blob: 7c9dc91cc48a95bf4b7bc4bf5035b13c381f7758 [file] [log] [blame]
// SPDX-License-Identifier: BSD-3-Clause-Clear
/*
* Copyright (c) 2018-2019 The Linux Foundation. All rights reserved.
*/
#include "core.h"
#include "debug.h"
/* World regdom to be used in case default regd from fw is unavailable */
#define ATH11K_2GHZ_CH01_11 REG_RULE(2412 - 10, 2462 + 10, 40, 0, 20, 0)
#define ATH11K_5GHZ_5150_5350 REG_RULE(5150 - 10, 5350 + 10, 80, 0, 30,\
NL80211_RRF_NO_IR)
#define ATH11K_5GHZ_5725_5850 REG_RULE(5725 - 10, 5850 + 10, 80, 0, 30,\
NL80211_RRF_NO_IR)
#define ETSI_WEATHER_RADAR_BAND_LOW 5590
#define ETSI_WEATHER_RADAR_BAND_HIGH 5650
#define ETSI_WEATHER_RADAR_BAND_CAC_TIMEOUT 600000
static const struct ieee80211_regdomain ath11k_world_regd = {
.n_reg_rules = 3,
.alpha2 = "00",
.reg_rules = {
ATH11K_2GHZ_CH01_11,
ATH11K_5GHZ_5150_5350,
ATH11K_5GHZ_5725_5850,
}
};
static bool ath11k_regdom_changes(struct ath11k *ar, char *alpha2)
{
const struct ieee80211_regdomain *regd;
regd = rcu_dereference_rtnl(ar->hw->wiphy->regd);
/* This can happen during wiphy registration where the previous
* user request is received before we update the regd received
* from firmware.
*/
if (!regd)
return true;
return memcmp(regd->alpha2, alpha2, 2) != 0;
}
static void
ath11k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct wmi_init_country_params init_country_param;
struct ath11k *ar = hw->priv;
int ret;
ath11k_dbg(ar->ab, ATH11K_DBG_REG,
"Regulatory Notification received for %s\n", wiphy_name(wiphy));
/* Currently supporting only General User Hints. Cell base user
* hints to be handled later.
* Hints from other sources like Core, Beacons are not expected for
* self managed wiphy's
*/
if (!(request->initiator == NL80211_REGDOM_SET_BY_USER &&
request->user_reg_hint_type == NL80211_USER_REG_HINT_USER)) {
ath11k_warn(ar->ab, "Unexpected Regulatory event for this wiphy\n");
return;
}
if (!IS_ENABLED(CONFIG_ATH_REG_DYNAMIC_USER_REG_HINTS)) {
ath11k_dbg(ar->ab, ATH11K_DBG_REG,
"Country Setting is not allowed\n");
return;
}
if (!ath11k_regdom_changes(ar, request->alpha2)) {
ath11k_dbg(ar->ab, ATH11K_DBG_REG, "Country is already set\n");
return;
}
/* Set the country code to the firmware and wait for
* the WMI_REG_CHAN_LIST_CC EVENT for updating the
* reg info
*/
init_country_param.flags = ALPHA_IS_SET;
memcpy(&init_country_param.cc_info.alpha2, request->alpha2, 2);
ret = ath11k_wmi_send_init_country_cmd(ar, init_country_param);
if (ret)
ath11k_warn(ar->ab,
"INIT Country code set to fw failed : %d\n", ret);
}
int ath11k_reg_update_chan_list(struct ath11k *ar)
{
struct ieee80211_supported_band **bands;
struct scan_chan_list_params *params;
struct ieee80211_channel *channel;
