_allowed)(vcpu, false))) |
| return true; |
| #endif |
| |
| if (kvm_test_request(KVM_REQ_PMI, vcpu)) |
| return true; |
| |
| if (kvm_arch_interrupt_allowed(vcpu) && |
| (kvm_cpu_has_interrupt(vcpu) || |
| kvm_guest_apic_has_interrupt(vcpu))) |
| return true; |
| |
| if (kvm_hv_has_stimer_pending(vcpu)) |
| return true; |
| |
| if (is_guest_mode(vcpu) && |
| kvm_x86_ops.nested_ops->has_events && |
| kvm_x86_ops.nested_ops->has_events(vcpu)) |
| return true; |
| |
| if (kvm_xen_has_pending_events(vcpu)) |
| return true; |
| |
| return false; |
| } |
| |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); |
| } |
| |
| bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) |
| { |
| if (kvm_vcpu_apicv_active(vcpu) && |
| static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) |
| return true; |
| |
| return false; |
| } |
| |
| bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) |
| { |
| if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) |
| return true; |
| |
| if (kvm_test_request(KVM_REQ_NMI, vcpu) || |
| #ifdef CONFIG_KVM_SMM |
| kvm_test_request(KVM_REQ_SMI, vcpu) || |
| #endif |
| kvm_test_request(KVM_REQ_EVENT, vcpu)) |
| return true; |
| |
| return kvm_arch_dy_has_pending_interrupt(vcpu); |
| } |
| |
| bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->arch.guest_state_protected) |
| return true; |
| |
| return vcpu->arch.preempted_in_kernel; |
| } |
| |
| unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) |
| { |
| return kvm_rip_read(vcpu); |
| } |
| |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| { |
| return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
| } |
| |
| int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) |
| { |
| return static_call(kvm_x86_interrupt_allowed)(vcpu, false); |
| } |
| |
| unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) |
| { |
| /* Can't read the RIP when guest state is protected, just return 0 */ |
| if (vcpu->arch.guest_state_protected) |
| return 0; |
| |
| if (is_64_bit_mode(vcpu)) |
| return kvm_rip_read(vcpu); |
| return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + |
| kvm_rip_read(vcpu)); |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_linear_rip); |
| |
| bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
| { |
| return kvm_get_linear_rip(vcpu) == linear_rip; |
| } |
| EXPORT_SYMBOL_GPL(kvm_is_linear_rip); |
| |
| unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
| { |
| unsigned long rflags; |
| |
| rflags = static_call(kvm_x86_get_rflags)(vcpu); |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| rflags &= ~X86_EFLAGS_TF; |
| return rflags; |
| } |
| EXPORT_SYMBOL_GPL(kvm_get_rflags); |
| |
| static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && |
| kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
| rflags |= X86_EFLAGS_TF; |
| static_call(kvm_x86_set_rflags)(vcpu, rflags); |
| } |
| |
| void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| { |
| __kvm_set_rflags(vcpu, rflags); |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_rflags); |
| |
| static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
| { |
| BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); |
| |
| return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); |
| } |
| |
| static inline u32 kvm_async_pf_next_probe(u32 key) |
| { |
| return (key + 1) & (ASYNC_PF_PER_VCPU - 1); |
| } |
| |
| static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| u32 key = kvm_async_pf_hash_fn(gfn); |
| |
| while (vcpu->arch.apf.gfns[key] != ~0) |
| key = kvm_async_pf_next_probe(key); |
| |
| vcpu->arch.apf.gfns[key] = gfn; |
| } |
| |
| static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| int i; |
| u32 key = kvm_async_pf_hash_fn(gfn); |
| |
| for (i = 0; i < ASYNC_PF_PER_VCPU && |
| (vcpu->arch.apf.gfns[key] != gfn && |
| vcpu->arch.apf.gfns[key] != ~0); i++) |
| key = kvm_async_pf_next_probe(key); |
| |
| return key; |
| } |
| |
| bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; |
| } |
| |
| static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) |
| { |
| u32 i, j, k; |
| |
| i = j = kvm_async_pf_gfn_slot(vcpu, gfn); |
| |
| if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) |
| return; |
| |
| while (true) { |
| vcpu->arch.apf.gfns[i] = ~0; |
| do { |
| j = kvm_async_pf_next_probe(j); |
| if (vcpu->arch.apf.gfns[j] == ~0) |
| return; |
| k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); |
