blob: db8ff5f5c4d3cda0e7db548ec2f6fab918786a25 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Samsung CSIS MIPI CSI-2 receiver driver.
*
* The Samsung CSIS IP is a MIPI CSI-2 receiver found in various NXP i.MX7 and
* i.MX8 SoCs. The i.MX7 features version 3.3 of the IP, while i.MX8 features
* version 3.6.3.
*
* Copyright (C) 2019 Linaro Ltd
* Copyright (C) 2015-2016 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright (C) 2011 - 2013 Samsung Electronics Co., Ltd.
*
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#include <media/v4l2-common.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>
#define CSIS_DRIVER_NAME "imx-mipi-csis"
#define CSIS_PAD_SINK 0
#define CSIS_PAD_SOURCE 1
#define CSIS_PADS_NUM 2
#define MIPI_CSIS_DEF_PIX_WIDTH 640
#define MIPI_CSIS_DEF_PIX_HEIGHT 480
/* Register map definition */
/* CSIS version */
#define MIPI_CSIS_VERSION 0x00
#define MIPI_CSIS_VERSION_IMX7D 0x03030505
#define MIPI_CSIS_VERSION_IMX8MP 0x03060301
/* CSIS common control */
#define MIPI_CSIS_CMN_CTRL 0x04
#define MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW BIT(16)
#define MIPI_CSIS_CMN_CTRL_INTER_MODE BIT(10)
#define MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW_CTRL BIT(2)
#define MIPI_CSIS_CMN_CTRL_RESET BIT(1)
#define MIPI_CSIS_CMN_CTRL_ENABLE BIT(0)
#define MIPI_CSIS_CMN_CTRL_LANE_NR_OFFSET 8
#define MIPI_CSIS_CMN_CTRL_LANE_NR_MASK (3 << 8)
/* CSIS clock control */
#define MIPI_CSIS_CLK_CTRL 0x08
#define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH3(x) ((x) << 28)
#define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH2(x) ((x) << 24)
#define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH1(x) ((x) << 20)
#define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH0(x) ((x) << 16)
#define MIPI_CSIS_CLK_CTRL_CLKGATE_EN_MSK (0xf << 4)
#define MIPI_CSIS_CLK_CTRL_WCLK_SRC BIT(0)
/* CSIS Interrupt mask */
#define MIPI_CSIS_INT_MSK 0x10
#define MIPI_CSIS_INT_MSK_EVEN_BEFORE BIT(31)
#define MIPI_CSIS_INT_MSK_EVEN_AFTER BIT(30)
#define MIPI_CSIS_INT_MSK_ODD_BEFORE BIT(29)
#define MIPI_CSIS_INT_MSK_ODD_AFTER BIT(28)
#define MIPI_CSIS_INT_MSK_FRAME_START BIT(24)
#define MIPI_CSIS_INT_MSK_FRAME_END BIT(20)
#define MIPI_CSIS_INT_MSK_ERR_SOT_HS BIT(16)
#define MIPI_CSIS_INT_MSK_ERR_LOST_FS BIT(12)
#define MIPI_CSIS_INT_MSK_ERR_LOST_FE BIT(8)
#define MIPI_CSIS_INT_MSK_ERR_OVER BIT(4)
#define MIPI_CSIS_INT_MSK_ERR_WRONG_CFG BIT(3)
#define MIPI_CSIS_INT_MSK_ERR_ECC BIT(2)
#define MIPI_CSIS_INT_MSK_ERR_CRC BIT(1)
#define MIPI_CSIS_INT_MSK_ERR_UNKNOWN BIT(0)
/* CSIS Interrupt source */
#define MIPI_CSIS_INT_SRC 0x14
#define MIPI_CSIS_INT_SRC_EVEN_BEFORE BIT(31)
#define MIPI_CSIS_INT_SRC_EVEN_AFTER BIT(30)
#define MIPI_CSIS_INT_SRC_EVEN BIT(30)
#define MIPI_CSIS_INT_SRC_ODD_BEFORE BIT(29)
#define MIPI_CSIS_INT_SRC_ODD_AFTER BIT(28)
#define MIPI_CSIS_INT_SRC_ODD (0x3 << 28)
#define MIPI_CSIS_INT_SRC_NON_IMAGE_DATA (0xf << 28)
#define MIPI_CSIS_INT_SRC_FRAME_START BIT(24)
#define MIPI_CSIS_INT_SRC_FRAME_END BIT(20)
#define MIPI_CSIS_INT_SRC_ERR_SOT_HS BIT(16)
#define MIPI_CSIS_INT_SRC_ERR_LOST_FS BIT(12)
#define MIPI_CSIS_INT_SRC_ERR_LOST_FE BIT(8)
#define MIPI_CSIS_INT_SRC_ERR_OVER BIT(4)
#define MIPI_CSIS_INT_SRC_ERR_WRONG_CFG BIT(3)
#define MIPI_CSIS_INT_SRC_ERR_ECC BIT(2)
#define MIPI_CSIS_INT_SRC_ERR_CRC BIT(1)
#define MIPI_CSIS_INT_SRC_ERR_UNKNOWN BIT(0)
#define MIPI_CSIS_INT_SRC_ERRORS 0xfffff
/* D-PHY status control */
#define MIPI_CSIS_DPHY_STATUS 0x20
#define MIPI_CSIS_DPHY_STATUS_ULPS_DAT BIT(8)
#define MIPI_CSIS_DPHY_STATUS_STOPSTATE_DAT BIT(4)
#define MIPI_CSIS_DPHY_STATUS_ULPS_CLK BIT(1)
#define MIPI_CSIS_DPHY_STATUS_STOPSTATE_CLK BIT(0)
/* D-PHY common control */
#define MIPI_CSIS_DPHY_CMN_CTRL 0x24
#define MIPI_CSIS_DPHY_CMN_CTRL_HSSETTLE(n) ((n) << 24)
#define MIPI_CSIS_DPHY_CMN_CTRL_HSSETTLE_MASK GENMASK(31, 24)
#define MIPI_CSIS_DPHY_CMN_CTRL_CLKSETTLE(n) ((n) << 22)
#define MIPI_CSIS_DPHY_CMN_CTRL_CLKSETTLE_MASK GENMASK(23, 22)
#define MIPI_CSIS_DPHY_CMN_CTRL_DPDN_SWAP_CLK BIT(6)
#define MIPI_CSIS_DPHY_CMN_CTRL_DPDN_SWAP_DAT BIT(5)
#define MIPI_CSIS_DPHY_CMN_CTRL_ENABLE_DAT BIT(1)
#define MIPI_CSIS_DPHY_CMN_CTRL_ENABLE_CLK BIT(0)
#define MIPI_CSIS_DPHY_CMN_CTRL_ENABLE (0x1f << 0)
/* D-PHY Master and Slave Control register Low */
#define MIPI_CSIS_DPHY_BCTRL_L 0x30
#define MIPI_CSIS_DPHY_BCTRL_L_USER_DATA_PATTERN_LOW(n) (((n) & 3U) << 30)
#define MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_715MV (0 << 28)
#define MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_724MV (1 << 28)
#define MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_733MV (2 << 28)
#define MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_706MV (3 << 28)
#define MIPI_CSIS_DPHY_BCTRL_L_BGR_CHOPPER_FREQ_3MHZ (0 << 27)
#define MIPI_CSIS_DPHY_BCTRL_L_BGR_CHOPPER_FREQ_1_5MHZ (1 << 27)
