| /* |
| * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| * Authors: |
| * Kevin Tian <kevin.tian@intel.com> |
| * Eddie Dong <eddie.dong@intel.com> |
| * Zhiyuan Lv <zhiyuan.lv@intel.com> |
| * |
| * Contributors: |
| * Min He <min.he@intel.com> |
| * Tina Zhang <tina.zhang@intel.com> |
| * Pei Zhang <pei.zhang@intel.com> |
| * Niu Bing <bing.niu@intel.com> |
| * Ping Gao <ping.a.gao@intel.com> |
| * Zhi Wang <zhi.a.wang@intel.com> |
| * |
| |
| */ |
| |
| #include "i915_drv.h" |
| #include "i915_reg.h" |
| #include "gvt.h" |
| #include "i915_pvinfo.h" |
| #include "intel_mchbar_regs.h" |
| #include "display/intel_display_types.h" |
| #include "display/intel_dmc_regs.h" |
| #include "display/intel_dp_aux_regs.h" |
| #include "display/intel_dpio_phy.h" |
| #include "display/intel_fbc.h" |
| #include "display/intel_fdi_regs.h" |
| #include "display/intel_pps_regs.h" |
| #include "display/intel_psr_regs.h" |
| #include "display/skl_watermark_regs.h" |
| #include "display/vlv_dsi_pll_regs.h" |
| #include "gt/intel_gt_regs.h" |
| |
| /* XXX FIXME i915 has changed PP_XXX definition */ |
| #define PCH_PP_STATUS _MMIO(0xc7200) |
| #define PCH_PP_CONTROL _MMIO(0xc7204) |
| #define PCH_PP_ON_DELAYS _MMIO(0xc7208) |
| #define PCH_PP_OFF_DELAYS _MMIO(0xc720c) |
| #define PCH_PP_DIVISOR _MMIO(0xc7210) |
| |
| unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt) |
| { |
| struct drm_i915_private *i915 = gvt->gt->i915; |
| |
| if (IS_BROADWELL(i915)) |
| return D_BDW; |
| else if (IS_SKYLAKE(i915)) |
| return D_SKL; |
| else if (IS_KABYLAKE(i915)) |
| return D_KBL; |
| else if (IS_BROXTON(i915)) |
| return D_BXT; |
| else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) |
| return D_CFL; |
| |
| return 0; |
| } |
| |
| static bool intel_gvt_match_device(struct intel_gvt *gvt, |
| unsigned long device) |
| { |
| return intel_gvt_get_device_type(gvt) & device; |
| } |
| |
| static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes); |
| } |
| |
| static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes); |
| } |
| |
| struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt, |
| unsigned int offset) |
| { |
| struct intel_gvt_mmio_info *e; |
| |
| hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) { |
| if (e->offset == offset) |
| return e; |
| } |
| return NULL; |
| } |
| |
| static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size, |
| u16 flags, u32 addr_mask, u32 ro_mask, u32 device, |
| gvt_mmio_func read, gvt_mmio_func write) |
| { |
| struct intel_gvt_mmio_info *p; |
| u32 start, end, i; |
| |
| if (!intel_gvt_match_device(gvt, device)) |
| return 0; |
| |
| if (WARN_ON(!IS_ALIGNED(offset, 4))) |
| return -EINVAL; |
| |
| start = offset; |
| end = offset + size; |
| |
| for (i = start; i < end; i += 4) { |
| p = intel_gvt_find_mmio_info(gvt, i); |
| if (!p) { |
| WARN(1, "assign a handler to a non-tracked mmio %x\n", |
| i); |
| return -ENODEV; |
| } |
| p->ro_mask = ro_mask; |
| gvt->mmio.mmio_attribute[i / 4] = flags; |
| if (read) |
| p->read = read; |
| if (write) |
| p->write = write; |
| } |
| return 0; |
| } |
| |
| /** |
| * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine |
| * @gvt: a GVT device |
| * @offset: register offset |
| * |
| * Returns: |
| * The engine containing the offset within its mmio page. |
| */ |
| const struct intel_engine_cs * |
| intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| offset &= ~GENMASK(11, 0); |
| for_each_engine(engine, gvt->gt, id) |
| if (engine->mmio_base == offset) |
| return engine; |
| |
| return NULL; |
| } |
| |
| #define offset_to_fence_num(offset) \ |
| ((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3) |
| |
| #define fence_num_to_offset(num) \ |
| (num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) |
| |
| |
| void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason) |
| { |
| switch (reason) { |
| case GVT_FAILSAFE_UNSUPPORTED_GUEST: |
| pr_err("Detected your guest driver doesn't support GVT-g.\n"); |
| break; |
| case GVT_FAILSAFE_INSUFFICIENT_RESOURCE: |
| pr_err("Graphics resource is not enough for the guest\n"); |
| break; |
| case GVT_FAILSAFE_GUEST_ERR: |
| pr_err("GVT Internal error for the guest\n"); |
| break; |
| default: |
| break; |
| } |
| pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id); |
| vgpu->failsafe = true; |
| } |
| |
| static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu, |
| unsigned int fence_num, void *p_data, unsigned int bytes) |
| { |
| unsigned int max_fence = vgpu_fence_sz(vgpu); |
| |
| if (fence_num >= max_fence) { |
| gvt_vgpu_err("access oob fence reg %d/%d\n", |
| fence_num, max_fence); |
| |
| /* When guest access oob fence regs without access |
| * pv_info first, we treat guest not supporting GVT, |
| * and we will let vgpu enter failsafe mode. |
| */ |
| if (!vgpu->pv_notified) |
| enter_failsafe_mode(vgpu, |
| GVT_FAILSAFE_UNSUPPORTED_GUEST); |
| |
| memset(p_data, 0, bytes); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD; |
| |
| if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) { |
| if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD) |
| gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id); |
| else if (!ips) |
| gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id); |
| else { |
| /* All engines must be enabled together for vGPU, |
| * since we don't know which engine the ppgtt will |
| * bind to when shadowing. |
| */ |
| gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n", |
| ips); |
| return -EINVAL; |
| } |
| } |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| return 0; |
| } |
| |
| static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off, |
| void *p_data, unsigned int bytes) |
| { |
| int ret; |
| |
| ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off), |
| p_data, bytes); |
| if (ret) |
| return ret; |
| read_vreg(vgpu, off, p_data, bytes); |
| return 0; |
| } |
| |
| static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off, |
| void *p_data, unsigned int bytes) |
| { |
| struct intel_gvt *gvt = vgpu->gvt; |
| unsigned int fence_num = offset_to_fence_num(off); |
| int ret; |
| |
| ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes); |
| if (ret) |
| return ret; |
| write_vreg(vgpu, off, p_data, bytes); |
| |
| mmio_hw_access_pre(gvt->gt); |
| intel_vgpu_write_fence(vgpu, fence_num, |
| vgpu_vreg64(vgpu, fence_num_to_offset(fence_num))); |
| mmio_hw_access_post(gvt->gt); |
| return 0; |
| } |
| |
| #define CALC_MODE_MASK_REG(old, new) \ |
| (((new) & GENMASK(31, 16)) \ |
| | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \ |
| | ((new) & ((new) >> 16)))) |
| |
| static int mul_force_wake_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 old, new; |
| u32 ack_reg_offset; |
| |
| old = vgpu_vreg(vgpu, offset); |
| new = CALC_MODE_MASK_REG(old, *(u32 *)p_data); |
| |
| if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9) { |
| switch (offset) { |
| case FORCEWAKE_RENDER_GEN9_REG: |
| ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG; |
| break; |
| case FORCEWAKE_GT_GEN9_REG: |
| ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG; |
| break; |
| case FORCEWAKE_MEDIA_GEN9_REG: |
| ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG; |
| break; |
| default: |
| /*should not hit here*/ |
| gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset); |
| return -EINVAL; |
| } |
| } else { |
| ack_reg_offset = FORCEWAKE_ACK_HSW_REG; |
| } |
| |
| vgpu_vreg(vgpu, offset) = new; |
| vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0)); |
| return 0; |
| } |
| |
| static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| intel_engine_mask_t engine_mask = 0; |
| u32 data; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| data = vgpu_vreg(vgpu, offset); |
| |
| if (data & GEN6_GRDOM_FULL) { |
| gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id); |
| engine_mask = ALL_ENGINES; |
| } else { |
| if (data & GEN6_GRDOM_RENDER) { |
| gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id); |
| engine_mask |= BIT(RCS0); |
| } |
| if (data & GEN6_GRDOM_MEDIA) { |
| gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id); |
| engine_mask |= BIT(VCS0); |
| } |
| if (data & GEN6_GRDOM_BLT) { |
| gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id); |
| engine_mask |= BIT(BCS0); |
| } |
| if (data & GEN6_GRDOM_VECS) { |
| gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id); |
| engine_mask |= BIT(VECS0); |
| } |
| if (data & GEN8_GRDOM_MEDIA2) { |
| gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id); |
| engine_mask |= BIT(VCS1); |
| } |
| if (data & GEN9_GRDOM_GUC) { |
| gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id); |
| vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET; |
| } |
| engine_mask &= vgpu->gvt->gt->info.engine_mask; |
| } |
| |
| /* vgpu_lock already hold by emulate mmio r/w */ |
| intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask); |
| |
| /* sw will wait for the device to ack the reset request */ |
| vgpu_vreg(vgpu, offset) = 0; |
| |
| return 0; |
| } |
| |
| static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes); |
| } |
| |
| static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes); |
| } |
| |
| static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) { |
| vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON; |
| vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE; |
| vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN; |
| vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE; |
| |
| } else |
| vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= |
| ~(PP_ON | PP_SEQUENCE_POWER_DOWN |
| | PP_CYCLE_DELAY_ACTIVE); |
| return 0; |
| } |
| |
| static int transconf_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE) |
| vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE; |
| else |
| vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE; |
| return 0; |
| } |
| |
| static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE) |
| vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK; |
| else |
| vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK; |
| |
| if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK) |
| vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE; |
| else |
| vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE; |
| |
| return 0; |
| } |
| |
| static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| switch (offset) { |
| case 0xe651c: |
| case 0xe661c: |
| case 0xe671c: |
| case 0xe681c: |
| vgpu_vreg(vgpu, offset) = 1 << 17; |
| break; |
| case 0xe6c04: |
| vgpu_vreg(vgpu, offset) = 0x3; |
| break; |
| case 0xe6e1c: |
| vgpu_vreg(vgpu, offset) = 0x2f << 16; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| read_vreg(vgpu, offset, p_data, bytes); |
| return 0; |
| } |
| |
| /* |
| * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to |
| * TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on |
| * setup_virtual_dp_monitor(). |
| * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled |
| * DPLL. Later guest driver may setup a different DPLLx when setting mode. |
| * So the correct sequence to find DP stream clock is: |
| * Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x. |
| * Check correct PLLx for PORT_x to get PLL frequency and DP bitrate. |
| * Then Refresh rate then can be calculated based on follow equations: |
| * Pixel clock = h_total * v_total * refresh_rate |
| * stream clock = Pixel clock |
| * ls_clk = DP bitrate |
| * Link M/N = strm_clk / ls_clk |
| */ |
| |
| static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port) |
| { |
| u32 dp_br = 0; |
| u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)); |
| |
| switch (ddi_pll_sel) { |
| case PORT_CLK_SEL_LCPLL_2700: |
| dp_br = 270000 * 2; |
| break; |
| case PORT_CLK_SEL_LCPLL_1350: |
| dp_br = 135000 * 2; |
| break; |
| case PORT_CLK_SEL_LCPLL_810: |
| dp_br = 81000 * 2; |
| break; |
| case PORT_CLK_SEL_SPLL: |
| { |
| switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) { |
| case SPLL_FREQ_810MHz: |
| dp_br = 81000 * 2; |
| break; |
| case SPLL_FREQ_1350MHz: |
| dp_br = 135000 * 2; |
| break; |
| case SPLL_FREQ_2700MHz: |
| dp_br = 270000 * 2; |
| break; |
| default: |
| gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n", |
| vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL)); |
| break; |
| } |
| break; |
| } |
| case PORT_CLK_SEL_WRPLL1: |
| case PORT_CLK_SEL_WRPLL2: |
| { |
| u32 wrpll_ctl; |
| int refclk, n, p, r; |
| |
| if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1) |
| wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1)); |
| else |
| wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2)); |
| |
| switch (wrpll_ctl & WRPLL_REF_MASK) { |
| case WRPLL_REF_PCH_SSC: |
| refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.ssc; |
| break; |
| case WRPLL_REF_LCPLL: |
| refclk = 2700000; |
| break; |
| default: |
| gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n", |
| vgpu->id, port_name(port), wrpll_ctl); |
| goto out; |
| } |
| |
| r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK; |
| p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT; |
| n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT; |
| |
| dp_br = (refclk * n / 10) / (p * r) * 2; |
| break; |
| } |
| default: |
| gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n", |
| vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port))); |
| break; |
| } |
| |
| out: |
| return dp_br; |
| } |
| |
| static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port) |
| { |
| u32 dp_br = 0; |
| int refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.nssc; |
| enum dpio_phy phy = DPIO_PHY0; |
| enum dpio_channel ch = DPIO_CH0; |
| struct dpll clock = {}; |
| u32 temp; |
| |
| /* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */ |
| switch (port) { |
| case PORT_A: |
| phy = DPIO_PHY1; |
| ch = DPIO_CH0; |
| break; |
| case PORT_B: |
| phy = DPIO_PHY0; |
| ch = DPIO_CH0; |
| break; |
| case PORT_C: |
| phy = DPIO_PHY0; |
| ch = DPIO_CH1; |
| break; |
| default: |
| gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port)); |
| goto out; |
| } |
| |
| temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port)); |
| if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) { |
| gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n", |
| vgpu->id, port_name(port), temp); |
| goto out; |
| } |
| |
| clock.m1 = 2; |
| clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK, |
| vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22; |
| if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE) |
| clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK, |
| vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2))); |
| clock.n = REG_FIELD_GET(PORT_PLL_N_MASK, |
| vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1))); |
| clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK, |
| vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch))); |
| clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK, |
| vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch))); |
| clock.m = clock.m1 * clock.m2; |
| clock.p = clock.p1 * clock.p2 * 5; |
| |
| if (clock.n == 0 || clock.p == 0) { |
| gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port)); |
| goto out; |
| } |
| |
| clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22); |
| clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p); |
| |
| dp_br = clock.dot; |
| |
| out: |
| return dp_br; |
| } |
| |
| static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port) |
| { |
| u32 dp_br = 0; |
| enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0; |
| |
| /* Find the enabled DPLL for the DDI/PORT */ |
| if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) && |
| (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) { |
| dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) & |
| DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >> |
| DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port); |
| } else { |
| gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n", |
| vgpu->id, port_name(port)); |
| return dp_br; |
| } |
| |
| /* Find PLL output frequency from correct DPLL, and get bir rate */ |
| switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) & |
| DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >> |
| DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) { |
| case DPLL_CTRL1_LINK_RATE_810: |
| dp_br = 81000 * 2; |
| break; |
| case DPLL_CTRL1_LINK_RATE_1080: |
| dp_br = 108000 * 2; |
| break; |
| case DPLL_CTRL1_LINK_RATE_1350: |
| dp_br = 135000 * 2; |
| break; |
| case DPLL_CTRL1_LINK_RATE_1620: |
| dp_br = 162000 * 2; |
| break; |
| case DPLL_CTRL1_LINK_RATE_2160: |
| dp_br = 216000 * 2; |
| break; |
| case DPLL_CTRL1_LINK_RATE_2700: |
| dp_br = 270000 * 2; |
| break; |
| default: |
| dp_br = 0; |
| gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n", |
| vgpu->id, port_name(port), dpll_id); |
| } |
| |
| return dp_br; |
| } |
| |
| static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu) |
| { |
| struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; |
| enum port port; |
| u32 dp_br, link_m, link_n, htotal, vtotal; |
| |
| /* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */ |
| port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(TRANSCODER_A)) & |
| TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT; |
| if (port != PORT_B && port != PORT_D) { |
| gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port)); |
| return; |
| } |
| |
| /* Calculate DP bitrate from PLL */ |
| if (IS_BROADWELL(dev_priv)) |
| dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port); |
| else if (IS_BROXTON(dev_priv)) |
| dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port); |
| else |
| dp_br = skl_vgpu_get_dp_bitrate(vgpu, port); |
| |
| /* Get DP link symbol clock M/N */ |
| link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(TRANSCODER_A)); |
| link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(TRANSCODER_A)); |
| |
| /* Get H/V total from transcoder timing */ |
| htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT); |
| vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT); |
| |
| if (dp_br && link_n && htotal && vtotal) { |
| u64 pixel_clk = 0; |
| u32 new_rate = 0; |
| u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k); |
| |
| /* Calcuate pixel clock by (ls_clk * M / N) */ |
| pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n); |
| pixel_clk *= MSEC_PER_SEC; |
| |
| /* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */ |
| new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1)); |
| |
| if (*old_rate != new_rate) |
| *old_rate = new_rate; |
| |
| gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n", |
| vgpu->id, pipe_name(PIPE_A), new_rate); |
| } |
| } |
| |
| static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 data; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| data = vgpu_vreg(vgpu, offset); |
| |
| if (data & TRANSCONF_ENABLE) { |
| vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE; |
| vgpu_update_refresh_rate(vgpu); |
| vgpu_update_vblank_emulation(vgpu, true); |
| } else { |
| vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE; |
| vgpu_update_vblank_emulation(vgpu, false); |
| } |
| return 0; |
| } |
| |
| /* sorted in ascending order */ |
| static i915_reg_t force_nonpriv_white_list[] = { |
| _MMIO(0xd80), |
| GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec) |
| GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248) |
| CL_PRIMITIVES_COUNT, //_MMIO(0x2340) |
| PS_INVOCATION_COUNT, //_MMIO(0x2348) |
| PS_DEPTH_COUNT, //_MMIO(0x2350) |
| GEN8_CS_CHICKEN1,//_MMIO(0x2580) |
| _MMIO(0x2690), |
| _MMIO(0x2694), |
| _MMIO(0x2698), |
| _MMIO(0x2754), |
| _MMIO(0x28a0), |
| _MMIO(0x4de0), |
| _MMIO(0x4de4), |
| _MMIO(0x4dfc), |
| GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010) |
| _MMIO(0x7014), |
| HDC_CHICKEN0,//_MMIO(0x7300) |
| GEN8_HDC_CHICKEN1,//_MMIO(0x7304) |
| _MMIO(0x7700), |
| _MMIO(0x7704), |
| _MMIO(0x7708), |
| _MMIO(0x770c), |
| _MMIO(0x83a8), |
| _MMIO(0xb110), |
| _MMIO(0xb118), |
| _MMIO(0xe100), |
| _MMIO(0xe18c), |
| _MMIO(0xe48c), |
| _MMIO(0xe5f4), |
| _MMIO(0x64844), |
| }; |
| |
| /* a simple bsearch */ |
| static inline bool in_whitelist(u32 reg) |
| { |
| int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list); |
| i915_reg_t *array = force_nonpriv_white_list; |
| |
| while (left < right) { |
| int mid = (left + right)/2; |
| |
| if (reg > array[mid].reg) |
| left = mid + 1; |
| else if (reg < array[mid].reg) |
| right = mid; |
| else |
| return true; |
| } |
| return false; |
| } |
| |
| static int force_nonpriv_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2); |
| const struct intel_engine_cs *engine = |
| intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); |
| |
| if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) { |
| gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n", |
| vgpu->id, offset, bytes); |
| return -EINVAL; |
| } |
| |
| if (!in_whitelist(reg_nonpriv) && |
| reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) { |
| gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n", |
| vgpu->id, reg_nonpriv, offset); |
| } else |
| intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes); |
| |
| return 0; |
| } |
| |
| static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) { |
| vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE; |
| } else { |
| vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE; |
| if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E))) |
| vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |
| &= ~DP_TP_STATUS_AUTOTRAIN_DONE; |