| /* |
| * k lies cyclically in ]i,j] |
| * | i.k.j | |
| * |....j i.k.| or |.k..j i...| |
| */ |
| } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); |
| vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; |
| i = j; |
| } |
| } |
| |
| static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) |
| { |
| u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; |
| |
| return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, |
| sizeof(reason)); |
| } |
| |
| static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) |
| { |
| unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); |
| |
| return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, |
| &token, offset, sizeof(token)); |
| } |
| |
| static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) |
| { |
| unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); |
| u32 val; |
| |
| if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, |
| &val, offset, sizeof(val))) |
| return false; |
| |
| return !val; |
| } |
| |
| static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) |
| { |
| |
| if (!kvm_pv_async_pf_enabled(vcpu)) |
| return false; |
| |
| if (vcpu->arch.apf.send_user_only && |
| static_call(kvm_x86_get_cpl)(vcpu) == 0) |
| return false; |
| |
| if (is_guest_mode(vcpu)) { |
| /* |
| * L1 needs to opt into the special #PF vmexits that are |
| * used to deliver async page faults. |
| */ |
| return vcpu->arch.apf.delivery_as_pf_vmexit; |
| } else { |
| /* |
| * Play it safe in case the guest temporarily disables paging. |
| * The real mode IDT in particular is unlikely to have a #PF |
| * exception setup. |
| */ |
| return is_paging(vcpu); |
| } |
| } |
| |
| bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) |
| { |
| if (unlikely(!lapic_in_kernel(vcpu) || |
| kvm_event_needs_reinjection(vcpu) || |
| kvm_is_exception_pending(vcpu))) |
| return false; |
| |
| if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) |
| return false; |
| |
| /* |
| * If interrupts are off we cannot even use an artificial |
| * halt state. |
| */ |
| return kvm_arch_interrupt_allowed(vcpu); |
| } |
| |
| bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
| struct kvm_async_pf *work) |
| { |
| struct x86_exception fault; |
| |
| trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); |
| kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
| |
| if (kvm_can_deliver_async_pf(vcpu) && |
| !apf_put_user_notpresent(vcpu)) { |
| fault.vector = PF_VECTOR; |
| fault.error_code_valid = true; |
| fault.error_code = 0; |
| fault.nested_page_fault = false; |
| fault.address = work->arch.token; |
| fault.async_page_fault = true; |
| kvm_inject_page_fault(vcpu, &fault); |
| return true; |
| } else { |
| /* |
| * It is not possible to deliver a paravirtualized asynchronous |
| * page fault, but putting the guest in an artificial halt state |
| * can be beneficial nevertheless: if an interrupt arrives, we |
| * can deliver it timely and perhaps the guest will schedule |
| * another process. When the instruction that triggered a page |
| * fault is retried, hopefully the page will be ready in the host. |
| */ |
| kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
| return false; |
| } |
| } |
| |
| void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, |
| struct kvm_async_pf *work) |
| { |
| struct kvm_lapic_irq irq = { |
| .delivery_mode = APIC_DM_FIXED, |
| .vector = vcpu->arch.apf.vec |
| }; |
| |
| if (work->wakeup_all) |
| work->arch.token = ~0; /* broadcast wakeup */ |
| else |
| kvm_del_async_pf_gfn(vcpu, work->arch.gfn); |
| trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); |
| |
| if ((work->wakeup_all || work->notpresent_injected) && |
| kvm_pv_async_pf_enabled(vcpu) && |
| !apf_put_user_ready(vcpu, work->arch.token)) { |
| vcpu->arch.apf.pageready_pending = true; |
| kvm_apic_set_irq(vcpu, &irq, NULL); |
| } |
| |
| vcpu->arch.apf.halted = false; |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| } |
| |
| void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) |
| { |
| kvm_make_request(KVM_REQ_APF_READY, vcpu); |
| if (!vcpu->arch.apf.pageready_pending) |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) |
| { |
| if (!kvm_pv_async_pf_enabled(vcpu)) |
| return true; |
| else |
| return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); |
| } |
| |
| void kvm_arch_start_assignment(struct kvm *kvm) |
| { |
| if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) |
