| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef __ALPHA_UACCESS_H |
| #define __ALPHA_UACCESS_H |
| |
| /* |
| * The fs value determines whether argument validity checking should be |
| * performed or not. If get_fs() == USER_DS, checking is performed, with |
| * get_fs() == KERNEL_DS, checking is bypassed. |
| * |
| * Or at least it did once upon a time. Nowadays it is a mask that |
| * defines which bits of the address space are off limits. This is a |
| * wee bit faster than the above. |
| * |
| * For historical reasons, these macros are grossly misnamed. |
| */ |
| |
| #define KERNEL_DS ((mm_segment_t) { 0UL }) |
| #define USER_DS ((mm_segment_t) { -0x40000000000UL }) |
| |
| #define get_fs() (current_thread_info()->addr_limit) |
| #define get_ds() (KERNEL_DS) |
| #define set_fs(x) (current_thread_info()->addr_limit = (x)) |
| |
| #define segment_eq(a, b) ((a).seg == (b).seg) |
| |
| /* |
| * Is a address valid? This does a straightforward calculation rather |
| * than tests. |
| * |
| * Address valid if: |
| * - "addr" doesn't have any high-bits set |
| * - AND "size" doesn't have any high-bits set |
| * - AND "addr+size-(size != 0)" doesn't have any high-bits set |
| * - OR we are in kernel mode. |
| */ |
| #define __access_ok(addr, size) ({ \ |
| unsigned long __ao_a = (addr), __ao_b = (size); \ |
| unsigned long __ao_end = __ao_a + __ao_b - !!__ao_b; \ |
| (get_fs().seg & (__ao_a | __ao_b | __ao_end)) == 0; }) |
| |
| #define access_ok(addr, size) \ |
| ({ \ |
| __chk_user_ptr(addr); \ |
| __access_ok(((unsigned long)(addr)), (size)); \ |
| }) |
| |
| /* |
| * These are the main single-value transfer routines. They automatically |
| * use the right size if we just have the right pointer type. |
| * |
| * As the alpha uses the same address space for kernel and user |
| * data, we can just do these as direct assignments. (Of course, the |
| * exception handling means that it's no longer "just"...) |
| * |
| * Careful to not |
| * (a) re-use the arguments for side effects (sizeof/typeof is ok) |
| * (b) require any knowledge of processes at this stage |
| */ |
| #define put_user(x, ptr) \ |
| __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) |
| #define get_user(x, ptr) \ |
| __get_user_check((x), (ptr), sizeof(*(ptr))) |
| |
| /* |
| * The "__xxx" versions do not do address space checking, useful when |
| * doing multiple accesses to the same area (the programmer has to do the |
| * checks by hand with "access_ok()") |
| */ |
| #define __put_user(x, ptr) \ |
| __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr))) |
| #define __get_user(x, ptr) \ |
| __get_user_nocheck((x), (ptr), sizeof(*(ptr))) |
| |
| /* |
| * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to |
| * encode the bits we need for resolving the exception. See the |
| * more extensive comments with fixup_inline_exception below for |
| * more information. |
| */ |
| #define EXC(label,cont,res,err) \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long "#label"-.\n" \ |
| " lda "#res","#cont"-"#label"("#err")\n" \ |
| ".previous\n" |
| |
| extern void __get_user_unknown(void); |
| |
| #define __get_user_nocheck(x, ptr, size) \ |
| ({ \ |
| long __gu_err = 0; \ |
| unsigned long __gu_val; \ |
| __chk_user_ptr(ptr); \ |
| switch (size) { \ |
| case 1: __get_user_8(ptr); break; \ |
| case 2: __get_user_16(ptr); break; \ |
| case 4: __get_user_32(ptr); break; \ |