#define MIPI_CSIS_DPHY_BCTRL_L_VREG12_EXTPWR_EN_CTL BIT(26)
#define MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_2V (0 << 24)
#define MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_23V (1 << 24)
#define MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_17V (2 << 24)
#define MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_26V (3 << 24)
#define MIPI_CSIS_DPHY_BCTRL_L_REG_1P2_LVL_SEL BIT(23)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_80MV (0 << 21)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_100MV (1 << 21)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_120MV (2 << 21)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_140MV (3 << 21)
#define MIPI_CSIS_DPHY_BCTRL_L_VREF_SRC_SEL BIT(20)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_715MV (0 << 18)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_743MV (1 << 18)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_650MV (2 << 18)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_682MV (3 << 18)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_RX_PULSE_REJECT BIT(17)
#define MIPI_CSIS_DPHY_BCTRL_L_MSTRCLK_LP_SLEW_RATE_DOWN_0 (0 << 15)
#define MIPI_CSIS_DPHY_BCTRL_L_MSTRCLK_LP_SLEW_RATE_DOWN_15P (1 << 15)
#define MIPI_CSIS_DPHY_BCTRL_L_MSTRCLK_LP_SLEW_RATE_DOWN_30P (3 << 15)
#define MIPI_CSIS_DPHY_BCTRL_L_MSTRCLK_LP_SLEW_RATE_UP BIT(14)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_CD_HYS_60MV (0 << 13)
#define MIPI_CSIS_DPHY_BCTRL_L_LP_CD_HYS_70MV (1 << 13)
#define MIPI_CSIS_DPHY_BCTRL_L_BGR_CHOPPER_EN BIT(12)
#define MIPI_CSIS_DPHY_BCTRL_L_ERRCONTENTION_LP_EN BIT(11)
#define MIPI_CSIS_DPHY_BCTRL_L_TXTRIGGER_CLK_EN BIT(10)
#define MIPI_CSIS_DPHY_BCTRL_L_B_DPHYCTRL(n) (((n) * 25 / 1000000) << 0)
/* D-PHY Master and Slave Control register High */
#define MIPI_CSIS_DPHY_BCTRL_H 0x34
/* D-PHY Slave Control register Low */
#define MIPI_CSIS_DPHY_SCTRL_L 0x38
/* D-PHY Slave Control register High */
#define MIPI_CSIS_DPHY_SCTRL_H 0x3c
/* ISP Configuration register */
#define MIPI_CSIS_ISP_CONFIG_CH(n) (0x40 + (n) * 0x10)
#define MIPI_CSIS_ISPCFG_MEM_FULL_GAP_MSK (0xff << 24)
#define MIPI_CSIS_ISPCFG_MEM_FULL_GAP(x) ((x) << 24)
#define MIPI_CSIS_ISPCFG_PIXEL_MODE_SINGLE (0 << 12)
#define MIPI_CSIS_ISPCFG_PIXEL_MODE_DUAL (1 << 12)
#define MIPI_CSIS_ISPCFG_PIXEL_MODE_QUAD (2 << 12) /* i.MX8M[MNP] only */
#define MIPI_CSIS_ISPCFG_PIXEL_MASK (3 << 12)
#define MIPI_CSIS_ISPCFG_ALIGN_32BIT BIT(11)
#define MIPI_CSIS_ISPCFG_FMT(fmt) ((fmt) << 2)
#define MIPI_CSIS_ISPCFG_FMT_MASK (0x3f << 2)
/* ISP Image Resolution register */
#define MIPI_CSIS_ISP_RESOL_CH(n) (0x44 + (n) * 0x10)
#define CSIS_MAX_PIX_WIDTH 0xffff
#define CSIS_MAX_PIX_HEIGHT 0xffff
/* ISP SYNC register */
#define MIPI_CSIS_ISP_SYNC_CH(n) (0x48 + (n) * 0x10)
#define MIPI_CSIS_ISP_SYNC_HSYNC_LINTV_OFFSET 18
#define MIPI_CSIS_ISP_SYNC_VSYNC_SINTV_OFFSET 12
#define MIPI_CSIS_ISP_SYNC_VSYNC_EINTV_OFFSET 0
/* ISP shadow registers */
#define MIPI_CSIS_SDW_CONFIG_CH(n) (0x80 + (n) * 0x10)
#define MIPI_CSIS_SDW_RESOL_CH(n) (0x84 + (n) * 0x10)
#define MIPI_CSIS_SDW_SYNC_CH(n) (0x88 + (n) * 0x10)
/* Debug control register */
#define MIPI_CSIS_DBG_CTRL 0xc0
#define MIPI_CSIS_DBG_INTR_MSK 0xc4
#define MIPI_CSIS_DBG_INTR_MSK_DT_NOT_SUPPORT BIT(25)
#define MIPI_CSIS_DBG_INTR_MSK_DT_IGNORE BIT(24)
#define MIPI_CSIS_DBG_INTR_MSK_ERR_FRAME_SIZE BIT(20)
#define MIPI_CSIS_DBG_INTR_MSK_TRUNCATED_FRAME BIT(16)
#define MIPI_CSIS_DBG_INTR_MSK_EARLY_FE BIT(12)
#define MIPI_CSIS_DBG_INTR_MSK_EARLY_FS BIT(8)
#define MIPI_CSIS_DBG_INTR_MSK_CAM_VSYNC_FALL BIT(4)
#define MIPI_CSIS_DBG_INTR_MSK_CAM_VSYNC_RISE BIT(0)
#define MIPI_CSIS_DBG_INTR_SRC 0xc8
#define MIPI_CSIS_DBG_INTR_SRC_DT_NOT_SUPPORT BIT(25)
#define MIPI_CSIS_DBG_INTR_SRC_DT_IGNORE BIT(24)
#define MIPI_CSIS_DBG_INTR_SRC_ERR_FRAME_SIZE BIT(20)
#define MIPI_CSIS_DBG_INTR_SRC_TRUNCATED_FRAME BIT(16)
#define MIPI_CSIS_DBG_INTR_SRC_EARLY_FE BIT(12)
#define MIPI_CSIS_DBG_INTR_SRC_EARLY_FS BIT(8)
#define MIPI_CSIS_DBG_INTR_SRC_CAM_VSYNC_FALL BIT(4)
#define MIPI_CSIS_DBG_INTR_SRC_CAM_VSYNC_RISE BIT(0)
#define MIPI_CSIS_FRAME_COUNTER_CH(n) (0x0100 + (n) * 4)
/* Non-image packet data buffers */
#define MIPI_CSIS_PKTDATA_ODD 0x2000
#define MIPI_CSIS_PKTDATA_EVEN 0x3000
#define MIPI_CSIS_PKTDATA_SIZE SZ_4K
#define DEFAULT_SCLK_CSIS_FREQ 166000000UL
/* MIPI CSI-2 Data Types */
#define MIPI_CSI2_DATA_TYPE_YUV420_8 0x18
#define MIPI_CSI2_DATA_TYPE_YUV420_10 0x19
#define MIPI_CSI2_DATA_TYPE_LE_YUV420_8 0x1a
#define MIPI_CSI2_DATA_TYPE_CS_YUV420_8 0x1c
#define MIPI_CSI2_DATA_TYPE_CS_YUV420_10 0x1d
#define MIPI_CSI2_DATA_TYPE_YUV422_8 0x1e
#define MIPI_CSI2_DATA_TYPE_YUV422_10 0x1f
#define MIPI_CSI2_DATA_TYPE_RGB565 0x22
#define MIPI_CSI2_DATA_TYPE_RGB666 0x23
#define MIPI_CSI2_DATA_TYPE_RGB888 0x24
