| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Opening fs-verity files |
| * |
| * Copyright 2019 Google LLC |
| */ |
| |
| #include "fsverity_private.h" |
| |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| |
| static struct kmem_cache *fsverity_info_cachep; |
| |
| /** |
| * fsverity_init_merkle_tree_params() - initialize Merkle tree parameters |
| * @params: the parameters struct to initialize |
| * @inode: the inode for which the Merkle tree is being built |
| * @hash_algorithm: number of hash algorithm to use |
| * @log_blocksize: log base 2 of block size to use |
| * @salt: pointer to salt (optional) |
| * @salt_size: size of salt, possibly 0 |
| * |
| * Validate the hash algorithm and block size, then compute the tree topology |
| * (num levels, num blocks in each level, etc.) and initialize @params. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fsverity_init_merkle_tree_params(struct merkle_tree_params *params, |
| const struct inode *inode, |
| unsigned int hash_algorithm, |
| unsigned int log_blocksize, |
| const u8 *salt, size_t salt_size) |
| { |
| struct fsverity_hash_alg *hash_alg; |
| int err; |
| u64 blocks; |
| u64 blocks_in_level[FS_VERITY_MAX_LEVELS]; |
| u64 offset; |
| int level; |
| |
| memset(params, 0, sizeof(*params)); |
| |
| hash_alg = fsverity_get_hash_alg(inode, hash_algorithm); |
| if (IS_ERR(hash_alg)) |
| return PTR_ERR(hash_alg); |
| params->hash_alg = hash_alg; |
| params->digest_size = hash_alg->digest_size; |
| |
| params->hashstate = fsverity_prepare_hash_state(hash_alg, salt, |
| salt_size); |
| if (IS_ERR(params->hashstate)) { |
| err = PTR_ERR(params->hashstate); |
| params->hashstate = NULL; |
| fsverity_err(inode, "Error %d preparing hash state", err); |
| goto out_err; |
| } |
| |
| /* |
| * fs/verity/ directly assumes that the Merkle tree block size is a |
| * power of 2 less than or equal to PAGE_SIZE. Another restriction |
| * arises from the interaction between fs/verity/ and the filesystems |
| * themselves: filesystems expect to be able to verify a single |
| * filesystem block of data at a time. Therefore, the Merkle tree block |
| * size must also be less than or equal to the filesystem block size. |
| * |
| * The above are the only hard limitations, so in theory the Merkle tree |
| * block size could be as small as twice the digest size. However, |
| * that's not useful, and it would result in some unusually deep and |
| * large Merkle trees. So we currently require that the Merkle tree |
| * block size be at least 1024 bytes. That's small enough to test the |
| * sub-page block case on systems with 4K pages, but not too small. |
| */ |
| if (log_blocksize < 10 || log_blocksize > PAGE_SHIFT || |
| log_blocksize > inode->i_blkbits) { |
| fsverity_warn(inode, "Unsupported log_blocksize: %u", |
| log_blocksize); |
| err = -EINVAL; |
| goto out_err; |
| } |
| params->log_blocksize = log_blocksize; |
| params->block_size = 1 << log_blocksize; |
| params->log_blocks_per_page = PAGE_SHIFT - log_blocksize; |
| params->blocks_per_page = 1 << params->log_blocks_per_page; |
| |
| if (WARN_ON_ONCE(!is_power_of_2(params->digest_size))) { |
| err = -EINVAL; |
| goto out_err; |
| } |
| if (params->block_size < 2 * params->digest_size) { |
| fsverity_warn(inode, |
| "Merkle tree block size (%u) too small for hash algorithm \"%s\"", |
| params->block_size, hash_alg->name); |
| err = -EINVAL; |
| goto out_err; |
| } |
| params->log_digestsize = ilog2(params->digest_size); |
| params->log_arity = log_blocksize - params->log_digestsize; |
| params->hashes_per_block = 1 << params->log_arity; |
| |
| /* |
| * Compute the number of levels in the Merkle tree and create a map from |
| * level to the starting block of that level. Level 'num_levels - 1' is |
| * the root and is stored first. Level 0 is the level directly "above" |
| * the data blocks and is stored last. |
| */ |
| |
| /* Compute number of levels and the number of blocks in each level */ |
| blocks = ((u64)inode->i_size + params->block_size - 1) >> log_blocksize; |
| while (blocks > 1) { |
| if (params->num_levels >= FS_VERITY_MAX_LEVELS) { |
| fsverity_err(inode, "Too many levels in Merkle tree"); |
| err = -EFBIG; |
| goto out_err; |
| } |
| blocks = (blocks + params->hashes_per_block - 1) >> |
| params->log_arity; |
| blocks_in_level[params->num_levels++] = blocks; |
| } |
| |
| /* Compute the starting block of each level */ |