struct ieee80211_hw *hw = ar->hw;
struct channel_param *ch;
enum nl80211_band band;
int num_channels = 0;
int params_len;
int i, ret;
bands = hw->wiphy->bands;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
if (bands[band]->channels[i].flags &
IEEE80211_CHAN_DISABLED)
continue;
num_channels++;
}
}
if (WARN_ON(!num_channels))
return -EINVAL;
params_len = sizeof(struct scan_chan_list_params) +
num_channels * sizeof(struct channel_param);
params = kzalloc(params_len, GFP_KERNEL);
if (!params)
return -ENOMEM;
params->pdev_id = ar->pdev->pdev_id;
params->nallchans = num_channels;
ch = params->ch_param;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
if (!bands[band])
continue;
for (i = 0; i < bands[band]->n_channels; i++) {
channel = &bands[band]->channels[i];
if (channel->flags & IEEE80211_CHAN_DISABLED)
continue;
/* TODO: Set to true/false based on some condition? */
ch->allow_ht = true;
ch->allow_vht = true;
ch->allow_he = true;
ch->dfs_set =
!!(channel->flags & IEEE80211_CHAN_RADAR);
ch->is_chan_passive = !!(channel->flags &
IEEE80211_CHAN_NO_IR);
ch->is_chan_passive |= ch->dfs_set;
ch->mhz = channel->center_freq;
ch->cfreq1 = channel->center_freq;
ch->minpower = 0;
ch->maxpower = channel->max_power * 2;
ch->maxregpower = channel->max_reg_power * 2;
ch->antennamax = channel->max_antenna_gain * 2;
/* TODO: Use appropriate phymodes */
if (channel->band == NL80211_BAND_2GHZ)
ch->phy_mode = MODE_11G;
else
ch->phy_mode = MODE_11A;
if (channel->band == NL80211_BAND_6GHZ &&
cfg80211_channel_is_psc(channel))
ch->psc_channel = true;
ath11k_dbg(ar->ab, ATH11K_DBG_WMI,
"mac channel [%d/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n",
i, params->nallchans,
ch->mhz, ch->maxpower, ch->maxregpower,
ch->antennamax, ch->phy_mode);
ch++;
/* TODO: use quarrter/half rate, cfreq12, dfs_cfreq2
* set_agile, reg_class_idx
*/
}
}
ret = ath11k_wmi_send_scan_chan_list_cmd(ar, params);
kfree(params);
return ret;
}
static void ath11k_copy_regd(struct ieee80211_regdomain *regd_orig,
struct ieee80211_regdomain *regd_copy)
{
u8 i;
/* The caller should have checked error conditions */
memcpy(regd_copy, regd_orig, sizeof(*regd_orig));
for (i = 0; i < regd_orig->n_reg_rules; i++)
memcpy(&regd_copy->reg_rules[i], &regd_orig->reg_rules[i],
sizeof(struct ieee80211_reg_rule));
}
int ath11k_regd_update(struct ath11k *ar, bool init)
{
struct ieee80211_regdomain *regd, *regd_copy = NULL;
int ret, regd_len, pdev_id;
struct ath11k_base *ab;
ab = ar->ab;
pdev_id = ar->pdev_idx;
spin_lock(&ab->base_lock);
if (init) {
/* Apply the regd received during init through
* WMI_REG_CHAN_LIST_CC event. In case of failure to
* receive the regd, initialize with a default world
* regulatory.
