| /* |
| * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters |
| * |
| * Copyright (c) 1995-2000 Advanced System Products, Inc. |
| * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. |
| * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx> |
| * Copyright (c) 2014 Hannes Reinecke <hare@suse.de> |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| /* |
| * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) |
| * changed its name to ConnectCom Solutions, Inc. |
| * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/ioport.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/proc_fs.h> |
| #include <linux/init.h> |
| #include <linux/blkdev.h> |
| #include <linux/isa.h> |
| #include <linux/eisa.h> |
| #include <linux/pci.h> |
| #include <linux/spinlock.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/firmware.h> |
| #include <linux/dmapool.h> |
| |
| #include <asm/io.h> |
| #include <asm/dma.h> |
| |
| #include <scsi/scsi_cmnd.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_tcq.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_host.h> |
| |
| #define DRV_NAME "advansys" |
| #define ASC_VERSION "3.5" /* AdvanSys Driver Version */ |
| |
| /* FIXME: |
| * |
| * 1. Use scsi_transport_spi |
| * 2. advansys_info is not safe against multiple simultaneous callers |
| * 3. Add module_param to override ISA/VLB ioport array |
| */ |
| |
| /* Enable driver /proc statistics. */ |
| #define ADVANSYS_STATS |
| |
| /* Enable driver tracing. */ |
| #undef ADVANSYS_DEBUG |
| |
| typedef unsigned char uchar; |
| |
| #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) |
| |
| #define PCI_VENDOR_ID_ASP 0x10cd |
| #define PCI_DEVICE_ID_ASP_1200A 0x1100 |
| #define PCI_DEVICE_ID_ASP_ABP940 0x1200 |
| #define PCI_DEVICE_ID_ASP_ABP940U 0x1300 |
| #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300 |
| #define PCI_DEVICE_ID_38C0800_REV1 0x2500 |
| #define PCI_DEVICE_ID_38C1600_REV1 0x2700 |
| |
| #define PortAddr unsigned int /* port address size */ |
| #define inp(port) inb(port) |
| #define outp(port, byte) outb((byte), (port)) |
| |
| #define inpw(port) inw(port) |
| #define outpw(port, word) outw((word), (port)) |
| |
| #define ASC_MAX_SG_QUEUE 7 |
| #define ASC_MAX_SG_LIST 255 |
| |
| #define ASC_CS_TYPE unsigned short |
| |
| #define ASC_IS_ISA (0x0001) |
| #define ASC_IS_ISAPNP (0x0081) |
| #define ASC_IS_EISA (0x0002) |
| #define ASC_IS_PCI (0x0004) |
| #define ASC_IS_PCI_ULTRA (0x0104) |
| #define ASC_IS_PCMCIA (0x0008) |
| #define ASC_IS_MCA (0x0020) |
| #define ASC_IS_VL (0x0040) |
| #define ASC_IS_WIDESCSI_16 (0x0100) |
| #define ASC_IS_WIDESCSI_32 (0x0200) |
| #define ASC_IS_BIG_ENDIAN (0x8000) |
| |
| #define ASC_CHIP_MIN_VER_VL (0x01) |
| #define ASC_CHIP_MAX_VER_VL (0x07) |
| #define ASC_CHIP_MIN_VER_PCI (0x09) |
| #define ASC_CHIP_MAX_VER_PCI (0x0F) |
| #define ASC_CHIP_VER_PCI_BIT (0x08) |
| #define ASC_CHIP_MIN_VER_ISA (0x11) |
| #define ASC_CHIP_MIN_VER_ISA_PNP (0x21) |
| #define ASC_CHIP_MAX_VER_ISA (0x27) |
| #define ASC_CHIP_VER_ISA_BIT (0x30) |
| #define ASC_CHIP_VER_ISAPNP_BIT (0x20) |
| #define ASC_CHIP_VER_ASYN_BUG (0x21) |
| #define ASC_CHIP_VER_PCI 0x08 |
| #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) |
| #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) |
| #define ASC_CHIP_MIN_VER_EISA (0x41) |
| #define ASC_CHIP_MAX_VER_EISA (0x47) |
| #define ASC_CHIP_VER_EISA_BIT (0x40) |
| #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) |
| #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) |
| #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) |
| #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL) |
| |
| #define ASC_SCSI_ID_BITS 3 |
| #define ASC_SCSI_TIX_TYPE uchar |
| #define ASC_ALL_DEVICE_BIT_SET 0xFF |
| #define ASC_SCSI_BIT_ID_TYPE uchar |
| #define ASC_MAX_TID 7 |
| #define ASC_MAX_LUN 7 |
| #define ASC_SCSI_WIDTH_BIT_SET 0xFF |
| #define ASC_MAX_SENSE_LEN 32 |
| #define ASC_MIN_SENSE_LEN 14 |
| #define ASC_SCSI_RESET_HOLD_TIME_US 60 |
| |
| /* |
| * Narrow boards only support 12-byte commands, while wide boards |
| * extend to 16-byte commands. |
| */ |
| #define ASC_MAX_CDB_LEN 12 |
| #define ADV_MAX_CDB_LEN 16 |
| |
| #define MS_SDTR_LEN 0x03 |
| #define MS_WDTR_LEN 0x02 |
| |
| #define ASC_SG_LIST_PER_Q 7 |
| #define QS_FREE 0x00 |
| #define QS_READY 0x01 |
| #define QS_DISC1 0x02 |
| #define QS_DISC2 0x04 |
| #define QS_BUSY 0x08 |
| #define QS_ABORTED 0x40 |
| #define QS_DONE 0x80 |
| #define QC_NO_CALLBACK 0x01 |
| #define QC_SG_SWAP_QUEUE 0x02 |
| #define QC_SG_HEAD 0x04 |
| #define QC_DATA_IN 0x08 |
| #define QC_DATA_OUT 0x10 |
| #define QC_URGENT 0x20 |
| #define QC_MSG_OUT 0x40 |
| #define QC_REQ_SENSE 0x80 |
| #define QCSG_SG_XFER_LIST 0x02 |
| #define QCSG_SG_XFER_MORE 0x04 |
| #define QCSG_SG_XFER_END 0x08 |
| #define QD_IN_PROGRESS 0x00 |
| #define QD_NO_ERROR 0x01 |
| #define QD_ABORTED_BY_HOST 0x02 |
| #define QD_WITH_ERROR 0x04 |
| #define QD_INVALID_REQUEST 0x80 |
| #define QD_INVALID_HOST_NUM 0x81 |
| #define QD_INVALID_DEVICE 0x82 |
| #define QD_ERR_INTERNAL 0xFF |
| #define QHSTA_NO_ERROR 0x00 |
| #define QHSTA_M_SEL_TIMEOUT 0x11 |
| #define QHSTA_M_DATA_OVER_RUN 0x12 |
| #define QHSTA_M_DATA_UNDER_RUN 0x12 |
| #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 |
| #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 |
| #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 |
| #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 |
| #define QHSTA_D_HOST_ABORT_FAILED 0x23 |
| #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 |
| #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 |
| #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 |
| #define QHSTA_M_WTM_TIMEOUT 0x41 |
| #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 |
| #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 |
| #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 |
| #define QHSTA_M_TARGET_STATUS_BUSY 0x45 |
| #define QHSTA_M_BAD_TAG_CODE 0x46 |
| #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 |
| #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 |
| #define QHSTA_D_LRAM_CMP_ERROR 0x81 |
| #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 |
| #define ASC_FLAG_SCSIQ_REQ 0x01 |
| #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 |
| #define ASC_FLAG_BIOS_ASYNC_IO 0x04 |
| #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 |
| #define ASC_FLAG_WIN16 0x10 |
| #define ASC_FLAG_WIN32 0x20 |
| #define ASC_FLAG_ISA_OVER_16MB 0x40 |
| #define ASC_FLAG_DOS_VM_CALLBACK 0x80 |
| #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 |
| #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 |
| #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 |
| #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 |
| #define ASC_SCSIQ_CPY_BEG 4 |
| #define ASC_SCSIQ_SGHD_CPY_BEG 2 |
| #define ASC_SCSIQ_B_FWD 0 |
| #define ASC_SCSIQ_B_BWD 1 |
| #define ASC_SCSIQ_B_STATUS 2 |
| #define ASC_SCSIQ_B_QNO 3 |
| #define ASC_SCSIQ_B_CNTL 4 |
| #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 |
| #define ASC_SCSIQ_D_DATA_ADDR 8 |
| #define ASC_SCSIQ_D_DATA_CNT 12 |
| #define ASC_SCSIQ_B_SENSE_LEN 20 |
| #define ASC_SCSIQ_DONE_INFO_BEG 22 |
| #define ASC_SCSIQ_D_SRBPTR 22 |
| #define ASC_SCSIQ_B_TARGET_IX 26 |
| #define ASC_SCSIQ_B_CDB_LEN 28 |
| #define ASC_SCSIQ_B_TAG_CODE 29 |
| #define ASC_SCSIQ_W_VM_ID 30 |
| #define ASC_SCSIQ_DONE_STATUS 32 |
| #define ASC_SCSIQ_HOST_STATUS 33 |
| #define ASC_SCSIQ_SCSI_STATUS 34 |
| #define ASC_SCSIQ_CDB_BEG 36 |
| #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 |