#define MIPI_CSI2_DATA_TYPE_RAW6 0x28
#define MIPI_CSI2_DATA_TYPE_RAW7 0x29
#define MIPI_CSI2_DATA_TYPE_RAW8 0x2a
#define MIPI_CSI2_DATA_TYPE_RAW10 0x2b
#define MIPI_CSI2_DATA_TYPE_RAW12 0x2c
#define MIPI_CSI2_DATA_TYPE_RAW14 0x2d
#define MIPI_CSI2_DATA_TYPE_USER(x) (0x30 + (x))
struct mipi_csis_event {
bool debug;
u32 mask;
const char * const name;
unsigned int counter;
};
static const struct mipi_csis_event mipi_csis_events[] = {
/* Errors */
{ false, MIPI_CSIS_INT_SRC_ERR_SOT_HS, "SOT Error" },
{ false, MIPI_CSIS_INT_SRC_ERR_LOST_FS, "Lost Frame Start Error" },
{ false, MIPI_CSIS_INT_SRC_ERR_LOST_FE, "Lost Frame End Error" },
{ false, MIPI_CSIS_INT_SRC_ERR_OVER, "FIFO Overflow Error" },
{ false, MIPI_CSIS_INT_SRC_ERR_WRONG_CFG, "Wrong Configuration Error" },
{ false, MIPI_CSIS_INT_SRC_ERR_ECC, "ECC Error" },
{ false, MIPI_CSIS_INT_SRC_ERR_CRC, "CRC Error" },
{ false, MIPI_CSIS_INT_SRC_ERR_UNKNOWN, "Unknown Error" },
{ true, MIPI_CSIS_DBG_INTR_SRC_DT_NOT_SUPPORT, "Data Type Not Supported" },
{ true, MIPI_CSIS_DBG_INTR_SRC_DT_IGNORE, "Data Type Ignored" },
{ true, MIPI_CSIS_DBG_INTR_SRC_ERR_FRAME_SIZE, "Frame Size Error" },
{ true, MIPI_CSIS_DBG_INTR_SRC_TRUNCATED_FRAME, "Truncated Frame" },
{ true, MIPI_CSIS_DBG_INTR_SRC_EARLY_FE, "Early Frame End" },
{ true, MIPI_CSIS_DBG_INTR_SRC_EARLY_FS, "Early Frame Start" },
/* Non-image data receive events */
{ false, MIPI_CSIS_INT_SRC_EVEN_BEFORE, "Non-image data before even frame" },
{ false, MIPI_CSIS_INT_SRC_EVEN_AFTER, "Non-image data after even frame" },
{ false, MIPI_CSIS_INT_SRC_ODD_BEFORE, "Non-image data before odd frame" },
{ false, MIPI_CSIS_INT_SRC_ODD_AFTER, "Non-image data after odd frame" },
/* Frame start/end */
{ false, MIPI_CSIS_INT_SRC_FRAME_START, "Frame Start" },
{ false, MIPI_CSIS_INT_SRC_FRAME_END, "Frame End" },
{ true, MIPI_CSIS_DBG_INTR_SRC_CAM_VSYNC_FALL, "VSYNC Falling Edge" },
{ true, MIPI_CSIS_DBG_INTR_SRC_CAM_VSYNC_RISE, "VSYNC Rising Edge" },
};
#define MIPI_CSIS_NUM_EVENTS ARRAY_SIZE(mipi_csis_events)
enum mipi_csis_clk {
MIPI_CSIS_CLK_PCLK,
MIPI_CSIS_CLK_WRAP,
MIPI_CSIS_CLK_PHY,
MIPI_CSIS_CLK_AXI,
};
static const char * const mipi_csis_clk_id[] = {
"pclk",
"wrap",
"phy",
"axi",
};
enum mipi_csis_version {
MIPI_CSIS_V3_3,
MIPI_CSIS_V3_6_3,
};
struct mipi_csis_info {
enum mipi_csis_version version;
unsigned int num_clocks;
};
struct mipi_csis_device {
struct device *dev;
void __iomem *regs;
struct clk_bulk_data *clks;
struct reset_control *mrst;
struct regulator *mipi_phy_regulator;
const struct mipi_csis_info *info;
struct v4l2_subdev sd;
struct media_pad pads[CSIS_PADS_NUM];
struct v4l2_async_notifier notifier;
struct v4l2_subdev *src_sd;
struct v4l2_mbus_config_mipi_csi2 bus;
u32 clk_frequency;
u32 hs_settle;
u32 clk_settle;
spinlock_t slock; /* Protect events */
struct mipi_csis_event events[MIPI_CSIS_NUM_EVENTS];
struct dentry *debugfs_root;
struct {
bool enable;
u32 hs_settle;
u32 clk_settle;
} debug;
};
/* -----------------------------------------------------------------------------
* Format helpers
*/
struct csis_pix_format {
u32 code;
u32 output;
u32 data_type;
u8 width;
};
static const struct csis_pix_format mipi_csis_formats[] = {
/* YUV formats. */
{
.code = MEDIA_BUS_FMT_UYVY8_1X16,
.output = MEDIA_BUS_FMT_UYVY8_1X16,
.data_type = MIPI_CSI2_DATA_TYPE_YUV422_8,
.width = 16,
},
/* RGB formats. */
{
.code = MEDIA_BUS_FMT_RGB565_1X16,
.output = MEDIA_BUS_FMT_RGB565_1X16,
.data_type = MIPI_CSI2_DATA_TYPE_RGB565,
.width = 16,
}, {
.code = MEDIA_BUS_FMT_BGR888_1X24,
.output = MEDIA_BUS_FMT_RGB888_1X24,
.data_type = MIPI_CSI2_DATA_TYPE_RGB888,
.width = 24,
},
/* RAW (Bayer and greyscale) formats. */
{
.code = MEDIA_BUS_FMT_SBGGR8_1X8,
.output = MEDIA_BUS_FMT_SBGGR8_1X8,
.data_type = MIPI_CSI2_DATA_TYPE_RAW8,
.width = 8,
}, {
.code = MEDIA_BUS_FMT_SGBRG8_1X8,
.output = MEDIA_BUS_FMT_SGBRG8_1X8,
.data_type = MIPI_CSI2_DATA_TYPE_RAW8,
.width = 8,
}, {
.code = MEDIA_BUS_FMT_SGRBG8_1X8,
.output = MEDIA_BUS_FMT_SGRBG8_1X8,
.data_type = MIPI_CSI2_DATA_TYPE_RAW8,
.width = 8,
}, {
.code = MEDIA_BUS_FMT_SRGGB8_1X8,
.output = MEDIA_BUS_FMT_SRGGB8_1X8,
.data_type = MIPI_CSI2_DATA_TYPE_RAW8,
.width = 8,
}, {
.code = MEDIA_BUS_FMT_Y8_1X8,
.output = MEDIA_BUS_FMT_Y8_1X8,
.data_type = MIPI_CSI2_DATA_TYPE_RAW8,
.width = 8,
}, {
.code = MEDIA_BUS_FMT_SBGGR10_1X10,
.output = MEDIA_BUS_FMT_SBGGR10_1X10,
.data_type = MIPI_CSI2_DATA_TYPE_RAW10,
.width = 10,
}, {
.code = MEDIA_BUS_FMT_SGBRG10_1X10,
.output = MEDIA_BUS_FMT_SGBRG10_1X10,
.data_type = MIPI_CSI2_DATA_TYPE_RAW10,
.width = 10,
}, {
.code = MEDIA_BUS_FMT_SGRBG10_1X10,
.output = MEDIA_BUS_FMT_SGRBG10_1X10,
.data_type = MIPI_CSI2_DATA_TYPE_RAW10,
.width = 10,
}, {
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.output = MEDIA_BUS_FMT_SRGGB10_1X10,
.data_type = MIPI_CSI2_DATA_TYPE_RAW10,
