blob: b9f6535a7ba7caa5c526d2af69dec5bba5868b7b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved.
* Copyright (c) 2021, 2023, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/clk-provider.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include "clk-alpha-pll.h"
#include "common.h"
#define PLL_MODE(p) ((p)->offset + 0x0)
# define PLL_OUTCTRL BIT(0)
# define PLL_BYPASSNL BIT(1)
# define PLL_RESET_N BIT(2)
# define PLL_OFFLINE_REQ BIT(7)
# define PLL_LOCK_COUNT_SHIFT 8
# define PLL_LOCK_COUNT_MASK 0x3f
# define PLL_BIAS_COUNT_SHIFT 14
# define PLL_BIAS_COUNT_MASK 0x3f
# define PLL_VOTE_FSM_ENA BIT(20)
# define PLL_FSM_ENA BIT(20)
# define PLL_VOTE_FSM_RESET BIT(21)
# define PLL_UPDATE BIT(22)
# define PLL_UPDATE_BYPASS BIT(23)
# define PLL_FSM_LEGACY_MODE BIT(24)
# define PLL_OFFLINE_ACK BIT(28)
# define ALPHA_PLL_ACK_LATCH BIT(29)
# define PLL_ACTIVE_FLAG BIT(30)
# define PLL_LOCK_DET BIT(31)
#define PLL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_L_VAL])
#define PLL_CAL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL])
#define PLL_ALPHA_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
#define PLL_ALPHA_VAL_U(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
#define PLL_USER_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
# define PLL_POST_DIV_SHIFT 8
# define PLL_POST_DIV_MASK(p) GENMASK((p)->width, 0)
# define PLL_ALPHA_EN BIT(24)
# define PLL_ALPHA_MODE BIT(25)
# define PLL_VCO_SHIFT 20
# define PLL_VCO_MASK 0x3
#define PLL_USER_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
#define PLL_USER_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1])
#define PLL_CONFIG_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
#define PLL_CONFIG_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
#define PLL_CONFIG_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1])
#define PLL_TEST_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
#define PLL_TEST_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
#define PLL_TEST_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U1])
#define PLL_STATUS(p) ((p)->offset + (p)->regs[PLL_OFF_STATUS])
#define PLL_OPMODE(p) ((p)->offset + (p)->regs[PLL_OFF_OPMODE])
#define PLL_FRAC(p) ((p)->offset + (p)->regs[PLL_OFF_FRAC])
const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
[CLK_ALPHA_PLL_TYPE_DEFAULT] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_ALPHA_VAL_U] = 0x0c,
[PLL_OFF_USER_CTL] = 0x10,
[PLL_OFF_USER_CTL_U] = 0x14,
[PLL_OFF_CONFIG_CTL] = 0x18,
[PLL_OFF_TEST_CTL] = 0x1c,
[PLL_OFF_TEST_CTL_U] = 0x20,
[PLL_OFF_STATUS] = 0x24,
},
[CLK_ALPHA_PLL_TYPE_HUAYRA] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_USER_CTL] = 0x10,
[PLL_OFF_CONFIG_CTL] = 0x14,
[PLL_OFF_CONFIG_CTL_U] = 0x18,
[PLL_OFF_TEST_CTL] = 0x1c,
[PLL_OFF_TEST_CTL_U] = 0x20,
[PLL_OFF_STATUS] = 0x24,
},
[CLK_ALPHA_PLL_TYPE_BRAMMO] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_ALPHA_VAL_U] = 0x0c,
[PLL_OFF_USER_CTL] = 0x10,
[PLL_OFF_CONFIG_CTL] = 0x18,
[PLL_OFF_TEST_CTL] = 0x1c,
[PLL_OFF_STATUS] = 0x24,
},
[CLK_ALPHA_PLL_TYPE_FABIA] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_USER_CTL] = 0x0c,
[PLL_OFF_USER_CTL_U] = 0x10,
[PLL_OFF_CONFIG_CTL] = 0x14,
[PLL_OFF_CONFIG_CTL_U] = 0x18,
[PLL_OFF_TEST_CTL] = 0x1c,
[PLL_OFF_TEST_CTL_U] = 0x20,
[PLL_OFF_STATUS] = 0x24,
[PLL_OFF_OPMODE] = 0x2c,
[PLL_OFF_FRAC] = 0x38,
},
[CLK_ALPHA_PLL_TYPE_TRION] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_CAL_L_VAL] = 0x08,
[PLL_OFF_USER_CTL] = 0x0c,
[PLL_OFF_USER_CTL_U] = 0x10,
[PLL_OFF_USER_CTL_U1] = 0x14,
[PLL_OFF_CONFIG_CTL] = 0x18,
[PLL_OFF_CONFIG_CTL_U] = 0x1c,
[PLL_OFF_CONFIG_CTL_U1] = 0x20,
[PLL_OFF_TEST_CTL] = 0x24,
[PLL_OFF_TEST_CTL_U] = 0x28,
[PLL_OFF_TEST_CTL_U1] = 0x2c,
[PLL_OFF_STATUS] = 0x30,
[PLL_OFF_OPMODE] = 0x38,
[PLL_OFF_ALPHA_VAL] = 0x40,
},
[CLK_ALPHA_PLL_TYPE_AGERA] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_USER_CTL] = 0x0c,
[PLL_OFF_CONFIG_CTL] = 0x10,
[PLL_OFF_CONFIG_CTL_U] = 0x14,
[PLL_OFF_TEST_CTL] = 0x18,
[PLL_OFF_TEST_CTL_U] = 0x1c,
[PLL_OFF_STATUS] = 0x2c,
},
[CLK_ALPHA_PLL_TYPE_ZONDA] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_USER_CTL] = 0x0c,
[PLL_OFF_CONFIG_CTL] = 0x10,
[PLL_OFF_CONFIG_CTL_U] = 0x14,
[PLL_OFF_CONFIG_CTL_U1] = 0x18,
[PLL_OFF_TEST_CTL] = 0x1c,
[PLL_OFF_TEST_CTL_U] = 0x20,
[PLL_OFF_TEST_CTL_U1] = 0x24,
[PLL_OFF_OPMODE] = 0x28,
[PLL_OFF_STATUS] = 0x38,
},
[CLK_ALPHA_PLL_TYPE_LUCID_EVO] = {
[PLL_OFF_OPMODE] = 0x04,
[PLL_OFF_STATUS] = 0x0c,
[PLL_OFF_L_VAL] = 0x10,
[PLL_OFF_ALPHA_VAL] = 0x14,
[PLL_OFF_USER_CTL] = 0x18,
[PLL_OFF_USER_CTL_U] = 0x1c,
[PLL_OFF_CONFIG_CTL] = 0x20,
[PLL_OFF_CONFIG_CTL_U] = 0x24,
[PLL_OFF_CONFIG_CTL_U1] = 0x28,
[PLL_OFF_TEST_CTL] = 0x2c,
[PLL_OFF_TEST_CTL_U] = 0x30,
[PLL_OFF_TEST_CTL_U1] = 0x34,
},
[CLK_ALPHA_PLL_TYPE_LUCID_OLE] = {
[PLL_OFF_OPMODE] = 0x04,
[PLL_OFF_STATE] = 0x08,
[PLL_OFF_STATUS] = 0x0c,
[PLL_OFF_L_VAL] = 0x10,
[PLL_OFF_ALPHA_VAL] = 0x14,
[PLL_OFF_USER_CTL] = 0x18,
[PLL_OFF_USER_CTL_U] = 0x1c,
[PLL_OFF_CONFIG_CTL] = 0x20,
[PLL_OFF_CONFIG_CTL_U] = 0x24,
[PLL_OFF_CONFIG_CTL_U1] = 0x28,
[PLL_OFF_TEST_CTL] = 0x2c,
[PLL_OFF_TEST_CTL_U] = 0x30,
[PLL_OFF_TEST_CTL_U1] = 0x34,
[PLL_OFF_TEST_CTL_U2] = 0x38,
},
[CLK_ALPHA_PLL_TYPE_RIVIAN_EVO] = {
[PLL_OFF_OPMODE] = 0x04,
[PLL_OFF_STATUS] = 0x0c,
[PLL_OFF_L_VAL] = 0x10,
[PLL_OFF_USER_CTL] = 0x14,
[PLL_OFF_USER_CTL_U] = 0x18,
[PLL_OFF_CONFIG_CTL] = 0x1c,
[PLL_OFF_CONFIG_CTL_U] = 0x20,
[PLL_OFF_CONFIG_CTL_U1] = 0x24,
[PLL_OFF_TEST_CTL] = 0x28,
[PLL_OFF_TEST_CTL_U] = 0x2c,
},
[CLK_ALPHA_PLL_TYPE_DEFAULT_EVO] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_ALPHA_VAL_U] = 0x0c,
[PLL_OFF_TEST_CTL] = 0x10,
[PLL_OFF_TEST_CTL_U] = 0x14,
[PLL_OFF_USER_CTL] = 0x18,
[PLL_OFF_USER_CTL_U] = 0x1c,
[PLL_OFF_CONFIG_CTL] = 0x20,
[PLL_OFF_STATUS] = 0x24,
},