| #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 |
| #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48 |
| #define ASC_SCSIQ_B_SG_WK_QP 49 |
| #define ASC_SCSIQ_B_SG_WK_IX 50 |
| #define ASC_SCSIQ_W_ALT_DC1 52 |
| #define ASC_SCSIQ_B_LIST_CNT 6 |
| #define ASC_SCSIQ_B_CUR_LIST_CNT 7 |
| #define ASC_SGQ_B_SG_CNTL 4 |
| #define ASC_SGQ_B_SG_HEAD_QP 5 |
| #define ASC_SGQ_B_SG_LIST_CNT 6 |
| #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 |
| #define ASC_SGQ_LIST_BEG 8 |
| #define ASC_DEF_SCSI1_QNG 4 |
| #define ASC_MAX_SCSI1_QNG 4 |
| #define ASC_DEF_SCSI2_QNG 16 |
| #define ASC_MAX_SCSI2_QNG 32 |
| #define ASC_TAG_CODE_MASK 0x23 |
| #define ASC_STOP_REQ_RISC_STOP 0x01 |
| #define ASC_STOP_ACK_RISC_STOP 0x03 |
| #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 |
| #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 |
| #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 |
| #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS)) |
| #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid)) |
| #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID)) |
| #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID) |
| #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID) |
| #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) |
| #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) |
| |
| typedef struct asc_scsiq_1 { |
| uchar status; |
| uchar q_no; |
| uchar cntl; |
| uchar sg_queue_cnt; |
| uchar target_id; |
| uchar target_lun; |
| __le32 data_addr; |
| __le32 data_cnt; |
| __le32 sense_addr; |
| uchar sense_len; |
| uchar extra_bytes; |
| } ASC_SCSIQ_1; |
| |
| typedef struct asc_scsiq_2 { |
| u32 srb_tag; |
| uchar target_ix; |
| uchar flag; |
| uchar cdb_len; |
| uchar tag_code; |
| ushort vm_id; |
| } ASC_SCSIQ_2; |
| |
| typedef struct asc_scsiq_3 { |
| uchar done_stat; |
| uchar host_stat; |
| uchar scsi_stat; |
| uchar scsi_msg; |
| } ASC_SCSIQ_3; |
| |
| typedef struct asc_scsiq_4 { |
| uchar cdb[ASC_MAX_CDB_LEN]; |
| uchar y_first_sg_list_qp; |
| uchar y_working_sg_qp; |
| uchar y_working_sg_ix; |
| uchar y_res; |
| ushort x_req_count; |
| ushort x_reconnect_rtn; |
| __le32 x_saved_data_addr; |
| __le32 x_saved_data_cnt; |
| } ASC_SCSIQ_4; |
| |
| typedef struct asc_q_done_info { |
| ASC_SCSIQ_2 d2; |
| ASC_SCSIQ_3 d3; |
| uchar q_status; |
| uchar q_no; |
| uchar cntl; |
| uchar sense_len; |
| uchar extra_bytes; |
| uchar res; |
| u32 remain_bytes; |
| } ASC_QDONE_INFO; |
| |
| typedef struct asc_sg_list { |
| __le32 addr; |
| __le32 bytes; |
| } ASC_SG_LIST; |
| |
| typedef struct asc_sg_head { |
| ushort entry_cnt; |
| ushort queue_cnt; |
| ushort entry_to_copy; |
| ushort res; |
| ASC_SG_LIST sg_list[0]; |
| } ASC_SG_HEAD; |
| |
| typedef struct asc_scsi_q { |
| ASC_SCSIQ_1 q1; |
| ASC_SCSIQ_2 q2; |
| uchar *cdbptr; |
| ASC_SG_HEAD *sg_head; |
| ushort remain_sg_entry_cnt; |
| ushort next_sg_index; |
| } ASC_SCSI_Q; |
| |
| typedef struct asc_scsi_bios_req_q { |
| ASC_SCSIQ_1 r1; |
| ASC_SCSIQ_2 r2; |
| uchar *cdbptr; |
| ASC_SG_HEAD *sg_head; |
| uchar *sense_ptr; |
| ASC_SCSIQ_3 r3; |
| uchar cdb[ASC_MAX_CDB_LEN]; |
| uchar sense[ASC_MIN_SENSE_LEN]; |
| } ASC_SCSI_BIOS_REQ_Q; |
| |
| typedef struct asc_risc_q { |
| uchar fwd; |
| uchar bwd; |
| ASC_SCSIQ_1 i1; |
| ASC_SCSIQ_2 i2; |
| ASC_SCSIQ_3 i3; |
| ASC_SCSIQ_4 i4; |
| } ASC_RISC_Q; |
| |
| typedef struct asc_sg_list_q { |
| uchar seq_no; |
| uchar q_no; |
| uchar cntl; |
| uchar sg_head_qp; |
| uchar sg_list_cnt; |
| uchar sg_cur_list_cnt; |
| } ASC_SG_LIST_Q; |
| |
| typedef struct asc_risc_sg_list_q { |
| uchar fwd; |
| uchar bwd; |
| ASC_SG_LIST_Q sg; |
| ASC_SG_LIST sg_list[7]; |
| } ASC_RISC_SG_LIST_Q; |
| |
| #define ASCQ_ERR_Q_STATUS 0x0D |
| #define ASCQ_ERR_CUR_QNG 0x17 |
| #define ASCQ_ERR_SG_Q_LINKS 0x18 |
| #define ASCQ_ERR_ISR_RE_ENTRY 0x1A |
| #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B |
| #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C |
| |
| /* |
| * Warning code values are set in ASC_DVC_VAR 'warn_code'. |
| */ |
| #define ASC_WARN_NO_ERROR 0x0000 |
| #define ASC_WARN_IO_PORT_ROTATE 0x0001 |
| #define ASC_WARN_EEPROM_CHKSUM 0x0002 |
| #define ASC_WARN_IRQ_MODIFIED 0x0004 |
| #define ASC_WARN_AUTO_CONFIG 0x0008 |
| #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 |
| #define ASC_WARN_EEPROM_RECOVER 0x0020 |
| #define ASC_WARN_CFG_MSW_RECOVER 0x0040 |
| |
| /* |
| * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'. |
| */ |
| #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */ |
| #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ |
| #define ASC_IERR_SET_PC_ADDR 0x0004 |
| #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ |
| #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */ |
| #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */ |
| #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */ |
| #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ |
| #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */ |
| #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ |
| #define ASC_IERR_NO_BUS_TYPE 0x0400 |
| #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */ |
| #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */ |
| #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */ |
| |
| #define ASC_DEF_MAX_TOTAL_QNG (0xF0) |
| #define ASC_MIN_TAG_Q_PER_DVC (0x04) |
| #define ASC_MIN_FREE_Q (0x02) |
| #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) |
| #define ASC_MAX_TOTAL_QNG 240 |
| #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 |
| #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 |
| #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 |
| #define ASC_MAX_INRAM_TAG_QNG 16 |
| #define ASC_IOADR_GAP 0x10 |
| #define ASC_SYN_MAX_OFFSET 0x0F |
| #define ASC_DEF_SDTR_OFFSET 0x0F |
| #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 |
| #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 |
| |
| /* The narrow chip only supports a limited selection of transfer rates. |
| * These are encoded in the range 0..7 or 0..15 depending whether the chip |
| * is Ultra-capable or not. These tables let us convert from one to the other. |
| */ |
| static const unsigned char asc_syn_xfer_period[8] = { |
| 25, 30, 35, 40, 50, 60, 70, 85 |
| }; |
| |
| static const unsigned char asc_syn_ultra_xfer_period[16] = { |
| 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 |
| }; |
| |
| typedef struct ext_msg { |
| uchar msg_type; |
| uchar msg_len; |
| uchar msg_req; |
| union { |
| struct { |
| uchar sdtr_xfer_period; |
| uchar sdtr_req_ack_offset; |
| } sdtr; |
| struct { |
| uchar wdtr_width; |
| } wdtr; |
| struct { |
| uchar mdp_b3; |
| uchar mdp_b2; |
| uchar mdp_b1; |
| uchar mdp_b0; |
| } mdp; |
| } u_ext_msg; |
| uchar res; |
| } EXT_MSG; |
| |
| #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period |
| #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset |
| #define wdtr_width u_ext_msg.wdtr.wdtr_width |
| #define mdp_b3 u_ext_msg.mdp_b3 |
| #define mdp_b2 u_ext_msg.mdp_b2 |
| #define mdp_b1 u_ext_msg.mdp_b1 |
| #define mdp_b0 u_ext_msg.mdp_b0 |
| |
| typedef struct asc_dvc_cfg { |
| ASC_SCSI_BIT_ID_TYPE can_tagged_qng; |
| ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; |
| ASC_SCSI_BIT_ID_TYPE disc_enable; |
| ASC_SCSI_BIT_ID_TYPE sdtr_enable; |
| uchar chip_scsi_id; |
| uchar isa_dma_speed; |
| uchar isa_dma_channel; |
| uchar chip_version; |
| ushort mcode_date; |
| ushort mcode_version; |
| uchar max_tag_qng[ASC_MAX_TID + 1]; |