.width = 10,
}, {
.code = MEDIA_BUS_FMT_Y10_1X10,
.output = MEDIA_BUS_FMT_Y10_1X10,
.data_type = MIPI_CSI2_DATA_TYPE_RAW10,
.width = 10,
}, {
.code = MEDIA_BUS_FMT_SBGGR12_1X12,
.output = MEDIA_BUS_FMT_SBGGR12_1X12,
.data_type = MIPI_CSI2_DATA_TYPE_RAW12,
.width = 12,
}, {
.code = MEDIA_BUS_FMT_SGBRG12_1X12,
.output = MEDIA_BUS_FMT_SGBRG12_1X12,
.data_type = MIPI_CSI2_DATA_TYPE_RAW12,
.width = 12,
}, {
.code = MEDIA_BUS_FMT_SGRBG12_1X12,
.output = MEDIA_BUS_FMT_SGRBG12_1X12,
.data_type = MIPI_CSI2_DATA_TYPE_RAW12,
.width = 12,
}, {
.code = MEDIA_BUS_FMT_SRGGB12_1X12,
.output = MEDIA_BUS_FMT_SRGGB12_1X12,
.data_type = MIPI_CSI2_DATA_TYPE_RAW12,
.width = 12,
}, {
.code = MEDIA_BUS_FMT_Y12_1X12,
.output = MEDIA_BUS_FMT_Y12_1X12,
.data_type = MIPI_CSI2_DATA_TYPE_RAW12,
.width = 12,
}, {
.code = MEDIA_BUS_FMT_SBGGR14_1X14,
.output = MEDIA_BUS_FMT_SBGGR14_1X14,
.data_type = MIPI_CSI2_DATA_TYPE_RAW14,
.width = 14,
}, {
.code = MEDIA_BUS_FMT_SGBRG14_1X14,
.output = MEDIA_BUS_FMT_SGBRG14_1X14,
.data_type = MIPI_CSI2_DATA_TYPE_RAW14,
.width = 14,
}, {
.code = MEDIA_BUS_FMT_SGRBG14_1X14,
.output = MEDIA_BUS_FMT_SGRBG14_1X14,
.data_type = MIPI_CSI2_DATA_TYPE_RAW14,
.width = 14,
}, {
.code = MEDIA_BUS_FMT_SRGGB14_1X14,
.output = MEDIA_BUS_FMT_SRGGB14_1X14,
.data_type = MIPI_CSI2_DATA_TYPE_RAW14,
.width = 14,
},
/* JPEG */
{
.code = MEDIA_BUS_FMT_JPEG_1X8,
.output = MEDIA_BUS_FMT_JPEG_1X8,
/*
* Map JPEG_1X8 to the RAW8 datatype.
*
* The CSI-2 specification suggests in Annex A "JPEG8 Data
* Format (informative)" to transmit JPEG data using one of the
* Data Types aimed to represent arbitrary data, such as the
* "User Defined Data Type 1" (0x30).
*
* However, when configured with a User Defined Data Type, the
* CSIS outputs data in quad pixel mode regardless of the mode
* selected in the MIPI_CSIS_ISP_CONFIG_CH register. Neither of
* the IP cores connected to the CSIS in i.MX SoCs (CSI bridge
* or ISI) support quad pixel mode, so this will never work in
* practice.
*
* Some sensors (such as the OV5640) send JPEG data using the
* RAW8 data type. This is usable and works, so map the JPEG
* format to RAW8. If the CSIS ends up being integrated in an
* SoC that can support quad pixel mode, this will have to be
* revisited.
*/
.data_type = MIPI_CSI2_DATA_TYPE_RAW8,
.width = 8,
}
};
static const struct csis_pix_format *find_csis_format(u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(mipi_csis_formats); i++)
if (code == mipi_csis_formats[i].code)
return &mipi_csis_formats[i];
return NULL;
}
/* -----------------------------------------------------------------------------
* Hardware configuration
*/
static inline u32 mipi_csis_read(struct mipi_csis_device *csis, u32 reg)
{
return readl(csis->regs + reg);
}
static inline void mipi_csis_write(struct mipi_csis_device *csis, u32 reg,
u32 val)
{
writel(val, csis->regs + reg);
}
static void mipi_csis_enable_interrupts(struct mipi_csis_device *csis, bool on)
{
mipi_csis_write(csis, MIPI_CSIS_INT_MSK, on ? 0xffffffff : 0);
mipi_csis_write(csis, MIPI_CSIS_DBG_INTR_MSK, on ? 0xffffffff : 0);
}
static void mipi_csis_sw_reset(struct mipi_csis_device *csis)
{
u32 val = mipi_csis_read(csis, MIPI_CSIS_CMN_CTRL);
mipi_csis_write(csis, MIPI_CSIS_CMN_CTRL,
val | MIPI_CSIS_CMN_CTRL_RESET);
usleep_range(10, 20);
}
static void mipi_csis_system_enable(struct mipi_csis_device *csis, int on)
{
u32 val, mask;
val = mipi_csis_read(csis, MIPI_CSIS_CMN_CTRL);
if (on)
val |= MIPI_CSIS_CMN_CTRL_ENABLE;
else
val &= ~MIPI_CSIS_CMN_CTRL_ENABLE;
mipi_csis_write(csis, MIPI_CSIS_CMN_CTRL, val);
val = mipi_csis_read(csis, MIPI_CSIS_DPHY_CMN_CTRL);
val &= ~MIPI_CSIS_DPHY_CMN_CTRL_ENABLE;
if (on) {
mask = (1 << (csis->bus.num_data_lanes + 1)) - 1;
val |= (mask & MIPI_CSIS_DPHY_CMN_CTRL_ENABLE);
}
mipi_csis_write(csis, MIPI_CSIS_DPHY_CMN_CTRL, val);
}
static void __mipi_csis_set_format(struct mipi_csis_device *csis,
const struct v4l2_mbus_framefmt *format,
const struct csis_pix_format *csis_fmt)
{
u32 val;
/* Color format */
val = mipi_csis_read(csis, MIPI_CSIS_ISP_CONFIG_CH(0));
val &= ~(MIPI_CSIS_ISPCFG_ALIGN_32BIT | MIPI_CSIS_ISPCFG_FMT_MASK
| MIPI_CSIS_ISPCFG_PIXEL_MASK);
/*
* YUV 4:2:2 can be transferred with 8 or 16 bits per clock sample
* (referred to in the documentation as single and dual pixel modes
* respectively, although the 8-bit mode transfers half a pixel per
* clock sample and the 16-bit mode one pixel). While both mode work
* when the CSIS is connected to a receiver that supports either option,
* single pixel mode requires clock rates twice as high. As all SoCs
* that integrate the CSIS can operate in 16-bit bit mode, and some do
* not support 8-bit mode (this is the case of the i.MX8MP), use dual
* pixel mode unconditionally.
*
* TODO: Verify which other formats require DUAL (or QUAD) modes.
