| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Core registration and callback routines for MTD |
| * drivers and users. |
| * |
| * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> |
| * Copyright © 2006 Red Hat UK Limited |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/ptrace.h> |
| #include <linux/seq_file.h> |
| #include <linux/string.h> |
| #include <linux/timer.h> |
| #include <linux/major.h> |
| #include <linux/fs.h> |
| #include <linux/err.h> |
| #include <linux/ioctl.h> |
| #include <linux/init.h> |
| #include <linux/of.h> |
| #include <linux/proc_fs.h> |
| #include <linux/idr.h> |
| #include <linux/backing-dev.h> |
| #include <linux/gfp.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| #include <linux/reboot.h> |
| #include <linux/leds.h> |
| #include <linux/debugfs.h> |
| #include <linux/nvmem-provider.h> |
| #include <linux/root_dev.h> |
| #include <linux/error-injection.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include "mtdcore.h" |
| |
| struct backing_dev_info *mtd_bdi; |
| |
| #ifdef CONFIG_PM_SLEEP |
| |
| static int mtd_cls_suspend(struct device *dev) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return mtd ? mtd_suspend(mtd) : 0; |
| } |
| |
| static int mtd_cls_resume(struct device *dev) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| if (mtd) |
| mtd_resume(mtd); |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); |
| #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) |
| #else |
| #define MTD_CLS_PM_OPS NULL |
| #endif |
| |
| static struct class mtd_class = { |
| .name = "mtd", |
| .pm = MTD_CLS_PM_OPS, |
| }; |
| |
| static DEFINE_IDR(mtd_idr); |
| |
| /* These are exported solely for the purpose of mtd_blkdevs.c. You |
| should not use them for _anything_ else */ |
| DEFINE_MUTEX(mtd_table_mutex); |
| EXPORT_SYMBOL_GPL(mtd_table_mutex); |
| |
| struct mtd_info *__mtd_next_device(int i) |
| { |
| return idr_get_next(&mtd_idr, &i); |
| } |
| EXPORT_SYMBOL_GPL(__mtd_next_device); |
| |
| static LIST_HEAD(mtd_notifiers); |
| |
| |
| #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) |
| |
| /* REVISIT once MTD uses the driver model better, whoever allocates |
| * the mtd_info will probably want to use the release() hook... |
| */ |
| static void mtd_release(struct device *dev) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| dev_t index = MTD_DEVT(mtd->index); |
| |
| idr_remove(&mtd_idr, mtd->index); |
| of_node_put(mtd_get_of_node(mtd)); |
| |
| if (mtd_is_partition(mtd)) |
| release_mtd_partition(mtd); |
| |
| /* remove /dev/mtdXro node */ |
| device_destroy(&mtd_class, index + 1); |
| } |
| |
| static void mtd_device_release(struct kref *kref) |
| { |
| struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt); |
| bool is_partition = mtd_is_partition(mtd); |
| |
| debugfs_remove_recursive(mtd->dbg.dfs_dir); |
| |
| /* Try to remove the NVMEM provider */ |
| nvmem_unregister(mtd->nvmem); |
| |
| device_unregister(&mtd->dev); |
| |
| /* |
| * Clear dev so mtd can be safely re-registered later if desired. |
| * Should not be done for partition, |
| * as it was already destroyed in device_unregister(). |
| */ |
| if (!is_partition) |
| memset(&mtd->dev, 0, sizeof(mtd->dev)); |
| |
| module_put(THIS_MODULE); |
| } |
| |
| #define MTD_DEVICE_ATTR_RO(name) \ |
| static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) |
| |
| #define MTD_DEVICE_ATTR_RW(name) \ |
| static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) |
| |
| static ssize_t mtd_type_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| char *type; |
| |
| switch (mtd->type) { |
| case MTD_ABSENT: |
| type = "absent"; |
| break; |
| case MTD_RAM: |
| type = "ram"; |
| break; |
| case MTD_ROM: |
| type = "rom"; |
| break; |
| case MTD_NORFLASH: |
| type = "nor"; |
| break; |
| case MTD_NANDFLASH: |
| type = "nand"; |
| break; |
| case MTD_DATAFLASH: |
| type = "dataflash"; |
| break; |
| case MTD_UBIVOLUME: |
| type = "ubi"; |
| break; |
| case MTD_MLCNANDFLASH: |
| type = "mlc-nand"; |
| break; |
| default: |
| type = "unknown"; |
| } |
| |
| return sysfs_emit(buf, "%s\n", type); |
| } |
| MTD_DEVICE_ATTR_RO(type); |
| |
| static ssize_t mtd_flags_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); |
| } |
| MTD_DEVICE_ATTR_RO(flags); |
| |
| static ssize_t mtd_size_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); |
| } |
| MTD_DEVICE_ATTR_RO(size); |
| |
| static ssize_t mtd_erasesize_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); |
| } |
| MTD_DEVICE_ATTR_RO(erasesize); |
| |
| static ssize_t mtd_writesize_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); |
| } |
| MTD_DEVICE_ATTR_RO(writesize); |
| |
| static ssize_t mtd_subpagesize_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; |
| |
| return sysfs_emit(buf, "%u\n", subpagesize); |
| } |
| MTD_DEVICE_ATTR_RO(subpagesize); |
| |
| static ssize_t mtd_oobsize_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); |
| } |
| MTD_DEVICE_ATTR_RO(oobsize); |
| |
| static ssize_t mtd_oobavail_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%u\n", mtd->oobavail); |
| } |
| MTD_DEVICE_ATTR_RO(oobavail); |
| |
| static ssize_t mtd_numeraseregions_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%u\n", mtd->numeraseregions); |
| } |
| MTD_DEVICE_ATTR_RO(numeraseregions); |
| |
| static ssize_t mtd_name_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%s\n", mtd->name); |
| } |
| MTD_DEVICE_ATTR_RO(name); |
| |
| static ssize_t mtd_ecc_strength_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%u\n", mtd->ecc_strength); |
| } |
| MTD_DEVICE_ATTR_RO(ecc_strength); |
| |
| static ssize_t mtd_bitflip_threshold_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); |
| } |
| |
| static ssize_t mtd_bitflip_threshold_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| unsigned int bitflip_threshold; |
| int retval; |
| |
| retval = kstrtouint(buf, 0, &bitflip_threshold); |
| if (retval) |
| return retval; |
| |
| mtd->bitflip_threshold = bitflip_threshold; |
| return count; |
| } |
| MTD_DEVICE_ATTR_RW(bitflip_threshold); |
| |
| static ssize_t mtd_ecc_step_size_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| |
| return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); |
| |
| } |
| MTD_DEVICE_ATTR_RO(ecc_step_size); |
| |
| static ssize_t mtd_corrected_bits_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; |
| |
| return sysfs_emit(buf, "%u\n", ecc_stats->corrected); |
| } |
| MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ |
| |
| static ssize_t mtd_ecc_failures_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; |
| |
| return sysfs_emit(buf, "%u\n", ecc_stats->failed); |
| } |
| MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ |
| |
| static ssize_t mtd_bad_blocks_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; |
| |
| return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); |
| } |
| MTD_DEVICE_ATTR_RO(bad_blocks); |
| |
| static ssize_t mtd_bbt_blocks_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct mtd_info *mtd = dev_get_drvdata(dev); |
| struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; |
| |
| return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); |
| } |
| MTD_DEVICE_ATTR_RO(bbt_blocks); |
| |
| static struct attribute *mtd_attrs[] = { |
| &dev_attr_type.attr, |
| &dev_attr_flags.attr, |
| &dev_attr_size.attr, |
| &dev_attr_erasesize.attr, |
| &dev_attr_writesize.attr, |
| &dev_attr_subpagesize.attr, |
| &dev_attr_oobsize.attr, |
| &dev_attr_oobavail.attr, |
| &dev_attr_numeraseregions.attr, |
| &dev_attr_name.attr, |
| &dev_attr_ecc_strength.attr, |
| &dev_attr_ecc_step_size.attr, |
| &dev_attr_corrected_bits.attr, |
| &dev_attr_ecc_failures.attr, |
| &dev_attr_bad_blocks.attr, |
| &dev_attr_bbt_blocks.attr, |
| &dev_attr_bitflip_threshold.attr, |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(mtd); |
| |
| static const struct device_type mtd_devtype = { |
| .name = "mtd", |
| .groups = mtd_groups, |
| .release = mtd_release, |
| }; |
| |
| static bool mtd_expert_analysis_mode; |
| |
| #ifdef CONFIG_DEBUG_FS |
| bool mtd_check_expert_analysis_mode(void) |
| { |
| const char *mtd_expert_analysis_warning = |
| "Bad block checks have been entirely disabled.\n" |
| "This is only reserved for post-mortem forensics and debug purposes.\n" |
| "Never enable this mode if you do not know what you are doing!\n"; |
| |
| return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); |
| } |
| EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); |
| #endif |
| |
| static struct dentry *dfs_dir_mtd; |
| |
| static void mtd_debugfs_populate(struct mtd_info *mtd) |
| { |
| struct device *dev = &mtd->dev; |
| |
| if (IS_ERR_OR_NULL(dfs_dir_mtd)) |
| return; |
| |
| mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); |
| } |
| |
| #ifndef CONFIG_MMU |
| unsigned mtd_mmap_capabilities(struct mtd_info *mtd) |
| { |
| switch (mtd->type) { |
| case MTD_RAM: |
| return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | |
| NOMMU_MAP_READ | NOMMU_MAP_WRITE; |
| case MTD_ROM: |
| return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | |
| NOMMU_MAP_READ; |
| default: |
| return NOMMU_MAP_COPY; |
| } |
| } |
| EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); |
| #endif |
| |
| static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, |
| void *cmd) |
| { |
| struct mtd_info *mtd; |
| |
| mtd = container_of(n, struct mtd_info, reboot_notifier); |
| mtd->_reboot(mtd); |
| |
| return NOTIFY_DONE; |
| } |
| |
| /** |
| * mtd_wunit_to_pairing_info - get pairing information of a wunit |
| * @mtd: pointer to new MTD device info structure |
| * @wunit: write unit we are interested in |
| * @info: returned pairing information |
| * |
| * Retrieve pairing information associated to the wunit. |
| * This is mainly useful when dealing with MLC/TLC NANDs where pages can be |
| * paired together, and where programming a page may influence the page it is |
| * paired with. |
| * The notion of page is replaced by the term wunit (write-unit) to stay |
| * consistent with the ->writesize field. |
| * |
| * The @wunit argument can be extracted from an absolute offset using |
| * mtd_offset_to_wunit(). @info is filled with the pairing information attached |
| * to @wunit. |
| * |
| * From the pairing info the MTD user can find all the wunits paired with |
| * @wunit using the following loop: |
| * |
| * for (i = 0; i < mtd_pairing_groups(mtd); i++) { |
| * info.pair = i; |
| * mtd_pairing_info_to_wunit(mtd, &info); |
| * ... |
| * } |
| */ |
| int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, |
| struct mtd_pairing_info *info) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); |
| |
| if (wunit < 0 || wunit >= npairs) |
| return -EINVAL; |
| |
| if (master->pairing && master->pairing->get_info) |
| return master->pairing->get_info(master, wunit, info); |
| |
| info->group = 0; |
| info->pair = wunit; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); |
| |
| /** |
| * mtd_pairing_info_to_wunit - get wunit from pairing information |
| * @mtd: pointer to new MTD device info structure |
| * @info: pairing information struct |
| * |
| * Returns a positive number representing the wunit associated to the info |
| * struct, or a negative error code. |
| * |
| * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to |
| * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() |
| * doc). |
| * |
| * It can also be used to only program the first page of each pair (i.e. |
| * page attached to group 0), which allows one to use an MLC NAND in |
| * software-emulated SLC mode: |
| * |
| * info.group = 0; |
| * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); |
| * for (info.pair = 0; info.pair < npairs; info.pair++) { |
| * wunit = mtd_pairing_info_to_wunit(mtd, &info); |
| * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), |
| * mtd->writesize, &retlen, buf + (i * mtd->writesize)); |
| * } |
| */ |
| int mtd_pairing_info_to_wunit(struct mtd_info *mtd, |
| const struct mtd_pairing_info *info) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| int ngroups = mtd_pairing_groups(master); |
| int npairs = mtd_wunit_per_eb(master) / ngroups; |
| |
| if (!info || info->pair < 0 || info->pair >= npairs || |
| info->group < 0 || info->group >= ngroups) |
| return -EINVAL; |
| |
| if (master->pairing && master->pairing->get_wunit) |
| return mtd->pairing->get_wunit(master, info); |
| |
| return info->pair; |
| } |
| EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); |
| |
| /** |
| * mtd_pairing_groups - get the number of pairing groups |
| * @mtd: pointer to new MTD device info structure |
| * |
| * Returns the number of pairing groups. |
| * |
| * This number is usually equal to the number of bits exposed by a single |
| * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() |
| * to iterate over all pages of a given pair. |
| */ |
| int mtd_pairing_groups(struct mtd_info *mtd) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (!master->pairing || !master->pairing->ngroups) |
| return 1; |
| |
| return master->pairing->ngroups; |
| } |
| EXPORT_SYMBOL_GPL(mtd_pairing_groups); |
| |
| static int mtd_nvmem_reg_read(void *priv, unsigned int offset, |
| void *val, size_t bytes) |
| { |
| struct mtd_info *mtd = priv; |
| size_t retlen; |
| int err; |
| |
| err = mtd_read(mtd, offset, bytes, &retlen, val); |
| if (err && err != -EUCLEAN) |
| return err; |
| |
| return retlen == bytes ? 0 : -EIO; |
| } |
| |
| static int mtd_nvmem_add(struct mtd_info *mtd) |
| { |
| struct device_node *node = mtd_get_of_node(mtd); |
| struct nvmem_config config = {}; |
| |
| config.id = NVMEM_DEVID_NONE; |
| config.dev = &mtd->dev; |
| config.name = dev_name(&mtd->dev); |
| config.owner = THIS_MODULE; |
| config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells"); |
| config.reg_read = mtd_nvmem_reg_read; |
| config.size = mtd->size; |
| config.word_size = 1; |
| config.stride = 1; |
| config.read_only = true; |
| config.root_only = true; |
| config.ignore_wp = true; |
| config.priv = mtd; |
| |
| mtd->nvmem = nvmem_register(&config); |
| if (IS_ERR(mtd->nvmem)) { |
| /* Just ignore if there is no NVMEM support in the kernel */ |
| if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) |
| mtd->nvmem = NULL; |
| else |
| return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), |
| "Failed to register NVMEM device\n"); |
| } |
| |
| return 0; |
| } |
| |
| static void mtd_check_of_node(struct mtd_info *mtd) |
| { |
| struct device_node *partitions, *parent_dn, *mtd_dn = NULL; |
| const char *pname, *prefix = "partition-"; |
| int plen, mtd_name_len, offset, prefix_len; |
| |
| /* Check if MTD already has a device node */ |
| if (mtd_get_of_node(mtd)) |
| return; |
| |
| if (!mtd_is_partition(mtd)) |
| return; |
| |
| parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); |
| if (!parent_dn) |
| return; |
| |
| if (mtd_is_partition(mtd->parent)) |
| partitions = of_node_get(parent_dn); |
| else |
| partitions = of_get_child_by_name(parent_dn, "partitions"); |
| if (!partitions) |
| goto exit_parent; |
| |
| prefix_len = strlen(prefix); |
| mtd_name_len = strlen(mtd->name); |
| |
| /* Search if a partition is defined with the same name */ |
| for_each_child_of_node(partitions, mtd_dn) { |
| /* Skip partition with no/wrong prefix */ |
| if (!of_node_name_prefix(mtd_dn, prefix)) |
| continue; |
| |
| /* Label have priority. Check that first */ |
| if (!of_property_read_string(mtd_dn, "label", &pname)) { |
| offset = 0; |
| } else { |
| pname = mtd_dn->name; |
| offset = prefix_len; |
| } |
| |
| plen = strlen(pname) - offset; |
| if (plen == mtd_name_len && |
| !strncmp(mtd->name, pname + offset, plen)) { |
| mtd_set_of_node(mtd, mtd_dn); |
| of_node_put(mtd_dn); |
| break; |
| } |
| } |
| |
| of_node_put(partitions); |
| exit_parent: |
| of_node_put(parent_dn); |
| } |
| |
| /** |
| * add_mtd_device - register an MTD device |
| * @mtd: pointer to new MTD device info structure |
| * |
| * Add a device to the list of MTD devices present in the system, and |
| * notify each currently active MTD 'user' of its arrival. Returns |
| * zero on success or non-zero on failure. |
| */ |
| |
| int add_mtd_device(struct mtd_info *mtd) |
| { |
| struct device_node *np = mtd_get_of_node(mtd); |
| struct mtd_info *master = mtd_get_master(mtd); |
| struct mtd_notifier *not; |
| int i, error, ofidx; |
| |
| /* |
| * May occur, for instance, on buggy drivers which call |
| * mtd_device_parse_register() multiple times on the same master MTD, |
| * especially with CONFIG_MTD_PARTITIONED_MASTER=y. |
| */ |
| if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) |
| return -EEXIST; |
| |
| BUG_ON(mtd->writesize == 0); |
| |
| /* |
| * MTD drivers should implement ->_{write,read}() or |
| * ->_{write,read}_oob(), but not both. |
| */ |
| if (WARN_ON((mtd->_write && mtd->_write_oob) || |
| (mtd->_read && mtd->_read_oob))) |
| return -EINVAL; |