| static_call_cond(kvm_x86_pi_start_assignment)(kvm); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); |
| |
| void kvm_arch_end_assignment(struct kvm *kvm) |
| { |
| atomic_dec(&kvm->arch.assigned_device_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); |
| |
| bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) |
| { |
| return raw_atomic_read(&kvm->arch.assigned_device_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); |
| |
| static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) |
| { |
| /* |
| * Non-coherent DMA assignment and de-assignment will affect |
| * whether KVM honors guest MTRRs and cause changes in memtypes |
| * in TDP. |
| * So, pass %true unconditionally to indicate non-coherent DMA was, |
| * or will be involved, and that zapping SPTEs might be necessary. |
| */ |
| if (__kvm_mmu_honors_guest_mtrrs(true)) |
| kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); |
| } |
| |
| void kvm_arch_register_noncoherent_dma(struct kvm *kvm) |
| { |
| if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) |
| kvm_noncoherent_dma_assignment_start_or_stop(kvm); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); |
| |
| void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) |
| { |
| if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) |
| kvm_noncoherent_dma_assignment_start_or_stop(kvm); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); |
| |
| bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) |
| { |
| return atomic_read(&kvm->arch.noncoherent_dma_count); |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); |
| |
| bool kvm_arch_has_irq_bypass(void) |
| { |
| return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP); |
| } |
| |
| int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| int ret; |
| |
| irqfd->producer = prod; |
| kvm_arch_start_assignment(irqfd->kvm); |
| ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, |
| prod->irq, irqfd->gsi, 1); |
| |
| if (ret) |
| kvm_arch_end_assignment(irqfd->kvm); |
| |
| return ret; |
| } |
| |
| void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, |
| struct irq_bypass_producer *prod) |
| { |
| int ret; |
| struct kvm_kernel_irqfd *irqfd = |
| container_of(cons, struct kvm_kernel_irqfd, consumer); |
| |
| WARN_ON(irqfd->producer != prod); |
| irqfd->producer = NULL; |
| |
| /* |
| * When producer of consumer is unregistered, we change back to |
| * remapped mode, so we can re-use the current implementation |
| * when the irq is masked/disabled or the consumer side (KVM |
| * int this case doesn't want to receive the interrupts. |
| */ |
| ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); |
| if (ret) |
| printk(KERN_INFO "irq bypass consumer (token %p) unregistration" |
| " fails: %d\n", irqfd->consumer.token, ret); |
| |
| kvm_arch_end_assignment(irqfd->kvm); |
| } |
| |
| int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, |
| uint32_t guest_irq, bool set) |
| { |
| return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); |
| } |
| |
| bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, |
| struct kvm_kernel_irq_routing_entry *new) |
| { |
| if (new->type != KVM_IRQ_ROUTING_MSI) |
| return true; |
| |
| return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); |
| } |
| |
| bool kvm_vector_hashing_enabled(void) |
| { |
| return vector_hashing; |
| } |
| |
| bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) |
| { |
| return (vcpu->arch.msr_kvm_poll_control & 1) == 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_arch_no_poll); |
| |
| |
| int kvm_spec_ctrl_test_value(u64 value) |
| { |
| /* |
| * test that setting IA32_SPEC_CTRL to given value |
| * is allowed by the host processor |
| */ |
| |
| u64 saved_value; |
| unsigned long flags; |
| int ret = 0; |
| |
| local_irq_save(flags); |
| |
| if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) |
| ret = 1; |
| else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) |
| ret = 1; |
| else |
| wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); |
| |
| local_irq_restore(flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); |
| |
| void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) |
| { |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| struct x86_exception fault; |
| u64 access = error_code & |
| (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); |
| |