*/
if (csis_fmt->data_type == MIPI_CSI2_DATA_TYPE_YUV422_8)
val |= MIPI_CSIS_ISPCFG_PIXEL_MODE_DUAL;
val |= MIPI_CSIS_ISPCFG_FMT(csis_fmt->data_type);
mipi_csis_write(csis, MIPI_CSIS_ISP_CONFIG_CH(0), val);
/* Pixel resolution */
val = format->width | (format->height << 16);
mipi_csis_write(csis, MIPI_CSIS_ISP_RESOL_CH(0), val);
}
static int mipi_csis_calculate_params(struct mipi_csis_device *csis,
const struct csis_pix_format *csis_fmt)
{
s64 link_freq;
u32 lane_rate;
/* Calculate the line rate from the pixel rate. */
link_freq = v4l2_get_link_freq(csis->src_sd->ctrl_handler,
csis_fmt->width,
csis->bus.num_data_lanes * 2);
if (link_freq < 0) {
dev_err(csis->dev, "Unable to obtain link frequency: %d\n",
(int)link_freq);
return link_freq;
}
lane_rate = link_freq * 2;
if (lane_rate < 80000000 || lane_rate > 1500000000) {
dev_dbg(csis->dev, "Out-of-bound lane rate %u\n", lane_rate);
return -EINVAL;
}
/*
* The HSSETTLE counter value is document in a table, but can also
* easily be calculated. Hardcode the CLKSETTLE value to 0 for now
* (which is documented as corresponding to CSI-2 v0.87 to v1.00) until
* we figure out how to compute it correctly.
*/
csis->hs_settle = (lane_rate - 5000000) / 45000000;
csis->clk_settle = 0;
dev_dbg(csis->dev, "lane rate %u, Tclk_settle %u, Ths_settle %u\n",
lane_rate, csis->clk_settle, csis->hs_settle);
if (csis->debug.hs_settle < 0xff) {
dev_dbg(csis->dev, "overriding Ths_settle with %u\n",
csis->debug.hs_settle);
csis->hs_settle = csis->debug.hs_settle;
}
if (csis->debug.clk_settle < 4) {
dev_dbg(csis->dev, "overriding Tclk_settle with %u\n",
csis->debug.clk_settle);
csis->clk_settle = csis->debug.clk_settle;
}
return 0;
}
static void mipi_csis_set_params(struct mipi_csis_device *csis,
const struct v4l2_mbus_framefmt *format,
const struct csis_pix_format *csis_fmt)
{
int lanes = csis->bus.num_data_lanes;
u32 val;
val = mipi_csis_read(csis, MIPI_CSIS_CMN_CTRL);
val &= ~MIPI_CSIS_CMN_CTRL_LANE_NR_MASK;
val |= (lanes - 1) << MIPI_CSIS_CMN_CTRL_LANE_NR_OFFSET;
if (csis->info->version == MIPI_CSIS_V3_3)
val |= MIPI_CSIS_CMN_CTRL_INTER_MODE;
mipi_csis_write(csis, MIPI_CSIS_CMN_CTRL, val);
__mipi_csis_set_format(csis, format, csis_fmt);
mipi_csis_write(csis, MIPI_CSIS_DPHY_CMN_CTRL,
MIPI_CSIS_DPHY_CMN_CTRL_HSSETTLE(csis->hs_settle) |
MIPI_CSIS_DPHY_CMN_CTRL_CLKSETTLE(csis->clk_settle));
val = (0 << MIPI_CSIS_ISP_SYNC_HSYNC_LINTV_OFFSET)
| (0 << MIPI_CSIS_ISP_SYNC_VSYNC_SINTV_OFFSET)
| (0 << MIPI_CSIS_ISP_SYNC_VSYNC_EINTV_OFFSET);
mipi_csis_write(csis, MIPI_CSIS_ISP_SYNC_CH(0), val);
val = mipi_csis_read(csis, MIPI_CSIS_CLK_CTRL);
val |= MIPI_CSIS_CLK_CTRL_WCLK_SRC;
val |= MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH0(15);
val &= ~MIPI_CSIS_CLK_CTRL_CLKGATE_EN_MSK;
mipi_csis_write(csis, MIPI_CSIS_CLK_CTRL, val);
mipi_csis_write(csis, MIPI_CSIS_DPHY_BCTRL_L,
MIPI_CSIS_DPHY_BCTRL_L_BIAS_REF_VOLT_715MV |
MIPI_CSIS_DPHY_BCTRL_L_BGR_CHOPPER_FREQ_3MHZ |
MIPI_CSIS_DPHY_BCTRL_L_REG_12P_LVL_CTL_1_2V |
MIPI_CSIS_DPHY_BCTRL_L_LP_RX_HYS_LVL_80MV |
MIPI_CSIS_DPHY_BCTRL_L_LP_RX_VREF_LVL_715MV |
MIPI_CSIS_DPHY_BCTRL_L_LP_CD_HYS_60MV |
MIPI_CSIS_DPHY_BCTRL_L_B_DPHYCTRL(20000000));
mipi_csis_write(csis, MIPI_CSIS_DPHY_BCTRL_H, 0);
/* Update the shadow register. */
val = mipi_csis_read(csis, MIPI_CSIS_CMN_CTRL);
mipi_csis_write(csis, MIPI_CSIS_CMN_CTRL,
val | MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW |
MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW_CTRL);
}
static int mipi_csis_clk_enable(struct mipi_csis_device *csis)
{
return clk_bulk_prepare_enable(csis->info->num_clocks, csis->clks);
}
static void mipi_csis_clk_disable(struct mipi_csis_device *csis)
{
clk_bulk_disable_unprepare(csis->info->num_clocks, csis->clks);
}
static int mipi_csis_clk_get(struct mipi_csis_device *csis)
{
unsigned int i;
int ret;
csis->clks = devm_kcalloc(csis->dev, csis->info->num_clocks,
sizeof(*csis->clks), GFP_KERNEL);
if (!csis->clks)
return -ENOMEM;
for (i = 0; i < csis->info->num_clocks; i++)
csis->clks[i].id = mipi_csis_clk_id[i];
ret = devm_clk_bulk_get(csis->dev, csis->info->num_clocks,
csis->clks);
if (ret < 0)
return ret;
/* Set clock rate */
ret = clk_set_rate(csis->clks[MIPI_CSIS_CLK_WRAP].clk,
csis->clk_frequency);
if (ret < 0)
dev_err(csis->dev, "set rate=%d failed: %d\n",
csis->clk_frequency, ret);
return ret;
}
static void mipi_csis_start_stream(struct mipi_csis_device *csis,
const struct v4l2_mbus_framefmt *format,
const struct csis_pix_format *csis_fmt)
{
mipi_csis_sw_reset(csis);
mipi_csis_set_params(csis, format, csis_fmt);
mipi_csis_system_enable(csis, true);
mipi_csis_enable_interrupts(csis, true);
}
static void mipi_csis_stop_stream(struct mipi_csis_device *csis)
{
mipi_csis_enable_interrupts(csis, false);
mipi_csis_system_enable(csis, false);
}
static irqreturn_t mipi_csis_irq_handler(int irq, void *dev_id)
{
struct mipi_csis_device *csis = dev_id;
unsigned long flags;
unsigned int i;
u32 status;
u32 dbg_status;
status = mipi_csis_read(csis, MIPI_CSIS_INT_SRC);
dbg_status = mipi_csis_read(csis, MIPI_CSIS_DBG_INTR_SRC);
spin_lock_irqsave(&csis->slock, flags);
/* Update the event/error counters */
if ((status & MIPI_CSIS_INT_SRC_ERRORS) || csis->debug.enable) {
for (i = 0; i < MIPI_CSIS_NUM_EVENTS; i++) {
struct mipi_csis_event *event = &csis->events[i];
if ((!event->debug && (status & event->mask)) ||
(event->debug && (dbg_status & event->mask)))
event->counter++;
}
}
spin_unlock_irqrestore(&csis->slock, flags);
mipi_csis_write(csis, MIPI_CSIS_INT_SRC, status);