| |
| if (WARN_ON((!mtd->erasesize || !master->_erase) && |
| !(mtd->flags & MTD_NO_ERASE))) |
| return -EINVAL; |
| |
| /* |
| * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the |
| * master is an MLC NAND and has a proper pairing scheme defined. |
| * We also reject masters that implement ->_writev() for now, because |
| * NAND controller drivers don't implement this hook, and adding the |
| * SLC -> MLC address/length conversion to this path is useless if we |
| * don't have a user. |
| */ |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && |
| (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || |
| !master->pairing || master->_writev)) |
| return -EINVAL; |
| |
| mutex_lock(&mtd_table_mutex); |
| |
| ofidx = -1; |
| if (np) |
| ofidx = of_alias_get_id(np, "mtd"); |
| if (ofidx >= 0) |
| i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); |
| else |
| i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); |
| if (i < 0) { |
| error = i; |
| goto fail_locked; |
| } |
| |
| mtd->index = i; |
| kref_init(&mtd->refcnt); |
| |
| /* default value if not set by driver */ |
| if (mtd->bitflip_threshold == 0) |
| mtd->bitflip_threshold = mtd->ecc_strength; |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { |
| int ngroups = mtd_pairing_groups(master); |
| |
| mtd->erasesize /= ngroups; |
| mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * |
| mtd->erasesize; |
| } |
| |
| if (is_power_of_2(mtd->erasesize)) |
| mtd->erasesize_shift = ffs(mtd->erasesize) - 1; |
| else |
| mtd->erasesize_shift = 0; |
| |
| if (is_power_of_2(mtd->writesize)) |
| mtd->writesize_shift = ffs(mtd->writesize) - 1; |
| else |
| mtd->writesize_shift = 0; |
| |
| mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; |
| mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; |
| |
| /* Some chips always power up locked. Unlock them now */ |
| if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { |
| error = mtd_unlock(mtd, 0, mtd->size); |
| if (error && error != -EOPNOTSUPP) |
| printk(KERN_WARNING |
| "%s: unlock failed, writes may not work\n", |
| mtd->name); |
| /* Ignore unlock failures? */ |
| error = 0; |
| } |
| |
| /* Caller should have set dev.parent to match the |
| * physical device, if appropriate. |
| */ |
| mtd->dev.type = &mtd_devtype; |
| mtd->dev.class = &mtd_class; |
| mtd->dev.devt = MTD_DEVT(i); |
| dev_set_name(&mtd->dev, "mtd%d", i); |
| dev_set_drvdata(&mtd->dev, mtd); |
| mtd_check_of_node(mtd); |
| of_node_get(mtd_get_of_node(mtd)); |
| error = device_register(&mtd->dev); |
| if (error) { |
| put_device(&mtd->dev); |
| goto fail_added; |
| } |
| |
| /* Add the nvmem provider */ |
| error = mtd_nvmem_add(mtd); |
| if (error) |
| goto fail_nvmem_add; |
| |
| mtd_debugfs_populate(mtd); |
| |
| device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, |
| "mtd%dro", i); |
| |
| pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); |
| /* No need to get a refcount on the module containing |
| the notifier, since we hold the mtd_table_mutex */ |
| list_for_each_entry(not, &mtd_notifiers, list) |
| not->add(mtd); |
| |
| mutex_unlock(&mtd_table_mutex); |
| |
| if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { |
| if (IS_BUILTIN(CONFIG_MTD)) { |
| pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); |
| ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); |
| } else { |
| pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", |
| mtd->index, mtd->name); |
| } |
| } |
| |
| /* We _know_ we aren't being removed, because |
| our caller is still holding us here. So none |
| of this try_ nonsense, and no bitching about it |
| either. :) */ |
| __module_get(THIS_MODULE); |
| return 0; |
| |
| fail_nvmem_add: |
| device_unregister(&mtd->dev); |
| fail_added: |
| of_node_put(mtd_get_of_node(mtd)); |
| idr_remove(&mtd_idr, i); |
| fail_locked: |
| mutex_unlock(&mtd_table_mutex); |
| return error; |
| } |
| |
| /** |
| * del_mtd_device - unregister an MTD device |
| * @mtd: pointer to MTD device info structure |
| * |
| * Remove a device from the list of MTD devices present in the system, |
| * and notify each currently active MTD 'user' of its departure. |
| * Returns zero on success or 1 on failure, which currently will happen |
| * if the requested device does not appear to be present in the list. |
| */ |
| |
| int del_mtd_device(struct mtd_info *mtd) |
| { |
| int ret; |
| struct mtd_notifier *not; |
| |
| mutex_lock(&mtd_table_mutex); |
| |
| if (idr_find(&mtd_idr, mtd->index) != mtd) { |
| ret = -ENODEV; |
| goto out_error; |
| } |
| |
| /* No need to get a refcount on the module containing |
| the notifier, since we hold the mtd_table_mutex */ |
| list_for_each_entry(not, &mtd_notifiers, list) |
| not->remove(mtd); |
| |
| kref_put(&mtd->refcnt, mtd_device_release); |
| ret = 0; |
| |
| out_error: |
| mutex_unlock(&mtd_table_mutex); |
| return ret; |
| } |
| |
| /* |
| * Set a few defaults based on the parent devices, if not provided by the |
| * driver |
| */ |
| static void mtd_set_dev_defaults(struct mtd_info *mtd) |
| { |
| if (mtd->dev.parent) { |
| if (!mtd->owner && mtd->dev.parent->driver) |
| mtd->owner = mtd->dev.parent->driver->owner; |
| if (!mtd->name) |
| mtd->name = dev_name(mtd->dev.parent); |
| } else { |
| pr_debug("mtd device won't show a device symlink in sysfs\n"); |
| } |
| |
| INIT_LIST_HEAD(&mtd->partitions); |
| mutex_init(&mtd->master.partitions_lock); |
| mutex_init(&mtd->master.chrdev_lock); |
| } |
| |
| static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) |
| { |
| struct otp_info *info; |
| ssize_t size = 0; |
| unsigned int i; |
| size_t retlen; |
| int ret; |
| |
| info = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| if (is_user) |
| ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); |
| else |
| ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); |
| if (ret) |
| goto err; |
| |
| for (i = 0; i < retlen / sizeof(*info); i++) |
| size += info[i].length; |
| |
| kfree(info); |
| return size; |
| |
| err: |
| kfree(info); |
| |
| /* ENODATA means there is no OTP region. */ |
| return ret == -ENODATA ? 0 : ret; |
| } |
| |
| static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, |
| const char *compatible, |
| int size, |
| nvmem_reg_read_t reg_read) |
| { |
| struct nvmem_device *nvmem = NULL; |
| struct nvmem_config config = {}; |
| struct device_node *np; |
| |
| /* DT binding is optional */ |
| np = of_get_compatible_child(mtd->dev.of_node, compatible); |
| |
| /* OTP nvmem will be registered on the physical device */ |
| config.dev = mtd->dev.parent; |
| config.name = compatible; |
| config.id = NVMEM_DEVID_AUTO; |
| config.owner = THIS_MODULE; |
| config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd); |
| config.type = NVMEM_TYPE_OTP; |
| config.root_only = true; |
| config.ignore_wp = true; |
| config.reg_read = reg_read; |
| config.size = size; |
| config.of_node = np; |
| config.priv = mtd; |
| |
| nvmem = nvmem_register(&config); |
| /* Just ignore if there is no NVMEM support in the kernel */ |
| if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) |
| nvmem = NULL; |
| |
| of_node_put(np); |
| |
| return nvmem; |
| } |
| |
| static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, |
| void *val, size_t bytes) |
| { |
| struct mtd_info *mtd = priv; |
| size_t retlen; |
| int ret; |
| |
| ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); |
| if (ret) |
| return ret; |
| |
| return retlen == bytes ? 0 : -EIO; |
| } |
| |
| static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, |
| void *val, size_t bytes) |
| { |
| struct mtd_info *mtd = priv; |
| size_t retlen; |
| int ret; |
| |
| ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); |
| if (ret) |
| return ret; |
| |
| return retlen == bytes ? 0 : -EIO; |
| } |
| |
| static int mtd_otp_nvmem_add(struct mtd_info *mtd) |
| { |
| struct device *dev = mtd->dev.parent; |
| struct nvmem_device *nvmem; |
| ssize_t size; |
| int err; |
| |
| if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { |
| size = mtd_otp_size(mtd, true); |
| if (size < 0) |
| return size; |
| |
| if (size > 0) { |
| nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, |
| mtd_nvmem_user_otp_reg_read); |
| if (IS_ERR(nvmem)) { |
| err = PTR_ERR(nvmem); |
| goto err; |
| } |
| mtd->otp_user_nvmem = nvmem; |
| } |
| } |
| |
| if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { |
| size = mtd_otp_size(mtd, false); |
| if (size < 0) { |
| err = size; |
| goto err; |