| if (!(error_code & PFERR_PRESENT_MASK) || |
| mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { |
| /* |
| * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page |
| * tables probably do not match the TLB. Just proceed |
| * with the error code that the processor gave. |
| */ |
| fault.vector = PF_VECTOR; |
| fault.error_code_valid = true; |
| fault.error_code = error_code; |
| fault.nested_page_fault = false; |
| fault.address = gva; |
| fault.async_page_fault = false; |
| } |
| vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); |
| } |
| EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); |
| |
| /* |
| * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns |
| * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value |
| * indicates whether exit to userspace is needed. |
| */ |
| int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, |
| struct x86_exception *e) |
| { |
| if (r == X86EMUL_PROPAGATE_FAULT) { |
| if (KVM_BUG_ON(!e, vcpu->kvm)) |
| return -EIO; |
| |
| kvm_inject_emulated_page_fault(vcpu, e); |
| return 1; |
| } |
| |
| /* |
| * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED |
| * while handling a VMX instruction KVM could've handled the request |
| * correctly by exiting to userspace and performing I/O but there |
| * doesn't seem to be a real use-case behind such requests, just return |
| * KVM_EXIT_INTERNAL_ERROR for now. |
| */ |
| kvm_prepare_emulation_failure_exit(vcpu); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); |
| |
| int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) |
| { |
| bool pcid_enabled; |
| struct x86_exception e; |
| struct { |
| u64 pcid; |
| u64 gla; |
| } operand; |
| int r; |
| |
| r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); |
| if (r != X86EMUL_CONTINUE) |
| return kvm_handle_memory_failure(vcpu, r, &e); |
| |
| if (operand.pcid >> 12 != 0) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); |
| |
| switch (type) { |
| case INVPCID_TYPE_INDIV_ADDR: |
| if ((!pcid_enabled && (operand.pcid != 0)) || |
| is_noncanonical_address(operand.gla, vcpu)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); |
| return kvm_skip_emulated_instruction(vcpu); |
| |
| case INVPCID_TYPE_SINGLE_CTXT: |
| if (!pcid_enabled && (operand.pcid != 0)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| kvm_invalidate_pcid(vcpu, operand.pcid); |
| return kvm_skip_emulated_instruction(vcpu); |
| |
| case INVPCID_TYPE_ALL_NON_GLOBAL: |
| /* |
| * Currently, KVM doesn't mark global entries in the shadow |
| * page tables, so a non-global flush just degenerates to a |
| * global flush. If needed, we could optimize this later by |
| * keeping track of global entries in shadow page tables. |
| */ |
| |
| fallthrough; |
| case INVPCID_TYPE_ALL_INCL_GLOBAL: |
| kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
| return kvm_skip_emulated_instruction(vcpu); |
| |
| default: |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_handle_invpcid); |
| |
| static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| struct kvm_mmio_fragment *frag; |
| unsigned int len; |
| |
| BUG_ON(!vcpu->mmio_needed); |
| |
| /* Complete previous fragment */ |
| frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
| len = min(8u, frag->len); |
| if (!vcpu->mmio_is_write) |
| memcpy(frag->data, run->mmio.data, len); |
| |
| if (frag->len <= 8) { |
| /* Switch to the next fragment. */ |
| frag++; |
| vcpu->mmio_cur_fragment++; |
| } else { |
| /* Go forward to the next mmio piece. */ |
| frag->data += len; |
| frag->gpa += len; |
| frag->len -= len; |
| } |
| |
| if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { |
| vcpu->mmio_needed = 0; |
| |
| // VMG change, at this point, we're always done |
| // RIP has already been advanced |
| return 1; |
| } |
| |
| // More MMIO is needed |
| run->mmio.phys_addr = frag->gpa; |
| run->mmio.len = min(8u, frag->len); |
| run->mmio.is_write = vcpu->mmio_is_write; |
| if (run->mmio.is_write) |
| memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
| run->exit_reason = KVM_EXIT_MMIO; |
| |
| vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; |
| |
| return 0; |
| } |
| |
| int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, |
| void *data) |
| { |
| int handled; |
| struct kvm_mmio_fragment *frag; |
| |
| if (!data) |
| return -EINVAL; |
| |
| handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); |
| if (handled == bytes) |
| return 1; |
| |