| case 8: __get_user_64(ptr); break; \ |
| default: __get_user_unknown(); break; \ |
| } \ |
| (x) = (__force __typeof__(*(ptr))) __gu_val; \ |
| __gu_err; \ |
| }) |
| |
| #define __get_user_check(x, ptr, size) \ |
| ({ \ |
| long __gu_err = -EFAULT; \ |
| unsigned long __gu_val = 0; \ |
| const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \ |
| if (__access_ok((unsigned long)__gu_addr, size)) { \ |
| __gu_err = 0; \ |
| switch (size) { \ |
| case 1: __get_user_8(__gu_addr); break; \ |
| case 2: __get_user_16(__gu_addr); break; \ |
| case 4: __get_user_32(__gu_addr); break; \ |
| case 8: __get_user_64(__gu_addr); break; \ |
| default: __get_user_unknown(); break; \ |
| } \ |
| } \ |
| (x) = (__force __typeof__(*(ptr))) __gu_val; \ |
| __gu_err; \ |
| }) |
| |
| struct __large_struct { unsigned long buf[100]; }; |
| #define __m(x) (*(struct __large_struct __user *)(x)) |
| |
| #define __get_user_64(addr) \ |
| __asm__("1: ldq %0,%2\n" \ |
| "2:\n" \ |
| EXC(1b,2b,%0,%1) \ |
| : "=r"(__gu_val), "=r"(__gu_err) \ |
| : "m"(__m(addr)), "1"(__gu_err)) |
| |
| #define __get_user_32(addr) \ |
| __asm__("1: ldl %0,%2\n" \ |
| "2:\n" \ |
| EXC(1b,2b,%0,%1) \ |
| : "=r"(__gu_val), "=r"(__gu_err) \ |
| : "m"(__m(addr)), "1"(__gu_err)) |
| |
| #ifdef __alpha_bwx__ |
| /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ |
| |
| #define __get_user_16(addr) \ |
| __asm__("1: ldwu %0,%2\n" \ |
| "2:\n" \ |
| EXC(1b,2b,%0,%1) \ |
| : "=r"(__gu_val), "=r"(__gu_err) \ |
| : "m"(__m(addr)), "1"(__gu_err)) |
| |
| #define __get_user_8(addr) \ |
| __asm__("1: ldbu %0,%2\n" \ |
| "2:\n" \ |
| EXC(1b,2b,%0,%1) \ |
| : "=r"(__gu_val), "=r"(__gu_err) \ |
| : "m"(__m(addr)), "1"(__gu_err)) |
| #else |
| /* Unfortunately, we can't get an unaligned access trap for the sub-word |
| load, so we have to do a general unaligned operation. */ |
| |
| #define __get_user_16(addr) \ |
| { \ |
| long __gu_tmp; \ |
| __asm__("1: ldq_u %0,0(%3)\n" \ |
| "2: ldq_u %1,1(%3)\n" \ |
| " extwl %0,%3,%0\n" \ |
| " extwh %1,%3,%1\n" \ |
| " or %0,%1,%0\n" \ |
| "3:\n" \ |
| EXC(1b,3b,%0,%2) \ |
| EXC(2b,3b,%0,%2) \ |
| : "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err) \ |
| : "r"(addr), "2"(__gu_err)); \ |
| } |
| |
| #define __get_user_8(addr) \ |
| __asm__("1: ldq_u %0,0(%2)\n" \ |
| " extbl %0,%2,%0\n" \ |
| "2:\n" \ |
| EXC(1b,2b,%0,%1) \ |
| : "=&r"(__gu_val), "=r"(__gu_err) \ |
| : "r"(addr), "1"(__gu_err)) |
| #endif |
| |
| extern void __put_user_unknown(void); |
| |
| #define __put_user_nocheck(x, ptr, size) \ |
| ({ \ |
| long __pu_err = 0; \ |
| __chk_user_ptr(ptr); \ |
| switch (size) { \ |
| case 1: __put_user_8(x, ptr); break; \ |
| case 2: __put_user_16(x, ptr); break; \ |
| case 4: __put_user_32(x, ptr); break; \ |
| case 8: __put_user_64(x, ptr); break; \ |
| default: __put_user_unknown(); break; \ |
| } \ |
| __pu_err; \ |
| }) |
| |
| #define __put_user_check(x, ptr, size) \ |
| ({ \ |
| long __pu_err = -EFAULT; \ |
| __typeof__(*(ptr)) __user *__pu_addr = (ptr); \ |
| if (__access_ok((unsigned long)__pu_addr, size)) { \ |
| __pu_err = 0; \ |
| switch (size) { \ |
| case 1: __put_user_8(x, __pu_addr); break; \ |
| case 2: __put_user_16(x, __pu_addr); break; \ |
| case 4: __put_user_32(x, __pu_addr); break; \ |
| case 8: __put_user_64(x, __pu_addr); break; \ |
| default: __put_user_unknown(); break; \ |
| } \ |
| } \ |
| __pu_err; \ |
| }) |
| |