mipi_csis_write(csis, MIPI_CSIS_DBG_INTR_SRC, dbg_status);
return IRQ_HANDLED;
}
/* -----------------------------------------------------------------------------
* PHY regulator and reset
*/
static int mipi_csis_phy_enable(struct mipi_csis_device *csis)
{
if (csis->info->version != MIPI_CSIS_V3_3)
return 0;
return regulator_enable(csis->mipi_phy_regulator);
}
static int mipi_csis_phy_disable(struct mipi_csis_device *csis)
{
if (csis->info->version != MIPI_CSIS_V3_3)
return 0;
return regulator_disable(csis->mipi_phy_regulator);
}
static void mipi_csis_phy_reset(struct mipi_csis_device *csis)
{
if (csis->info->version != MIPI_CSIS_V3_3)
return;
reset_control_assert(csis->mrst);
msleep(20);
reset_control_deassert(csis->mrst);
}
static int mipi_csis_phy_init(struct mipi_csis_device *csis)
{
if (csis->info->version != MIPI_CSIS_V3_3)
return 0;
/* Get MIPI PHY reset and regulator. */
csis->mrst = devm_reset_control_get_exclusive(csis->dev, NULL);
if (IS_ERR(csis->mrst))
return PTR_ERR(csis->mrst);
csis->mipi_phy_regulator = devm_regulator_get(csis->dev, "phy");
if (IS_ERR(csis->mipi_phy_regulator))
return PTR_ERR(csis->mipi_phy_regulator);
return regulator_set_voltage(csis->mipi_phy_regulator, 1000000,
1000000);
}
/* -----------------------------------------------------------------------------
* Debug
*/
static void mipi_csis_clear_counters(struct mipi_csis_device *csis)
{
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&csis->slock, flags);
for (i = 0; i < MIPI_CSIS_NUM_EVENTS; i++)
csis->events[i].counter = 0;
spin_unlock_irqrestore(&csis->slock, flags);
}
static void mipi_csis_log_counters(struct mipi_csis_device *csis, bool non_errors)
{
unsigned int num_events = non_errors ? MIPI_CSIS_NUM_EVENTS
: MIPI_CSIS_NUM_EVENTS - 8;
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&csis->slock, flags);
for (i = 0; i < num_events; ++i) {
if (csis->events[i].counter > 0 || csis->debug.enable)
dev_info(csis->dev, "%s events: %d\n",
csis->events[i].name,
csis->events[i].counter);
}
spin_unlock_irqrestore(&csis->slock, flags);
}
static int mipi_csis_dump_regs(struct mipi_csis_device *csis)
{
static const struct {
u32 offset;
const char * const name;
} registers[] = {
{ MIPI_CSIS_CMN_CTRL, "CMN_CTRL" },
{ MIPI_CSIS_CLK_CTRL, "CLK_CTRL" },
{ MIPI_CSIS_INT_MSK, "INT_MSK" },
{ MIPI_CSIS_DPHY_STATUS, "DPHY_STATUS" },
{ MIPI_CSIS_DPHY_CMN_CTRL, "DPHY_CMN_CTRL" },
{ MIPI_CSIS_DPHY_SCTRL_L, "DPHY_SCTRL_L" },
{ MIPI_CSIS_DPHY_SCTRL_H, "DPHY_SCTRL_H" },
{ MIPI_CSIS_ISP_CONFIG_CH(0), "ISP_CONFIG_CH0" },
{ MIPI_CSIS_ISP_RESOL_CH(0), "ISP_RESOL_CH0" },
{ MIPI_CSIS_SDW_CONFIG_CH(0), "SDW_CONFIG_CH0" },
{ MIPI_CSIS_SDW_RESOL_CH(0), "SDW_RESOL_CH0" },
{ MIPI_CSIS_DBG_CTRL, "DBG_CTRL" },
{ MIPI_CSIS_FRAME_COUNTER_CH(0), "FRAME_COUNTER_CH0" },
};
unsigned int i;
u32 cfg;
if (!pm_runtime_get_if_in_use(csis->dev))
return 0;
dev_info(csis->dev, "--- REGISTERS ---\n");
for (i = 0; i < ARRAY_SIZE(registers); i++) {
cfg = mipi_csis_read(csis, registers[i].offset);
dev_info(csis->dev, "%14s: 0x%08x\n", registers[i].name, cfg);
}
pm_runtime_put(csis->dev);
return 0;
}
static int mipi_csis_dump_regs_show(struct seq_file *m, void *private)
{
struct mipi_csis_device *csis = m->private;
return mipi_csis_dump_regs(csis);
}
DEFINE_SHOW_ATTRIBUTE(mipi_csis_dump_regs);
static void mipi_csis_debugfs_init(struct mipi_csis_device *csis)
{
csis->debug.hs_settle = UINT_MAX;
csis->debug.clk_settle = UINT_MAX;
csis->debugfs_root = debugfs_create_dir(dev_name(csis->dev), NULL);
debugfs_create_bool("debug_enable", 0600, csis->debugfs_root,
&csis->debug.enable);
debugfs_create_file("dump_regs", 0600, csis->debugfs_root, csis,
&mipi_csis_dump_regs_fops);
debugfs_create_u32("tclk_settle", 0600, csis->debugfs_root,
&csis->debug.clk_settle);
debugfs_create_u32("ths_settle", 0600, csis->debugfs_root,
&csis->debug.hs_settle);
}
static void mipi_csis_debugfs_exit(struct mipi_csis_device *csis)
{
debugfs_remove_recursive(csis->debugfs_root);
}
/* -----------------------------------------------------------------------------
* V4L2 subdev operations
*/
static struct mipi_csis_device *sd_to_mipi_csis_device(struct v4l2_subdev *sdev)
{
return container_of(sdev, struct mipi_csis_device, sd);
}
static int mipi_csis_s_stream(struct v4l2_subdev *sd, int enable)
{
struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd);
const struct v4l2_mbus_framefmt *format;
const struct csis_pix_format *csis_fmt;
struct v4l2_subdev_state *state;
int ret;
if (!enable) {
v4l2_subdev_call(csis->src_sd, video, s_stream, 0);
mipi_csis_stop_stream(csis);
if (csis->debug.enable)
mipi_csis_log_counters(csis, true);
pm_runtime_put(csis->dev);
return 0;
}
state = v4l2_subdev_lock_and_get_active_state(sd);
format = v4l2_subdev_state_get_format(state, CSIS_PAD_SINK);
csis_fmt = find_csis_format(format->code);
ret = mipi_csis_calculate_params(csis, csis_fmt);
if (ret < 0)
goto err_unlock;
mipi_csis_clear_counters(csis);
ret = pm_runtime_resume_and_get(csis->dev);
if (ret < 0)
goto err_unlock;
mipi_csis_start_stream(csis, format, csis_fmt);
ret = v4l2_subdev_call(csis->src_sd, video, s_stream, 1);
if (ret < 0)
goto err_stop;
mipi_csis_log_counters(csis, true);
v4l2_subdev_unlock_state(state);
return 0;
err_stop:
mipi_csis_stop_stream(csis);
pm_runtime_put(csis->dev);
err_unlock:
v4l2_subdev_unlock_state(state);
return ret;
}
static int mipi_csis_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
/*
* The CSIS can't transcode in any way, the source format is identical
* to the sink format.