| bytes -= handled; |
| gpa += handled; |
| data += handled; |
| |
| /*TODO: Check if need to increment number of frags */ |
| frag = vcpu->mmio_fragments; |
| vcpu->mmio_nr_fragments = 1; |
| frag->len = bytes; |
| frag->gpa = gpa; |
| frag->data = data; |
| |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_cur_fragment = 0; |
| |
| vcpu->run->mmio.phys_addr = gpa; |
| vcpu->run->mmio.len = min(8u, frag->len); |
| vcpu->run->mmio.is_write = 1; |
| memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
| vcpu->run->exit_reason = KVM_EXIT_MMIO; |
| |
| vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); |
| |
| int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, |
| void *data) |
| { |
| int handled; |
| struct kvm_mmio_fragment *frag; |
| |
| if (!data) |
| return -EINVAL; |
| |
| handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); |
| if (handled == bytes) |
| return 1; |
| |
| bytes -= handled; |
| gpa += handled; |
| data += handled; |
| |
| /*TODO: Check if need to increment number of frags */ |
| frag = vcpu->mmio_fragments; |
| vcpu->mmio_nr_fragments = 1; |
| frag->len = bytes; |
| frag->gpa = gpa; |
| frag->data = data; |
| |
| vcpu->mmio_needed = 1; |
| vcpu->mmio_cur_fragment = 0; |
| |
| vcpu->run->mmio.phys_addr = gpa; |
| vcpu->run->mmio.len = min(8u, frag->len); |
| vcpu->run->mmio.is_write = 0; |
| vcpu->run->exit_reason = KVM_EXIT_MMIO; |
| |
| vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); |
| |
| static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) |
| { |
| vcpu->arch.sev_pio_count -= count; |
| vcpu->arch.sev_pio_data += count * size; |
| } |
| |
| static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, |
| unsigned int port); |
| |
| static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) |
| { |
| int size = vcpu->arch.pio.size; |
| int port = vcpu->arch.pio.port; |
| |
| vcpu->arch.pio.count = 0; |
| if (vcpu->arch.sev_pio_count) |
| return kvm_sev_es_outs(vcpu, size, port); |
| return 1; |
| } |
| |
| static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, |
| unsigned int port) |
| { |
| for (;;) { |
| unsigned int count = |
| min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); |
| int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); |
| |
| /* memcpy done already by emulator_pio_out. */ |
| advance_sev_es_emulated_pio(vcpu, count, size); |
| if (!ret) |
| break; |
| |
| /* Emulation done by the kernel. */ |
| if (!vcpu->arch.sev_pio_count) |
| return 1; |
| } |
| |
| vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; |
| return 0; |
| } |
| |
| static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, |
| unsigned int port); |
| |
| static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) |
| { |
| unsigned count = vcpu->arch.pio.count; |
| int size = vcpu->arch.pio.size; |
| int port = vcpu->arch.pio.port; |
| |
| complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); |
| advance_sev_es_emulated_pio(vcpu, count, size); |
| if (vcpu->arch.sev_pio_count) |
| return kvm_sev_es_ins(vcpu, size, port); |
| return 1; |
| } |
| |
| static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, |
| unsigned int port) |
| { |
| for (;;) { |
| unsigned int count = |
| min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); |
| if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) |
| break; |
| |
| /* Emulation done by the kernel. */ |
| advance_sev_es_emulated_pio(vcpu, count, size); |
| if (!vcpu->arch.sev_pio_count) |
| return 1; |
| } |
| |
| vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; |
| return 0; |
| } |
| |
| int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, |
| unsigned int port, void *data, unsigned int count, |
| int in) |
| { |
| vcpu->arch.sev_pio_data = data; |
| vcpu->arch.sev_pio_count = count; |
| return in ? kvm_sev_es_ins(vcpu, size, port) |
| : kvm_sev_es_outs(vcpu, size, port); |
| } |
| EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); |
| |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); |
| |
| static int __init kvm_x86_init(void) |
| { |
| kvm_mmu_x86_module_init(); |
| mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); |
| return 0; |
| } |
| module_init(kvm_x86_init); |
| |
| static void __exit kvm_x86_exit(void) |
| { |
| /* |
| * If module_init() is implemented, module_exit() must also be |
| * implemented to allow module unload. |
| */ |
| } |
| module_exit(kvm_x86_exit); |