*/
if (ab->default_regd[pdev_id]) {
regd = ab->default_regd[pdev_id];
} else {
ath11k_warn(ab,
"failed to receive default regd during init\n");
regd = (struct ieee80211_regdomain *)&ath11k_world_regd;
}
} else {
regd = ab->new_regd[pdev_id];
}
if (!regd) {
ret = -EINVAL;
spin_unlock(&ab->base_lock);
goto err;
}
regd_len = sizeof(*regd) + (regd->n_reg_rules *
sizeof(struct ieee80211_reg_rule));
regd_copy = kzalloc(regd_len, GFP_ATOMIC);
if (regd_copy)
ath11k_copy_regd(regd, regd_copy);
spin_unlock(&ab->base_lock);
if (!regd_copy) {
ret = -ENOMEM;
goto err;
}
rtnl_lock();
ret = regulatory_set_wiphy_regd_sync_rtnl(ar->hw->wiphy, regd_copy);
rtnl_unlock();
kfree(regd_copy);
if (ret)
goto err;
if (ar->state == ATH11K_STATE_ON) {
ret = ath11k_reg_update_chan_list(ar);
if (ret)
goto err;
}
return 0;
err:
ath11k_warn(ab, "failed to perform regd update : %d\n", ret);
return ret;
}
static enum nl80211_dfs_regions
ath11k_map_fw_dfs_region(enum ath11k_dfs_region dfs_region)
{
switch (dfs_region) {
case ATH11K_DFS_REG_FCC:
case ATH11K_DFS_REG_CN:
return NL80211_DFS_FCC;
case ATH11K_DFS_REG_ETSI:
case ATH11K_DFS_REG_KR:
return NL80211_DFS_ETSI;
case ATH11K_DFS_REG_MKK:
return NL80211_DFS_JP;
default:
return NL80211_DFS_UNSET;
}
}
static u32 ath11k_map_fw_reg_flags(u16 reg_flags)
{
u32 flags = 0;
if (reg_flags & REGULATORY_CHAN_NO_IR)
flags = NL80211_RRF_NO_IR;
if (reg_flags & REGULATORY_CHAN_RADAR)
flags |= NL80211_RRF_DFS;
if (reg_flags & REGULATORY_CHAN_NO_OFDM)
flags |= NL80211_RRF_NO_OFDM;
if (reg_flags & REGULATORY_CHAN_INDOOR_ONLY)
flags |= NL80211_RRF_NO_OUTDOOR;
if (reg_flags & REGULATORY_CHAN_NO_HT40)
flags |= NL80211_RRF_NO_HT40;
if (reg_flags & REGULATORY_CHAN_NO_80MHZ)
flags |= NL80211_RRF_NO_80MHZ;
if (reg_flags & REGULATORY_CHAN_NO_160MHZ)
flags |= NL80211_RRF_NO_160MHZ;
return flags;
}
static bool
ath11k_reg_can_intersect(struct ieee80211_reg_rule *rule1,
struct ieee80211_reg_rule *rule2)
{
u32 start_freq1, end_freq1;
u32 start_freq2, end_freq2;
start_freq1 = rule1->freq_range.start_freq_khz;
start_freq2 = rule2->freq_range.start_freq_khz;
end_freq1 = rule1->freq_range.end_freq_khz;
end_freq2 = rule2->freq_range.end_freq_khz;
if ((start_freq1 >= start_freq2 &&
start_freq1 < end_freq2) ||
(start_freq2 > start_freq1 &&
start_freq2 < end_freq1))
return true;
/* TODO: Should we restrict intersection feasibility
* based on min bandwidth of the intersected region also,
* say the intersected rule should have a min bandwidth
* of 20MHz?
*/
return false;
}
static void ath11k_reg_intersect_rules(struct ieee80211_reg_rule *rule1,
struct ieee80211_reg_rule *rule2,
struct ieee80211_reg_rule *new_rule)
{
u32 start_freq1, end_freq1;
u32 start_freq2, end_freq2;
u32 freq_diff, max_bw;
start_freq1 = rule1->freq_range.start_freq_khz;
start_freq2 = rule2->freq_range.start_freq_khz;
end_freq1 = rule1->freq_range.end_freq_khz;
end_freq2 = rule2->freq_range.end_freq_khz;
new_rule->freq_range.start_freq_khz = max_t(u32, start_freq1,
start_freq2);
new_rule->freq_range.end_freq_khz = min_t(u32, end_freq1, end_freq2);