| } |
| return 0; |
| } |
| |
| static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data; |
| return 0; |
| } |
| |
| #define FDI_LINK_TRAIN_PATTERN1 0 |
| #define FDI_LINK_TRAIN_PATTERN2 1 |
| |
| static int fdi_auto_training_started(struct intel_vgpu *vgpu) |
| { |
| u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E)); |
| u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL); |
| u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E)); |
| |
| if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) && |
| (rx_ctl & FDI_RX_ENABLE) && |
| (rx_ctl & FDI_AUTO_TRAINING) && |
| (tx_ctl & DP_TP_CTL_ENABLE) && |
| (tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN)) |
| return 1; |
| else |
| return 0; |
| } |
| |
| static int check_fdi_rx_train_status(struct intel_vgpu *vgpu, |
| enum pipe pipe, unsigned int train_pattern) |
| { |
| i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl; |
| unsigned int fdi_rx_check_bits, fdi_tx_check_bits; |
| unsigned int fdi_rx_train_bits, fdi_tx_train_bits; |
| unsigned int fdi_iir_check_bits; |
| |
| fdi_rx_imr = FDI_RX_IMR(pipe); |
| fdi_tx_ctl = FDI_TX_CTL(pipe); |
| fdi_rx_ctl = FDI_RX_CTL(pipe); |
| |
| if (train_pattern == FDI_LINK_TRAIN_PATTERN1) { |
| fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT; |
| fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1; |
| fdi_iir_check_bits = FDI_RX_BIT_LOCK; |
| } else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) { |
| fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT; |
| fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2; |
| fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK; |
| } else { |
| gvt_vgpu_err("Invalid train pattern %d\n", train_pattern); |
| return -EINVAL; |
| } |
| |
| fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits; |
| fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits; |
| |
| /* If imr bit has been masked */ |
| if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits) |
| return 0; |
| |
| if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits) |
| == fdi_tx_check_bits) |
| && ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits) |
| == fdi_rx_check_bits)) |
| return 1; |
| else |
| return 0; |
| } |
| |
| #define INVALID_INDEX (~0U) |
| |
| static unsigned int calc_index(unsigned int offset, unsigned int start, |
| unsigned int next, unsigned int end, i915_reg_t i915_end) |
| { |
| unsigned int range = next - start; |
| |
| if (!end) |
| end = i915_mmio_reg_offset(i915_end); |
| if (offset < start || offset > end) |
| return INVALID_INDEX; |
| offset -= start; |
| return offset / range; |
| } |
| |
| #define FDI_RX_CTL_TO_PIPE(offset) \ |
| calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C)) |
| |
| #define FDI_TX_CTL_TO_PIPE(offset) \ |
| calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C)) |
| |
| #define FDI_RX_IMR_TO_PIPE(offset) \ |
| calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C)) |
| |
| static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| i915_reg_t fdi_rx_iir; |
| unsigned int index; |
| int ret; |
| |
| if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX) |
| index = FDI_RX_CTL_TO_PIPE(offset); |
| else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX) |
| index = FDI_TX_CTL_TO_PIPE(offset); |
| else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX) |
| index = FDI_RX_IMR_TO_PIPE(offset); |
| else { |
| gvt_vgpu_err("Unsupported registers %x\n", offset); |
| return -EINVAL; |
| } |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| fdi_rx_iir = FDI_RX_IIR(index); |
| |
| ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1); |
| if (ret < 0) |
| return ret; |
| if (ret) |
| vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK; |
| |
| ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2); |
| if (ret < 0) |
| return ret; |
| if (ret) |
| vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK; |
| |
| if (offset == _FDI_RXA_CTL) |
| if (fdi_auto_training_started(vgpu)) |
| vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |= |
| DP_TP_STATUS_AUTOTRAIN_DONE; |
| return 0; |
| } |
| |
| #define DP_TP_CTL_TO_PORT(offset) \ |
| calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E)) |
| |
| static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| i915_reg_t status_reg; |
| unsigned int index; |
| u32 data; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| index = DP_TP_CTL_TO_PORT(offset); |
| data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8; |
| if (data == 0x2) { |
| status_reg = DP_TP_STATUS(index); |
| vgpu_vreg_t(vgpu, status_reg) |= (1 << 25); |
| } |
| return 0; |
| } |
| |
| static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 reg_val; |
| u32 sticky_mask; |
| |
| reg_val = *((u32 *)p_data); |
| sticky_mask = GENMASK(27, 26) | (1 << 24); |
| |
| vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) | |
| (vgpu_vreg(vgpu, offset) & sticky_mask); |
| vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask); |
| return 0; |
| } |
| |
| static int pch_adpa_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 data; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| data = vgpu_vreg(vgpu, offset); |
| |
| if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER) |
| vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER; |
| return 0; |
| } |
| |
| static int south_chicken2_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 data; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| data = vgpu_vreg(vgpu, offset); |
| |
| if (data & FDI_MPHY_IOSFSB_RESET_CTL) |
| vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS; |
| else |
| vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS; |
| return 0; |
| } |
| |
| #define DSPSURF_TO_PIPE(offset) \ |
| calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C)) |
| |
| static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; |
| u32 pipe = DSPSURF_TO_PIPE(offset); |
| int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY); |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); |
| |
| vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++; |
| |
| if (vgpu_vreg_t(vgpu, DSPCNTR(pipe)) & PLANE_CTL_ASYNC_FLIP) |
| intel_vgpu_trigger_virtual_event(vgpu, event); |
| else |
| set_bit(event, vgpu->irq.flip_done_event[pipe]); |
| |
| return 0; |
| } |
| |
| #define SPRSURF_TO_PIPE(offset) \ |
| calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C)) |
| |
| static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 pipe = SPRSURF_TO_PIPE(offset); |
| int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0); |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); |
| |
| if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP) |
| intel_vgpu_trigger_virtual_event(vgpu, event); |
| else |
| set_bit(event, vgpu->irq.flip_done_event[pipe]); |
| |
| return 0; |
| } |
| |
| static int reg50080_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, |
| unsigned int bytes) |
| { |
| struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; |
| enum pipe pipe = REG_50080_TO_PIPE(offset); |
| enum plane_id plane = REG_50080_TO_PLANE(offset); |
| int event = SKL_FLIP_EVENT(pipe, plane); |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| if (plane == PLANE_PRIMARY) { |
| vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); |
| vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++; |
| } else { |
| vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset); |
| } |
| |
| if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC) |
| intel_vgpu_trigger_virtual_event(vgpu, event); |
| else |
| set_bit(event, vgpu->irq.flip_done_event[pipe]); |
| |
| return 0; |
| } |
| |
| static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu, |
| unsigned int reg) |
| { |
| struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; |
| enum intel_gvt_event_type event; |
| |
| if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A))) |
| event = AUX_CHANNEL_A; |
| else if (reg == _PCH_DPB_AUX_CH_CTL || |
| reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B))) |
| event = AUX_CHANNEL_B; |
| else if (reg == _PCH_DPC_AUX_CH_CTL || |
| reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C))) |
| event = AUX_CHANNEL_C; |
| else if (reg == _PCH_DPD_AUX_CH_CTL || |
| reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D))) |
| event = AUX_CHANNEL_D; |
| else { |
| drm_WARN_ON(&dev_priv->drm, true); |
| return -EINVAL; |
| } |
| |
| intel_vgpu_trigger_virtual_event(vgpu, event); |
| return 0; |
| } |
| |
| static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value, |
| unsigned int reg, int len, bool data_valid) |
| { |
| /* mark transaction done */ |
| value |= DP_AUX_CH_CTL_DONE; |
| value &= ~DP_AUX_CH_CTL_SEND_BUSY; |
| value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR; |
| |
| if (data_valid) |
| value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR; |
| else |
| value |= DP_AUX_CH_CTL_TIME_OUT_ERROR; |
| |
| /* message size */ |
| value &= ~(0xf << 20); |
| value |= (len << 20); |
| vgpu_vreg(vgpu, reg) = value; |
| |
| if (value & DP_AUX_CH_CTL_INTERRUPT) |
| return trigger_aux_channel_interrupt(vgpu, reg); |
| return 0; |
| } |
| |
| static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd, |
| u8 t) |
| { |
| if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) { |
| /* training pattern 1 for CR */ |
| /* set LANE0_CR_DONE, LANE1_CR_DONE */ |
| dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE; |
| /* set LANE2_CR_DONE, LANE3_CR_DONE */ |
| dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE; |
| } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == |
| DPCD_TRAINING_PATTERN_2) { |
| /* training pattern 2 for EQ */ |
| /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane0_1 */ |
| dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE; |
| dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED; |
| /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane2_3 */ |
| dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE; |
| dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED; |
| /* set INTERLANE_ALIGN_DONE */ |
| dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |= |
| DPCD_INTERLANE_ALIGN_DONE; |
| } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == |
| DPCD_LINK_TRAINING_DISABLED) { |
| /* finish link training */ |
| /* set sink status as synchronized */ |
| dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC; |
| } |
| } |
| |
| #define _REG_HSW_DP_AUX_CH_CTL(dp) \ |
| ((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010) |
| |
| #define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100) |
| |
| #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8) |
| |
| #define dpy_is_valid_port(port) \ |
| (((port) >= PORT_A) && ((port) < I915_MAX_PORTS)) |
| |
| static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| struct intel_vgpu_display *display = &vgpu->display; |