| } |
| |
| if (size > 0) { |
| /* |
| * The factory OTP contains thing such as a unique serial |
| * number and is small, so let's read it out and put it |
| * into the entropy pool. |
| */ |
| void *otp; |
| |
| otp = kmalloc(size, GFP_KERNEL); |
| if (!otp) { |
| err = -ENOMEM; |
| goto err; |
| } |
| err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size); |
| if (err < 0) { |
| kfree(otp); |
| goto err; |
| } |
| add_device_randomness(otp, err); |
| kfree(otp); |
| |
| nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, |
| mtd_nvmem_fact_otp_reg_read); |
| if (IS_ERR(nvmem)) { |
| err = PTR_ERR(nvmem); |
| goto err; |
| } |
| mtd->otp_factory_nvmem = nvmem; |
| } |
| } |
| |
| return 0; |
| |
| err: |
| nvmem_unregister(mtd->otp_user_nvmem); |
| return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); |
| } |
| |
| /** |
| * mtd_device_parse_register - parse partitions and register an MTD device. |
| * |
| * @mtd: the MTD device to register |
| * @types: the list of MTD partition probes to try, see |
| * 'parse_mtd_partitions()' for more information |
| * @parser_data: MTD partition parser-specific data |
| * @parts: fallback partition information to register, if parsing fails; |
| * only valid if %nr_parts > %0 |
| * @nr_parts: the number of partitions in parts, if zero then the full |
| * MTD device is registered if no partition info is found |
| * |
| * This function aggregates MTD partitions parsing (done by |
| * 'parse_mtd_partitions()') and MTD device and partitions registering. It |
| * basically follows the most common pattern found in many MTD drivers: |
| * |
| * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is |
| * registered first. |
| * * Then It tries to probe partitions on MTD device @mtd using parsers |
| * specified in @types (if @types is %NULL, then the default list of parsers |
| * is used, see 'parse_mtd_partitions()' for more information). If none are |
| * found this functions tries to fallback to information specified in |
| * @parts/@nr_parts. |
| * * If no partitions were found this function just registers the MTD device |
| * @mtd and exits. |
| * |
| * Returns zero in case of success and a negative error code in case of failure. |
| */ |
| int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, |
| struct mtd_part_parser_data *parser_data, |
| const struct mtd_partition *parts, |
| int nr_parts) |
| { |
| int ret; |
| |
| mtd_set_dev_defaults(mtd); |
| |
| ret = mtd_otp_nvmem_add(mtd); |
| if (ret) |
| goto out; |
| |
| if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { |
| ret = add_mtd_device(mtd); |
| if (ret) |
| goto out; |
| } |
| |
| /* Prefer parsed partitions over driver-provided fallback */ |
| ret = parse_mtd_partitions(mtd, types, parser_data); |
| if (ret == -EPROBE_DEFER) |
| goto out; |
| |
| if (ret > 0) |
| ret = 0; |
| else if (nr_parts) |
| ret = add_mtd_partitions(mtd, parts, nr_parts); |
| else if (!device_is_registered(&mtd->dev)) |
| ret = add_mtd_device(mtd); |
| else |
| ret = 0; |
| |
| if (ret) |
| goto out; |
| |
| /* |
| * FIXME: some drivers unfortunately call this function more than once. |
| * So we have to check if we've already assigned the reboot notifier. |
| * |
| * Generally, we can make multiple calls work for most cases, but it |
| * does cause problems with parse_mtd_partitions() above (e.g., |
| * cmdlineparts will register partitions more than once). |
| */ |
| WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, |
| "MTD already registered\n"); |
| if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { |
| mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; |
| register_reboot_notifier(&mtd->reboot_notifier); |
| } |
| |
| out: |
| if (ret) { |
| nvmem_unregister(mtd->otp_user_nvmem); |
| nvmem_unregister(mtd->otp_factory_nvmem); |
| } |
| |
| if (ret && device_is_registered(&mtd->dev)) |
| del_mtd_device(mtd); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mtd_device_parse_register); |
| |
| /** |
| * mtd_device_unregister - unregister an existing MTD device. |
| * |
| * @master: the MTD device to unregister. This will unregister both the master |
| * and any partitions if registered. |
| */ |
| int mtd_device_unregister(struct mtd_info *master) |
| { |
| int err; |
| |
| if (master->_reboot) { |
| unregister_reboot_notifier(&master->reboot_notifier); |
| memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); |
| } |
| |
| nvmem_unregister(master->otp_user_nvmem); |
| nvmem_unregister(master->otp_factory_nvmem); |
| |
| err = del_mtd_partitions(master); |
| if (err) |
| return err; |
| |
| if (!device_is_registered(&master->dev)) |
| return 0; |
| |
| return del_mtd_device(master); |
| } |
| EXPORT_SYMBOL_GPL(mtd_device_unregister); |
| |
| /** |
| * register_mtd_user - register a 'user' of MTD devices. |
| * @new: pointer to notifier info structure |
| * |
| * Registers a pair of callbacks function to be called upon addition |
| * or removal of MTD devices. Causes the 'add' callback to be immediately |
| * invoked for each MTD device currently present in the system. |
| */ |
| void register_mtd_user (struct mtd_notifier *new) |
| { |
| struct mtd_info *mtd; |
| |
| mutex_lock(&mtd_table_mutex); |
| |
| list_add(&new->list, &mtd_notifiers); |
| |
| __module_get(THIS_MODULE); |
| |
| mtd_for_each_device(mtd) |
| new->add(mtd); |
| |
| mutex_unlock(&mtd_table_mutex); |
| } |
| EXPORT_SYMBOL_GPL(register_mtd_user); |
| |
| /** |
| * unregister_mtd_user - unregister a 'user' of MTD devices. |
| * @old: pointer to notifier info structure |
| * |
| * Removes a callback function pair from the list of 'users' to be |
| * notified upon addition or removal of MTD devices. Causes the |
| * 'remove' callback to be immediately invoked for each MTD device |
| * currently present in the system. |
| */ |
| int unregister_mtd_user (struct mtd_notifier *old) |
| { |
| struct mtd_info *mtd; |
| |
| mutex_lock(&mtd_table_mutex); |
| |
| module_put(THIS_MODULE); |
| |
| mtd_for_each_device(mtd) |
| old->remove(mtd); |
| |
| list_del(&old->list); |
| mutex_unlock(&mtd_table_mutex); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(unregister_mtd_user); |
| |
| /** |
| * get_mtd_device - obtain a validated handle for an MTD device |
| * @mtd: last known address of the required MTD device |
| * @num: internal device number of the required MTD device |
| * |
| * Given a number and NULL address, return the num'th entry in the device |
| * table, if any. Given an address and num == -1, search the device table |
| * for a device with that address and return if it's still present. Given |
| * both, return the num'th driver only if its address matches. Return |
| * error code if not. |
| */ |
| struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) |
| { |
| struct mtd_info *ret = NULL, *other; |
| int err = -ENODEV; |
| |
| mutex_lock(&mtd_table_mutex); |
| |
| if (num == -1) { |
| mtd_for_each_device(other) { |
| if (other == mtd) { |
| ret = mtd; |
| break; |
| } |
| } |
| } else if (num >= 0) { |
| ret = idr_find(&mtd_idr, num); |
| if (mtd && mtd != ret) |
| ret = NULL; |
| } |
| |
| if (!ret) { |
| ret = ERR_PTR(err); |
| goto out; |
| } |
| |
| err = __get_mtd_device(ret); |
| if (err) |
| ret = ERR_PTR(err); |
| out: |
| mutex_unlock(&mtd_table_mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(get_mtd_device); |
| |
| |
| int __get_mtd_device(struct mtd_info *mtd) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| int err; |
| |
| if (master->_get_device) { |
| err = master->_get_device(mtd); |
| if (err) |
| return err; |
| } |
| |
| if (!try_module_get(master->owner)) { |
| if (master->_put_device) |
| master->_put_device(master); |
| return -ENODEV; |
| } |
| |
| while (mtd) { |
| if (mtd != master) |
| kref_get(&mtd->refcnt); |
| mtd = mtd->parent; |
| } |
| |
| if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) |
| kref_get(&master->refcnt); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(__get_mtd_device); |
| |
| /** |
| * of_get_mtd_device_by_node - obtain an MTD device associated with a given node |
| * |
| * @np: device tree node |
| */ |
| struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) |
| { |
| struct mtd_info *mtd = NULL; |
| struct mtd_info *tmp; |
| int err; |
| |
| mutex_lock(&mtd_table_mutex); |
| |
| err = -EPROBE_DEFER; |
| mtd_for_each_device(tmp) { |
| if (mtd_get_of_node(tmp) == np) { |
| mtd = tmp; |
| err = __get_mtd_device(mtd); |
| break; |
| } |
| } |