| /* |
| * The "__put_user_xx()" macros tell gcc they read from memory |
| * instead of writing: this is because they do not write to |
| * any memory gcc knows about, so there are no aliasing issues |
| */ |
| #define __put_user_64(x, addr) \ |
| __asm__ __volatile__("1: stq %r2,%1\n" \ |
| "2:\n" \ |
| EXC(1b,2b,$31,%0) \ |
| : "=r"(__pu_err) \ |
| : "m" (__m(addr)), "rJ" (x), "0"(__pu_err)) |
| |
| #define __put_user_32(x, addr) \ |
| __asm__ __volatile__("1: stl %r2,%1\n" \ |
| "2:\n" \ |
| EXC(1b,2b,$31,%0) \ |
| : "=r"(__pu_err) \ |
| : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| |
| #ifdef __alpha_bwx__ |
| /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ |
| |
| #define __put_user_16(x, addr) \ |
| __asm__ __volatile__("1: stw %r2,%1\n" \ |
| "2:\n" \ |
| EXC(1b,2b,$31,%0) \ |
| : "=r"(__pu_err) \ |
| : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| |
| #define __put_user_8(x, addr) \ |
| __asm__ __volatile__("1: stb %r2,%1\n" \ |
| "2:\n" \ |
| EXC(1b,2b,$31,%0) \ |
| : "=r"(__pu_err) \ |
| : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| #else |
| /* Unfortunately, we can't get an unaligned access trap for the sub-word |
| write, so we have to do a general unaligned operation. */ |
| |
| #define __put_user_16(x, addr) \ |
| { \ |
| long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4; \ |
| __asm__ __volatile__( \ |
| "1: ldq_u %2,1(%5)\n" \ |
| "2: ldq_u %1,0(%5)\n" \ |
| " inswh %6,%5,%4\n" \ |
| " inswl %6,%5,%3\n" \ |
| " mskwh %2,%5,%2\n" \ |
| " mskwl %1,%5,%1\n" \ |
| " or %2,%4,%2\n" \ |
| " or %1,%3,%1\n" \ |
| "3: stq_u %2,1(%5)\n" \ |
| "4: stq_u %1,0(%5)\n" \ |
| "5:\n" \ |
| EXC(1b,5b,$31,%0) \ |
| EXC(2b,5b,$31,%0) \ |
| EXC(3b,5b,$31,%0) \ |
| EXC(4b,5b,$31,%0) \ |
| : "=r"(__pu_err), "=&r"(__pu_tmp1), \ |
| "=&r"(__pu_tmp2), "=&r"(__pu_tmp3), \ |
| "=&r"(__pu_tmp4) \ |
| : "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \ |
| } |
| |
| #define __put_user_8(x, addr) \ |
| { \ |
| long __pu_tmp1, __pu_tmp2; \ |
| __asm__ __volatile__( \ |
| "1: ldq_u %1,0(%4)\n" \ |
| " insbl %3,%4,%2\n" \ |
| " mskbl %1,%4,%1\n" \ |
| " or %1,%2,%1\n" \ |
| "2: stq_u %1,0(%4)\n" \ |
| "3:\n" \ |
| EXC(1b,3b,$31,%0) \ |
| EXC(2b,3b,$31,%0) \ |
| : "=r"(__pu_err), \ |
| "=&r"(__pu_tmp1), "=&r"(__pu_tmp2) \ |
| : "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \ |
| } |
| #endif |
| |
| |
| /* |
| * Complex access routines |
| */ |
| |
| extern long __copy_user(void *to, const void *from, long len); |
| |
| static inline unsigned long |
| raw_copy_from_user(void *to, const void __user *from, unsigned long len) |
| { |
| return __copy_user(to, (__force const void *)from, len); |
| } |
| |
| static inline unsigned long |
| raw_copy_to_user(void __user *to, const void *from, unsigned long len) |
| { |
| return __copy_user((__force void *)to, from, len); |
| } |
| |
| extern long __clear_user(void __user *to, long len); |
| |
| extern inline long |
| clear_user(void __user *to, long len) |
| { |
| if (__access_ok((unsigned long)to, len)) |
| len = __clear_user(to, len); |
| return len; |
| } |
| |
| #define user_addr_max() \ |
| (uaccess_kernel() ? ~0UL : TASK_SIZE) |
| |
| extern long strncpy_from_user(char *dest, const char __user *src, long count); |
| extern __must_check long strnlen_user(const char __user *str, long n); |
| |
| #include <asm/extable.h> |
| |
| #endif /* __ALPHA_UACCESS_H */ |