| int msg, addr, ctrl, op, len; |
| int port_index = OFFSET_TO_DP_AUX_PORT(offset); |
| struct intel_vgpu_dpcd_data *dpcd = NULL; |
| struct intel_vgpu_port *port = NULL; |
| u32 data; |
| |
| if (!dpy_is_valid_port(port_index)) { |
| gvt_vgpu_err("Unsupported DP port access!\n"); |
| return 0; |
| } |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| data = vgpu_vreg(vgpu, offset); |
| |
| if ((GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9) |
| && offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) { |
| /* SKL DPB/C/D aux ctl register changed */ |
| return 0; |
| } else if (IS_BROADWELL(vgpu->gvt->gt->i915) && |
| offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) { |
| /* write to the data registers */ |
| return 0; |
| } |
| |
| if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) { |
| /* just want to clear the sticky bits */ |
| vgpu_vreg(vgpu, offset) = 0; |
| return 0; |
| } |
| |
| port = &display->ports[port_index]; |
| dpcd = port->dpcd; |
| |
| /* read out message from DATA1 register */ |
| msg = vgpu_vreg(vgpu, offset + 4); |
| addr = (msg >> 8) & 0xffff; |
| ctrl = (msg >> 24) & 0xff; |
| len = msg & 0xff; |
| op = ctrl >> 4; |
| |
| if (op == GVT_AUX_NATIVE_WRITE) { |
| int t; |
| u8 buf[16]; |
| |
| if ((addr + len + 1) >= DPCD_SIZE) { |
| /* |
| * Write request exceeds what we supported, |
| * DCPD spec: When a Source Device is writing a DPCD |
| * address not supported by the Sink Device, the Sink |
| * Device shall reply with AUX NACK and “M” equal to |
| * zero. |
| */ |
| |
| /* NAK the write */ |
| vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK; |
| dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true); |
| return 0; |
| } |
| |
| /* |
| * Write request format: Headr (command + address + size) occupies |
| * 4 bytes, followed by (len + 1) bytes of data. See details at |
| * intel_dp_aux_transfer(). |
| */ |
| if ((len + 1 + 4) > AUX_BURST_SIZE) { |
| gvt_vgpu_err("dp_aux_header: len %d is too large\n", len); |
| return -EINVAL; |
| } |
| |
| /* unpack data from vreg to buf */ |
| for (t = 0; t < 4; t++) { |
| u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4); |
| |
| buf[t * 4] = (r >> 24) & 0xff; |
| buf[t * 4 + 1] = (r >> 16) & 0xff; |
| buf[t * 4 + 2] = (r >> 8) & 0xff; |
| buf[t * 4 + 3] = r & 0xff; |
| } |
| |
| /* write to virtual DPCD */ |
| if (dpcd && dpcd->data_valid) { |
| for (t = 0; t <= len; t++) { |
| int p = addr + t; |
| |
| dpcd->data[p] = buf[t]; |
| /* check for link training */ |
| if (p == DPCD_TRAINING_PATTERN_SET) |
| dp_aux_ch_ctl_link_training(dpcd, |
| buf[t]); |
| } |
| } |
| |
| /* ACK the write */ |
| vgpu_vreg(vgpu, offset + 4) = 0; |
| dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1, |
| dpcd && dpcd->data_valid); |
| return 0; |
| } |
| |
| if (op == GVT_AUX_NATIVE_READ) { |
| int idx, i, ret = 0; |
| |
| if ((addr + len + 1) >= DPCD_SIZE) { |
| /* |
| * read request exceeds what we supported |
| * DPCD spec: A Sink Device receiving a Native AUX CH |
| * read request for an unsupported DPCD address must |
| * reply with an AUX ACK and read data set equal to |
| * zero instead of replying with AUX NACK. |
| */ |
| |
| /* ACK the READ*/ |
| vgpu_vreg(vgpu, offset + 4) = 0; |
| vgpu_vreg(vgpu, offset + 8) = 0; |
| vgpu_vreg(vgpu, offset + 12) = 0; |
| vgpu_vreg(vgpu, offset + 16) = 0; |
| vgpu_vreg(vgpu, offset + 20) = 0; |
| |
| dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2, |
| true); |
| return 0; |
| } |
| |
| for (idx = 1; idx <= 5; idx++) { |
| /* clear the data registers */ |
| vgpu_vreg(vgpu, offset + 4 * idx) = 0; |
| } |
| |
| /* |
| * Read reply format: ACK (1 byte) plus (len + 1) bytes of data. |
| */ |
| if ((len + 2) > AUX_BURST_SIZE) { |
| gvt_vgpu_err("dp_aux_header: len %d is too large\n", len); |
| return -EINVAL; |
| } |
| |
| /* read from virtual DPCD to vreg */ |
| /* first 4 bytes: [ACK][addr][addr+1][addr+2] */ |
| if (dpcd && dpcd->data_valid) { |
| for (i = 1; i <= (len + 1); i++) { |
| int t; |
| |
| t = dpcd->data[addr + i - 1]; |
| t <<= (24 - 8 * (i % 4)); |
| ret |= t; |
| |
| if ((i % 4 == 3) || (i == (len + 1))) { |
| vgpu_vreg(vgpu, offset + |
| (i / 4 + 1) * 4) = ret; |
| ret = 0; |
| } |
| } |
| } |
| dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2, |
| dpcd && dpcd->data_valid); |
| return 0; |
| } |
| |
| /* i2c transaction starts */ |
| intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data); |
| |
| if (data & DP_AUX_CH_CTL_INTERRUPT) |
| trigger_aux_channel_interrupt(vgpu, offset); |
| return 0; |
| } |
| |
| static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| *(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH); |
| write_vreg(vgpu, offset, p_data, bytes); |
| return 0; |
| } |
| |
| static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| bool vga_disable; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE; |
| |
| gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id, |
| vga_disable ? "Disable" : "Enable"); |
| return 0; |
| } |
| |
| static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu, |
| unsigned int sbi_offset) |
| { |
| struct intel_vgpu_display *display = &vgpu->display; |
| int num = display->sbi.number; |
| int i; |
| |
| for (i = 0; i < num; ++i) |
| if (display->sbi.registers[i].offset == sbi_offset) |
| break; |
| |
| if (i == num) |
| return 0; |
| |
| return display->sbi.registers[i].value; |
| } |
| |
| static void write_virtual_sbi_register(struct intel_vgpu *vgpu, |
| unsigned int offset, u32 value) |
| { |
| struct intel_vgpu_display *display = &vgpu->display; |
| int num = display->sbi.number; |
| int i; |
| |
| for (i = 0; i < num; ++i) { |
| if (display->sbi.registers[i].offset == offset) |
| break; |
| } |
| |
| if (i == num) { |
| if (num == SBI_REG_MAX) { |
| gvt_vgpu_err("SBI caching meets maximum limits\n"); |
| return; |
| } |
| display->sbi.number++; |
| } |
| |
| display->sbi.registers[i].offset = offset; |
| display->sbi.registers[i].value = value; |
| } |
| |
| static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >> |
| SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) { |
| unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) & |
| SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT; |
| vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu, |
| sbi_offset); |
| } |
| read_vreg(vgpu, offset, p_data, bytes); |
| return 0; |
| } |
| |
| static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 data; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| data = vgpu_vreg(vgpu, offset); |
| |
| data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT); |
| data |= SBI_READY; |
| |
| data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT); |
| data |= SBI_RESPONSE_SUCCESS; |
| |
| vgpu_vreg(vgpu, offset) = data; |
| |
| if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >> |
| SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) { |
| unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) & |
| SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT; |
| |
| write_virtual_sbi_register(vgpu, sbi_offset, |
| vgpu_vreg_t(vgpu, SBI_DATA)); |
| } |
| return 0; |
| } |
| |
| #define _vgtif_reg(x) \ |
| (VGT_PVINFO_PAGE + offsetof(struct vgt_if, x)) |
| |
| static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| bool invalid_read = false; |
| |
| read_vreg(vgpu, offset, p_data, bytes); |
| |
| switch (offset) { |
| case _vgtif_reg(magic) ... _vgtif_reg(vgt_id): |
| if (offset + bytes > _vgtif_reg(vgt_id) + 4) |
| invalid_read = true; |
| break; |
| case _vgtif_reg(avail_rs.mappable_gmadr.base) ... |
| _vgtif_reg(avail_rs.fence_num): |
| if (offset + bytes > |
| _vgtif_reg(avail_rs.fence_num) + 4) |
| invalid_read = true; |
| break; |
| case 0x78010: /* vgt_caps */ |
| case 0x7881c: |
| break; |
| default: |
| invalid_read = true; |
| break; |
| } |
| if (invalid_read) |
| gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n", |
| offset, bytes, *(u32 *)p_data); |
| vgpu->pv_notified = true; |
| return 0; |
| } |
| |
| static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification) |
| { |
| enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; |
| struct intel_vgpu_mm *mm; |
| u64 *pdps; |
| |
| pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0])); |
| |
| switch (notification) { |
| case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE: |
| root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; |
| fallthrough; |
| case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE: |
| mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps); |
| return PTR_ERR_OR_ZERO(mm); |
| case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY: |
| case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY: |
| return intel_vgpu_put_ppgtt_mm(vgpu, pdps); |
| case VGT_G2V_EXECLIST_CONTEXT_CREATE: |
| case VGT_G2V_EXECLIST_CONTEXT_DESTROY: |
| case 1: /* Remove this in guest driver. */ |
| break; |
| default: |
| gvt_vgpu_err("Invalid PV notification %d\n", notification); |
| } |
| return 0; |
| } |
| |
| static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready) |
| { |
| struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj; |
| char *env[3] = {NULL, NULL, NULL}; |
| char vmid_str[20]; |
| char display_ready_str[20]; |
| |
| snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready); |
| env[0] = display_ready_str; |
| |
| snprintf(vmid_str, 20, "VMID=%d", vgpu->id); |
| env[1] = vmid_str; |
| |
| return kobject_uevent_env(kobj, KOBJ_ADD, env); |
| } |
| |
| static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 data = *(u32 *)p_data; |
| bool invalid_write = false; |
| |
| switch (offset) { |
| case _vgtif_reg(display_ready): |
| send_display_ready_uevent(vgpu, data ? 1 : 0); |
| break; |
| case _vgtif_reg(g2v_notify): |
| handle_g2v_notification(vgpu, data); |
| break; |
| /* add xhot and yhot to handled list to avoid error log */ |
| case _vgtif_reg(cursor_x_hot): |
| case _vgtif_reg(cursor_y_hot): |
| case _vgtif_reg(pdp[0].lo): |
| case _vgtif_reg(pdp[0].hi): |
| case _vgtif_reg(pdp[1].lo): |
| case _vgtif_reg(pdp[1].hi): |
| case _vgtif_reg(pdp[2].lo): |
| case _vgtif_reg(pdp[2].hi): |
| case _vgtif_reg(pdp[3].lo): |
| case _vgtif_reg(pdp[3].hi): |
| case _vgtif_reg(execlist_context_descriptor_lo): |
| case _vgtif_reg(execlist_context_descriptor_hi): |
| break; |
| case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]): |
| invalid_write = true; |
| enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE); |
| break; |
| default: |
| invalid_write = true; |
| gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n", |
| offset, bytes, data); |
| break; |
| } |
| |
| if (!invalid_write) |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| return 0; |
| } |
| |