[CLK_ALPHA_PLL_TYPE_BRAMMO_EVO] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_ALPHA_VAL] = 0x08,
[PLL_OFF_ALPHA_VAL_U] = 0x0c,
[PLL_OFF_TEST_CTL] = 0x10,
[PLL_OFF_TEST_CTL_U] = 0x14,
[PLL_OFF_USER_CTL] = 0x18,
[PLL_OFF_CONFIG_CTL] = 0x1C,
[PLL_OFF_STATUS] = 0x20,
},
[CLK_ALPHA_PLL_TYPE_STROMER] = {
[PLL_OFF_L_VAL] = 0x08,
[PLL_OFF_ALPHA_VAL] = 0x10,
[PLL_OFF_ALPHA_VAL_U] = 0x14,
[PLL_OFF_USER_CTL] = 0x18,
[PLL_OFF_USER_CTL_U] = 0x1c,
[PLL_OFF_CONFIG_CTL] = 0x20,
[PLL_OFF_CONFIG_CTL_U] = 0xff,
[PLL_OFF_TEST_CTL] = 0x30,
[PLL_OFF_TEST_CTL_U] = 0x34,
[PLL_OFF_STATUS] = 0x28,
},
[CLK_ALPHA_PLL_TYPE_STROMER_PLUS] = {
[PLL_OFF_L_VAL] = 0x04,
[PLL_OFF_USER_CTL] = 0x08,
[PLL_OFF_USER_CTL_U] = 0x0c,
[PLL_OFF_CONFIG_CTL] = 0x10,
[PLL_OFF_TEST_CTL] = 0x14,
[PLL_OFF_TEST_CTL_U] = 0x18,
[PLL_OFF_STATUS] = 0x1c,
[PLL_OFF_ALPHA_VAL] = 0x24,
[PLL_OFF_ALPHA_VAL_U] = 0x28,
},
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
/*
* Even though 40 bits are present, use only 32 for ease of calculation.
*/
#define ALPHA_REG_BITWIDTH 40
#define ALPHA_REG_16BIT_WIDTH 16
#define ALPHA_BITWIDTH 32U
#define ALPHA_SHIFT(w) min(w, ALPHA_BITWIDTH)
#define ALPHA_PLL_STATUS_REG_SHIFT 8
#define PLL_HUAYRA_M_WIDTH 8
#define PLL_HUAYRA_M_SHIFT 8
#define PLL_HUAYRA_M_MASK 0xff
#define PLL_HUAYRA_N_SHIFT 0
#define PLL_HUAYRA_N_MASK 0xff
#define PLL_HUAYRA_ALPHA_WIDTH 16
#define PLL_STANDBY 0x0
#define PLL_RUN 0x1
#define PLL_OUT_MASK 0x7
#define PLL_RATE_MARGIN 500
/* TRION PLL specific settings and offsets */
#define TRION_PLL_CAL_VAL 0x44
#define TRION_PCAL_DONE BIT(26)
/* LUCID PLL specific settings and offsets */
#define LUCID_PCAL_DONE BIT(27)
/* LUCID 5LPE PLL specific settings and offsets */
#define LUCID_5LPE_PCAL_DONE BIT(11)
#define LUCID_5LPE_ALPHA_PLL_ACK_LATCH BIT(13)
#define LUCID_5LPE_PLL_LATCH_INPUT BIT(14)
#define LUCID_5LPE_ENABLE_VOTE_RUN BIT(21)
/* LUCID EVO PLL specific settings and offsets */
#define LUCID_EVO_PCAL_NOT_DONE BIT(8)
#define LUCID_EVO_ENABLE_VOTE_RUN BIT(25)
#define LUCID_EVO_PLL_L_VAL_MASK GENMASK(15, 0)
#define LUCID_EVO_PLL_CAL_L_VAL_SHIFT 16
/* ZONDA PLL specific */
#define ZONDA_PLL_OUT_MASK 0xf
#define ZONDA_STAY_IN_CFA BIT(16)
#define ZONDA_PLL_FREQ_LOCK_DET BIT(29)
#define pll_alpha_width(p) \
((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ? \
ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
#define pll_has_64bit_config(p) ((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
#define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
struct clk_alpha_pll, clkr)
#define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
struct clk_alpha_pll_postdiv, clkr)
static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
const char *action)
{
u32 val;
int count;
int ret;
const char *name = clk_hw_get_name(&pll->clkr.hw);
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
for (count = 200; count > 0; count--) {
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
if (inverse && !(val & mask))
return 0;
else if ((val & mask) == mask)
return 0;
udelay(1);
}
WARN(1, "%s failed to %s!\n", name, action);
return -ETIMEDOUT;
}
#define wait_for_pll_enable_active(pll) \
wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
#define wait_for_pll_enable_lock(pll) \
wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
#define wait_for_zonda_pll_freq_lock(pll) \
wait_for_pll(pll, ZONDA_PLL_FREQ_LOCK_DET, 0, "freq enable")
#define wait_for_pll_disable(pll) \
wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
#define wait_for_pll_offline(pll) \
wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
#define wait_for_pll_update(pll) \
wait_for_pll(pll, PLL_UPDATE, 1, "update")
#define wait_for_pll_update_ack_set(pll) \
wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
#define wait_for_pll_update_ack_clear(pll) \
wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
static void clk_alpha_pll_write_config(struct regmap *regmap, unsigned int reg,
unsigned int val)
{
if (val)
regmap_write(regmap, reg, val);
}
void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 val, mask;
regmap_write(regmap, PLL_L_VAL(pll), config->l);
regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
if (pll_has_64bit_config(pll))
regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
config->config_ctl_hi_val);
if (pll_alpha_width(pll) > 32)
regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
val = config->main_output_mask;
val |= config->aux_output_mask;
val |= config->aux2_output_mask;
val |= config->early_output_mask;
val |= config->pre_div_val;
val |= config->post_div_val;
val |= config->vco_val;
val |= config->alpha_en_mask;
val |= config->alpha_mode_mask;
mask = config->main_output_mask;
mask |= config->aux_output_mask;
mask |= config->aux2_output_mask;
mask |= config->early_output_mask;
mask |= config->pre_div_mask;
mask |= config->post_div_mask;
mask |= config->vco_mask;
regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
config->test_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
config->test_ctl_hi_val);
if (pll->flags & SUPPORTS_FSM_MODE)
qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
}
EXPORT_SYMBOL_GPL(clk_alpha_pll_configure);
static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
val |= PLL_FSM_ENA;
if (pll->flags & SUPPORTS_OFFLINE_REQ)
val &= ~PLL_OFFLINE_REQ;
ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
if (ret)
return ret;
/* Make sure enable request goes through before waiting for update */
mb();
return wait_for_pll_enable_active(pll);
}
static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return;
if (pll->flags & SUPPORTS_OFFLINE_REQ) {
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
if (ret)
return;
ret = wait_for_pll_offline(pll);
if (ret)
return;
}
/* Disable hwfsm */
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_FSM_ENA, 0);