| |
| mutex_unlock(&mtd_table_mutex); |
| |
| return err ? ERR_PTR(err) : mtd; |
| } |
| EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); |
| |
| /** |
| * get_mtd_device_nm - obtain a validated handle for an MTD device by |
| * device name |
| * @name: MTD device name to open |
| * |
| * This function returns MTD device description structure in case of |
| * success and an error code in case of failure. |
| */ |
| struct mtd_info *get_mtd_device_nm(const char *name) |
| { |
| int err = -ENODEV; |
| struct mtd_info *mtd = NULL, *other; |
| |
| mutex_lock(&mtd_table_mutex); |
| |
| mtd_for_each_device(other) { |
| if (!strcmp(name, other->name)) { |
| mtd = other; |
| break; |
| } |
| } |
| |
| if (!mtd) |
| goto out_unlock; |
| |
| err = __get_mtd_device(mtd); |
| if (err) |
| goto out_unlock; |
| |
| mutex_unlock(&mtd_table_mutex); |
| return mtd; |
| |
| out_unlock: |
| mutex_unlock(&mtd_table_mutex); |
| return ERR_PTR(err); |
| } |
| EXPORT_SYMBOL_GPL(get_mtd_device_nm); |
| |
| void put_mtd_device(struct mtd_info *mtd) |
| { |
| mutex_lock(&mtd_table_mutex); |
| __put_mtd_device(mtd); |
| mutex_unlock(&mtd_table_mutex); |
| |
| } |
| EXPORT_SYMBOL_GPL(put_mtd_device); |
| |
| void __put_mtd_device(struct mtd_info *mtd) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| while (mtd) { |
| /* kref_put() can relese mtd, so keep a reference mtd->parent */ |
| struct mtd_info *parent = mtd->parent; |
| |
| if (mtd != master) |
| kref_put(&mtd->refcnt, mtd_device_release); |
| mtd = parent; |
| } |
| |
| if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) |
| kref_put(&master->refcnt, mtd_device_release); |
| |
| module_put(master->owner); |
| |
| /* must be the last as master can be freed in the _put_device */ |
| if (master->_put_device) |
| master->_put_device(master); |
| } |
| EXPORT_SYMBOL_GPL(__put_mtd_device); |
| |
| /* |
| * Erase is an synchronous operation. Device drivers are epected to return a |
| * negative error code if the operation failed and update instr->fail_addr |
| * to point the portion that was not properly erased. |
| */ |
| int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| u64 mst_ofs = mtd_get_master_ofs(mtd, 0); |
| struct erase_info adjinstr; |
| int ret; |
| |
| instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; |
| adjinstr = *instr; |
| |
| if (!mtd->erasesize || !master->_erase) |
| return -ENOTSUPP; |
| |
| if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) |
| return -EINVAL; |
| if (!(mtd->flags & MTD_WRITEABLE)) |
| return -EROFS; |
| |
| if (!instr->len) |
| return 0; |
| |
| ledtrig_mtd_activity(); |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { |
| adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * |
| master->erasesize; |
| adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * |
| master->erasesize) - |
| adjinstr.addr; |
| } |
| |
| adjinstr.addr += mst_ofs; |
| |
| ret = master->_erase(master, &adjinstr); |
| |
| if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { |
| instr->fail_addr = adjinstr.fail_addr - mst_ofs; |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { |
| instr->fail_addr = mtd_div_by_eb(instr->fail_addr, |
| master); |
| instr->fail_addr *= mtd->erasesize; |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mtd_erase); |
| ALLOW_ERROR_INJECTION(mtd_erase, ERRNO); |
| |
| /* |
| * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. |
| */ |
| int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, |
| void **virt, resource_size_t *phys) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| *retlen = 0; |
| *virt = NULL; |
| if (phys) |
| *phys = 0; |
| if (!master->_point) |
| return -EOPNOTSUPP; |
| if (from < 0 || from >= mtd->size || len > mtd->size - from) |
| return -EINVAL; |
| if (!len) |
| return 0; |
| |
| from = mtd_get_master_ofs(mtd, from); |
| return master->_point(master, from, len, retlen, virt, phys); |
| } |
| EXPORT_SYMBOL_GPL(mtd_point); |
| |
| /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ |
| int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (!master->_unpoint) |
| return -EOPNOTSUPP; |
| if (from < 0 || from >= mtd->size || len > mtd->size - from) |
| return -EINVAL; |
| if (!len) |
| return 0; |
| return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); |
| } |
| EXPORT_SYMBOL_GPL(mtd_unpoint); |
| |
| /* |
| * Allow NOMMU mmap() to directly map the device (if not NULL) |
| * - return the address to which the offset maps |
| * - return -ENOSYS to indicate refusal to do the mapping |
| */ |
| unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, |
| unsigned long offset, unsigned long flags) |
| { |
| size_t retlen; |
| void *virt; |
| int ret; |
| |
| ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); |
| if (ret) |
| return ret; |
| if (retlen != len) { |
| mtd_unpoint(mtd, offset, retlen); |
| return -ENOSYS; |
| } |
| return (unsigned long)virt; |
| } |
| EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); |
| |
| static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, |
| const struct mtd_ecc_stats *old_stats) |
| { |
| struct mtd_ecc_stats diff; |
| |
| if (master == mtd) |
| return; |
| |
| diff = master->ecc_stats; |
| diff.failed -= old_stats->failed; |
| diff.corrected -= old_stats->corrected; |
| |
| while (mtd->parent) { |
| mtd->ecc_stats.failed += diff.failed; |
| mtd->ecc_stats.corrected += diff.corrected; |
| mtd = mtd->parent; |
| } |
| } |
| |
| int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, |
| u_char *buf) |
| { |
| struct mtd_oob_ops ops = { |
| .len = len, |
| .datbuf = buf, |
| }; |
| int ret; |
| |
| ret = mtd_read_oob(mtd, from, &ops); |
| *retlen = ops.retlen; |
| |
| WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret)); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mtd_read); |
| ALLOW_ERROR_INJECTION(mtd_read, ERRNO); |
| |
| int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, |
| const u_char *buf) |
| { |
| struct mtd_oob_ops ops = { |
| .len = len, |
| .datbuf = (u8 *)buf, |
| }; |
| int ret; |
| |
| ret = mtd_write_oob(mtd, to, &ops); |
| *retlen = ops.retlen; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(mtd_write); |
| ALLOW_ERROR_INJECTION(mtd_write, ERRNO); |
| |
| /* |
| * In blackbox flight recorder like scenarios we want to make successful writes |
| * in interrupt context. panic_write() is only intended to be called when its |
| * known the kernel is about to panic and we need the write to succeed. Since |
| * the kernel is not going to be running for much longer, this function can |
| * break locks and delay to ensure the write succeeds (but not sleep). |
| */ |
| int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, |
| const u_char *buf) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| *retlen = 0; |
| if (!master->_panic_write) |
| return -EOPNOTSUPP; |
| if (to < 0 || to >= mtd->size || len > mtd->size - to) |
| return -EINVAL; |
| if (!(mtd->flags & MTD_WRITEABLE)) |
| return -EROFS; |
| if (!len) |
| return 0; |
| if (!master->oops_panic_write) |
| master->oops_panic_write = true; |
| |
| return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, |
| retlen, buf); |
| } |
| EXPORT_SYMBOL_GPL(mtd_panic_write); |
| |
| static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, |
| struct mtd_oob_ops *ops) |
| { |
| /* |
| * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving |
| * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in |
| * this case. |
| */ |
| if (!ops->datbuf) |
| ops->len = 0; |
| |
| if (!ops->oobbuf) |
| ops->ooblen = 0; |
| |
| if (offs < 0 || offs + ops->len > mtd->size) |
| return -EINVAL; |
| |
| if (ops->ooblen) { |
| size_t maxooblen; |
| |
| if (ops->ooboffs >= mtd_oobavail(mtd, ops)) |
| return -EINVAL; |
| |
| maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - |
| mtd_div_by_ws(offs, mtd)) * |
| mtd_oobavail(mtd, ops)) - ops->ooboffs; |
| if (ops->ooblen > maxooblen) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| int ret; |
| |
| from = mtd_get_master_ofs(mtd, from); |
| if (master->_read_oob) |
| ret = master->_read_oob(master, from, ops); |
| else |
| ret = master->_read(master, from, ops->len, &ops->retlen, |
| ops->datbuf); |
| |
| return ret; |
| } |
| |
| static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| int ret; |
| |
| to = mtd_get_master_ofs(mtd, to); |
| if (master->_write_oob) |
| ret = master->_write_oob(master, to, ops); |
| else |
| ret = master->_write(master, to, ops->len, &ops->retlen, |