| static int pf_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| struct drm_i915_private *i915 = vgpu->gvt->gt->i915; |
| u32 val = *(u32 *)p_data; |
| |
| if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL || |
| offset == _PS_1B_CTRL || offset == _PS_2B_CTRL || |
| offset == _PS_1C_CTRL) && (val & PS_BINDING_MASK) != PS_BINDING_PIPE) { |
| drm_WARN_ONCE(&i915->drm, true, |
| "VM(%d): guest is trying to scaling a plane\n", |
| vgpu->id); |
| return 0; |
| } |
| |
| return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes); |
| } |
| |
| static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| if (vgpu_vreg(vgpu, offset) & |
| HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL)) |
| vgpu_vreg(vgpu, offset) |= |
| HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL); |
| else |
| vgpu_vreg(vgpu, offset) &= |
| ~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL); |
| return 0; |
| } |
| |
| static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST) |
| vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE; |
| else |
| vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE; |
| |
| return 0; |
| } |
| |
| static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM) |
| vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM; |
| return 0; |
| } |
| |
| static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| struct drm_i915_private *i915 = vgpu->gvt->gt->i915; |
| u32 mode; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| mode = vgpu_vreg(vgpu, offset); |
| |
| if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) { |
| drm_WARN_ONCE(&i915->drm, 1, |
| "VM(%d): iGVT-g doesn't support GuC\n", |
| vgpu->id); |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| struct drm_i915_private *i915 = vgpu->gvt->gt->i915; |
| u32 trtte = *(u32 *)p_data; |
| |
| if ((trtte & 1) && (trtte & (1 << 1)) == 0) { |
| drm_WARN(&i915->drm, 1, |
| "VM(%d): Use physical address for TRTT!\n", |
| vgpu->id); |
| return -EINVAL; |
| } |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| return 0; |
| } |
| |
| static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| write_vreg(vgpu, offset, p_data, bytes); |
| return 0; |
| } |
| |
| static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 v = 0; |
| |
| if (vgpu_vreg(vgpu, 0x46010) & (1 << 31)) |
| v |= (1 << 0); |
| |
| if (vgpu_vreg(vgpu, 0x46014) & (1 << 31)) |
| v |= (1 << 8); |
| |
| if (vgpu_vreg(vgpu, 0x46040) & (1 << 31)) |
| v |= (1 << 16); |
| |
| if (vgpu_vreg(vgpu, 0x46060) & (1 << 31)) |
| v |= (1 << 24); |
| |
| vgpu_vreg(vgpu, offset) = v; |
| |
| return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); |
| } |
| |
| static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 value = *(u32 *)p_data; |
| u32 cmd = value & 0xff; |
| u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA); |
| |
| switch (cmd) { |
| case GEN9_PCODE_READ_MEM_LATENCY: |
| if (IS_SKYLAKE(vgpu->gvt->gt->i915) || |
| IS_KABYLAKE(vgpu->gvt->gt->i915) || |
| IS_COFFEELAKE(vgpu->gvt->gt->i915) || |
| IS_COMETLAKE(vgpu->gvt->gt->i915)) { |
| /** |
| * "Read memory latency" command on gen9. |
| * Below memory latency values are read |
| * from skylake platform. |
| */ |
| if (!*data0) |
| *data0 = 0x1e1a1100; |
| else |
| *data0 = 0x61514b3d; |
| } else if (IS_BROXTON(vgpu->gvt->gt->i915)) { |
| /** |
| * "Read memory latency" command on gen9. |
| * Below memory latency values are read |
| * from Broxton MRB. |
| */ |
| if (!*data0) |
| *data0 = 0x16080707; |
| else |
| *data0 = 0x16161616; |
| } |
| break; |
| case SKL_PCODE_CDCLK_CONTROL: |
| if (IS_SKYLAKE(vgpu->gvt->gt->i915) || |
| IS_KABYLAKE(vgpu->gvt->gt->i915) || |
| IS_COFFEELAKE(vgpu->gvt->gt->i915) || |
| IS_COMETLAKE(vgpu->gvt->gt->i915)) |
| *data0 = SKL_CDCLK_READY_FOR_CHANGE; |
| break; |
| case GEN6_PCODE_READ_RC6VIDS: |
| *data0 |= 0x1; |
| break; |
| } |
| |
| gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n", |
| vgpu->id, value, *data0); |
| /** |
| * PCODE_READY clear means ready for pcode read/write, |
| * PCODE_ERROR_MASK clear means no error happened. In GVT-g we |
| * always emulate as pcode read/write success and ready for access |
| * anytime, since we don't touch real physical registers here. |
| */ |
| value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK); |
| return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes); |
| } |
| |
| static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 value = *(u32 *)p_data; |
| const struct intel_engine_cs *engine = |
| intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); |
| |
| if (value != 0 && |
| !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) { |
| gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n", |
| offset, value); |
| return -EINVAL; |
| } |
| |
| /* |
| * Need to emulate all the HWSP register write to ensure host can |
| * update the VM CSB status correctly. Here listed registers can |
| * support BDW, SKL or other platforms with same HWSP registers. |
| */ |
| if (unlikely(!engine)) { |
| gvt_vgpu_err("access unknown hardware status page register:0x%x\n", |
| offset); |
| return -EINVAL; |
| } |
| vgpu->hws_pga[engine->id] = value; |
| gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n", |
| vgpu->id, value, offset); |
| |
| return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes); |
| } |
| |
| static int skl_power_well_ctl_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 v = *(u32 *)p_data; |
| |
| if (IS_BROXTON(vgpu->gvt->gt->i915)) |
| v &= (1 << 31) | (1 << 29); |
| else |
| v &= (1 << 31) | (1 << 29) | (1 << 9) | |
| (1 << 7) | (1 << 5) | (1 << 3) | (1 << 1); |
| v |= (v >> 1); |
| |
| return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes); |
| } |
| |
| static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 v = *(u32 *)p_data; |
| |
| /* other bits are MBZ. */ |
| v &= (1 << 31) | (1 << 30); |
| v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30)); |
| |
| vgpu_vreg(vgpu, offset) = v; |
| |
| return 0; |
| } |
| |
| static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 v = *(u32 *)p_data; |
| |
| if (v & BXT_DE_PLL_PLL_ENABLE) |
| v |= BXT_DE_PLL_LOCK; |
| |
| vgpu_vreg(vgpu, offset) = v; |
| |
| return 0; |
| } |
| |
| static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 v = *(u32 *)p_data; |
| |
| if (v & PORT_PLL_ENABLE) |
| v |= PORT_PLL_LOCK; |
| |
| vgpu_vreg(vgpu, offset) = v; |
| |
| return 0; |
| } |
| |
| static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 v = *(u32 *)p_data; |
| u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0; |
| |
| switch (offset) { |
| case _PHY_CTL_FAMILY_EDP: |
| vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data; |
| break; |
| case _PHY_CTL_FAMILY_DDI: |
| vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data; |
| vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data; |
| break; |
| } |
| |
| vgpu_vreg(vgpu, offset) = v; |
| |
| return 0; |
| } |
| |
| static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 v = vgpu_vreg(vgpu, offset); |
| |
| v &= ~UNIQUE_TRANGE_EN_METHOD; |
| |
| vgpu_vreg(vgpu, offset) = v; |
| |
| return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); |
| } |
| |
| static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 v = *(u32 *)p_data; |
| |
| if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) { |
| vgpu_vreg(vgpu, offset - 0x600) = v; |
| vgpu_vreg(vgpu, offset - 0x800) = v; |
| } else { |
| vgpu_vreg(vgpu, offset - 0x400) = v; |
| vgpu_vreg(vgpu, offset - 0x600) = v; |
| } |
| |
| vgpu_vreg(vgpu, offset) = v; |
| |
| return 0; |
| } |
| |
| static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 v = *(u32 *)p_data; |
| |
| if (v & BIT(0)) { |
| vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &= |
| ~PHY_RESERVED; |
| vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |= |
| PHY_POWER_GOOD; |
| } |
| |
| if (v & BIT(1)) { |
| vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &= |
| ~PHY_RESERVED; |
| vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |= |
| PHY_POWER_GOOD; |
| } |
| |
| |
| vgpu_vreg(vgpu, offset) = v; |
| |
| return 0; |
| } |
| |
| static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| vgpu_vreg(vgpu, offset) = 0; |
| return 0; |
| } |
| |
| /* |
| * FixMe: |
| * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did: |
| * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.) |
| * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing |
| * these MI_BATCH_BUFFER. |
| * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT |
| * PML4 PTE: PAT(0) PCD(1) PWT(1). |
| * The performance is still expected to be low, will need further improvement. |
| */ |
| static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u64 pat = |
| GEN8_PPAT(0, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(1, 0) | |
| GEN8_PPAT(2, 0) | |
| GEN8_PPAT(3, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(4, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(5, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(6, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(7, CHV_PPAT_SNOOP); |
| |
| vgpu_vreg(vgpu, offset) = lower_32_bits(pat); |
| |
| return 0; |
| } |
| |
| static int guc_status_read(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, |
| unsigned int bytes) |
| { |
| /* keep MIA_IN_RESET before clearing */ |
| read_vreg(vgpu, offset, p_data, bytes); |
| vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET; |
| return 0; |
| } |
| |
| static int mmio_read_from_hw(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| struct intel_gvt *gvt = vgpu->gvt; |
| const struct intel_engine_cs *engine = |
| intel_gvt_render_mmio_to_engine(gvt, offset); |
| |
| /** |
| * Read HW reg in following case |
| * a. the offset isn't a ring mmio |
| * b. the offset's ring is running on hw. |
| * c. the offset is ring time stamp mmio |
| */ |
| |
| if (!engine || |
| vgpu == gvt->scheduler.engine_owner[engine->id] || |
| offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) || |
| offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) { |
| mmio_hw_access_pre(gvt->gt); |
| vgpu_vreg(vgpu, offset) = |
| intel_uncore_read(gvt->gt->uncore, _MMIO(offset)); |
| mmio_hw_access_post(gvt->gt); |
| } |
| |
| return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes); |
| } |
| |
| static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| struct drm_i915_private *i915 = vgpu->gvt->gt->i915; |
| const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); |
| struct intel_vgpu_execlist *execlist; |
| u32 data = *(u32 *)p_data; |
| int ret = 0; |
| |
| if (drm_WARN_ON(&i915->drm, !engine)) |
| return -EINVAL; |
| |
| /* |
| * Due to d3_entered is used to indicate skipping PPGTT invalidation on |
| * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after |
| * vGPU reset if in resuming. |
| * In S0ix exit, the device power state also transite from D3 to D0 as |