if (ret)
return;
wait_for_pll_disable(pll);
}
static int pll_is_enabled(struct clk_hw *hw, u32 mask)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
return !!(val & mask);
}
static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
{
return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
}
static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
{
return pll_is_enabled(hw, PLL_LOCK_DET);
}
static int clk_alpha_pll_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, mask;
mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
/* Skip if already enabled */
if ((val & mask) == mask)
return 0;
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_BYPASSNL, PLL_BYPASSNL);
if (ret)
return ret;
/*
* H/W requires a 5us delay between disabling the bypass and
* de-asserting the reset.
*/
mb();
udelay(5);
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
PLL_OUTCTRL, PLL_OUTCTRL);
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void clk_alpha_pll_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, mask;
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
mask = PLL_OUTCTRL;
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
/* Delay of 2 output clock ticks required until output is disabled */
mb();
udelay(1);
mask = PLL_RESET_N | PLL_BYPASSNL;
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
}
static unsigned long
alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
{
return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
}
static unsigned long
alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a,
u32 alpha_width)
{
u64 remainder;
u64 quotient;
quotient = rate;
remainder = do_div(quotient, prate);
*l = quotient;
if (!remainder) {
*a = 0;
return rate;
}
/* Upper ALPHA_BITWIDTH bits of Alpha */
quotient = remainder << ALPHA_SHIFT(alpha_width);
remainder = do_div(quotient, prate);
if (remainder)
quotient++;
*a = quotient;
return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
}
static const struct pll_vco *
alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
{
const struct pll_vco *v = pll->vco_table;
const struct pll_vco *end = v + pll->num_vco;
for (; v < end; v++)
if (rate >= v->min_freq && rate <= v->max_freq)
return v;
return NULL;
}
static unsigned long
clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u32 l, low, high, ctl;
u64 a = 0, prate = parent_rate;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 alpha_width = pll_alpha_width(pll);
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
if (ctl & PLL_ALPHA_EN) {
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
if (alpha_width > 32) {
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
&high);
a = (u64)high << 32 | low;
} else {
a = low & GENMASK(alpha_width - 1, 0);
}
if (alpha_width > ALPHA_BITWIDTH)
a >>= alpha_width - ALPHA_BITWIDTH;
}
return alpha_pll_calc_rate(prate, l, a, alpha_width);
}
static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
{
int ret;
u32 mode;
regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
/* Latch the input to the PLL */
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
PLL_UPDATE);
/* Wait for 2 reference cycle before checking ACK bit */
udelay(1);
/*
* PLL will latch the new L, Alpha and freq control word.
* PLL will respond by raising PLL_ACK_LATCH output when new programming
* has been latched in and PLL is being updated. When
* UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
* automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
*/
if (mode & PLL_UPDATE_BYPASS) {
ret = wait_for_pll_update_ack_set(pll);
if (ret)
return ret;
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
} else {
ret = wait_for_pll_update(pll);
if (ret)
return ret;
}
ret = wait_for_pll_update_ack_clear(pll);
if (ret)
return ret;
/* Wait for PLL output to stabilize */
udelay(10);
return 0;
}
static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
int (*is_enabled)(struct clk_hw *))
{
if (!is_enabled(&pll->clkr.hw) ||
!(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
return 0;
return __clk_alpha_pll_update_latch(pll);
}
static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate,
int (*is_enabled)(struct clk_hw *))
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
const struct pll_vco *vco;
u32 l, alpha_width = pll_alpha_width(pll);
u64 a;
rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
vco = alpha_pll_find_vco(pll, rate);
if (pll->vco_table && !vco) {
pr_err("%s: alpha pll not in a valid vco range\n",
clk_hw_get_name(hw));
return -EINVAL;
}
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
if (alpha_width > ALPHA_BITWIDTH)
a <<= alpha_width - ALPHA_BITWIDTH;
if (alpha_width > 32)
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
if (vco) {
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_VCO_MASK << PLL_VCO_SHIFT,
vco->val << PLL_VCO_SHIFT);
}
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_ALPHA_EN, PLL_ALPHA_EN);
return clk_alpha_pll_update_latch(pll, is_enabled);
}
static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
return __clk_alpha_pll_set_rate(hw, rate, prate,
clk_alpha_pll_is_enabled);
}
static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
return __clk_alpha_pll_set_rate(hw, rate, prate,
clk_alpha_pll_hwfsm_is_enabled);
}
static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, alpha_width = pll_alpha_width(pll);
u64 a;
unsigned long min_freq, max_freq;
rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
return rate;
min_freq = pll->vco_table[0].min_freq;
max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
return clamp(rate, min_freq, max_freq);
}
static unsigned long
alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
{
/*
* a contains 16 bit alpha_val in two’s complement number in the range
* of [-0.5, 0.5).