freq_diff = new_rule->freq_range.end_freq_khz -
new_rule->freq_range.start_freq_khz;
max_bw = min_t(u32, rule1->freq_range.max_bandwidth_khz,
rule2->freq_range.max_bandwidth_khz);
new_rule->freq_range.max_bandwidth_khz = min_t(u32, max_bw, freq_diff);
new_rule->power_rule.max_antenna_gain =
min_t(u32, rule1->power_rule.max_antenna_gain,
rule2->power_rule.max_antenna_gain);
new_rule->power_rule.max_eirp = min_t(u32, rule1->power_rule.max_eirp,
rule2->power_rule.max_eirp);
/* Use the flags of both the rules */
new_rule->flags = rule1->flags | rule2->flags;
/* To be safe, lts use the max cac timeout of both rules */
new_rule->dfs_cac_ms = max_t(u32, rule1->dfs_cac_ms,
rule2->dfs_cac_ms);
}
static struct ieee80211_regdomain *
ath11k_regd_intersect(struct ieee80211_regdomain *default_regd,
struct ieee80211_regdomain *curr_regd)
{
u8 num_old_regd_rules, num_curr_regd_rules, num_new_regd_rules;
struct ieee80211_reg_rule *old_rule, *curr_rule, *new_rule;
struct ieee80211_regdomain *new_regd = NULL;
u8 i, j, k;
num_old_regd_rules = default_regd->n_reg_rules;
num_curr_regd_rules = curr_regd->n_reg_rules;
num_new_regd_rules = 0;
/* Find the number of intersecting rules to allocate new regd memory */
for (i = 0; i < num_old_regd_rules; i++) {
old_rule = default_regd->reg_rules + i;
for (j = 0; j < num_curr_regd_rules; j++) {
curr_rule = curr_regd->reg_rules + j;
if (ath11k_reg_can_intersect(old_rule, curr_rule))
num_new_regd_rules++;
}
}
if (!num_new_regd_rules)
return NULL;
new_regd = kzalloc(sizeof(*new_regd) + (num_new_regd_rules *
sizeof(struct ieee80211_reg_rule)),
GFP_ATOMIC);
if (!new_regd)
return NULL;
/* We set the new country and dfs region directly and only trim
* the freq, power, antenna gain by intersecting with the
* default regdomain. Also MAX of the dfs cac timeout is selected.
*/
new_regd->n_reg_rules = num_new_regd_rules;
memcpy(new_regd->alpha2, curr_regd->alpha2, sizeof(new_regd->alpha2));
new_regd->dfs_region = curr_regd->dfs_region;
new_rule = new_regd->reg_rules;
for (i = 0, k = 0; i < num_old_regd_rules; i++) {
old_rule = default_regd->reg_rules + i;
for (j = 0; j < num_curr_regd_rules; j++) {
curr_rule = curr_regd->reg_rules + j;
if (ath11k_reg_can_intersect(old_rule, curr_rule))
ath11k_reg_intersect_rules(old_rule, curr_rule,
(new_rule + k++));
}
}
return new_regd;
}
static const char *
ath11k_reg_get_regdom_str(enum nl80211_dfs_regions dfs_region)
{
switch (dfs_region) {
case NL80211_DFS_FCC:
return "FCC";
case NL80211_DFS_ETSI:
return "ETSI";
case NL80211_DFS_JP:
return "JP";
default:
return "UNSET";
}
}
static u16
ath11k_reg_adjust_bw(u16 start_freq, u16 end_freq, u16 max_bw)
{
u16 bw;
bw = end_freq - start_freq;
bw = min_t(u16, bw, max_bw);
if (bw >= 80 && bw < 160)
bw = 80;
else if (bw >= 40 && bw < 80)
bw = 40;
else if (bw < 40)
bw = 20;
return bw;
}
static void
ath11k_reg_update_rule(struct ieee80211_reg_rule *reg_rule, u32 start_freq,
u32 end_freq, u32 bw, u32 ant_gain, u32 reg_pwr,
u32 reg_flags)
{
reg_rule->freq_range.start_freq_khz = MHZ_TO_KHZ(start_freq);