| uchar sdtr_period_offset[ASC_MAX_TID + 1]; |
| uchar adapter_info[6]; |
| } ASC_DVC_CFG; |
| |
| #define ASC_DEF_DVC_CNTL 0xFFFF |
| #define ASC_DEF_CHIP_SCSI_ID 7 |
| #define ASC_DEF_ISA_DMA_SPEED 4 |
| #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 |
| #define ASC_INIT_STATE_END_GET_CFG 0x0002 |
| #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 |
| #define ASC_INIT_STATE_END_SET_CFG 0x0008 |
| #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 |
| #define ASC_INIT_STATE_END_LOAD_MC 0x0020 |
| #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 |
| #define ASC_INIT_STATE_END_INQUIRY 0x0080 |
| #define ASC_INIT_RESET_SCSI_DONE 0x0100 |
| #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 |
| #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 |
| #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 |
| #define ASC_MIN_TAGGED_CMD 7 |
| #define ASC_MAX_SCSI_RESET_WAIT 30 |
| #define ASC_OVERRUN_BSIZE 64 |
| |
| struct asc_dvc_var; /* Forward Declaration. */ |
| |
| typedef struct asc_dvc_var { |
| PortAddr iop_base; |
| ushort err_code; |
| ushort dvc_cntl; |
| ushort bug_fix_cntl; |
| ushort bus_type; |
| ASC_SCSI_BIT_ID_TYPE init_sdtr; |
| ASC_SCSI_BIT_ID_TYPE sdtr_done; |
| ASC_SCSI_BIT_ID_TYPE use_tagged_qng; |
| ASC_SCSI_BIT_ID_TYPE unit_not_ready; |
| ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; |
| ASC_SCSI_BIT_ID_TYPE start_motor; |
| uchar *overrun_buf; |
| dma_addr_t overrun_dma; |
| uchar scsi_reset_wait; |
| uchar chip_no; |
| bool is_in_int; |
| uchar max_total_qng; |
| uchar cur_total_qng; |
| uchar in_critical_cnt; |
| uchar last_q_shortage; |
| ushort init_state; |
| uchar cur_dvc_qng[ASC_MAX_TID + 1]; |
| uchar max_dvc_qng[ASC_MAX_TID + 1]; |
| ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; |
| ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; |
| const uchar *sdtr_period_tbl; |
| ASC_DVC_CFG *cfg; |
| ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; |
| char redo_scam; |
| ushort res2; |
| uchar dos_int13_table[ASC_MAX_TID + 1]; |
| unsigned int max_dma_count; |
| ASC_SCSI_BIT_ID_TYPE no_scam; |
| ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; |
| uchar min_sdtr_index; |
| uchar max_sdtr_index; |
| struct asc_board *drv_ptr; |
| unsigned int uc_break; |
| } ASC_DVC_VAR; |
| |
| typedef struct asc_dvc_inq_info { |
| uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; |
| } ASC_DVC_INQ_INFO; |
| |
| typedef struct asc_cap_info { |
| u32 lba; |
| u32 blk_size; |
| } ASC_CAP_INFO; |
| |
| typedef struct asc_cap_info_array { |
| ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; |
| } ASC_CAP_INFO_ARRAY; |
| |
| #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 |
| #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 |
| #define ASC_CNTL_INITIATOR (ushort)0x0001 |
| #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 |
| #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 |
| #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 |
| #define ASC_CNTL_NO_SCAM (ushort)0x0010 |
| #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 |
| #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 |
| #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 |
| #define ASC_CNTL_RESET_SCSI (ushort)0x0200 |
| #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 |
| #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 |
| #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 |
| #define ASC_CNTL_BURST_MODE (ushort)0x2000 |
| #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 |
| #define ASC_EEP_DVC_CFG_BEG_VL 2 |
| #define ASC_EEP_MAX_DVC_ADDR_VL 15 |
| #define ASC_EEP_DVC_CFG_BEG 32 |
| #define ASC_EEP_MAX_DVC_ADDR 45 |
| #define ASC_EEP_MAX_RETRY 20 |
| |
| /* |
| * These macros keep the chip SCSI id and ISA DMA speed |
| * bitfields in board order. C bitfields aren't portable |
| * between big and little-endian platforms so they are |
| * not used. |
| */ |
| |
| #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f) |
| #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4) |
| #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ |
| ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) |
| #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ |
| ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) |
| |
| typedef struct asceep_config { |
| ushort cfg_lsw; |
| ushort cfg_msw; |
| uchar init_sdtr; |
| uchar disc_enable; |
| uchar use_cmd_qng; |
| uchar start_motor; |
| uchar max_total_qng; |
| uchar max_tag_qng; |
| uchar bios_scan; |
| uchar power_up_wait; |
| uchar no_scam; |
| uchar id_speed; /* low order 4 bits is chip scsi id */ |
| /* high order 4 bits is isa dma speed */ |
| uchar dos_int13_table[ASC_MAX_TID + 1]; |
| uchar adapter_info[6]; |
| ushort cntl; |
| ushort chksum; |
| } ASCEEP_CONFIG; |
| |
| #define ASC_EEP_CMD_READ 0x80 |
| #define ASC_EEP_CMD_WRITE 0x40 |
| #define ASC_EEP_CMD_WRITE_ABLE 0x30 |
| #define ASC_EEP_CMD_WRITE_DISABLE 0x00 |
| #define ASCV_MSGOUT_BEG 0x0000 |
| #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) |
| #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) |
| #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 |
| #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) |
| #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) |
| #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) |
| #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) |
| #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) |
| #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 |
| #define ASCV_BREAK_ADDR (ushort)0x0028 |
| #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A |
| #define ASCV_BREAK_CONTROL (ushort)0x002C |
| #define ASCV_BREAK_HIT_COUNT (ushort)0x002E |
| |
| #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 |
| #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 |
| #define ASCV_MCODE_SIZE_W (ushort)0x0034 |
| #define ASCV_STOP_CODE_B (ushort)0x0036 |
| #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 |
| #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 |
| #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C |
| #define ASCV_HALTCODE_W (ushort)0x0040 |
| #define ASCV_CHKSUM_W (ushort)0x0042 |
| #define ASCV_MC_DATE_W (ushort)0x0044 |
| #define ASCV_MC_VER_W (ushort)0x0046 |
| #define ASCV_NEXTRDY_B (ushort)0x0048 |
| #define ASCV_DONENEXT_B (ushort)0x0049 |
| #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A |
| #define ASCV_SCSIBUSY_B (ushort)0x004B |
| #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C |
| #define ASCV_CURCDB_B (ushort)0x004D |
| #define ASCV_RCLUN_B (ushort)0x004E |
| #define ASCV_BUSY_QHEAD_B (ushort)0x004F |
| #define ASCV_DISC1_QHEAD_B (ushort)0x0050 |
| #define ASCV_DISC_ENABLE_B (ushort)0x0052 |
| #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 |
| #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 |
| #define ASCV_MCODE_CNTL_B (ushort)0x0056 |
| #define ASCV_NULL_TARGET_B (ushort)0x0057 |
| #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 |
| #define ASCV_DONE_Q_TAIL_W (ushort)0x005A |
| #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) |
| #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) |
| #define ASCV_HOST_FLAG_B (ushort)0x005D |
| #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 |
| #define ASCV_VER_SERIAL_B (ushort)0x0065 |
| #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 |
| #define ASCV_WTM_FLAG_B (ushort)0x0068 |
| #define ASCV_RISC_FLAG_B (ushort)0x006A |
| #define ASCV_REQ_SG_LIST_QP (ushort)0x006B |
| #define ASC_HOST_FLAG_IN_ISR 0x01 |