*/
if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
l -= 1;
return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH);
}
static unsigned long
alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
u32 *l, u32 *a)
{
u64 remainder;
u64 quotient;
quotient = rate;
remainder = do_div(quotient, prate);
*l = quotient;
if (!remainder) {
*a = 0;
return rate;
}
quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
remainder = do_div(quotient, prate);
if (remainder)
quotient++;
/*
* alpha_val should be in two’s complement number in the range
* of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
* since alpha value will be subtracted in this case.
*/
if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
*l += 1;
*a = quotient;
return alpha_huayra_pll_calc_rate(prate, *l, *a);
}
static unsigned long
alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
u64 rate = parent_rate, tmp;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, alpha = 0, ctl, alpha_m, alpha_n;
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
if (ctl & PLL_ALPHA_EN) {
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
/*
* Depending upon alpha_mode, it can be treated as M/N value or
* as a two’s complement number. When alpha_mode=1,
* pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
*
* Fout=FIN*(L+(M/N))
*
* M is a signed number (-128 to 127) and N is unsigned
* (0 to 255). M/N has to be within +/-0.5.
*
* When alpha_mode=0, it is a two’s complement number in the
* range [-0.5, 0.5).
*
* Fout=FIN*(L+(alpha_val)/2^16)
*
* where alpha_val is two’s complement number.
*/
if (!(ctl & PLL_ALPHA_MODE))
return alpha_huayra_pll_calc_rate(rate, l, alpha);
alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
rate *= l;
tmp = parent_rate;
if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
tmp *= alpha_m;
do_div(tmp, alpha_n);
rate -= tmp;
} else {
tmp *= alpha_m;
do_div(tmp, alpha_n);
rate += tmp;
}
return rate;
}
return alpha_huayra_pll_calc_rate(rate, l, alpha);
}
static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, a, ctl, cur_alpha = 0;
rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
if (ctl & PLL_ALPHA_EN)
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
/*
* Huayra PLL supports PLL dynamic programming. User can change L_VAL,
* without having to go through the power on sequence.
*/
if (clk_alpha_pll_is_enabled(hw)) {
if (cur_alpha != a) {
pr_err("%s: clock needs to be gated\n",
clk_hw_get_name(hw));
return -EBUSY;
}
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
/* Ensure that the write above goes to detect L val change. */
mb();
return wait_for_pll_enable_lock(pll);
}
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
if (a == 0)
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_ALPHA_EN, 0x0);
else
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
return 0;
}
static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
u32 l, a;
return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
}
static int trion_pll_is_enabled(struct clk_alpha_pll *pll,
struct regmap *regmap)
{
u32 mode_val, opmode_val;
int ret;
ret = regmap_read(regmap, PLL_MODE(pll), &mode_val);
ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
if (ret)
return 0;
return ((opmode_val & PLL_RUN) && (mode_val & PLL_OUTCTRL));
}
static int clk_trion_pll_is_enabled(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
return trion_pll_is_enabled(pll, pll->clkr.regmap);
}
static int clk_trion_pll_enable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 val;
int ret;
ret = regmap_read(regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
/* Set operation mode to RUN */
regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Enable the PLL outputs */
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
PLL_OUT_MASK, PLL_OUT_MASK);
if (ret)
return ret;
/* Enable the global PLL outputs */
return regmap_update_bits(regmap, PLL_MODE(pll),
PLL_OUTCTRL, PLL_OUTCTRL);
}
static void clk_trion_pll_disable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 val;
int ret;
ret = regmap_read(regmap, PLL_MODE(pll), &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
/* Disable the global PLL output */
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable the PLL outputs */
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL mode in STANDBY */
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
}
static unsigned long
clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, frac, alpha_width = pll_alpha_width(pll);
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac);
return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
}
const struct clk_ops clk_alpha_pll_fixed_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_alpha_pll_recalc_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_ops);
const struct clk_ops clk_alpha_pll_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_alpha_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
const struct clk_ops clk_alpha_pll_huayra_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = alpha_pll_huayra_recalc_rate,
.round_rate = alpha_pll_huayra_round_rate,
.set_rate = alpha_pll_huayra_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
const struct clk_ops clk_alpha_pll_hwfsm_ops = {
.enable = clk_alpha_pll_hwfsm_enable,
.disable = clk_alpha_pll_hwfsm_disable,
.is_enabled = clk_alpha_pll_hwfsm_is_enabled,
.recalc_rate = clk_alpha_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_hwfsm_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
const struct clk_ops clk_alpha_pll_fixed_trion_ops = {
.enable = clk_trion_pll_enable,
.disable = clk_trion_pll_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_trion_ops);
static unsigned long
clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 ctl;
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
ctl >>= PLL_POST_DIV_SHIFT;
ctl &= PLL_POST_DIV_MASK(pll);
return parent_rate >> fls(ctl);
}
static const struct clk_div_table clk_alpha_div_table[] = {
{ 0x0, 1 },
{ 0x1, 2 },
{ 0x3, 4 },
{ 0x7, 8 },
{ 0xf, 16 },
{ }
};
static const struct clk_div_table clk_alpha_2bit_div_table[] = {
{ 0x0, 1 },
{ 0x1, 2 },
{ 0x3, 4 },
{ }
};
static long
clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
const struct clk_div_table *table;
if (pll->width == 2)
table = clk_alpha_2bit_div_table;
else
table = clk_alpha_div_table;
return divider_round_rate(hw, rate, prate, table,
pll->width, CLK_DIVIDER_POWER_OF_TWO);
}
static long
clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 ctl, div;
regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
ctl >>= PLL_POST_DIV_SHIFT;
ctl &= BIT(pll->width) - 1;
div = 1 << fls(ctl);
if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
*prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate);
return DIV_ROUND_UP_ULL((u64)*prate, div);
}
static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
int div;
/* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1;
return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
div << PLL_POST_DIV_SHIFT);
}
const struct clk_ops clk_alpha_pll_postdiv_ops = {
.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_round_rate,