| ops->datbuf); |
| |
| return ret; |
| } |
| |
| static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, |
| struct mtd_oob_ops *ops) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| int ngroups = mtd_pairing_groups(master); |
| int npairs = mtd_wunit_per_eb(master) / ngroups; |
| struct mtd_oob_ops adjops = *ops; |
| unsigned int wunit, oobavail; |
| struct mtd_pairing_info info; |
| int max_bitflips = 0; |
| u32 ebofs, pageofs; |
| loff_t base, pos; |
| |
| ebofs = mtd_mod_by_eb(start, mtd); |
| base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; |
| info.group = 0; |
| info.pair = mtd_div_by_ws(ebofs, mtd); |
| pageofs = mtd_mod_by_ws(ebofs, mtd); |
| oobavail = mtd_oobavail(mtd, ops); |
| |
| while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { |
| int ret; |
| |
| if (info.pair >= npairs) { |
| info.pair = 0; |
| base += master->erasesize; |
| } |
| |
| wunit = mtd_pairing_info_to_wunit(master, &info); |
| pos = mtd_wunit_to_offset(mtd, base, wunit); |
| |
| adjops.len = ops->len - ops->retlen; |
| if (adjops.len > mtd->writesize - pageofs) |
| adjops.len = mtd->writesize - pageofs; |
| |
| adjops.ooblen = ops->ooblen - ops->oobretlen; |
| if (adjops.ooblen > oobavail - adjops.ooboffs) |
| adjops.ooblen = oobavail - adjops.ooboffs; |
| |
| if (read) { |
| ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); |
| if (ret > 0) |
| max_bitflips = max(max_bitflips, ret); |
| } else { |
| ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); |
| } |
| |
| if (ret < 0) |
| return ret; |
| |
| max_bitflips = max(max_bitflips, ret); |
| ops->retlen += adjops.retlen; |
| ops->oobretlen += adjops.oobretlen; |
| adjops.datbuf += adjops.retlen; |
| adjops.oobbuf += adjops.oobretlen; |
| adjops.ooboffs = 0; |
| pageofs = 0; |
| info.pair++; |
| } |
| |
| return max_bitflips; |
| } |
| |
| int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| struct mtd_ecc_stats old_stats = master->ecc_stats; |
| int ret_code; |
| |
| ops->retlen = ops->oobretlen = 0; |
| |
| ret_code = mtd_check_oob_ops(mtd, from, ops); |
| if (ret_code) |
| return ret_code; |
| |
| ledtrig_mtd_activity(); |
| |
| /* Check the validity of a potential fallback on mtd->_read */ |
| if (!master->_read_oob && (!master->_read || ops->oobbuf)) |
| return -EOPNOTSUPP; |
| |
| if (ops->stats) |
| memset(ops->stats, 0, sizeof(*ops->stats)); |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) |
| ret_code = mtd_io_emulated_slc(mtd, from, true, ops); |
| else |
| ret_code = mtd_read_oob_std(mtd, from, ops); |
| |
| mtd_update_ecc_stats(mtd, master, &old_stats); |
| |
| /* |
| * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics |
| * similar to mtd->_read(), returning a non-negative integer |
| * representing max bitflips. In other cases, mtd->_read_oob() may |
| * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). |
| */ |
| if (unlikely(ret_code < 0)) |
| return ret_code; |
| if (mtd->ecc_strength == 0) |
| return 0; /* device lacks ecc */ |
| if (ops->stats) |
| ops->stats->max_bitflips = ret_code; |
| return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; |
| } |
| EXPORT_SYMBOL_GPL(mtd_read_oob); |
| |
| int mtd_write_oob(struct mtd_info *mtd, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| int ret; |
| |
| ops->retlen = ops->oobretlen = 0; |
| |
| if (!(mtd->flags & MTD_WRITEABLE)) |
| return -EROFS; |
| |
| ret = mtd_check_oob_ops(mtd, to, ops); |
| if (ret) |
| return ret; |
| |
| ledtrig_mtd_activity(); |
| |
| /* Check the validity of a potential fallback on mtd->_write */ |
| if (!master->_write_oob && (!master->_write || ops->oobbuf)) |
| return -EOPNOTSUPP; |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) |
| return mtd_io_emulated_slc(mtd, to, false, ops); |
| |
| return mtd_write_oob_std(mtd, to, ops); |
| } |
| EXPORT_SYMBOL_GPL(mtd_write_oob); |
| |
| /** |
| * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section |
| * @mtd: MTD device structure |
| * @section: ECC section. Depending on the layout you may have all the ECC |
| * bytes stored in a single contiguous section, or one section |
| * per ECC chunk (and sometime several sections for a single ECC |
| * ECC chunk) |
| * @oobecc: OOB region struct filled with the appropriate ECC position |
| * information |
| * |
| * This function returns ECC section information in the OOB area. If you want |
| * to get all the ECC bytes information, then you should call |
| * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobecc) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| memset(oobecc, 0, sizeof(*oobecc)); |
| |
| if (!master || section < 0) |
| return -EINVAL; |
| |
| if (!master->ooblayout || !master->ooblayout->ecc) |
| return -ENOTSUPP; |
| |
| return master->ooblayout->ecc(master, section, oobecc); |
| } |
| EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); |
| |
| /** |
| * mtd_ooblayout_free - Get the OOB region definition of a specific free |
| * section |
| * @mtd: MTD device structure |
| * @section: Free section you are interested in. Depending on the layout |
| * you may have all the free bytes stored in a single contiguous |
| * section, or one section per ECC chunk plus an extra section |
| * for the remaining bytes (or other funky layout). |
| * @oobfree: OOB region struct filled with the appropriate free position |
| * information |
| * |
| * This function returns free bytes position in the OOB area. If you want |
| * to get all the free bytes information, then you should call |
| * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| int mtd_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobfree) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| memset(oobfree, 0, sizeof(*oobfree)); |
| |
| if (!master || section < 0) |
| return -EINVAL; |
| |
| if (!master->ooblayout || !master->ooblayout->free) |
| return -ENOTSUPP; |
| |
| return master->ooblayout->free(master, section, oobfree); |
| } |
| EXPORT_SYMBOL_GPL(mtd_ooblayout_free); |
| |
| /** |
| * mtd_ooblayout_find_region - Find the region attached to a specific byte |
| * @mtd: mtd info structure |
| * @byte: the byte we are searching for |
| * @sectionp: pointer where the section id will be stored |
| * @oobregion: used to retrieve the ECC position |
| * @iter: iterator function. Should be either mtd_ooblayout_free or |
| * mtd_ooblayout_ecc depending on the region type you're searching for |
| * |
| * This function returns the section id and oobregion information of a |
| * specific byte. For example, say you want to know where the 4th ECC byte is |
| * stored, you'll use: |
| * |
| * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, |
| int *sectionp, struct mtd_oob_region *oobregion, |
| int (*iter)(struct mtd_info *, |
| int section, |
| struct mtd_oob_region *oobregion)) |
| { |
| int pos = 0, ret, section = 0; |
| |
| memset(oobregion, 0, sizeof(*oobregion)); |
| |
| while (1) { |
| ret = iter(mtd, section, oobregion); |
| if (ret) |
| return ret; |
| |
| if (pos + oobregion->length > byte) |
| break; |
| |
| pos += oobregion->length; |
| section++; |
| } |
| |
| /* |
| * Adjust region info to make it start at the beginning at the |
| * 'start' ECC byte. |
| */ |
| oobregion->offset += byte - pos; |
| oobregion->length -= byte - pos; |
| *sectionp = section; |
| |
| return 0; |
| } |
| |
| /** |
| * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific |
| * ECC byte |
| * @mtd: mtd info structure |
| * @eccbyte: the byte we are searching for |
| * @section: pointer where the section id will be stored |
| * @oobregion: OOB region information |
| * |
| * Works like mtd_ooblayout_find_region() except it searches for a specific ECC |
| * byte. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, |
| int *section, |
| struct mtd_oob_region *oobregion) |
| { |
| return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, |
| mtd_ooblayout_ecc); |
| } |
| EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); |
| |
| /** |
| * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer |
| * @mtd: mtd info structure |
| * @buf: destination buffer to store OOB bytes |
| * @oobbuf: OOB buffer |
| * @start: first byte to retrieve |
| * @nbytes: number of bytes to retrieve |
| * @iter: section iterator |
| * |
| * Extract bytes attached to a specific category (ECC or free) |
| * from the OOB buffer and copy them into buf. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, |
| const u8 *oobbuf, int start, int nbytes, |