| offset = 0; |
| for (level = (int)params->num_levels - 1; level >= 0; level--) { |
| params->level_start[level] = offset; |
| offset += blocks_in_level[level]; |
| } |
| |
| /* |
| * With block_size != PAGE_SIZE, an in-memory bitmap will need to be |
| * allocated to track the "verified" status of hash blocks. Don't allow |
| * this bitmap to get too large. For now, limit it to 1 MiB, which |
| * limits the file size to about 4.4 TB with SHA-256 and 4K blocks. |
| * |
| * Together with the fact that the data, and thus also the Merkle tree, |
| * cannot have more than ULONG_MAX pages, this implies that hash block |
| * indices can always fit in an 'unsigned long'. But to be safe, we |
| * explicitly check for that too. Note, this is only for hash block |
| * indices; data block indices might not fit in an 'unsigned long'. |
| */ |
| if ((params->block_size != PAGE_SIZE && offset > 1 << 23) || |
| offset > ULONG_MAX) { |
| fsverity_err(inode, "Too many blocks in Merkle tree"); |
| err = -EFBIG; |
| goto out_err; |
| } |
| |
| params->tree_size = offset << log_blocksize; |
| params->tree_pages = PAGE_ALIGN(params->tree_size) >> PAGE_SHIFT; |
| return 0; |
| |
| out_err: |
| kfree(params->hashstate); |
| memset(params, 0, sizeof(*params)); |
| return err; |
| } |
| |
| /* |
| * Compute the file digest by hashing the fsverity_descriptor excluding the |
| * signature and with the sig_size field set to 0. |
| */ |
| static int compute_file_digest(struct fsverity_hash_alg *hash_alg, |
| struct fsverity_descriptor *desc, |
| u8 *file_digest) |
| { |
| __le32 sig_size = desc->sig_size; |
| int err; |
| |
| desc->sig_size = 0; |
| err = fsverity_hash_buffer(hash_alg, desc, sizeof(*desc), file_digest); |
| desc->sig_size = sig_size; |
| |
| return err; |
| } |
| |
| /* |
| * Create a new fsverity_info from the given fsverity_descriptor (with optional |
| * appended signature), and check the signature if present. The |
| * fsverity_descriptor must have already undergone basic validation. |
| */ |
| struct fsverity_info *fsverity_create_info(const struct inode *inode, |
| struct fsverity_descriptor *desc) |
| { |
| struct fsverity_info *vi; |
| int err; |
| |
| vi = kmem_cache_zalloc(fsverity_info_cachep, GFP_KERNEL); |
| if (!vi) |
| return ERR_PTR(-ENOMEM); |
| vi->inode = inode; |
| |
| err = fsverity_init_merkle_tree_params(&vi->tree_params, inode, |
| desc->hash_algorithm, |
| desc->log_blocksize, |
| desc->salt, desc->salt_size); |
| if (err) { |
| fsverity_err(inode, |
| "Error %d initializing Merkle tree parameters", |
| err); |
| goto fail; |
| } |
| |
| memcpy(vi->root_hash, desc->root_hash, vi->tree_params.digest_size); |
| |
| err = compute_file_digest(vi->tree_params.hash_alg, desc, |
| vi->file_digest); |
| if (err) { |
| fsverity_err(inode, "Error %d computing file digest", err); |
| goto fail; |
| } |
| |
| err = fsverity_verify_signature(vi, desc->signature, |
| le32_to_cpu(desc->sig_size)); |
| if (err) |
| goto fail; |
| |
| if (vi->tree_params.block_size != PAGE_SIZE) { |
| /* |
| * When the Merkle tree block size and page size differ, we use |
| * a bitmap to keep track of which hash blocks have been |
| * verified. This bitmap must contain one bit per hash block, |
| * including alignment to a page boundary at the end. |
| * |
| * Eventually, to support extremely large files in an efficient |
| * way, it might be necessary to make pages of this bitmap |
| * reclaimable. But for now, simply allocating the whole bitmap |
| * is a simple solution that works well on the files on which |
| * fsverity is realistically used. E.g., with SHA-256 and 4K |
| * blocks, a 100MB file only needs a 24-byte bitmap, and the |
| * bitmap for any file under 17GB fits in a 4K page. |
| */ |
| unsigned long num_bits = |
| vi->tree_params.tree_pages << |
| vi->tree_params.log_blocks_per_page; |
| |
| vi->hash_block_verified = kvcalloc(BITS_TO_LONGS(num_bits), |
| sizeof(unsigned long), |
| GFP_KERNEL); |
| if (!vi->hash_block_verified) { |
| err = -ENOMEM; |
| goto fail; |
| } |
| spin_lock_init(&vi->hash_page_init_lock); |
| } |
| |
| return vi; |
| |
| fail: |
| fsverity_free_info(vi); |
| return ERR_PTR(err); |
| } |
| |
| void fsverity_set_info(struct inode *inode, struct fsverity_info *vi) |
| { |
| /* |
| * Multiple tasks may race to set ->i_verity_info, so use |
| * cmpxchg_release(). This pairs with the smp_load_acquire() in |