.set_rate = clk_alpha_pll_postdiv_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
.round_rate = clk_alpha_pll_postdiv_round_ro_rate,
.recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 val, mask;
clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
clk_alpha_pll_write_config(regmap, PLL_FRAC(pll), config->alpha);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
config->config_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
config->config_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
config->user_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
config->user_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
config->test_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
config->test_ctl_hi_val);
if (config->post_div_mask) {
mask = config->post_div_mask;
val = config->post_div_val;
regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
}
if (pll->flags & SUPPORTS_FSM_LEGACY_MODE)
regmap_update_bits(regmap, PLL_MODE(pll), PLL_FSM_LEGACY_MODE,
PLL_FSM_LEGACY_MODE);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
PLL_UPDATE_BYPASS);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
}
EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
static int alpha_pll_fabia_enable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val, opmode_val;
struct regmap *regmap = pll->clkr.regmap;
ret = regmap_read(regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
if (ret)
return ret;
/* Skip If PLL is already running */
if ((opmode_val & PLL_RUN) && (val & PLL_OUTCTRL))
return 0;
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
if (ret)
return ret;
ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
if (ret)
return ret;
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
PLL_RESET_N);
if (ret)
return ret;
ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
if (ret)
return ret;
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
PLL_OUT_MASK, PLL_OUT_MASK);
if (ret)
return ret;
return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
PLL_OUTCTRL);
}
static void alpha_pll_fabia_disable(struct clk_hw *hw)
{
int ret;
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
struct regmap *regmap = pll->clkr.regmap;
ret = regmap_read(regmap, PLL_MODE(pll), &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & PLL_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable main outputs */
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL in STANDBY */
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
}
static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, frac, alpha_width = pll_alpha_width(pll);
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
}
/*
* Due to limited number of bits for fractional rate programming, the
* rounded up rate could be marginally higher than the requested rate.
*/
static int alpha_pll_check_rate_margin(struct clk_hw *hw,
unsigned long rrate, unsigned long rate)
{
unsigned long rate_margin = rate + PLL_RATE_MARGIN;
if (rrate > rate_margin || rrate < rate) {
pr_err("%s: Rounded rate %lu not within range [%lu, %lu)\n",
clk_hw_get_name(hw), rrate, rate, rate_margin);
return -EINVAL;
}
return 0;
}
static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, alpha_width = pll_alpha_width(pll);
unsigned long rrate;
int ret;
u64 a;
rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
ret = alpha_pll_check_rate_margin(hw, rrate, rate);
if (ret < 0)
return ret;
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
return __clk_alpha_pll_update_latch(pll);
}
static int alpha_pll_fabia_prepare(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
const struct pll_vco *vco;
struct clk_hw *parent_hw;
unsigned long cal_freq, rrate;
u32 cal_l, val, alpha_width = pll_alpha_width(pll);
const char *name = clk_hw_get_name(hw);
u64 a;
int ret;
/* Check if calibration needs to be done i.e. PLL is in reset */
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
/* Return early if calibration is not needed. */
if (val & PLL_RESET_N)
return 0;
vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
if (!vco) {
pr_err("%s: alpha pll not in a valid vco range\n", name);
return -EINVAL;
}
cal_freq = DIV_ROUND_CLOSEST((pll->vco_table[0].min_freq +
pll->vco_table[0].max_freq) * 54, 100);
parent_hw = clk_hw_get_parent(hw);
if (!parent_hw)
return -EINVAL;
rrate = alpha_pll_round_rate(cal_freq, clk_hw_get_rate(parent_hw),
&cal_l, &a, alpha_width);
ret = alpha_pll_check_rate_margin(hw, rrate, cal_freq);
if (ret < 0)
return ret;
/* Setup PLL for calibration frequency */
regmap_write(pll->clkr.regmap, PLL_CAL_L_VAL(pll), cal_l);
/* Bringup the PLL at calibration frequency */
ret = clk_alpha_pll_enable(hw);
if (ret) {
pr_err("%s: alpha pll calibration failed\n", name);
return ret;
}
clk_alpha_pll_disable(hw);
return 0;
}
const struct clk_ops clk_alpha_pll_fabia_ops = {
.prepare = alpha_pll_fabia_prepare,
.enable = alpha_pll_fabia_enable,
.disable = alpha_pll_fabia_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.set_rate = alpha_pll_fabia_set_rate,
.recalc_rate = alpha_pll_fabia_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
.enable = alpha_pll_fabia_enable,
.disable = alpha_pll_fabia_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = alpha_pll_fabia_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
u32 i, div = 1, val;
int ret;
ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
if (ret)
return ret;
val >>= pll->post_div_shift;
val &= BIT(pll->width) - 1;
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].val == val) {
div = pll->post_div_table[i].div;
break;
}
}
return (parent_rate / div);
}
static unsigned long
clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 i, div = 1, val;
regmap_read(regmap, PLL_USER_CTL(pll), &val);
val >>= pll->post_div_shift;
val &= PLL_POST_DIV_MASK(pll);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].val == val) {
div = pll->post_div_table[i].div;
break;
}
}
return (parent_rate / div);
}
static long
clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
return divider_round_rate(hw, rate, prate, pll->post_div_table,
pll->width, CLK_DIVIDER_ROUND_CLOSEST);
};
static int
clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
struct regmap *regmap = pll->clkr.regmap;
int i, val = 0, div;
div = DIV_ROUND_UP_ULL(parent_rate, rate);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].div == div) {
val = pll->post_div_table[i].val;
break;
}
}
return regmap_update_bits(regmap, PLL_USER_CTL(pll),
PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
val << PLL_POST_DIV_SHIFT);
}
const struct clk_ops clk_alpha_pll_postdiv_trion_ops = {
.recalc_rate = clk_trion_pll_postdiv_recalc_rate,
.round_rate = clk_trion_pll_postdiv_round_rate,
.set_rate = clk_trion_pll_postdiv_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_trion_ops);
static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *prate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
return divider_round_rate(hw, rate, prate, pll->post_div_table,
pll->width, CLK_DIVIDER_ROUND_CLOSEST);
}
static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
int i, val = 0, div, ret;
/*
* If the PLL is in FSM mode, then treat set_rate callback as a
* no-operation.