*/
if (code->pad == CSIS_PAD_SOURCE) {
struct v4l2_mbus_framefmt *fmt;
if (code->index > 0)
return -EINVAL;
fmt = v4l2_subdev_state_get_format(sd_state, code->pad);
code->code = fmt->code;
return 0;
}
if (code->pad != CSIS_PAD_SINK)
return -EINVAL;
if (code->index >= ARRAY_SIZE(mipi_csis_formats))
return -EINVAL;
code->code = mipi_csis_formats[code->index].code;
return 0;
}
static int mipi_csis_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *sdformat)
{
struct csis_pix_format const *csis_fmt;
struct v4l2_mbus_framefmt *fmt;
unsigned int align;
/*
* The CSIS can't transcode in any way, the source format can't be
* modified.
*/
if (sdformat->pad == CSIS_PAD_SOURCE)
return v4l2_subdev_get_fmt(sd, sd_state, sdformat);
if (sdformat->pad != CSIS_PAD_SINK)
return -EINVAL;
/*
* Validate the media bus code and clamp and align the size.
*
* The total number of bits per line must be a multiple of 8. We thus
* need to align the width for formats that are not multiples of 8
* bits.
*/
csis_fmt = find_csis_format(sdformat->format.code);
if (!csis_fmt)
csis_fmt = &mipi_csis_formats[0];
switch (csis_fmt->width % 8) {
case 0:
align = 0;
break;
case 4:
align = 1;
break;
case 2:
case 6:
align = 2;
break;
default:
/* 1, 3, 5, 7 */
align = 3;
break;
}
v4l_bound_align_image(&sdformat->format.width, 1,
CSIS_MAX_PIX_WIDTH, align,
&sdformat->format.height, 1,
CSIS_MAX_PIX_HEIGHT, 0, 0);
fmt = v4l2_subdev_state_get_format(sd_state, sdformat->pad);
fmt->code = csis_fmt->code;
fmt->width = sdformat->format.width;
fmt->height = sdformat->format.height;
fmt->field = V4L2_FIELD_NONE;
fmt->colorspace = sdformat->format.colorspace;
fmt->quantization = sdformat->format.quantization;
fmt->xfer_func = sdformat->format.xfer_func;
fmt->ycbcr_enc = sdformat->format.ycbcr_enc;
sdformat->format = *fmt;
/* Propagate the format from sink to source. */
fmt = v4l2_subdev_state_get_format(sd_state, CSIS_PAD_SOURCE);
*fmt = sdformat->format;
/* The format on the source pad might change due to unpacking. */
fmt->code = csis_fmt->output;
return 0;
}
static int mipi_csis_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad,
struct v4l2_mbus_frame_desc *fd)
{
struct v4l2_mbus_frame_desc_entry *entry = &fd->entry[0];
const struct csis_pix_format *csis_fmt;
const struct v4l2_mbus_framefmt *fmt;
struct v4l2_subdev_state *state;
if (pad != CSIS_PAD_SOURCE)
return -EINVAL;
state = v4l2_subdev_lock_and_get_active_state(sd);
fmt = v4l2_subdev_state_get_format(state, CSIS_PAD_SOURCE);
csis_fmt = find_csis_format(fmt->code);
v4l2_subdev_unlock_state(state);
if (!csis_fmt)
return -EPIPE;
fd->type = V4L2_MBUS_FRAME_DESC_TYPE_PARALLEL;
fd->num_entries = 1;
entry->flags = 0;
entry->pixelcode = csis_fmt->code;
entry->bus.csi2.vc = 0;
entry->bus.csi2.dt = csis_fmt->data_type;
return 0;
}
static int mipi_csis_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
struct v4l2_subdev_format fmt = {
.pad = CSIS_PAD_SINK,
};
fmt.format.code = mipi_csis_formats[0].code;
fmt.format.width = MIPI_CSIS_DEF_PIX_WIDTH;
fmt.format.height = MIPI_CSIS_DEF_PIX_HEIGHT;
fmt.format.colorspace = V4L2_COLORSPACE_SMPTE170M;
fmt.format.xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt.format.colorspace);
fmt.format.ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt.format.colorspace);
fmt.format.quantization =
V4L2_MAP_QUANTIZATION_DEFAULT(false, fmt.format.colorspace,
fmt.format.ycbcr_enc);
return mipi_csis_set_fmt(sd, sd_state, &fmt);
}
static int mipi_csis_log_status(struct v4l2_subdev *sd)
{
struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd);
mipi_csis_log_counters(csis, true);
if (csis->debug.enable)
mipi_csis_dump_regs(csis);
return 0;
}
static const struct v4l2_subdev_core_ops mipi_csis_core_ops = {
.log_status = mipi_csis_log_status,
};
static const struct v4l2_subdev_video_ops mipi_csis_video_ops = {
.s_stream = mipi_csis_s_stream,
};
static const struct v4l2_subdev_pad_ops mipi_csis_pad_ops = {
.enum_mbus_code = mipi_csis_enum_mbus_code,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = mipi_csis_set_fmt,
.get_frame_desc = mipi_csis_get_frame_desc,
};
static const struct v4l2_subdev_ops mipi_csis_subdev_ops = {
.core = &mipi_csis_core_ops,
.video = &mipi_csis_video_ops,
.pad = &mipi_csis_pad_ops,
};
static const struct v4l2_subdev_internal_ops mipi_csis_internal_ops = {
.init_state = mipi_csis_init_state,
};
/* -----------------------------------------------------------------------------
* Media entity operations
*/
static int mipi_csis_link_setup(struct media_entity *entity,
const struct media_pad *local_pad,
const struct media_pad *remote_pad, u32 flags)
{
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd);
struct v4l2_subdev *remote_sd;
dev_dbg(csis->dev, "link setup %s -> %s", remote_pad->entity->name,
local_pad->entity->name);
/* We only care about the link to the source. */
if (!(local_pad->flags & MEDIA_PAD_FL_SINK))
return 0;
remote_sd = media_entity_to_v4l2_subdev(remote_pad->entity);
if (flags & MEDIA_LNK_FL_ENABLED) {
if (csis->src_sd)
return -EBUSY;
csis->src_sd = remote_sd;
} else {
csis->src_sd = NULL;
}
return 0;
}
static const struct media_entity_operations mipi_csis_entity_ops = {
.link_setup = mipi_csis_link_setup,
.link_validate = v4l2_subdev_link_validate,
.get_fwnode_pad = v4l2_subdev_get_fwnode_pad_1_to_1,
};
/* -----------------------------------------------------------------------------
* Async subdev notifier
*/
static struct mipi_csis_device *
mipi_notifier_to_csis_state(struct v4l2_async_notifier *n)
{
return container_of(n, struct mipi_csis_device, notifier);
}
static int mipi_csis_notify_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd,
struct v4l2_async_connection *asd)
{
struct mipi_csis_device *csis = mipi_notifier_to_csis_state(notifier);
struct media_pad *sink = &csis->sd.entity.pads[CSIS_PAD_SINK];
return v4l2_create_fwnode_links_to_pad(sd, sink, 0);
}
static const struct v4l2_async_notifier_operations mipi_csis_notify_ops = {
.bound = mipi_csis_notify_bound,
};
static int mipi_csis_async_register(struct mipi_csis_device *csis)
{
struct v4l2_fwnode_endpoint vep = {
.bus_type = V4L2_MBUS_CSI2_DPHY,
};
struct v4l2_async_connection *asd;
struct fwnode_handle *ep;
unsigned int i;