| #define ASC_HOST_FLAG_ACK_INT 0x02 |
| #define ASC_RISC_FLAG_GEN_INT 0x01 |
| #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 |
| #define IOP_CTRL (0x0F) |
| #define IOP_STATUS (0x0E) |
| #define IOP_INT_ACK IOP_STATUS |
| #define IOP_REG_IFC (0x0D) |
| #define IOP_SYN_OFFSET (0x0B) |
| #define IOP_EXTRA_CONTROL (0x0D) |
| #define IOP_REG_PC (0x0C) |
| #define IOP_RAM_ADDR (0x0A) |
| #define IOP_RAM_DATA (0x08) |
| #define IOP_EEP_DATA (0x06) |
| #define IOP_EEP_CMD (0x07) |
| #define IOP_VERSION (0x03) |
| #define IOP_CONFIG_HIGH (0x04) |
| #define IOP_CONFIG_LOW (0x02) |
| #define IOP_SIG_BYTE (0x01) |
| #define IOP_SIG_WORD (0x00) |
| #define IOP_REG_DC1 (0x0E) |
| #define IOP_REG_DC0 (0x0C) |
| #define IOP_REG_SB (0x0B) |
| #define IOP_REG_DA1 (0x0A) |
| #define IOP_REG_DA0 (0x08) |
| #define IOP_REG_SC (0x09) |
| #define IOP_DMA_SPEED (0x07) |
| #define IOP_REG_FLAG (0x07) |
| #define IOP_FIFO_H (0x06) |
| #define IOP_FIFO_L (0x04) |
| #define IOP_REG_ID (0x05) |
| #define IOP_REG_QP (0x03) |
| #define IOP_REG_IH (0x02) |
| #define IOP_REG_IX (0x01) |
| #define IOP_REG_AX (0x00) |
| #define IFC_REG_LOCK (0x00) |
| #define IFC_REG_UNLOCK (0x09) |
| #define IFC_WR_EN_FILTER (0x10) |
| #define IFC_RD_NO_EEPROM (0x10) |
| #define IFC_SLEW_RATE (0x20) |
| #define IFC_ACT_NEG (0x40) |
| #define IFC_INP_FILTER (0x80) |
| #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) |
| #define SC_SEL (uchar)(0x80) |
| #define SC_BSY (uchar)(0x40) |
| #define SC_ACK (uchar)(0x20) |
| #define SC_REQ (uchar)(0x10) |
| #define SC_ATN (uchar)(0x08) |
| #define SC_IO (uchar)(0x04) |
| #define SC_CD (uchar)(0x02) |
| #define SC_MSG (uchar)(0x01) |
| #define SEC_SCSI_CTL (uchar)(0x80) |
| #define SEC_ACTIVE_NEGATE (uchar)(0x40) |
| #define SEC_SLEW_RATE (uchar)(0x20) |
| #define SEC_ENABLE_FILTER (uchar)(0x10) |
| #define ASC_HALT_EXTMSG_IN (ushort)0x8000 |
| #define ASC_HALT_CHK_CONDITION (ushort)0x8100 |
| #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 |
| #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 |
| #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 |
| #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 |
| #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 |
| #define ASC_MAX_QNO 0xF8 |
| #define ASC_DATA_SEC_BEG (ushort)0x0080 |
| #define ASC_DATA_SEC_END (ushort)0x0080 |
| #define ASC_CODE_SEC_BEG (ushort)0x0080 |
| #define ASC_CODE_SEC_END (ushort)0x0080 |
| #define ASC_QADR_BEG (0x4000) |
| #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) |
| #define ASC_QADR_END (ushort)0x7FFF |
| #define ASC_QLAST_ADR (ushort)0x7FC0 |
| #define ASC_QBLK_SIZE 0x40 |
| #define ASC_BIOS_DATA_QBEG 0xF8 |
| #define ASC_MIN_ACTIVE_QNO 0x01 |
| #define ASC_QLINK_END 0xFF |
| #define ASC_EEPROM_WORDS 0x10 |
| #define ASC_MAX_MGS_LEN 0x10 |
| #define ASC_BIOS_ADDR_DEF 0xDC00 |
| #define ASC_BIOS_SIZE 0x3800 |
| #define ASC_BIOS_RAM_OFF 0x3800 |
| #define ASC_BIOS_RAM_SIZE 0x800 |
| #define ASC_BIOS_MIN_ADDR 0xC000 |
| #define ASC_BIOS_MAX_ADDR 0xEC00 |
| #define ASC_BIOS_BANK_SIZE 0x0400 |
| #define ASC_MCODE_START_ADDR 0x0080 |
| #define ASC_CFG0_HOST_INT_ON 0x0020 |
| #define ASC_CFG0_BIOS_ON 0x0040 |
| #define ASC_CFG0_VERA_BURST_ON 0x0080 |
| #define ASC_CFG0_SCSI_PARITY_ON 0x0800 |
| #define ASC_CFG1_SCSI_TARGET_ON 0x0080 |
| #define ASC_CFG1_LRAM_8BITS_ON 0x0800 |
| #define ASC_CFG_MSW_CLR_MASK 0x3080 |
| #define CSW_TEST1 (ASC_CS_TYPE)0x8000 |
| #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 |
| #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 |
| #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 |
| #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 |
| #define CSW_TEST2 (ASC_CS_TYPE)0x0400 |
| #define CSW_TEST3 (ASC_CS_TYPE)0x0200 |
| #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 |
| #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 |
| #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 |
| #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 |
| #define CSW_HALTED (ASC_CS_TYPE)0x0010 |
| #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 |
| #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 |
| #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 |
| #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 |
| #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 |
| #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 |
| #define CIW_TEST1 (ASC_CS_TYPE)0x0200 |
| #define CIW_TEST2 (ASC_CS_TYPE)0x0400 |
| #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 |
| #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 |
| #define CC_CHIP_RESET (uchar)0x80 |
| #define CC_SCSI_RESET (uchar)0x40 |
| #define CC_HALT (uchar)0x20 |
| #define CC_SINGLE_STEP (uchar)0x10 |
| #define CC_DMA_ABLE (uchar)0x08 |
| #define CC_TEST (uchar)0x04 |
| #define CC_BANK_ONE (uchar)0x02 |
| #define CC_DIAG (uchar)0x01 |
| #define ASC_1000_ID0W 0x04C1 |
| #define ASC_1000_ID0W_FIX 0x00C1 |
| #define ASC_1000_ID1B 0x25 |
| #define ASC_EISA_REV_IOP_MASK (0x0C83) |
| #define ASC_EISA_CFG_IOP_MASK (0x0C86) |
| #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) |
| #define INS_HALTINT (ushort)0x6281 |
| #define INS_HALT (ushort)0x6280 |
| #define INS_SINT (ushort)0x6200 |
| #define INS_RFLAG_WTM (ushort)0x7380 |
| #define ASC_MC_SAVE_CODE_WSIZE 0x500 |
| #define ASC_MC_SAVE_DATA_WSIZE 0x40 |
| |
| typedef struct asc_mc_saved { |
| ushort data[ASC_MC_SAVE_DATA_WSIZE]; |
| ushort code[ASC_MC_SAVE_CODE_WSIZE]; |
| } ASC_MC_SAVED; |
| |
| #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) |
| #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) |
| #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) |
| #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) |
| #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) |
| #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) |
| #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) |
| #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) |
| #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) |
| #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) |
| #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) |
| #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) |
| #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) |
| #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) |
| #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) |
| #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) |
| #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) |
| #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) |
| #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) |
| #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) |
| #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) |
| #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) |
| #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) |
| #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) |
| #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) |
| #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) |
| #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) |
| #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) |
| #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) |
| #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) |
| #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) |
| #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) |
| #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) |
| #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) |