*/
ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (ret)
return ret;
if (val & PLL_VOTE_FSM_ENA)
return 0;
div = DIV_ROUND_UP_ULL(parent_rate, rate);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].div == div) {
val = pll->post_div_table[i].val;
break;
}
}
return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
(BIT(pll->width) - 1) << pll->post_div_shift,
val << pll->post_div_shift);
}
const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
/**
* clk_trion_pll_configure - configure the trion pll
*
* @pll: clk alpha pll
* @regmap: register map
* @config: configuration to apply for pll
*/
void clk_trion_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
/*
* If the bootloader left the PLL enabled it's likely that there are
* RCGs that will lock up if we disable the PLL below.
*/
if (trion_pll_is_enabled(pll, regmap)) {
pr_debug("Trion PLL is already enabled, skipping configuration\n");
return;
}
clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
regmap_write(regmap, PLL_CAL_L_VAL(pll), TRION_PLL_CAL_VAL);
clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
config->config_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
config->config_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll),
config->config_ctl_hi1_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
config->user_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
config->user_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll),
config->user_ctl_hi1_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
config->test_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
config->test_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll),
config->test_ctl_hi1_val);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
PLL_UPDATE_BYPASS);
/* Disable PLL output */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
/* Set operation mode to OFF */
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
/* Place the PLL in STANDBY mode */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
}
EXPORT_SYMBOL_GPL(clk_trion_pll_configure);
/*
* The TRION PLL requires a power-on self-calibration which happens when the
* PLL comes out of reset. Calibrate in case it is not completed.
*/
static int __alpha_pll_trion_prepare(struct clk_hw *hw, u32 pcal_done)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
int ret;
/* Return early if calibration is not needed. */
regmap_read(pll->clkr.regmap, PLL_STATUS(pll), &val);
if (val & pcal_done)
return 0;
/* On/off to calibrate */
ret = clk_trion_pll_enable(hw);
if (!ret)
clk_trion_pll_disable(hw);
return ret;
}
static int alpha_pll_trion_prepare(struct clk_hw *hw)
{
return __alpha_pll_trion_prepare(hw, TRION_PCAL_DONE);
}
static int alpha_pll_lucid_prepare(struct clk_hw *hw)
{
return __alpha_pll_trion_prepare(hw, LUCID_PCAL_DONE);
}
static int __alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate, u32 latch_bit, u32 latch_ack)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long rrate;
u32 val, l, alpha_width = pll_alpha_width(pll);
u64 a;
int ret;
rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
ret = alpha_pll_check_rate_margin(hw, rrate, rate);
if (ret < 0)
return ret;
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
/* Latch the PLL input */
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, latch_bit);
if (ret)
return ret;
/* Wait for 2 reference cycles before checking the ACK bit. */
udelay(1);
regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (!(val & latch_ack)) {
pr_err("Lucid PLL latch failed. Output may be unstable!\n");
return -EINVAL;
}
/* Return the latch input to 0 */
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, 0);
if (ret)
return ret;
if (clk_hw_is_enabled(hw)) {
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
}
/* Wait for PLL output to stabilize */
udelay(100);
return 0;
}
static int alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
return __alpha_pll_trion_set_rate(hw, rate, prate, PLL_UPDATE, ALPHA_PLL_ACK_LATCH);
}
const struct clk_ops clk_alpha_pll_trion_ops = {
.prepare = alpha_pll_trion_prepare,
.enable = clk_trion_pll_enable,
.disable = clk_trion_pll_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = alpha_pll_trion_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_trion_ops);
const struct clk_ops clk_alpha_pll_lucid_ops = {
.prepare = alpha_pll_lucid_prepare,
.enable = clk_trion_pll_enable,
.disable = clk_trion_pll_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = alpha_pll_trion_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_ops);
const struct clk_ops clk_alpha_pll_postdiv_lucid_ops = {
.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
.set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_ops);
void clk_agera_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
config->user_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
config->config_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
config->config_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
config->test_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
config->test_ctl_hi_val);
}
EXPORT_SYMBOL_GPL(clk_agera_pll_configure);
static int clk_alpha_pll_agera_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l, alpha_width = pll_alpha_width(pll);
int ret;
unsigned long rrate;
u64 a;
rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
ret = alpha_pll_check_rate_margin(hw, rrate, rate);
if (ret < 0)
return ret;
/* change L_VAL without having to go through the power on sequence */
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
if (clk_hw_is_enabled(hw))
return wait_for_pll_enable_lock(pll);
return 0;
}
const struct clk_ops clk_alpha_pll_agera_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = alpha_pll_fabia_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_alpha_pll_agera_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_agera_ops);
static int alpha_pll_lucid_5lpe_enable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
int ret;
ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_lock(pll);
}
/* Check if PLL is already enabled, return if enabled */
ret = trion_pll_is_enabled(pll, pll->clkr.regmap);
if (ret < 0)
return ret;
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_RUN);
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Enable the PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, PLL_OUT_MASK);
if (ret)
return ret;
/* Enable the global PLL outputs */
return regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
}
static void alpha_pll_lucid_5lpe_disable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 val;
int ret;
ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
clk_disable_regmap(hw);
return;
}
/* Disable the global PLL output */
ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable the PLL outputs */
ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL mode in STANDBY */
regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_STANDBY);
}
/*
* The Lucid 5LPE PLL requires a power-on self-calibration which happens
* when the PLL comes out of reset. Calibrate in case it is not completed.
*/
static int alpha_pll_lucid_5lpe_prepare(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct clk_hw *p;
u32 val = 0;
int ret;
/* Return early if calibration is not needed. */
regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (val & LUCID_5LPE_PCAL_DONE)
return 0;
p = clk_hw_get_parent(hw);
if (!p)
return -EINVAL;
ret = alpha_pll_lucid_5lpe_enable(hw);
if (ret)
return ret;
alpha_pll_lucid_5lpe_disable(hw);
return 0;
}
static int alpha_pll_lucid_5lpe_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
return __alpha_pll_trion_set_rate(hw, rate, prate,
LUCID_5LPE_PLL_LATCH_INPUT,
LUCID_5LPE_ALPHA_PLL_ACK_LATCH);
}
static int __clk_lucid_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate,
unsigned long enable_vote_run)
{
struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
struct regmap *regmap = pll->clkr.regmap;
int i, val, div, ret;
u32 mask;
/*
* If the PLL is in FSM mode, then treat set_rate callback as a
* no-operation.