int ret;
v4l2_async_subdev_nf_init(&csis->notifier, &csis->sd);
ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(csis->dev), 0, 0,
FWNODE_GRAPH_ENDPOINT_NEXT);
if (!ep)
return -ENOTCONN;
ret = v4l2_fwnode_endpoint_parse(ep, &vep);
if (ret)
goto err_parse;
for (i = 0; i < vep.bus.mipi_csi2.num_data_lanes; ++i) {
if (vep.bus.mipi_csi2.data_lanes[i] != i + 1) {
dev_err(csis->dev,
"data lanes reordering is not supported");
ret = -EINVAL;
goto err_parse;
}
}
csis->bus = vep.bus.mipi_csi2;
dev_dbg(csis->dev, "data lanes: %d\n", csis->bus.num_data_lanes);
dev_dbg(csis->dev, "flags: 0x%08x\n", csis->bus.flags);
asd = v4l2_async_nf_add_fwnode_remote(&csis->notifier, ep,
struct v4l2_async_connection);
if (IS_ERR(asd)) {
ret = PTR_ERR(asd);
goto err_parse;
}
fwnode_handle_put(ep);
csis->notifier.ops = &mipi_csis_notify_ops;
ret = v4l2_async_nf_register(&csis->notifier);
if (ret)
return ret;
return v4l2_async_register_subdev(&csis->sd);
err_parse:
fwnode_handle_put(ep);
return ret;
}
/* -----------------------------------------------------------------------------
* Suspend/resume
*/
static int __maybe_unused mipi_csis_runtime_suspend(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd);
int ret;
ret = mipi_csis_phy_disable(csis);
if (ret)
return -EAGAIN;
mipi_csis_clk_disable(csis);
return 0;
}
static int __maybe_unused mipi_csis_runtime_resume(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd);
int ret;
ret = mipi_csis_phy_enable(csis);
if (ret)
return -EAGAIN;
ret = mipi_csis_clk_enable(csis);
if (ret) {
mipi_csis_phy_disable(csis);
return ret;
}
return 0;
}
static const struct dev_pm_ops mipi_csis_pm_ops = {
SET_RUNTIME_PM_OPS(mipi_csis_runtime_suspend, mipi_csis_runtime_resume,
NULL)
};
/* -----------------------------------------------------------------------------
* Probe/remove & platform driver
*/
static int mipi_csis_subdev_init(struct mipi_csis_device *csis)
{
struct v4l2_subdev *sd = &csis->sd;
int ret;
v4l2_subdev_init(sd, &mipi_csis_subdev_ops);
sd->internal_ops = &mipi_csis_internal_ops;
sd->owner = THIS_MODULE;
snprintf(sd->name, sizeof(sd->name), "csis-%s",
dev_name(csis->dev));
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sd->ctrl_handler = NULL;
sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
sd->entity.ops = &mipi_csis_entity_ops;
sd->dev = csis->dev;
csis->pads[CSIS_PAD_SINK].flags = MEDIA_PAD_FL_SINK
| MEDIA_PAD_FL_MUST_CONNECT;
csis->pads[CSIS_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE
| MEDIA_PAD_FL_MUST_CONNECT;
ret = media_entity_pads_init(&sd->entity, CSIS_PADS_NUM, csis->pads);
if (ret)
return ret;
ret = v4l2_subdev_init_finalize(sd);
if (ret) {
media_entity_cleanup(&sd->entity);
return ret;
}
return 0;
}
static int mipi_csis_parse_dt(struct mipi_csis_device *csis)
{
struct device_node *node = csis->dev->of_node;
if (of_property_read_u32(node, "clock-frequency",
&csis->clk_frequency))
csis->clk_frequency = DEFAULT_SCLK_CSIS_FREQ;
return 0;
}
static int mipi_csis_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mipi_csis_device *csis;
int irq;
int ret;
csis = devm_kzalloc(dev, sizeof(*csis), GFP_KERNEL);
if (!csis)
return -ENOMEM;
spin_lock_init(&csis->slock);
csis->dev = dev;
csis->info = of_device_get_match_data(dev);
memcpy(csis->events, mipi_csis_events, sizeof(csis->events));
/* Parse DT properties. */
ret = mipi_csis_parse_dt(csis);
if (ret < 0) {
dev_err(dev, "Failed to parse device tree: %d\n", ret);
return ret;
}
/* Acquire resources. */
csis->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(csis->regs))
return PTR_ERR(csis->regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = mipi_csis_phy_init(csis);
if (ret < 0)
return ret;
ret = mipi_csis_clk_get(csis);
if (ret < 0)
return ret;
/* Reset PHY and enable the clocks. */
mipi_csis_phy_reset(csis);
/* Now that the hardware is initialized, request the interrupt. */
ret = devm_request_irq(dev, irq, mipi_csis_irq_handler, 0,
dev_name(dev), csis);
if (ret) {
dev_err(dev, "Interrupt request failed\n");
return ret;
}
/* Initialize and register the subdev. */
ret = mipi_csis_subdev_init(csis);
if (ret < 0)
return ret;
platform_set_drvdata(pdev, &csis->sd);
ret = mipi_csis_async_register(csis);
if (ret < 0) {
dev_err(dev, "async register failed: %d\n", ret);
goto err_cleanup;
}
/* Initialize debugfs. */
mipi_csis_debugfs_init(csis);
/* Enable runtime PM. */
pm_runtime_enable(dev);
if (!pm_runtime_enabled(dev)) {
ret = mipi_csis_runtime_resume(dev);
if (ret < 0)
goto err_unregister_all;
}
dev_info(dev, "lanes: %d, freq: %u\n",
csis->bus.num_data_lanes, csis->clk_frequency);
return 0;
err_unregister_all:
mipi_csis_debugfs_exit(csis);
err_cleanup:
v4l2_subdev_cleanup(&csis->sd);
media_entity_cleanup(&csis->sd.entity);
v4l2_async_nf_unregister(&csis->notifier);
v4l2_async_nf_cleanup(&csis->notifier);
v4l2_async_unregister_subdev(&csis->sd);
return ret;
}
static void mipi_csis_remove(struct platform_device *pdev)
{
struct v4l2_subdev *sd = platform_get_drvdata(pdev);
struct mipi_csis_device *csis = sd_to_mipi_csis_device(sd);
mipi_csis_debugfs_exit(csis);
v4l2_async_nf_unregister(&csis->notifier);
v4l2_async_nf_cleanup(&csis->notifier);
v4l2_async_unregister_subdev(&csis->sd);
if (!pm_runtime_enabled(&pdev->dev))
mipi_csis_runtime_suspend(&pdev->dev);
pm_runtime_disable(&pdev->dev);
v4l2_subdev_cleanup(&csis->sd);
media_entity_cleanup(&csis->sd.entity);
pm_runtime_set_suspended(&pdev->dev);
}
static const struct of_device_id mipi_csis_of_match[] = {
{
.compatible = "fsl,imx7-mipi-csi2",
.data = &(const struct mipi_csis_info){
.version = MIPI_CSIS_V3_3,
.num_clocks = 3,
},
}, {
.compatible = "fsl,imx8mm-mipi-csi2",
.data = &(const struct mipi_csis_info){
.version = MIPI_CSIS_V3_6_3,
.num_clocks = 4,
},
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mipi_csis_of_match);
static struct platform_driver mipi_csis_driver = {
.probe = mipi_csis_probe,
.remove_new = mipi_csis_remove,
.driver = {
.of_match_table = mipi_csis_of_match,
.name = CSIS_DRIVER_NAME,
.pm = &mipi_csis_pm_ops,
},
};
module_platform_driver(mipi_csis_driver);
MODULE_DESCRIPTION("i.MX7 & i.MX8 MIPI CSI-2 receiver driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:imx-mipi-csi2");