| #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) |
| #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) |
| #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) |
| #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) |
| #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) |
| #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) |
| #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) |
| #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) |
| #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) |
| #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) |
| #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) |
| #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) |
| #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) |
| #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) |
| #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) |
| #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) |
| #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) |
| #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) |
| #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) |
| #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) |
| #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) |
| #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) |
| #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) |
| #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) |
| #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) |
| #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) |
| #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) |
| #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) |
| #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) |
| #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) |
| #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) |
| #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) |
| #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) |
| |
| #define AdvPortAddr void __iomem * /* Virtual memory address size */ |
| |
| /* |
| * Define Adv Library required memory access macros. |
| */ |
| #define ADV_MEM_READB(addr) readb(addr) |
| #define ADV_MEM_READW(addr) readw(addr) |
| #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) |
| #define ADV_MEM_WRITEW(addr, word) writew(word, addr) |
| #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) |
| |
| /* |
| * Define total number of simultaneous maximum element scatter-gather |
| * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the |
| * maximum number of outstanding commands per wide host adapter. Each |
| * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather |
| * elements. Allow each command to have at least one ADV_SG_BLOCK structure. |
| * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK |
| * structures or 255 scatter-gather elements. |
| */ |
| #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG |
| |
| /* |
| * Define maximum number of scatter-gather elements per request. |
| */ |
| #define ADV_MAX_SG_LIST 255 |
| #define NO_OF_SG_PER_BLOCK 15 |
| |
| #define ADV_EEP_DVC_CFG_BEGIN (0x00) |
| #define ADV_EEP_DVC_CFG_END (0x15) |
| #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ |
| #define ADV_EEP_MAX_WORD_ADDR (0x1E) |
| |
| #define ADV_EEP_DELAY_MS 100 |
| |
| #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ |
| #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ |
| /* |
| * For the ASC3550 Bit 13 is Termination Polarity control bit. |
| * For later ICs Bit 13 controls whether the CIS (Card Information |
| * Service Section) is loaded from EEPROM. |
| */ |
| #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ |
| #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */ |
| /* |
| * ASC38C1600 Bit 11 |
| * |
| * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify |
| * INT A in the PCI Configuration Space Int Pin field. If it is 1, then |
| * Function 0 will specify INT B. |
| * |
| * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify |
| * INT B in the PCI Configuration Space Int Pin field. If it is 1, then |
| * Function 1 will specify INT A. |
| */ |
| #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */ |
| |
| typedef struct adveep_3550_config { |
| /* Word Offset, Description */ |
| |
| ushort cfg_lsw; /* 00 power up initialization */ |
| /* bit 13 set - Term Polarity Control */ |
| /* bit 14 set - BIOS Enable */ |
| /* bit 15 set - Big Endian Mode */ |
| ushort cfg_msw; /* 01 unused */ |
| ushort disc_enable; /* 02 disconnect enable */ |
| ushort wdtr_able; /* 03 Wide DTR able */ |
| ushort sdtr_able; /* 04 Synchronous DTR able */ |
| ushort start_motor; /* 05 send start up motor */ |
| ushort tagqng_able; /* 06 tag queuing able */ |
| ushort bios_scan; /* 07 BIOS device control */ |
| ushort scam_tolerant; /* 08 no scam */ |
| |
| uchar adapter_scsi_id; /* 09 Host Adapter ID */ |
| uchar bios_boot_delay; /* power up wait */ |
| |
| uchar scsi_reset_delay; /* 10 reset delay */ |
| uchar bios_id_lun; /* first boot device scsi id & lun */ |
| /* high nibble is lun */ |
| /* low nibble is scsi id */ |
| |
| uchar termination; /* 11 0 - automatic */ |
| /* 1 - low off / high off */ |
| /* 2 - low off / high on */ |
| /* 3 - low on / high on */ |
| /* There is no low on / high off */ |
| |
| uchar reserved1; /* reserved byte (not used) */ |
| |
| ushort bios_ctrl; /* 12 BIOS control bits */ |
| /* bit 0 BIOS don't act as initiator. */ |
| /* bit 1 BIOS > 1 GB support */ |
| /* bit 2 BIOS > 2 Disk Support */ |
| /* bit 3 BIOS don't support removables */ |
| /* bit 4 BIOS support bootable CD */ |
| /* bit 5 BIOS scan enabled */ |
| /* bit 6 BIOS support multiple LUNs */ |
| /* bit 7 BIOS display of message */ |
| /* bit 8 SCAM disabled */ |
| /* bit 9 Reset SCSI bus during init. */ |
| /* bit 10 */ |
| /* bit 11 No verbose initialization. */ |
| /* bit 12 SCSI parity enabled */ |
| /* bit 13 */ |
| /* bit 14 */ |
| /* bit 15 */ |
| ushort ultra_able; /* 13 ULTRA speed able */ |
| ushort reserved2; /* 14 reserved */ |
| uchar max_host_qng; /* 15 maximum host queuing */ |
| uchar max_dvc_qng; /* maximum per device queuing */ |
| ushort dvc_cntl; /* 16 control bit for driver */ |
| ushort bug_fix; /* 17 control bit for bug fix */ |
| ushort serial_number_word1; /* 18 Board serial number word 1 */ |
| ushort serial_number_word2; /* 19 Board serial number word 2 */ |
| ushort serial_number_word3; /* 20 Board serial number word 3 */ |
| ushort check_sum; /* 21 EEP check sum */ |
| uchar oem_name[16]; /* 22 OEM name */ |
| ushort dvc_err_code; /* 30 last device driver error code */ |
| ushort adv_err_code; /* 31 last uc and Adv Lib error code */ |
| ushort adv_err_addr; /* 32 last uc error address */ |
| ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ |
| ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ |
| ushort saved_adv_err_addr; /* 35 saved last uc error address */ |
| ushort num_of_err; /* 36 number of error */ |
| } ADVEEP_3550_CONFIG; |
| |
| typedef struct adveep_38C0800_config { |
| /* Word Offset, Description */ |
| |
| ushort cfg_lsw; /* 00 power up initialization */ |
| /* bit 13 set - Load CIS */ |
| /* bit 14 set - BIOS Enable */ |
| /* bit 15 set - Big Endian Mode */ |
| ushort cfg_msw; /* 01 unused */ |
| ushort disc_enable; /* 02 disconnect enable */ |
| ushort wdtr_able; /* 03 Wide DTR able */ |
| ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ |
| ushort start_motor; /* 05 send start up motor */ |
| ushort tagqng_able; /* 06 tag queuing able */ |