*/
ret = regmap_read(regmap, PLL_USER_CTL(pll), &val);
if (ret)
return ret;
if (val & enable_vote_run)
return 0;
if (!pll->post_div_table) {
pr_err("Missing the post_div_table for the %s PLL\n",
clk_hw_get_name(&pll->clkr.hw));
return -EINVAL;
}
div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
for (i = 0; i < pll->num_post_div; i++) {
if (pll->post_div_table[i].div == div) {
val = pll->post_div_table[i].val;
break;
}
}
mask = GENMASK(pll->width + pll->post_div_shift - 1, pll->post_div_shift);
return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
mask, val << pll->post_div_shift);
}
static int clk_lucid_5lpe_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
return __clk_lucid_pll_postdiv_set_rate(hw, rate, parent_rate, LUCID_5LPE_ENABLE_VOTE_RUN);
}
const struct clk_ops clk_alpha_pll_lucid_5lpe_ops = {
.prepare = alpha_pll_lucid_5lpe_prepare,
.enable = alpha_pll_lucid_5lpe_enable,
.disable = alpha_pll_lucid_5lpe_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = alpha_pll_lucid_5lpe_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_5lpe_ops);
const struct clk_ops clk_alpha_pll_fixed_lucid_5lpe_ops = {
.enable = alpha_pll_lucid_5lpe_enable,
.disable = alpha_pll_lucid_5lpe_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_lucid_5lpe_ops);
const struct clk_ops clk_alpha_pll_postdiv_lucid_5lpe_ops = {
.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
.set_rate = clk_lucid_5lpe_pll_postdiv_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_5lpe_ops);
void clk_zonda_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll), config->user_ctl_hi1_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), config->test_ctl_hi1_val);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, 0);
/* Disable PLL output */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
/* Set operation mode to OFF */
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
/* Place the PLL in STANDBY mode */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
}
EXPORT_SYMBOL_GPL(clk_zonda_pll_configure);
static int clk_zonda_pll_enable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 val;
int ret;
regmap_read(regmap, PLL_MODE(pll), &val);
/* If in FSM mode, just vote for it */
if (val & PLL_VOTE_FSM_ENA) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_active(pll);
}
/* Get the PLL out of bypass mode */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, PLL_BYPASSNL);
/*
* H/W requires a 1us delay between disabling the bypass and
* de-asserting the reset.
*/
udelay(1);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
/* Set operation mode to RUN */
regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
regmap_read(regmap, PLL_TEST_CTL(pll), &val);
/* If cfa mode then poll for freq lock */
if (val & ZONDA_STAY_IN_CFA)
ret = wait_for_zonda_pll_freq_lock(pll);
else
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Enable the PLL outputs */
regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, ZONDA_PLL_OUT_MASK);
/* Enable the global PLL outputs */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
return 0;
}
static void clk_zonda_pll_disable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 val;
regmap_read(regmap, PLL_MODE(pll), &val);
/* If in FSM mode, just unvote it */
if (val & PLL_VOTE_FSM_ENA) {
clk_disable_regmap(hw);
return;
}
/* Disable the global PLL output */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
/* Disable the PLL outputs */
regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, 0);
/* Put the PLL in bypass and reset */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N | PLL_BYPASSNL, 0);
/* Place the PLL mode in OFF state */
regmap_write(regmap, PLL_OPMODE(pll), 0x0);
}
static int clk_zonda_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long rrate;
u32 test_ctl_val;
u32 l, alpha_width = pll_alpha_width(pll);
u64 a;
int ret;
rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
ret = alpha_pll_check_rate_margin(hw, rrate, rate);
if (ret < 0)
return ret;
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
/* Wait before polling for the frequency latch */
udelay(5);
/* Read stay in cfa mode */
regmap_read(pll->clkr.regmap, PLL_TEST_CTL(pll), &test_ctl_val);
/* If cfa mode then poll for freq lock */
if (test_ctl_val & ZONDA_STAY_IN_CFA)
ret = wait_for_zonda_pll_freq_lock(pll);
else
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Wait for PLL output to stabilize */
udelay(100);
return 0;
}
const struct clk_ops clk_alpha_pll_zonda_ops = {
.enable = clk_zonda_pll_enable,
.disable = clk_zonda_pll_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_trion_pll_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = clk_zonda_pll_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_zonda_ops);
void clk_lucid_evo_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 lval = config->l;
lval |= TRION_PLL_CAL_VAL << LUCID_EVO_PLL_CAL_L_VAL_SHIFT;
clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), lval);
clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), config->test_ctl_hi1_val);
/* Disable PLL output */
regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
/* Set operation mode to STANDBY and de-assert the reset */
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
}
EXPORT_SYMBOL_GPL(clk_lucid_evo_pll_configure);
static int alpha_pll_lucid_evo_enable(struct clk_hw *hw)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 val;
int ret;
ret = regmap_read(regmap, PLL_USER_CTL(pll), &val);
if (ret)
return ret;
/* If in FSM mode, just vote for it */
if (val & LUCID_EVO_ENABLE_VOTE_RUN) {
ret = clk_enable_regmap(hw);
if (ret)
return ret;
return wait_for_pll_enable_lock(pll);
}
/* Check if PLL is already enabled */
ret = trion_pll_is_enabled(pll, regmap);
if (ret < 0) {
return ret;
} else if (ret) {
pr_warn("%s PLL is already enabled\n", clk_hw_get_name(&pll->clkr.hw));
return 0;
}
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
if (ret)
return ret;
/* Set operation mode to RUN */
regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
ret = wait_for_pll_enable_lock(pll);
if (ret)
return ret;
/* Enable the PLL outputs */
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, PLL_OUT_MASK);
if (ret)
return ret;
/* Enable the global PLL outputs */
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
if (ret)
return ret;
/* Ensure that the write above goes through before returning. */
mb();
return ret;
}
static void _alpha_pll_lucid_evo_disable(struct clk_hw *hw, bool reset)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 val;
int ret;
ret = regmap_read(regmap, PLL_USER_CTL(pll), &val);
if (ret)
return;
/* If in FSM mode, just unvote it */
if (val & LUCID_EVO_ENABLE_VOTE_RUN) {
clk_disable_regmap(hw);
return;
}
/* Disable the global PLL output */
ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
if (ret)
return;
/* Disable the PLL outputs */
ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
if (ret)
return;
/* Place the PLL mode in STANDBY */
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