| int (*iter)(struct mtd_info *, |
| int section, |
| struct mtd_oob_region *oobregion)) |
| { |
| struct mtd_oob_region oobregion; |
| int section, ret; |
| |
| ret = mtd_ooblayout_find_region(mtd, start, §ion, |
| &oobregion, iter); |
| |
| while (!ret) { |
| int cnt; |
| |
| cnt = min_t(int, nbytes, oobregion.length); |
| memcpy(buf, oobbuf + oobregion.offset, cnt); |
| buf += cnt; |
| nbytes -= cnt; |
| |
| if (!nbytes) |
| break; |
| |
| ret = iter(mtd, ++section, &oobregion); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer |
| * @mtd: mtd info structure |
| * @buf: source buffer to get OOB bytes from |
| * @oobbuf: OOB buffer |
| * @start: first OOB byte to set |
| * @nbytes: number of OOB bytes to set |
| * @iter: section iterator |
| * |
| * Fill the OOB buffer with data provided in buf. The category (ECC or free) |
| * is selected by passing the appropriate iterator. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, |
| u8 *oobbuf, int start, int nbytes, |
| int (*iter)(struct mtd_info *, |
| int section, |
| struct mtd_oob_region *oobregion)) |
| { |
| struct mtd_oob_region oobregion; |
| int section, ret; |
| |
| ret = mtd_ooblayout_find_region(mtd, start, §ion, |
| &oobregion, iter); |
| |
| while (!ret) { |
| int cnt; |
| |
| cnt = min_t(int, nbytes, oobregion.length); |
| memcpy(oobbuf + oobregion.offset, buf, cnt); |
| buf += cnt; |
| nbytes -= cnt; |
| |
| if (!nbytes) |
| break; |
| |
| ret = iter(mtd, ++section, &oobregion); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category |
| * @mtd: mtd info structure |
| * @iter: category iterator |
| * |
| * Count the number of bytes in a given category. |
| * |
| * Returns a positive value on success, a negative error code otherwise. |
| */ |
| static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, |
| int (*iter)(struct mtd_info *, |
| int section, |
| struct mtd_oob_region *oobregion)) |
| { |
| struct mtd_oob_region oobregion; |
| int section = 0, ret, nbytes = 0; |
| |
| while (1) { |
| ret = iter(mtd, section++, &oobregion); |
| if (ret) { |
| if (ret == -ERANGE) |
| ret = nbytes; |
| break; |
| } |
| |
| nbytes += oobregion.length; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer |
| * @mtd: mtd info structure |
| * @eccbuf: destination buffer to store ECC bytes |
| * @oobbuf: OOB buffer |
| * @start: first ECC byte to retrieve |
| * @nbytes: number of ECC bytes to retrieve |
| * |
| * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, |
| const u8 *oobbuf, int start, int nbytes) |
| { |
| return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, |
| mtd_ooblayout_ecc); |
| } |
| EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); |
| |
| /** |
| * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer |
| * @mtd: mtd info structure |
| * @eccbuf: source buffer to get ECC bytes from |
| * @oobbuf: OOB buffer |
| * @start: first ECC byte to set |
| * @nbytes: number of ECC bytes to set |
| * |
| * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, |
| u8 *oobbuf, int start, int nbytes) |
| { |
| return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, |
| mtd_ooblayout_ecc); |
| } |
| EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); |
| |
| /** |
| * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer |
| * @mtd: mtd info structure |
| * @databuf: destination buffer to store ECC bytes |
| * @oobbuf: OOB buffer |
| * @start: first ECC byte to retrieve |
| * @nbytes: number of ECC bytes to retrieve |
| * |
| * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, |
| const u8 *oobbuf, int start, int nbytes) |
| { |
| return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, |
| mtd_ooblayout_free); |
| } |
| EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); |
| |
| /** |
| * mtd_ooblayout_set_databytes - set data bytes into the oob buffer |
| * @mtd: mtd info structure |
| * @databuf: source buffer to get data bytes from |
| * @oobbuf: OOB buffer |
| * @start: first ECC byte to set |
| * @nbytes: number of ECC bytes to set |
| * |
| * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, |
| u8 *oobbuf, int start, int nbytes) |
| { |
| return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, |
| mtd_ooblayout_free); |
| } |
| EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); |
| |
| /** |
| * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB |
| * @mtd: mtd info structure |
| * |
| * Works like mtd_ooblayout_count_bytes(), except it count free bytes. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) |
| { |
| return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); |
| } |
| EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); |
| |
| /** |
| * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB |
| * @mtd: mtd info structure |
| * |
| * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. |
| * |
| * Returns zero on success, a negative error code otherwise. |
| */ |
| int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) |
| { |
| return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); |
| } |
| EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); |
| |
| /* |
| * Method to access the protection register area, present in some flash |
| * devices. The user data is one time programmable but the factory data is read |
| * only. |
| */ |
| int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, |
| struct otp_info *buf) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (!master->_get_fact_prot_info) |
| return -EOPNOTSUPP; |
| if (!len) |
| return 0; |
| return master->_get_fact_prot_info(master, len, retlen, buf); |
| } |
| EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); |
| |
| int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| *retlen = 0; |
| if (!master->_read_fact_prot_reg) |
| return -EOPNOTSUPP; |
| if (!len) |
| return 0; |
| return master->_read_fact_prot_reg(master, from, len, retlen, buf); |
| } |
| EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); |
| |
| int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, |
| struct otp_info *buf) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (!master->_get_user_prot_info) |
| return -EOPNOTSUPP; |
| if (!len) |
| return 0; |
| return master->_get_user_prot_info(master, len, retlen, buf); |
| } |
| EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); |
| |
| int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| *retlen = 0; |
| if (!master->_read_user_prot_reg) |
| return -EOPNOTSUPP; |
| if (!len) |
| return 0; |
| return master->_read_user_prot_reg(master, from, len, retlen, buf); |
| } |
| EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); |
| |
| int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| int ret; |
| |
| *retlen = 0; |
| if (!master->_write_user_prot_reg) |
| return -EOPNOTSUPP; |
| if (!len) |
| return 0; |
| ret = master->_write_user_prot_reg(master, to, len, retlen, buf); |
| if (ret) |
| return ret; |
| |
| /* |
| * If no data could be written at all, we are out of memory and |
| * must return -ENOSPC. |
| */ |
| return (*retlen) ? 0 : -ENOSPC; |
| } |
| EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); |
| |
| int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (!master->_lock_user_prot_reg) |
| return -EOPNOTSUPP; |
| if (!len) |
| return 0; |
| return master->_lock_user_prot_reg(master, from, len); |
| } |
| EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); |
| |
| int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (!master->_erase_user_prot_reg) |
| return -EOPNOTSUPP; |
| if (!len) |
| return 0; |
| return master->_erase_user_prot_reg(master, from, len); |
| } |
| EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); |
| |
| /* Chip-supported device locking */ |
| int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (!master->_lock) |
| return -EOPNOTSUPP; |
| if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) |
| return -EINVAL; |
| if (!len) |
| return 0; |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { |
| ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; |
| len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; |
| } |
| |
| return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); |
| } |
| EXPORT_SYMBOL_GPL(mtd_lock); |
| |
| int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (!master->_unlock) |
| return -EOPNOTSUPP; |
| if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) |
| return -EINVAL; |
| if (!len) |
| return 0; |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { |
| ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; |
| len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; |
| } |
| |
| return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); |
| } |
| EXPORT_SYMBOL_GPL(mtd_unlock); |
| |
| int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (!master->_is_locked) |
| return -EOPNOTSUPP; |
| if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) |
| return -EINVAL; |
| if (!len) |
| return 0; |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { |
| ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; |
| len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; |
| } |
| |
| return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); |
| } |
| EXPORT_SYMBOL_GPL(mtd_is_locked); |
| |
| int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (ofs < 0 || ofs >= mtd->size) |
| return -EINVAL; |
| if (!master->_block_isreserved) |
| return 0; |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) |
| ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; |
| |
| return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); |
| } |
| EXPORT_SYMBOL_GPL(mtd_block_isreserved); |
| |
| int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| if (ofs < 0 || ofs >= mtd->size) |
| return -EINVAL; |
| if (!master->_block_isbad) |
| return 0; |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) |
| ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; |
| |
| return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); |
| } |
| EXPORT_SYMBOL_GPL(mtd_block_isbad); |
| |
| int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| int ret; |
| |
| if (!master->_block_markbad) |
| return -EOPNOTSUPP; |
| if (ofs < 0 || ofs >= mtd->size) |
| return -EINVAL; |
| if (!(mtd->flags & MTD_WRITEABLE)) |
| return -EROFS; |
| |
| if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) |
| ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; |
| |
| ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); |
| if (ret) |
| return ret; |
| |
| while (mtd->parent) { |
| mtd->ecc_stats.badblocks++; |
| mtd = mtd->parent; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(mtd_block_markbad); |
| ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO); |
| |
| /* |
| * default_mtd_writev - the default writev method |
| * @mtd: mtd device description object pointer |
| * @vecs: the vectors to write |
| * @count: count of vectors in @vecs |
| * @to: the MTD device offset to write to |
| * @retlen: on exit contains the count of bytes written to the MTD device. |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, |
| unsigned long count, loff_t to, size_t *retlen) |
| { |
| unsigned long i; |
| size_t totlen = 0, thislen; |
| int ret = 0; |
| |
| for (i = 0; i < count; i++) { |
| if (!vecs[i].iov_len) |
| continue; |
| ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, |
| vecs[i].iov_base); |
| totlen += thislen; |
| if (ret || thislen != vecs[i].iov_len) |
| break; |
| to += vecs[i].iov_len; |
| } |
| *retlen = totlen; |
| return ret; |
| } |
| |
| /* |
| * mtd_writev - the vector-based MTD write method |
| * @mtd: mtd device description object pointer |
| * @vecs: the vectors to write |
| * @count: count of vectors in @vecs |
| * @to: the MTD device offset to write to |
| * @retlen: on exit contains the count of bytes written to the MTD device. |
| * |
| * This function returns zero in case of success and a negative error code in |
| * case of failure. |
| */ |
| int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, |
| unsigned long count, loff_t to, size_t *retlen) |
| { |
| struct mtd_info *master = mtd_get_master(mtd); |
| |
| *retlen = 0; |
| if (!(mtd->flags & MTD_WRITEABLE)) |
| return -EROFS; |
| |
| if (!master->_writev) |
| return default_mtd_writev(mtd, vecs, count, to, retlen); |
| |
| return master->_writev(master, vecs, count, |
| mtd_get_master_ofs(mtd, to), retlen); |
| } |
| EXPORT_SYMBOL_GPL(mtd_writev); |
| |
| /** |
| * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size |
| * @mtd: mtd device description object pointer |
| * @size: a pointer to the ideal or maximum size of the allocation, points |
| * to the actual allocation size on success. |
| * |
| * This routine attempts to allocate a contiguous kernel buffer up to |
| * the specified size, backing off the size of the request exponentially |
| * until the request succeeds or until the allocation size falls below |
| * the system page size. This attempts to make sure it does not adversely |
| * impact system performance, so when allocating more than one page, we |
| * ask the memory allocator to avoid re-trying, swapping, writing back |
| * or performing I/O. |
| * |
| * Note, this function also makes sure that the allocated buffer is aligned to |
| * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. |
| * |
| * This is called, for example by mtd_{read,write} and jffs2_scan_medium, |
| * to handle smaller (i.e. degraded) buffer allocations under low- or |
| * fragmented-memory situations where such reduced allocations, from a |
| * requested ideal, are allowed. |
| * |
| * Returns a pointer to the allocated buffer on success; otherwise, NULL. |
| */ |
| void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) |
| { |
| gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; |
| size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); |
| void *kbuf; |
| |
| *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); |
| |
| while (*size > min_alloc) { |
| kbuf = kmalloc(*size, flags); |
| if (kbuf) |
| return kbuf; |
| |
| *size >>= 1; |
| *size = ALIGN(*size, mtd->writesize); |
| } |
| |
| /* |
| * For the last resort allocation allow 'kmalloc()' to do all sorts of |
| * things (write-back, dropping caches, etc) by using GFP_KERNEL. |
| */ |
| return kmalloc(*size, GFP_KERNEL); |
| } |
| EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); |
| |
| #ifdef CONFIG_PROC_FS |
| |
| /*====================================================================*/ |
| /* Support for /proc/mtd */ |
| |
| static int mtd_proc_show(struct seq_file *m, void *v) |
| { |
| struct mtd_info *mtd; |
| |
| seq_puts(m, "dev: size erasesize name\n"); |
| mutex_lock(&mtd_table_mutex); |
| mtd_for_each_device(mtd) { |
| seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", |
| mtd->index, (unsigned long long)mtd->size, |
| mtd->erasesize, mtd->name); |
| } |
| mutex_unlock(&mtd_table_mutex); |
| return 0; |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| /*====================================================================*/ |
| /* Init code */ |
| |
| static struct backing_dev_info * __init mtd_bdi_init(const char *name) |
| { |
| struct backing_dev_info *bdi; |
| int ret; |
| |
| bdi = bdi_alloc(NUMA_NO_NODE); |
| if (!bdi) |
| return ERR_PTR(-ENOMEM); |
| bdi->ra_pages = 0; |
| bdi->io_pages = 0; |
| |
| /* |
| * We put '-0' suffix to the name to get the same name format as we |
| * used to get. Since this is called only once, we get a unique name. |
| */ |
| ret = bdi_register(bdi, "%.28s-0", name); |
| if (ret) |
| bdi_put(bdi); |
| |
| return ret ? ERR_PTR(ret) : bdi; |
| } |
| |
| static struct proc_dir_entry *proc_mtd; |
| |
| static int __init init_mtd(void) |
| { |
| int ret; |
| |
| ret = class_register(&mtd_class); |
| if (ret) |
| goto err_reg; |
| |
| mtd_bdi = mtd_bdi_init("mtd"); |
| if (IS_ERR(mtd_bdi)) { |
| ret = PTR_ERR(mtd_bdi); |
| goto err_bdi; |
| } |
| |
| proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); |
| |
| ret = init_mtdchar(); |
| if (ret) |
| goto out_procfs; |
| |
| dfs_dir_mtd = debugfs_create_dir("mtd", NULL); |
| debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, |
| &mtd_expert_analysis_mode); |
| |
| return 0; |
| |
| out_procfs: |
| if (proc_mtd) |
| remove_proc_entry("mtd", NULL); |
| bdi_unregister(mtd_bdi); |
| bdi_put(mtd_bdi); |
| err_bdi: |
| class_unregister(&mtd_class); |
| err_reg: |
| pr_err("Error registering mtd class or bdi: %d\n", ret); |
| return ret; |
| } |
| |
| static void __exit cleanup_mtd(void) |
| { |
| debugfs_remove_recursive(dfs_dir_mtd); |
| cleanup_mtdchar(); |
| if (proc_mtd) |
| remove_proc_entry("mtd", NULL); |
| class_unregister(&mtd_class); |
| bdi_unregister(mtd_bdi); |
| bdi_put(mtd_bdi); |
| idr_destroy(&mtd_idr); |
| } |
| |
| module_init(init_mtd); |
| module_exit(cleanup_mtd); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); |
| MODULE_DESCRIPTION("Core MTD registration and access routines"); |