| ushort bios_scan; /* 07 BIOS device control */ |
| ushort scam_tolerant; /* 08 no scam */ |
| |
| uchar adapter_scsi_id; /* 09 Host Adapter ID */ |
| uchar bios_boot_delay; /* power up wait */ |
| |
| uchar scsi_reset_delay; /* 10 reset delay */ |
| uchar bios_id_lun; /* first boot device scsi id & lun */ |
| /* high nibble is lun */ |
| /* low nibble is scsi id */ |
| |
| uchar termination_se; /* 11 0 - automatic */ |
| /* 1 - low off / high off */ |
| /* 2 - low off / high on */ |
| /* 3 - low on / high on */ |
| /* There is no low on / high off */ |
| |
| uchar termination_lvd; /* 11 0 - automatic */ |
| /* 1 - low off / high off */ |
| /* 2 - low off / high on */ |
| /* 3 - low on / high on */ |
| /* There is no low on / high off */ |
| |
| ushort bios_ctrl; /* 12 BIOS control bits */ |
| /* bit 0 BIOS don't act as initiator. */ |
| /* bit 1 BIOS > 1 GB support */ |
| /* bit 2 BIOS > 2 Disk Support */ |
| /* bit 3 BIOS don't support removables */ |
| /* bit 4 BIOS support bootable CD */ |
| /* bit 5 BIOS scan enabled */ |
| /* bit 6 BIOS support multiple LUNs */ |
| /* bit 7 BIOS display of message */ |
| /* bit 8 SCAM disabled */ |
| /* bit 9 Reset SCSI bus during init. */ |
| /* bit 10 */ |
| /* bit 11 No verbose initialization. */ |
| /* bit 12 SCSI parity enabled */ |
| /* bit 13 */ |
| /* bit 14 */ |
| /* bit 15 */ |
| ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ |
| ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ |
| uchar max_host_qng; /* 15 maximum host queueing */ |
| uchar max_dvc_qng; /* maximum per device queuing */ |
| ushort dvc_cntl; /* 16 control bit for driver */ |
| ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ |
| ushort serial_number_word1; /* 18 Board serial number word 1 */ |
| ushort serial_number_word2; /* 19 Board serial number word 2 */ |
| ushort serial_number_word3; /* 20 Board serial number word 3 */ |
| ushort check_sum; /* 21 EEP check sum */ |
| uchar oem_name[16]; /* 22 OEM name */ |
| ushort dvc_err_code; /* 30 last device driver error code */ |
| ushort adv_err_code; /* 31 last uc and Adv Lib error code */ |
| ushort adv_err_addr; /* 32 last uc error address */ |
| ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ |
| ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ |
| ushort saved_adv_err_addr; /* 35 saved last uc error address */ |
| ushort reserved36; /* 36 reserved */ |
| ushort reserved37; /* 37 reserved */ |
| ushort reserved38; /* 38 reserved */ |
| ushort reserved39; /* 39 reserved */ |
| ushort reserved40; /* 40 reserved */ |
| ushort reserved41; /* 41 reserved */ |
| ushort reserved42; /* 42 reserved */ |
| ushort reserved43; /* 43 reserved */ |
| ushort reserved44; /* 44 reserved */ |
| ushort reserved45; /* 45 reserved */ |
| ushort reserved46; /* 46 reserved */ |
| ushort reserved47; /* 47 reserved */ |
| ushort reserved48; /* 48 reserved */ |
| ushort reserved49; /* 49 reserved */ |
| ushort reserved50; /* 50 reserved */ |
| ushort reserved51; /* 51 reserved */ |
| ushort reserved52; /* 52 reserved */ |
| ushort reserved53; /* 53 reserved */ |
| ushort reserved54; /* 54 reserved */ |
| ushort reserved55; /* 55 reserved */ |
| ushort cisptr_lsw; /* 56 CIS PTR LSW */ |
| ushort cisprt_msw; /* 57 CIS PTR MSW */ |
| ushort subsysvid; /* 58 SubSystem Vendor ID */ |
| ushort subsysid; /* 59 SubSystem ID */ |
| ushort reserved60; /* 60 reserved */ |
| ushort reserved61; /* 61 reserved */ |
| ushort reserved62; /* 62 reserved */ |
| ushort reserved63; /* 63 reserved */ |
| } ADVEEP_38C0800_CONFIG; |
| |
| typedef struct adveep_38C1600_config { |
| /* Word Offset, Description */ |
| |
| ushort cfg_lsw; /* 00 power up initialization */ |
| /* bit 11 set - Func. 0 INTB, Func. 1 INTA */ |
| /* clear - Func. 0 INTA, Func. 1 INTB */ |
| /* bit 13 set - Load CIS */ |
| /* bit 14 set - BIOS Enable */ |
| /* bit 15 set - Big Endian Mode */ |
| ushort cfg_msw; /* 01 unused */ |
| ushort disc_enable; /* 02 disconnect enable */ |
| ushort wdtr_able; /* 03 Wide DTR able */ |
| ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ |
| ushort start_motor; /* 05 send start up motor */ |
| ushort tagqng_able; /* 06 tag queuing able */ |
| ushort bios_scan; /* 07 BIOS device control */ |
| ushort scam_tolerant; /* 08 no scam */ |
| |
| uchar adapter_scsi_id; /* 09 Host Adapter ID */ |
| uchar bios_boot_delay; /* power up wait */ |
| |
| uchar scsi_reset_delay; /* 10 reset delay */ |
| uchar bios_id_lun; /* first boot device scsi id & lun */ |
| /* high nibble is lun */ |
| /* low nibble is scsi id */ |
| |
| uchar termination_se; /* 11 0 - automatic */ |
| /* 1 - low off / high off */ |
| /* 2 - low off / high on */ |
| /* 3 - low on / high on */ |
| /* There is no low on / high off */ |
| |
| uchar termination_lvd; /* 11 0 - automatic */ |
| /* 1 - low off / high off */ |
| /* 2 - low off / high on */ |
| /* 3 - low on / high on */ |
| /* There is no low on / high off */ |
| |
| ushort bios_ctrl; /* 12 BIOS control bits */ |
| /* bit 0 BIOS don't act as initiator. */ |
| /* bit 1 BIOS > 1 GB support */ |
| /* bit 2 BIOS > 2 Disk Support */ |
| /* bit 3 BIOS don't support removables */ |
| /* bit 4 BIOS support bootable CD */ |
| /* bit 5 BIOS scan enabled */ |
| /* bit 6 BIOS support multiple LUNs */ |
| /* bit 7 BIOS display of message */ |
| /* bit 8 SCAM disabled */ |
| /* bit 9 Reset SCSI bus during init. */ |
| /* bit 10 Basic Integrity Checking disabled */ |
| /* bit 11 No verbose initialization. */ |
| /* bit 12 SCSI parity enabled */ |
| /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ |
| /* bit 14 */ |
| /* bit 15 */ |
| ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ |
| ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ |
| uchar max_host_qng; /* 15 maximum host queueing */ |
| uchar max_dvc_qng; /* maximum per device queuing */ |
| ushort dvc_cntl; /* 16 control bit for driver */ |
| ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ |
| ushort serial_number_word1; /* 18 Board serial number word 1 */ |
| ushort serial_number_word2; /* 19 Board serial number word 2 */ |
| ushort serial_number_word3; /* 20 Board serial number word 3 */ |
| ushort check_sum; /* 21 EEP check sum */ |
| uchar oem_name[16]; /* 22 OEM name */ |
| ushort dvc_err_code; /* 30 last device driver error code */ |
| ushort adv_err_code; /* 31 last uc and Adv Lib error code */ |
| ushort adv_err_addr; /* 32 last uc error address */ |
| ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ |
| ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ |
| ushort saved_adv_err_addr; /* 35 saved last uc error address */ |
| ushort reserved36; /* 36 reserved */ |
| ushort reserved37; /* 37 reserved */ |
| ushort reserved38; /* 38 reserved */ |
| ushort reserved39; /* 39 reserved */ |
| ushort reserved40; /* 40 reserved */ |
| ushort reserved41; /* 41 reserved */ |
| ushort reserved42; /* 42 reserved */ |
| ushort reserved43; /* 43 reserved */ |
| ushort reserved44; /* 44 reserved */ |
| ushort reserved45; /* 45 reserved */ |
| ushort reserved46; /* 46 reserved */ |
| ushort reserved47; /* 47 reserved */ |
| ushort reserved48; /* 48 reserved */ |
| ushort reserved49; /* 49 reserved */ |
| ushort reserved50; /* 50 reserved */ |
| ushort reserved51; /* 51 reserved */ |
| ushort reserved52; /* 52 reserved */ |
| ushort reserved53; /* 53 reserved */ |
| ushort reserved54; /* 54 reserved */ |
| ushort reserved55; /* 55 reserved */ |
| ushort cisptr_lsw; /* 56 CIS PTR LSW */ |
| ushort cisprt_msw; /* 57 CIS PTR MSW */ |
| ushort subsysvid; /* 58 SubSystem Vendor ID */ |