reg_rule->freq_range.end_freq_khz = MHZ_TO_KHZ(end_freq);
reg_rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(bw);
reg_rule->power_rule.max_antenna_gain = DBI_TO_MBI(ant_gain);
reg_rule->power_rule.max_eirp = DBM_TO_MBM(reg_pwr);
reg_rule->flags = reg_flags;
}
static void
ath11k_reg_update_weather_radar_band(struct ath11k_base *ab,
struct ieee80211_regdomain *regd,
struct cur_reg_rule *reg_rule,
u8 *rule_idx, u32 flags, u16 max_bw)
{
u32 end_freq;
u16 bw;
u8 i;
i = *rule_idx;
bw = ath11k_reg_adjust_bw(reg_rule->start_freq,
ETSI_WEATHER_RADAR_BAND_LOW, max_bw);
ath11k_reg_update_rule(regd->reg_rules + i, reg_rule->start_freq,
ETSI_WEATHER_RADAR_BAND_LOW, bw,
reg_rule->ant_gain, reg_rule->reg_power,
flags);
ath11k_dbg(ab, ATH11K_DBG_REG,
"\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n",
i + 1, reg_rule->start_freq, ETSI_WEATHER_RADAR_BAND_LOW,
bw, reg_rule->ant_gain, reg_rule->reg_power,
regd->reg_rules[i].dfs_cac_ms,
flags);
if (reg_rule->end_freq > ETSI_WEATHER_RADAR_BAND_HIGH)
end_freq = ETSI_WEATHER_RADAR_BAND_HIGH;
else
end_freq = reg_rule->end_freq;
bw = ath11k_reg_adjust_bw(ETSI_WEATHER_RADAR_BAND_LOW, end_freq,
max_bw);
i++;
ath11k_reg_update_rule(regd->reg_rules + i,
ETSI_WEATHER_RADAR_BAND_LOW, end_freq, bw,
reg_rule->ant_gain, reg_rule->reg_power,
flags);
regd->reg_rules[i].dfs_cac_ms = ETSI_WEATHER_RADAR_BAND_CAC_TIMEOUT;
ath11k_dbg(ab, ATH11K_DBG_REG,
"\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n",
i + 1, ETSI_WEATHER_RADAR_BAND_LOW, end_freq,
bw, reg_rule->ant_gain, reg_rule->reg_power,
regd->reg_rules[i].dfs_cac_ms,
flags);
if (end_freq == reg_rule->end_freq) {
regd->n_reg_rules--;
*rule_idx = i;
return;
}
bw = ath11k_reg_adjust_bw(ETSI_WEATHER_RADAR_BAND_HIGH,
reg_rule->end_freq, max_bw);
i++;
ath11k_reg_update_rule(regd->reg_rules + i, ETSI_WEATHER_RADAR_BAND_HIGH,
reg_rule->end_freq, bw,
reg_rule->ant_gain, reg_rule->reg_power,
flags);
ath11k_dbg(ab, ATH11K_DBG_REG,
"\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n",
i + 1, ETSI_WEATHER_RADAR_BAND_HIGH, reg_rule->end_freq,
bw, reg_rule->ant_gain, reg_rule->reg_power,
regd->reg_rules[i].dfs_cac_ms,
flags);
*rule_idx = i;
}
struct ieee80211_regdomain *
ath11k_reg_build_regd(struct ath11k_base *ab,
struct cur_regulatory_info *reg_info, bool intersect)
{
struct ieee80211_regdomain *tmp_regd, *default_regd, *new_regd = NULL;
struct cur_reg_rule *reg_rule;
u8 i = 0, j = 0;
u8 num_rules;
u16 max_bw;
u32 flags;
char alpha2[3];
num_rules = reg_info->num_5g_reg_rules + reg_info->num_2g_reg_rules;
if (!num_rules)
goto ret;
/* Add max additional rules to accommodate weather radar band */
if (reg_info->dfs_region == ATH11K_DFS_REG_ETSI)
num_rules += 2;
tmp_regd = kzalloc(sizeof(*tmp_regd) +
(num_rules * sizeof(struct ieee80211_reg_rule)),
GFP_ATOMIC);
if (!tmp_regd)
goto ret;
tmp_regd->n_reg_rules = num_rules;
memcpy(tmp_regd->alpha2, reg_info->alpha2, REG_ALPHA2_LEN + 1);
memcpy(alpha2, reg_info->alpha2, REG_ALPHA2_LEN + 1);
alpha2[2] = '\0';
tmp_regd->dfs_region = ath11k_map_fw_dfs_region(reg_info->dfs_region);