if (reset)
regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, 0);
}
static int _alpha_pll_lucid_evo_prepare(struct clk_hw *hw, bool reset)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct clk_hw *p;
u32 val = 0;
int ret;
/* Return early if calibration is not needed. */
regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
if (!(val & LUCID_EVO_PCAL_NOT_DONE))
return 0;
p = clk_hw_get_parent(hw);
if (!p)
return -EINVAL;
ret = alpha_pll_lucid_evo_enable(hw);
if (ret)
return ret;
_alpha_pll_lucid_evo_disable(hw, reset);
return 0;
}
static void alpha_pll_lucid_evo_disable(struct clk_hw *hw)
{
_alpha_pll_lucid_evo_disable(hw, false);
}
static int alpha_pll_lucid_evo_prepare(struct clk_hw *hw)
{
return _alpha_pll_lucid_evo_prepare(hw, false);
}
static void alpha_pll_reset_lucid_evo_disable(struct clk_hw *hw)
{
_alpha_pll_lucid_evo_disable(hw, true);
}
static int alpha_pll_reset_lucid_evo_prepare(struct clk_hw *hw)
{
return _alpha_pll_lucid_evo_prepare(hw, true);
}
static unsigned long alpha_pll_lucid_evo_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
struct regmap *regmap = pll->clkr.regmap;
u32 l, frac;
regmap_read(regmap, PLL_L_VAL(pll), &l);
l &= LUCID_EVO_PLL_L_VAL_MASK;
regmap_read(regmap, PLL_ALPHA_VAL(pll), &frac);
return alpha_pll_calc_rate(parent_rate, l, frac, pll_alpha_width(pll));
}
static int clk_lucid_evo_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
return __clk_lucid_pll_postdiv_set_rate(hw, rate, parent_rate, LUCID_EVO_ENABLE_VOTE_RUN);
}
const struct clk_ops clk_alpha_pll_fixed_lucid_evo_ops = {
.enable = alpha_pll_lucid_evo_enable,
.disable = alpha_pll_lucid_evo_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = alpha_pll_lucid_evo_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_lucid_evo_ops);
const struct clk_ops clk_alpha_pll_postdiv_lucid_evo_ops = {
.recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
.round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
.set_rate = clk_lucid_evo_pll_postdiv_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_evo_ops);
const struct clk_ops clk_alpha_pll_lucid_evo_ops = {
.prepare = alpha_pll_lucid_evo_prepare,
.enable = alpha_pll_lucid_evo_enable,
.disable = alpha_pll_lucid_evo_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = alpha_pll_lucid_evo_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = alpha_pll_lucid_5lpe_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_evo_ops);
const struct clk_ops clk_alpha_pll_reset_lucid_evo_ops = {
.prepare = alpha_pll_reset_lucid_evo_prepare,
.enable = alpha_pll_lucid_evo_enable,
.disable = alpha_pll_reset_lucid_evo_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = alpha_pll_lucid_evo_recalc_rate,
.round_rate = clk_alpha_pll_round_rate,
.set_rate = alpha_pll_lucid_5lpe_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_reset_lucid_evo_ops);
void clk_rivian_evo_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
regmap_update_bits(regmap, PLL_MODE(pll),
PLL_RESET_N | PLL_BYPASSNL | PLL_OUTCTRL,
PLL_RESET_N | PLL_BYPASSNL);
}
EXPORT_SYMBOL_GPL(clk_rivian_evo_pll_configure);
static unsigned long clk_rivian_evo_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
u32 l;
regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
return parent_rate * l;
}
static long clk_rivian_evo_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
unsigned long min_freq, max_freq;
u32 l;
u64 a;
rate = alpha_pll_round_rate(rate, *prate, &l, &a, 0);
if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
return rate;
min_freq = pll->vco_table[0].min_freq;
max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
return clamp(rate, min_freq, max_freq);
}
const struct clk_ops clk_alpha_pll_rivian_evo_ops = {
.enable = alpha_pll_lucid_5lpe_enable,
.disable = alpha_pll_lucid_5lpe_disable,
.is_enabled = clk_trion_pll_is_enabled,
.recalc_rate = clk_rivian_evo_pll_recalc_rate,
.round_rate = clk_rivian_evo_pll_round_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_rivian_evo_ops);
void clk_stromer_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
const struct alpha_pll_config *config)
{
u32 val, val_u, mask, mask_u;
regmap_write(regmap, PLL_L_VAL(pll), config->l);
regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
if (pll_has_64bit_config(pll))
regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
config->config_ctl_hi_val);
if (pll_alpha_width(pll) > 32)
regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
val = config->main_output_mask;
val |= config->aux_output_mask;
val |= config->aux2_output_mask;
val |= config->early_output_mask;
val |= config->pre_div_val;
val |= config->post_div_val;
val |= config->vco_val;
val |= config->alpha_en_mask;
val |= config->alpha_mode_mask;
mask = config->main_output_mask;
mask |= config->aux_output_mask;
mask |= config->aux2_output_mask;
mask |= config->early_output_mask;
mask |= config->pre_div_mask;
mask |= config->post_div_mask;
mask |= config->vco_mask;
mask |= config->alpha_en_mask;
mask |= config->alpha_mode_mask;
regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
/* Stromer APSS PLL does not enable LOCK_DET by default, so enable it */
val_u = config->status_val << ALPHA_PLL_STATUS_REG_SHIFT;
val_u |= config->lock_det;
mask_u = config->status_mask;
mask_u |= config->lock_det;
regmap_update_bits(regmap, PLL_USER_CTL_U(pll), mask_u, val_u);
regmap_write(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
regmap_write(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
if (pll->flags & SUPPORTS_FSM_MODE)
qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
}
EXPORT_SYMBOL_GPL(clk_stromer_pll_configure);
static int clk_alpha_pll_stromer_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
u32 l;
u64 a;
req->rate = alpha_pll_round_rate(req->rate, req->best_parent_rate,
&l, &a, ALPHA_REG_BITWIDTH);
return 0;
}
static int clk_alpha_pll_stromer_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long prate)
{
struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
int ret;
u32 l;
u64 a;
rate = alpha_pll_round_rate(rate, prate, &l, &a, ALPHA_REG_BITWIDTH);
regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
a >> ALPHA_BITWIDTH);
regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
PLL_ALPHA_EN, PLL_ALPHA_EN);
if (!clk_hw_is_enabled(hw))
return 0;
/*
* Stromer PLL supports Dynamic programming.
* It allows the PLL frequency to be changed on-the-fly without first
* execution of a shutdown procedure followed by a bring up procedure.
*/
regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
PLL_UPDATE);
ret = wait_for_pll_update(pll);
if (ret)
return ret;
return wait_for_pll_enable_lock(pll);
}
const struct clk_ops clk_alpha_pll_stromer_ops = {
.enable = clk_alpha_pll_enable,
.disable = clk_alpha_pll_disable,
.is_enabled = clk_alpha_pll_is_enabled,
.recalc_rate = clk_alpha_pll_recalc_rate,
.determine_rate = clk_alpha_pll_stromer_determine_rate,
.set_rate = clk_alpha_pll_stromer_set_rate,
};
EXPORT_SYMBOL_GPL(clk_alpha_pll_stromer_ops);