| * fsverity_get_info(). I.e., here we publish ->i_verity_info with a |
| * RELEASE barrier so that other tasks can ACQUIRE it. |
| */ |
| if (cmpxchg_release(&inode->i_verity_info, NULL, vi) != NULL) { |
| /* Lost the race, so free the fsverity_info we allocated. */ |
| fsverity_free_info(vi); |
| /* |
| * Afterwards, the caller may access ->i_verity_info directly, |
| * so make sure to ACQUIRE the winning fsverity_info. |
| */ |
| (void)fsverity_get_info(inode); |
| } |
| } |
| |
| void fsverity_free_info(struct fsverity_info *vi) |
| { |
| if (!vi) |
| return; |
| kfree(vi->tree_params.hashstate); |
| kvfree(vi->hash_block_verified); |
| kmem_cache_free(fsverity_info_cachep, vi); |
| } |
| |
| static bool validate_fsverity_descriptor(struct inode *inode, |
| const struct fsverity_descriptor *desc, |
| size_t desc_size) |
| { |
| if (desc_size < sizeof(*desc)) { |
| fsverity_err(inode, "Unrecognized descriptor size: %zu bytes", |
| desc_size); |
| return false; |
| } |
| |
| if (desc->version != 1) { |
| fsverity_err(inode, "Unrecognized descriptor version: %u", |
| desc->version); |
| return false; |
| } |
| |
| if (memchr_inv(desc->__reserved, 0, sizeof(desc->__reserved))) { |
| fsverity_err(inode, "Reserved bits set in descriptor"); |
| return false; |
| } |
| |
| if (desc->salt_size > sizeof(desc->salt)) { |
| fsverity_err(inode, "Invalid salt_size: %u", desc->salt_size); |
| return false; |
| } |
| |
| if (le64_to_cpu(desc->data_size) != inode->i_size) { |
| fsverity_err(inode, |
| "Wrong data_size: %llu (desc) != %lld (inode)", |
| le64_to_cpu(desc->data_size), inode->i_size); |
| return false; |
| } |
| |
| if (le32_to_cpu(desc->sig_size) > desc_size - sizeof(*desc)) { |
| fsverity_err(inode, "Signature overflows verity descriptor"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Read the inode's fsverity_descriptor (with optional appended signature) from |
| * the filesystem, and do basic validation of it. |
| */ |
| int fsverity_get_descriptor(struct inode *inode, |
| struct fsverity_descriptor **desc_ret) |
| { |
| int res; |
| struct fsverity_descriptor *desc; |
| |
| res = inode->i_sb->s_vop->get_verity_descriptor(inode, NULL, 0); |
| if (res < 0) { |
| fsverity_err(inode, |
| "Error %d getting verity descriptor size", res); |
| return res; |
| } |
| if (res > FS_VERITY_MAX_DESCRIPTOR_SIZE) { |
| fsverity_err(inode, "Verity descriptor is too large (%d bytes)", |
| res); |
| return -EMSGSIZE; |
| } |
| desc = kmalloc(res, GFP_KERNEL); |
| if (!desc) |
| return -ENOMEM; |
| res = inode->i_sb->s_vop->get_verity_descriptor(inode, desc, res); |
| if (res < 0) { |
| fsverity_err(inode, "Error %d reading verity descriptor", res); |
| kfree(desc); |
| return res; |
| } |
| |
| if (!validate_fsverity_descriptor(inode, desc, res)) { |
| kfree(desc); |
| return -EINVAL; |
| } |
| |
| *desc_ret = desc; |
| return 0; |
| } |
| |
| /* Ensure the inode has an ->i_verity_info */ |
| static int ensure_verity_info(struct inode *inode) |
| { |
| struct fsverity_info *vi = fsverity_get_info(inode); |
| struct fsverity_descriptor *desc; |
| int err; |
| |
| if (vi) |
| return 0; |
| |
| err = fsverity_get_descriptor(inode, &desc); |
| if (err) |
| return err; |
| |
| vi = fsverity_create_info(inode, desc); |
| if (IS_ERR(vi)) { |
| err = PTR_ERR(vi); |
| goto out_free_desc; |
| } |
| |
| fsverity_set_info(inode, vi); |
| err = 0; |
| out_free_desc: |
| kfree(desc); |
| return err; |
| } |
| |
| int __fsverity_file_open(struct inode *inode, struct file *filp) |
| { |
| if (filp->f_mode & FMODE_WRITE) |
| return -EPERM; |
| return ensure_verity_info(inode); |
| } |
| EXPORT_SYMBOL_GPL(__fsverity_file_open); |
| |
| int __fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr) |
| { |
| if (attr->ia_valid & ATTR_SIZE) |
| return -EPERM; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__fsverity_prepare_setattr); |
| |
| void __fsverity_cleanup_inode(struct inode *inode) |
| { |
| fsverity_free_info(inode->i_verity_info); |
| inode->i_verity_info = NULL; |
| } |
| EXPORT_SYMBOL_GPL(__fsverity_cleanup_inode); |
| |
| int __init fsverity_init_info_cache(void) |
| { |
| fsverity_info_cachep = KMEM_CACHE_USERCOPY(fsverity_info, |
| SLAB_RECLAIM_ACCOUNT, |
| file_digest); |
| if (!fsverity_info_cachep) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void __init fsverity_exit_info_cache(void) |
| { |
| kmem_cache_destroy(fsverity_info_cachep); |
| fsverity_info_cachep = NULL; |
| } |