ath11k_dbg(ab, ATH11K_DBG_REG,
"\r\nCountry %s, CFG Regdomain %s FW Regdomain %d, num_reg_rules %d\n",
alpha2, ath11k_reg_get_regdom_str(tmp_regd->dfs_region),
reg_info->dfs_region, num_rules);
/* Update reg_rules[] below. Firmware is expected to
* send these rules in order(2G rules first and then 5G)
*/
for (; i < tmp_regd->n_reg_rules; i++) {
if (reg_info->num_2g_reg_rules &&
(i < reg_info->num_2g_reg_rules)) {
reg_rule = reg_info->reg_rules_2g_ptr + i;
max_bw = min_t(u16, reg_rule->max_bw,
reg_info->max_bw_2g);
flags = 0;
} else if (reg_info->num_5g_reg_rules &&
(j < reg_info->num_5g_reg_rules)) {
reg_rule = reg_info->reg_rules_5g_ptr + j++;
max_bw = min_t(u16, reg_rule->max_bw,
reg_info->max_bw_5g);
/* FW doesn't pass NL80211_RRF_AUTO_BW flag for
* BW Auto correction, we can enable this by default
* for all 5G rules here. The regulatory core performs
* BW correction if required and applies flags as
* per other BW rule flags we pass from here
*/
flags = NL80211_RRF_AUTO_BW;
} else {
break;
}
flags |= ath11k_map_fw_reg_flags(reg_rule->flags);
ath11k_reg_update_rule(tmp_regd->reg_rules + i,
reg_rule->start_freq,
reg_rule->end_freq, max_bw,
reg_rule->ant_gain, reg_rule->reg_power,
flags);
/* Update dfs cac timeout if the dfs domain is ETSI and the
* new rule covers weather radar band.
* Default value of '0' corresponds to 60s timeout, so no
* need to update that for other rules.
*/
if (flags & NL80211_RRF_DFS &&
reg_info->dfs_region == ATH11K_DFS_REG_ETSI &&
(reg_rule->end_freq > ETSI_WEATHER_RADAR_BAND_LOW &&
reg_rule->start_freq < ETSI_WEATHER_RADAR_BAND_HIGH)){
ath11k_reg_update_weather_radar_band(ab, tmp_regd,
reg_rule, &i,
flags, max_bw);
continue;
}
ath11k_dbg(ab, ATH11K_DBG_REG,
"\t%d. (%d - %d @ %d) (%d, %d) (%d ms) (FLAGS %d)\n",
i + 1, reg_rule->start_freq, reg_rule->end_freq,
max_bw, reg_rule->ant_gain, reg_rule->reg_power,
tmp_regd->reg_rules[i].dfs_cac_ms,
flags);
}
if (intersect) {
default_regd = ab->default_regd[reg_info->phy_id];
/* Get a new regd by intersecting the received regd with
* our default regd.
*/
new_regd = ath11k_regd_intersect(default_regd, tmp_regd);
kfree(tmp_regd);
if (!new_regd) {
ath11k_warn(ab, "Unable to create intersected regdomain\n");
goto ret;
}
} else {
new_regd = tmp_regd;
}
ret:
return new_regd;
}
void ath11k_regd_update_work(struct work_struct *work)
{
struct ath11k *ar = container_of(work, struct ath11k,
regd_update_work);
int ret;
ret = ath11k_regd_update(ar, false);
if (ret) {
/* Firmware has already moved to the new regd. We need
* to maintain channel consistency across FW, Host driver
* and userspace. Hence as a fallback mechanism we can set
* the prev or default country code to the firmware.
*/
/* TODO: Implement Fallback Mechanism */
}
}
void ath11k_reg_init(struct ath11k *ar)
{
ar->hw->wiphy->regulatory_flags = REGULATORY_WIPHY_SELF_MANAGED;
ar->hw->wiphy->reg_notifier = ath11k_reg_notifier;
}
void ath11k_reg_free(struct ath11k_base *ab)
{
int i;
for (i = 0; i < MAX_RADIOS; i++) {
kfree(ab->default_regd[i]);
kfree(ab->new_regd[i]);
}
}