| * S3 resume, but no vGPU reset (triggered by QEMU devic model). After |
| * S0ix exit, all engines continue to work. However the d3_entered |
| * remains set which will break next vGPU reset logic (miss the expected |
| * PPGTT invalidation). |
| * Engines can only work in D0. Thus the 1st elsp write gives GVT a |
| * chance to clear d3_entered. |
| */ |
| if (vgpu->d3_entered) |
| vgpu->d3_entered = false; |
| |
| execlist = &vgpu->submission.execlist[engine->id]; |
| |
| execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data; |
| if (execlist->elsp_dwords.index == 3) { |
| ret = intel_vgpu_submit_execlist(vgpu, engine); |
| if(ret) |
| gvt_vgpu_err("fail submit workload on ring %s\n", |
| engine->name); |
| } |
| |
| ++execlist->elsp_dwords.index; |
| execlist->elsp_dwords.index &= 0x3; |
| return ret; |
| } |
| |
| static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 data = *(u32 *)p_data; |
| const struct intel_engine_cs *engine = |
| intel_gvt_render_mmio_to_engine(vgpu->gvt, offset); |
| bool enable_execlist; |
| int ret; |
| |
| (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1); |
| if (IS_COFFEELAKE(vgpu->gvt->gt->i915) || |
| IS_COMETLAKE(vgpu->gvt->gt->i915)) |
| (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2); |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| if (IS_MASKED_BITS_ENABLED(data, 1)) { |
| enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); |
| return 0; |
| } |
| |
| if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) || |
| IS_COMETLAKE(vgpu->gvt->gt->i915)) && |
| IS_MASKED_BITS_ENABLED(data, 2)) { |
| enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); |
| return 0; |
| } |
| |
| /* when PPGTT mode enabled, we will check if guest has called |
| * pvinfo, if not, we will treat this guest as non-gvtg-aware |
| * guest, and stop emulating its cfg space, mmio, gtt, etc. |
| */ |
| if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) || |
| IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) && |
| !vgpu->pv_notified) { |
| enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); |
| return 0; |
| } |
| if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) || |
| IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) { |
| enable_execlist = !!(data & GFX_RUN_LIST_ENABLE); |
| |
| gvt_dbg_core("EXECLIST %s on ring %s\n", |
| (enable_execlist ? "enabling" : "disabling"), |
| engine->name); |
| |
| if (!enable_execlist) |
| return 0; |
| |
| ret = intel_vgpu_select_submission_ops(vgpu, |
| engine->mask, |
| INTEL_VGPU_EXECLIST_SUBMISSION); |
| if (ret) |
| return ret; |
| |
| intel_vgpu_start_schedule(vgpu); |
| } |
| return 0; |
| } |
| |
| static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| unsigned int id = 0; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| vgpu_vreg(vgpu, offset) = 0; |
| |
| switch (offset) { |
| case 0x4260: |
| id = RCS0; |
| break; |
| case 0x4264: |
| id = VCS0; |
| break; |
| case 0x4268: |
| id = VCS1; |
| break; |
| case 0x426c: |
| id = BCS0; |
| break; |
| case 0x4270: |
| id = VECS0; |
| break; |
| default: |
| return -EINVAL; |
| } |
| set_bit(id, (void *)vgpu->submission.tlb_handle_pending); |
| |
| return 0; |
| } |
| |
| static int ring_reset_ctl_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, unsigned int bytes) |
| { |
| u32 data; |
| |
| write_vreg(vgpu, offset, p_data, bytes); |
| data = vgpu_vreg(vgpu, offset); |
| |
| if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET)) |
| data |= RESET_CTL_READY_TO_RESET; |
| else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)) |
| data &= ~RESET_CTL_READY_TO_RESET; |
| |
| vgpu_vreg(vgpu, offset) = data; |
| return 0; |
| } |
| |
| static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu, |
| unsigned int offset, void *p_data, |
| unsigned int bytes) |
| { |
| u32 data = *(u32 *)p_data; |
| |
| (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18); |
| write_vreg(vgpu, offset, p_data, bytes); |
| |
| if (IS_MASKED_BITS_ENABLED(data, 0x10) || |
| IS_MASKED_BITS_ENABLED(data, 0x8)) |
| enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST); |
| |
| return 0; |
| } |
| |
| #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \ |
| ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \ |
| s, f, am, rm, d, r, w); \ |
| if (ret) \ |
| return ret; \ |
| } while (0) |
| |
| #define MMIO_DH(reg, d, r, w) \ |
| MMIO_F(reg, 4, 0, 0, 0, d, r, w) |
| |
| #define MMIO_DFH(reg, d, f, r, w) \ |
| MMIO_F(reg, 4, f, 0, 0, d, r, w) |
| |
| #define MMIO_GM(reg, d, r, w) \ |
| MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w) |
| |
| #define MMIO_GM_RDR(reg, d, r, w) \ |
| MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w) |
| |
| #define MMIO_RO(reg, d, f, rm, r, w) \ |
| MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w) |
| |
| #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \ |
| MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \ |
| MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \ |
| MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \ |
| MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \ |
| if (HAS_ENGINE(gvt->gt, VCS1)) \ |
| MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \ |
| } while (0) |
| |
| #define MMIO_RING_DFH(prefix, d, f, r, w) \ |
| MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w) |
| |
| #define MMIO_RING_GM(prefix, d, r, w) \ |
| MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w) |
| |
| #define MMIO_RING_GM_RDR(prefix, d, r, w) \ |
| MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w) |
| |
| #define MMIO_RING_RO(prefix, d, f, rm, r, w) \ |
| MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w) |
| |
| static int init_generic_mmio_info(struct intel_gvt *gvt) |
| { |
| struct drm_i915_private *dev_priv = gvt->gt->i915; |
| int ret; |
| |
| MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL, |
| intel_vgpu_reg_imr_handler); |
| |
| MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler); |
| MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler); |
| MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler); |
| |
| MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL); |
| |
| |
| MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL, |
| gamw_echo_dev_rw_ia_write); |
| |
| MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL); |
| MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL); |
| MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL); |
| |
| #define RING_REG(base) _MMIO((base) + 0x28) |
| MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL); |
| #undef RING_REG |
| |
| #define RING_REG(base) _MMIO((base) + 0x134) |
| MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL); |
| #undef RING_REG |
| |
| #define RING_REG(base) _MMIO((base) + 0x6c) |
| MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL); |
| #undef RING_REG |
| MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL); |
| |
| MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL); |
| MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL); |
| MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL); |
| |
| MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL); |
| MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL); |
| MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL); |
| MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL); |
| MMIO_RING_GM(RING_START, D_ALL, NULL, NULL); |
| |
| /* RING MODE */ |
| #define RING_REG(base) _MMIO((base) + 0x29c) |
| MMIO_RING_DFH(RING_REG, D_ALL, |
| F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL, |
| ring_mode_mmio_write); |
| #undef RING_REG |
| |
| MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS, |
| mmio_read_from_hw, NULL); |
| MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS, |
| mmio_read_from_hw, NULL); |
| |
| MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL, |
| F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| |
| /* display */ |
| MMIO_DH(TRANSCONF(TRANSCODER_A), D_ALL, NULL, pipeconf_mmio_write); |
| MMIO_DH(TRANSCONF(TRANSCODER_B), D_ALL, NULL, pipeconf_mmio_write); |
| MMIO_DH(TRANSCONF(TRANSCODER_C), D_ALL, NULL, pipeconf_mmio_write); |
| MMIO_DH(TRANSCONF(TRANSCODER_EDP), D_ALL, NULL, pipeconf_mmio_write); |
| MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write); |
| MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL, |
| reg50080_mmio_write); |
| MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write); |
| MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL, |
| reg50080_mmio_write); |
| MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write); |
| MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL, |
| reg50080_mmio_write); |
| MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write); |
| MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL, |
| reg50080_mmio_write); |
| MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write); |
| MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL, |
| reg50080_mmio_write); |
| MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write); |
| MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL, |
| reg50080_mmio_write); |
| |
| MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read, |
| gmbus_mmio_write); |
| MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL); |
| |
| MMIO_F(_MMIO(_PCH_DPB_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, |
| dp_aux_ch_ctl_mmio_write); |
| MMIO_F(_MMIO(_PCH_DPC_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, |
| dp_aux_ch_ctl_mmio_write); |
| MMIO_F(_MMIO(_PCH_DPD_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL, |
| dp_aux_ch_ctl_mmio_write); |
| |
| MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write); |
| |
| MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write); |
| MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write); |
| |
| MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write); |
| MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write); |
| MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write); |
| MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status); |
| MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status); |
| MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status); |
| MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status); |
| MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status); |
| MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status); |
| MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write); |
| MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL); |
| MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL); |
| MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL); |
| MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL); |
| MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL); |
| MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL); |
| |
| MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0, |
| PORTA_HOTPLUG_STATUS_MASK |
| | PORTB_HOTPLUG_STATUS_MASK |
| | PORTC_HOTPLUG_STATUS_MASK |
| | PORTD_HOTPLUG_STATUS_MASK, |
| NULL, NULL); |
| |
| MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write); |
| MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write); |
| MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL); |
| MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL); |
| MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write); |
| |
| MMIO_F(_MMIO(_DPA_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_ALL, NULL, |
| dp_aux_ch_ctl_mmio_write); |
| |
| MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write); |
| MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write); |
| MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write); |
| MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write); |
| MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write); |
| |
| MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write); |
| MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write); |
| MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write); |
| MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write); |
| MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write); |
| |
| MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write); |
| MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write); |
| MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write); |
| MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write); |
| MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL); |
| |
| MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL); |
| MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL); |
| MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL); |
| MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL); |
| |
| MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL); |
| MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write); |
| MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL); |
| MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL); |
| MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL); |
| MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write); |
| MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write); |
| MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write); |
| MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write); |
| MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write); |
| MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write); |
| |
| MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write); |
| MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write); |
| MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write); |
| |
| MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL); |
| MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL); |
| |
| MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write); |
| MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write); |
| MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL); |
| MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| |
| MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL); |
| MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); |
| MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); |
| MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); |
| MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); |
| MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler); |
| MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write); |
| MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write); |
| MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL); |
| |
| return 0; |
| } |
| |
| static int init_bdw_mmio_info(struct intel_gvt *gvt) |
| { |
| int ret; |
| |
| MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL, |
| intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL, |
| intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL, |
| intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL, |
| intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL, |
| intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL, |
| intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL, |
| intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL, |
| intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL, |
| intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler); |
| MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler); |
| MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler); |
| |
| MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL, |
| intel_vgpu_reg_master_irq_handler); |
| |
| MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0, |
| mmio_read_from_hw, NULL); |
| |
| #define RING_REG(base) _MMIO((base) + 0xd0) |
| MMIO_RING_F(RING_REG, 4, F_RO, 0, |
| ~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL, |
| ring_reset_ctl_write); |
| #undef RING_REG |
| |
| #define RING_REG(base) _MMIO((base) + 0x230) |
| MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write); |
| #undef RING_REG |
| |
| #define RING_REG(base) _MMIO((base) + 0x234) |
| MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS, |
| NULL, NULL); |
| #undef RING_REG |
| |
| #define RING_REG(base) _MMIO((base) + 0x244) |
| MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| #undef RING_REG |
| |
| #define RING_REG(base) _MMIO((base) + 0x370) |
| MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL); |
| #undef RING_REG |
| |
| #define RING_REG(base) _MMIO((base) + 0x3a0) |
| MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL); |
| #undef RING_REG |
| |
| MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write); |
| |
| #define RING_REG(base) _MMIO((base) + 0x270) |
| MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL); |
| #undef RING_REG |
| |
| MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write); |
| |
| MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0, |
| D_BDW_PLUS, NULL, force_nonpriv_write); |
| |
| MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| return 0; |
| } |
| |
| static int init_skl_mmio_info(struct intel_gvt *gvt) |
| { |
| int ret; |
| |
| MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); |
| MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); |
| MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write); |
| MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL, |
| dp_aux_ch_ctl_mmio_write); |
| MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL, |
| dp_aux_ch_ctl_mmio_write); |
| MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL, |
| dp_aux_ch_ctl_mmio_write); |
| |
| MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write); |
| |
| MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write); |
| |
| MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write); |
| MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write); |
| MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL); |
| |
| MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write); |
| |
| MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write); |
| |
| MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write); |
| MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write); |
| |
| MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL); |
| MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL); |
| |
| MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS, |
| NULL, NULL); |
| MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS, |
| NULL, NULL); |
| |
| MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS, |
| F_MODE_MASK | F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| |
| /* TRTT */ |
| MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE, |
| NULL, gen9_trtte_write); |
| MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE, |
| NULL, gen9_trtt_chicken_write); |
| |
| MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write); |
| |
| #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4) |
| MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, csfe_chicken1_mmio_write); |
| #undef CSFE_CHICKEN1_REG |
| MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS, |
| NULL, NULL); |
| |
| MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL); |
| |
| return 0; |
| } |
| |
| static int init_bxt_mmio_info(struct intel_gvt *gvt) |
| { |
| int ret; |
| |
| MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write); |
| MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT, |
| NULL, bxt_phy_ctl_family_write); |
| MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT, |
| NULL, bxt_phy_ctl_family_write); |
| MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT, |
| NULL, bxt_port_pll_enable_write); |
| MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT, |
| NULL, bxt_port_pll_enable_write); |
| MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL, |
| bxt_port_pll_enable_write); |
| |
| MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT, |
| NULL, bxt_pcs_dw12_grp_write); |
| MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH0), D_BXT, |
| bxt_port_tx_dw3_read, NULL); |
| MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT, |
| NULL, bxt_pcs_dw12_grp_write); |
| MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH1), D_BXT, |
| bxt_port_tx_dw3_read, NULL); |
| MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT, |
| NULL, bxt_pcs_dw12_grp_write); |
| MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY1, DPIO_CH0), D_BXT, |
| bxt_port_tx_dw3_read, NULL); |
| MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write); |
| MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL); |
| MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL); |
| MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS, |
| 0, 0, D_BXT, NULL, NULL); |
| MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS, |
| 0, 0, D_BXT, NULL, NULL); |
| MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS, |
| 0, 0, D_BXT, NULL, NULL); |
| MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS, |
| 0, 0, D_BXT, NULL, NULL); |
| |
| MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL); |
| |
| MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write); |
| |
| return 0; |
| } |
| |
| static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt, |
| unsigned int offset) |
| { |
| struct gvt_mmio_block *block = gvt->mmio.mmio_block; |
| int num = gvt->mmio.num_mmio_block; |
| int i; |
| |
| for (i = 0; i < num; i++, block++) { |
| if (offset >= i915_mmio_reg_offset(block->offset) && |
| offset < i915_mmio_reg_offset(block->offset) + block->size) |
| return block; |
| } |
| return NULL; |
| } |
| |
| /** |
| * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device |
| * @gvt: GVT device |
| * |
| * This function is called at the driver unloading stage, to clean up the MMIO |
| * information table of GVT device |
| * |
| */ |
| void intel_gvt_clean_mmio_info(struct intel_gvt *gvt) |
| { |
| struct hlist_node *tmp; |
| struct intel_gvt_mmio_info *e; |
| int i; |
| |
| hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node) |
| kfree(e); |
| |
| kfree(gvt->mmio.mmio_block); |
| gvt->mmio.mmio_block = NULL; |
| gvt->mmio.num_mmio_block = 0; |
| |
| vfree(gvt->mmio.mmio_attribute); |
| gvt->mmio.mmio_attribute = NULL; |
| } |
| |
| static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset, |
| u32 size) |
| { |
| struct intel_gvt *gvt = iter->data; |
| struct intel_gvt_mmio_info *info, *p; |
| u32 start, end, i; |
| |
| if (WARN_ON(!IS_ALIGNED(offset, 4))) |
| return -EINVAL; |
| |
| start = offset; |
| end = offset + size; |
| |
| for (i = start; i < end; i += 4) { |
| p = intel_gvt_find_mmio_info(gvt, i); |
| if (p) { |
| WARN(1, "dup mmio definition offset %x\n", |
| info->offset); |
| |
| /* We return -EEXIST here to make GVT-g load fail. |
| * So duplicated MMIO can be found as soon as |
| * possible. |
| */ |
| return -EEXIST; |
| } |
| |
| info = kzalloc(sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| info->offset = i; |
| info->read = intel_vgpu_default_mmio_read; |
| info->write = intel_vgpu_default_mmio_write; |
| INIT_HLIST_NODE(&info->node); |
| hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset); |
| gvt->mmio.num_tracked_mmio++; |
| } |
| return 0; |
| } |
| |
| static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter, |
| u32 offset, u32 size) |
| { |
| struct intel_gvt *gvt = iter->data; |
| struct gvt_mmio_block *block = gvt->mmio.mmio_block; |
| void *ret; |
| |
| ret = krealloc(block, |
| (gvt->mmio.num_mmio_block + 1) * sizeof(*block), |
| GFP_KERNEL); |
| if (!ret) |
| return -ENOMEM; |
| |
| gvt->mmio.mmio_block = block = ret; |
| |
| block += gvt->mmio.num_mmio_block; |
| |
| memset(block, 0, sizeof(*block)); |
| |
| block->offset = _MMIO(offset); |
| block->size = size; |
| |
| gvt->mmio.num_mmio_block++; |
| |
| return 0; |
| } |
| |
| static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset, |
| u32 size) |
| { |
| if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0))) |
| return handle_mmio(iter, offset, size); |
| else |
| return handle_mmio_block(iter, offset, size); |
| } |
| |
| static int init_mmio_info(struct intel_gvt *gvt) |
| { |
| struct intel_gvt_mmio_table_iter iter = { |
| .i915 = gvt->gt->i915, |
| .data = gvt, |
| .handle_mmio_cb = handle_mmio_cb, |
| }; |
| |
| return intel_gvt_iterate_mmio_table(&iter); |
| } |
| |
| static int init_mmio_block_handlers(struct intel_gvt *gvt) |
| { |
| struct gvt_mmio_block *block; |
| |
| block = find_mmio_block(gvt, VGT_PVINFO_PAGE); |
| if (!block) { |
| WARN(1, "fail to assign handlers to mmio block %x\n", |
| i915_mmio_reg_offset(gvt->mmio.mmio_block->offset)); |
| return -ENODEV; |
| } |
| |
| block->read = pvinfo_mmio_read; |
| block->write = pvinfo_mmio_write; |
| |
| return 0; |
| } |
| |
| /** |
| * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device |
| * @gvt: GVT device |
| * |
| * This function is called at the initialization stage, to setup the MMIO |
| * information table for GVT device |
| * |
| * Returns: |
| * zero on success, negative if failed. |
| */ |
| int intel_gvt_setup_mmio_info(struct intel_gvt *gvt) |
| { |
| struct intel_gvt_device_info *info = &gvt->device_info; |
| struct drm_i915_private *i915 = gvt->gt->i915; |
| int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute); |
| int ret; |
| |
| gvt->mmio.mmio_attribute = vzalloc(size); |
| if (!gvt->mmio.mmio_attribute) |
| return -ENOMEM; |
| |
| ret = init_mmio_info(gvt); |
| if (ret) |
| goto err; |
| |
| ret = init_mmio_block_handlers(gvt); |
| if (ret) |
| goto err; |
| |
| ret = init_generic_mmio_info(gvt); |
| if (ret) |
| goto err; |
| |
| if (IS_BROADWELL(i915)) { |
| ret = init_bdw_mmio_info(gvt); |
| if (ret) |
| goto err; |
| } else if (IS_SKYLAKE(i915) || |
| IS_KABYLAKE(i915) || |
| IS_COFFEELAKE(i915) || |
| IS_COMETLAKE(i915)) { |
| ret = init_bdw_mmio_info(gvt); |
| if (ret) |
| goto err; |
| ret = init_skl_mmio_info(gvt); |
| if (ret) |
| goto err; |
| } else if (IS_BROXTON(i915)) { |
| ret = init_bdw_mmio_info(gvt); |
| if (ret) |
| goto err; |
| ret = init_skl_mmio_info(gvt); |
| if (ret) |
| goto err; |
| ret = init_bxt_mmio_info(gvt); |
| if (ret) |
| goto err; |
| } |
| |
| return 0; |
| err: |
| intel_gvt_clean_mmio_info(gvt); |
| return ret; |
| } |
| |
| /** |
| * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio |
| * @gvt: a GVT device |
| * @handler: the handler |
| * @data: private data given to handler |
| * |
| * Returns: |
| * Zero on success, negative error code if failed. |
| */ |
| int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt, |
| int (*handler)(struct intel_gvt *gvt, u32 offset, void *data), |
| void *data) |
| { |
| struct gvt_mmio_block *block = gvt->mmio.mmio_block; |
| struct intel_gvt_mmio_info *e; |
| int i, j, ret; |
| |
| hash_for_each(gvt->mmio.mmio_info_table, i, e, node) { |
| ret = handler(gvt, e->offset, data); |
| if (ret) |
| return ret; |
| } |
| |
| for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) { |
| /* pvinfo data doesn't come from hw mmio */ |
| if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE) |
| continue; |
| |
| for (j = 0; j < block->size; j += 4) { |
| ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data); |
| if (ret) |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * intel_vgpu_default_mmio_read - default MMIO read handler |
| * @vgpu: a vGPU |
| * @offset: access offset |
| * @p_data: data return buffer |
| * @bytes: access data length |
| * |
| * Returns: |
| * Zero on success, negative error code if failed. |
| */ |
| int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| read_vreg(vgpu, offset, p_data, bytes); |
| return 0; |
| } |
| |
| /** |
| * intel_vgpu_default_mmio_write() - default MMIO write handler |
| * @vgpu: a vGPU |
| * @offset: access offset |
| * @p_data: write data buffer |
| * @bytes: access data length |
| * |
| * Returns: |
| * Zero on success, negative error code if failed. |
| */ |
| int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| write_vreg(vgpu, offset, p_data, bytes); |
| return 0; |
| } |
| |
| /** |
| * intel_vgpu_mask_mmio_write - write mask register |
| * @vgpu: a vGPU |
| * @offset: access offset |
| * @p_data: write data buffer |
| * @bytes: access data length |
| * |
| * Returns: |
| * Zero on success, negative error code if failed. |
| */ |
| int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, |
| void *p_data, unsigned int bytes) |
| { |
| u32 mask, old_vreg; |
| |
| old_vreg = vgpu_vreg(vgpu, offset); |
| write_vreg(vgpu, offset, p_data, bytes); |
| mask = vgpu_vreg(vgpu, offset) >> 16; |
| vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) | |
| (vgpu_vreg(vgpu, offset) & mask); |
| |
| return 0; |
| } |
| |
| /** |
| * intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be |
| * force-nopriv register |
| * |
| * @gvt: a GVT device |
| * @offset: register offset |
| * |
| * Returns: |
| * True if the register is in force-nonpriv whitelist; |
| * False if outside; |
| */ |
| bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt, |
| unsigned int offset) |
| { |
| return in_whitelist(offset); |
| } |
| |
| /** |
| * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers |
| * @vgpu: a vGPU |
| * @offset: register offset |
| * @pdata: data buffer |
| * @bytes: data length |
| * @is_read: read or write |
| * |
| * Returns: |
| * Zero on success, negative error code if failed. |
| */ |
| int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset, |
| void *pdata, unsigned int bytes, bool is_read) |
| { |
| struct drm_i915_private *i915 = vgpu->gvt->gt->i915; |
| struct intel_gvt *gvt = vgpu->gvt; |
| struct intel_gvt_mmio_info *mmio_info; |
| struct gvt_mmio_block *mmio_block; |
| gvt_mmio_func func; |
| int ret; |
| |
| if (drm_WARN_ON(&i915->drm, bytes > 8)) |
| return -EINVAL; |
| |
| /* |
| * Handle special MMIO blocks. |
| */ |
| mmio_block = find_mmio_block(gvt, offset); |
| if (mmio_block) { |
| func = is_read ? mmio_block->read : mmio_block->write; |
| if (func) |
| return func(vgpu, offset, pdata, bytes); |
| goto default_rw; |
| } |
| |
| /* |
| * Normal tracked MMIOs. |
| */ |
| mmio_info = intel_gvt_find_mmio_info(gvt, offset); |
| if (!mmio_info) { |
| gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes); |
| goto default_rw; |
| } |
| |
| if (is_read) |
| return mmio_info->read(vgpu, offset, pdata, bytes); |
| else { |
| u64 ro_mask = mmio_info->ro_mask; |
| u32 old_vreg = 0; |
| u64 data = 0; |
| |
| if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) { |
| old_vreg = vgpu_vreg(vgpu, offset); |
| } |
| |
| if (likely(!ro_mask)) |
| ret = mmio_info->write(vgpu, offset, pdata, bytes); |
| else if (!~ro_mask) { |
| gvt_vgpu_err("try to write RO reg %x\n", offset); |
| return 0; |
| } else { |
| /* keep the RO bits in the virtual register */ |
| memcpy(&data, pdata, bytes); |
| data &= ~ro_mask; |
| data |= vgpu_vreg(vgpu, offset) & ro_mask; |
| ret = mmio_info->write(vgpu, offset, &data, bytes); |
| } |
| |
| /* higher 16bits of mode ctl regs are mask bits for change */ |
| if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) { |
| u32 mask = vgpu_vreg(vgpu, offset) >> 16; |
| |
| vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
| | (vgpu_vreg(vgpu, offset) & mask); |
| } |
| } |
| |
| return ret; |
| |
| default_rw: |
| return is_read ? |
| intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) : |
| intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes); |
| } |
| |
| void intel_gvt_restore_fence(struct intel_gvt *gvt) |
| { |
| struct intel_vgpu *vgpu; |
| int i, id; |
| |
| idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { |
| mmio_hw_access_pre(gvt->gt); |
| for (i = 0; i < vgpu_fence_sz(vgpu); i++) |
| intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i))); |
| mmio_hw_access_post(gvt->gt); |
| } |
| } |
| |
| static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data) |
| { |
| struct intel_vgpu *vgpu = data; |
| struct drm_i915_private *dev_priv = gvt->gt->i915; |
| |
| if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE) |
| intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset)); |
| |
| return 0; |
| } |
| |
| void intel_gvt_restore_mmio(struct intel_gvt *gvt) |
| { |
| struct intel_vgpu *vgpu; |
| int id; |
| |
| idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) { |
| mmio_hw_access_pre(gvt->gt); |
| intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu); |
| mmio_hw_access_post(gvt->gt); |
| } |
| } |