| ushort subsysid; /* 59 SubSystem ID */ |
| ushort reserved60; /* 60 reserved */ |
| ushort reserved61; /* 61 reserved */ |
| ushort reserved62; /* 62 reserved */ |
| ushort reserved63; /* 63 reserved */ |
| } ADVEEP_38C1600_CONFIG; |
| |
| /* |
| * EEPROM Commands |
| */ |
| #define ASC_EEP_CMD_DONE 0x0200 |
| |
| /* bios_ctrl */ |
| #define BIOS_CTRL_BIOS 0x0001 |
| #define BIOS_CTRL_EXTENDED_XLAT 0x0002 |
| #define BIOS_CTRL_GT_2_DISK 0x0004 |
| #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 |
| #define BIOS_CTRL_BOOTABLE_CD 0x0010 |
| #define BIOS_CTRL_MULTIPLE_LUN 0x0040 |
| #define BIOS_CTRL_DISPLAY_MSG 0x0080 |
| #define BIOS_CTRL_NO_SCAM 0x0100 |
| #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 |
| #define BIOS_CTRL_INIT_VERBOSE 0x0800 |
| #define BIOS_CTRL_SCSI_PARITY 0x1000 |
| #define BIOS_CTRL_AIPP_DIS 0x2000 |
| |
| #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */ |
| |
| #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */ |
| |
| /* |
| * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is |
| * a special 16K Adv Library and Microcode version. After the issue is |
| * resolved, should restore 32K support. |
| * |
| * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory * |
| */ |
| #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */ |
| |
| /* |
| * Byte I/O register address from base of 'iop_base'. |
| */ |
| #define IOPB_INTR_STATUS_REG 0x00 |
| #define IOPB_CHIP_ID_1 0x01 |
| #define IOPB_INTR_ENABLES 0x02 |
| #define IOPB_CHIP_TYPE_REV 0x03 |
| #define IOPB_RES_ADDR_4 0x04 |
| #define IOPB_RES_ADDR_5 0x05 |
| #define IOPB_RAM_DATA 0x06 |
| #define IOPB_RES_ADDR_7 0x07 |
| #define IOPB_FLAG_REG 0x08 |
| #define IOPB_RES_ADDR_9 0x09 |
| #define IOPB_RISC_CSR 0x0A |
| #define IOPB_RES_ADDR_B 0x0B |
| #define IOPB_RES_ADDR_C 0x0C |
| #define IOPB_RES_ADDR_D 0x0D |
| #define IOPB_SOFT_OVER_WR 0x0E |
| #define IOPB_RES_ADDR_F 0x0F |
| #define IOPB_MEM_CFG 0x10 |
| #define IOPB_RES_ADDR_11 0x11 |
| #define IOPB_GPIO_DATA 0x12 |
| #define IOPB_RES_ADDR_13 0x13 |
| #define IOPB_FLASH_PAGE 0x14 |
| #define IOPB_RES_ADDR_15 0x15 |
| #define IOPB_GPIO_CNTL 0x16 |
| #define IOPB_RES_ADDR_17 0x17 |
| #define IOPB_FLASH_DATA 0x18 |
| #define IOPB_RES_ADDR_19 0x19 |
| #define IOPB_RES_ADDR_1A 0x1A |
| #define IOPB_RES_ADDR_1B 0x1B |
| #define IOPB_RES_ADDR_1C 0x1C |
| #define IOPB_RES_ADDR_1D 0x1D |
| #define IOPB_RES_ADDR_1E 0x1E |
| #define IOPB_RES_ADDR_1F 0x1F |
| #define IOPB_DMA_CFG0 0x20 |
| #define IOPB_DMA_CFG1 0x21 |
| #define IOPB_TICKLE 0x22 |
| #define IOPB_DMA_REG_WR 0x23 |
| #define IOPB_SDMA_STATUS 0x24 |
| #define IOPB_SCSI_BYTE_CNT 0x25 |
| #define IOPB_HOST_BYTE_CNT 0x26 |
| #define IOPB_BYTE_LEFT_TO_XFER 0x27 |
| #define IOPB_BYTE_TO_XFER_0 0x28 |
| #define IOPB_BYTE_TO_XFER_1 0x29 |
| #define IOPB_BYTE_TO_XFER_2 0x2A |
| #define IOPB_BYTE_TO_XFER_3 0x2B |
| #define IOPB_ACC_GRP 0x2C |
| #define IOPB_RES_ADDR_2D 0x2D |
| #define IOPB_DEV_ID 0x2E |
| #define IOPB_RES_ADDR_2F 0x2F |
| #define IOPB_SCSI_DATA 0x30 |
| #define IOPB_RES_ADDR_31 0x31 |
| #define IOPB_RES_ADDR_32 0x32 |
| #define IOPB_SCSI_DATA_HSHK 0x33 |
| #define IOPB_SCSI_CTRL 0x34 |
| #define IOPB_RES_ADDR_35 0x35 |
| #define IOPB_RES_ADDR_36 0x36 |
| #define IOPB_RES_ADDR_37 0x37 |
| #define IOPB_RAM_BIST 0x38 |
| #define IOPB_PLL_TEST 0x39 |
| #define IOPB_PCI_INT_CFG 0x3A |
| #define IOPB_RES_ADDR_3B 0x3B |
| #define IOPB_RFIFO_CNT 0x3C |
| #define IOPB_RES_ADDR_3D 0x3D |
| #define IOPB_RES_ADDR_3E 0x3E |
| #define IOPB_RES_ADDR_3F 0x3F |
| |
| /* |
| * Word I/O register address from base of 'iop_base'. |
| */ |
| #define IOPW_CHIP_ID_0 0x00 /* CID0 */ |
| #define IOPW_CTRL_REG 0x02 /* CC */ |
| #define IOPW_RAM_ADDR 0x04 /* LA */ |
| #define IOPW_RAM_DATA 0x06 /* LD */ |
| #define IOPW_RES_ADDR_08 0x08 |
| #define IOPW_RISC_CSR 0x0A /* CSR */ |
| #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ |
| #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ |
| #define IOPW_RES_ADDR_10 0x10 |
| #define IOPW_SEL_MASK 0x12 /* SM */ |
| #define IOPW_RES_ADDR_14 0x14 |
| #define IOPW_FLASH_ADDR 0x16 /* FA */ |
| #define IOPW_RES_ADDR_18 0x18 |
| #define IOPW_EE_CMD 0x1A /* EC */ |
| #define IOPW_EE_DATA 0x1C /* ED */ |
| #define IOPW_SFIFO_CNT 0x1E /* SFC */ |
| #define IOPW_RES_ADDR_20 0x20 |
| #define IOPW_Q_BASE 0x22 /* QB */ |
| #define IOPW_QP 0x24 /* QP */ |
| #define IOPW_IX 0x26 /* IX */ |
| #define IOPW_SP 0x28 /* SP */ |
| #define IOPW_PC 0x2A /* PC */ |
| #define IOPW_RES_ADDR_2C 0x2C |
| #define IOPW_RES_ADDR_2E 0x2E |
| #define IOPW_SCSI_DATA 0x30 /* SD */ |
| #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ |
| #define IOPW_SCSI_CTRL 0x34 /* SC */ |
| #define IOPW_HSHK_CFG 0x36 /* HCFG */ |
| #define IOPW_SXFR_STATUS 0x36 /* SXS */ |
| #define IOPW_SXFR_CNTL 0x38 /* SXL */ |
| #define IOPW_SXFR_CNTH 0x3A /* SXH */ |
| #define IOPW_RES_ADDR_3C 0x3C |
| #define IOPW_RFIFO_DATA 0x3E /* RFD */ |
| |
| /* |
| * Doubleword I/O register address from base of 'iop_base'. |
| */ |
| #define IOPDW_RES_ADDR_0 0x00 |
| #define IOPDW_RAM_DATA 0x04 |
| #define IOPDW_RES_ADDR_8 0x08 |
| #define IOPDW_RES_ADDR_C 0x0C |
| #define IOPDW_RES_ADDR_10 0x10 |
| #define IOPDW_COMMA 0x14 |
| #define IOPDW_COMMB 0x18 |
| #define IOPDW_RES_ADDR_1C 0x1C |
| #define IOPDW_SDMA_ADDR0 0x20 |
| #define IOPDW_SDMA_ADDR1 0x24 |
| #define IOPDW_SDMA_COUNT 0x28 |
| #define IOPDW_SDMA_ERROR 0x2C |
| #define IOPDW_RDMA_ADDR0 0x30 |
| #define IOPDW_RDMA_ADDR1 0x34 |
| #define IOPDW_RDMA_COUNT 0x38 |
| #define IOPDW_RDMA_ERROR 0x3C |
| |
| #define ADV_CHIP_ID_BYTE 0x25 |
| #define ADV_CHIP_ID_WORD 0x04C1 |
| |
| #define ADV_INTR_ENABLE_HOST_INTR 0x01 |
| #define ADV_INTR_ENABLE_SEL_INTR 0x02 |
| #define ADV_INTR_ENABLE_DPR_INTR 0x04 |
| #define ADV_INTR_ENABLE_RTA_INTR 0x08 |
| #define ADV_INTR_ENABLE_RMA_INTR 0x10 |
| #define ADV_INTR_ENABLE_RST_INTR 0x20 |
| #define ADV_INTR_ENABLE_DPE_INTR 0x40 |
| #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 |
| |
| #define ADV_INTR_STATUS_INTRA 0x01 |
| #define ADV_INTR_STATUS_INTRB 0x02 |
| #define ADV_INTR_STATUS_INTRC 0x04 |
| |
| #define ADV_RISC_CSR_STOP (0x0000) |
| #define ADV_RISC_TEST_COND (0x2000) |
| #define ADV_RISC_CSR_RUN (0x4000) |
| #define ADV_RISC_CSR_SINGLE_STEP (0x8000) |
| |
| #define ADV_CTRL_REG_HOST_INTR 0x0100 |
| #define ADV_CTRL_REG_SEL_INTR 0x0200 |
| #define ADV_CTRL_REG_DPR_INTR 0x0400 |
| #define ADV_CTRL_REG_RTA_INTR 0x0800 |
| #define ADV_CTRL_REG_RMA_INTR 0x1000 |
| #define ADV_CTRL_REG_RES_BIT14 0x2000 |
| #define ADV_CTRL_REG_DPE_INTR 0x4000 |
| #define ADV_CTRL_REG_POWER_DONE 0x8000 |
| #define ADV_CTRL_REG_ANY_INTR 0xFF00 |
| |
| #define ADV_CTRL_REG_CMD_RESET 0x00C6 |
| #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 |
| #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 |
| #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 |
| #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 |
| |
| #define ADV_TICKLE_NOP 0x00 |
| #define ADV_TICKLE_A 0x01 |
| #define ADV_TICKLE_B 0x02 |
| #define ADV_TICKLE_C 0x03 |
| |
| #define AdvIsIntPending(port) \ |
| (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) |
| |
| /* |
| * SCSI_CFG0 Register bit definitions |
| */ |
| #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ |
| #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ |
| #define EVEN_PARITY 0x1000 /* Select Even Parity */ |
| #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ |
| #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ |
| #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ |
| #define SCAM_EN 0x0080 /* Enable SCAM selection */ |
| #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ |
| #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ |
| #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ |
| #define OUR_ID 0x000F /* SCSI ID */ |
| |
| /* |
| * SCSI_CFG1 Register bit definitions |
| */ |
| #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ |
| #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ |
| #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ |
| #define FILTER_SEL 0x0C00 /* Filter Period Selection */ |
| #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ |
| #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ |
| #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ |
| #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ |
| #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ |
| #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ |
| #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ |
| #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ |
| #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ |
| #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ |
| #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ |
| |
| /* |
| * Addendum for ASC-38C0800 Chip |
| * |
| * The ASC-38C1600 Chip uses the same definitions except that the |
| * bus mode override bits [12:10] have been moved to byte register |
| * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in |
| * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) |
| * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. |
| * Also each ASC-38C1600 function or channel uses only cable bits [5:4] |
| * and [1:0]. Bits [14], [7:6], [3:2] are unused. |
| */ |
| #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */ |
| #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */ |
| #define HVD 0x1000 /* HVD Device Detect */ |
| #define LVD 0x0800 /* LVD Device Detect */ |
| #define SE 0x0400 /* SE Device Detect */ |
| #define TERM_LVD 0x00C0 /* LVD Termination Bits */ |
| #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */ |
| #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */ |
| #define TERM_SE 0x0030 /* SE Termination Bits */ |
| #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */ |
| #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */ |
| #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */ |
| #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */ |
| #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */ |
| #define C_DET_SE 0x0003 /* SE Cable Detect Bits */ |
| #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */ |
| #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */ |
| |
| #define CABLE_ILLEGAL_A 0x7 |
| /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ |
| |
| #define CABLE_ILLEGAL_B 0xB |
| /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ |
| |
| /* |
| * MEM_CFG Register bit definitions |
| */ |
| #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ |
| #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ |
| #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ |
| #define RAM_SZ_2KB 0x00 /* 2 KB */ |
| #define RAM_SZ_4KB 0x04 /* 4 KB */ |
| #define RAM_SZ_8KB 0x08 /* 8 KB */ |
| #define RAM_SZ_16KB 0x0C /* 16 KB */ |
| #define RAM_SZ_32KB 0x10 /* 32 KB */ |
| #define RAM_SZ_64KB 0x14 /* 64 KB */ |
| |
| /* |
| * DMA_CFG0 Register bit definitions |
| * |
| * This register is only accessible to the host. |
| */ |
| #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ |
| #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ |
| #define FIFO_THRESH_16B 0x00 /* 16 bytes */ |
| #define FIFO_THRESH_32B 0x20 /* 32 bytes */ |
| #define FIFO_THRESH_48B 0x30 /* 48 bytes */ |
| #define FIFO_THRESH_64B 0x40 /* 64 bytes */ |
| #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ |
| #define FIFO_THRESH_96B 0x60 /* 96 bytes */ |
| #define FIFO_THRESH_112B 0x70 /* 112 bytes */ |
| #define START_CTL 0x0C /* DMA start conditions */ |
| #define START_CTL_TH 0x00 /* Wait threshold level (default) */ |
| #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ |
| #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ |
| #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ |
| #define READ_CMD 0x03 /* Memory Read Method */ |
| #define READ_CMD_MR 0x00 /* Memory Read */ |
| #define READ_CMD_MRL 0x02 /* Memory Read Long */ |
| #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ |
| |
| /* |
| * ASC-38C0800 RAM BIST Register bit definitions |
| */ |
| #define RAM_TEST_MODE 0x80 |
| #define PRE_TEST_MODE 0x40 |
| #define NORMAL_MODE 0x00 |
| #define RAM_TEST_DONE 0x10 |
| #define RAM_TEST_STATUS 0x0F |
| #define RAM_TEST_HOST_ERROR 0x08 |
| #define RAM_TEST_INTRAM_ERROR 0x04 |
| #define RAM_TEST_RISC_ERROR 0x02 |
| #define RAM_TEST_SCSI_ERROR 0x01 |
| #define RAM_TEST_SUCCESS 0x00 |
| #define PRE_TEST_VALUE 0x05 |
| #define NORMAL_VALUE 0x00 |
| |
| /* |
| * ASC38C1600 Definitions |
| * |
| * IOPB_PCI_INT_CFG Bit Field Definitions |
| */ |
| |
| #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */ |
| |
| /* |
| * Bit 1 can be set to change the interrupt for the Function to operate in |
| * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in |
| * Open Drain mode. Both functions of the ASC38C1600 must be set to the same |
| * mode, otherwise the operating mode is undefined. |
| */ |
| #define TOTEMPOLE 0x02 |
| |
| /* |
| * Bit 0 can be used to change the Int Pin for the Function. The value is |
| * 0 by default for both Functions with Function 0 using INT A and Function |
| * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, |
| * INT A is used. |
| * |
| * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin |
| * value specified in the PCI Configuration Space. |
| */ |
| #define INTAB 0x01 |
| |
| /* |
| * Adv Library Status Definitions |
| */ |
| #define ADV_TRUE 1 |
| #define ADV_FALSE 0 |
| #define ADV_SUCCESS 1 |
| #define ADV_BUSY 0 |
| #define ADV_ERROR (-1) |
| |
| /* |
| * ADV_DVC_VAR 'warn_code' values |
| */ |
| #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */ |
| #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ |
| #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ |
| #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ |
| |
| #define ADV_MAX_TID 15 /* max. target identifier */ |
| #define ADV_MAX_LUN 7 /* max. logical unit number */ |
| |
| /* |
| * Fixed locations of microcode operating variables. |
| */ |
| #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ |
| #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ |
| #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ |
| #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ |
| #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ |
| #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ |
| #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ |
| #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */ |
| #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */ |
| #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */ |
| #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */ |
| #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */ |
| #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */ |
| #define ASC_MC_CHIP_TYPE 0x009A |
| #define ASC_MC_INTRB_CODE 0x009B |
| #define ASC_MC_WDTR_ABLE 0x009C |
| #define ASC_MC_SDTR_ABLE 0x009E |
| #define ASC_MC_TAGQNG_ABLE 0x00A0 |
| #define ASC_MC_DISC_ENABLE 0x00A2 |
| #define ASC_MC_IDLE_CMD_STATUS 0x00A4 |
| #define ASC_MC_IDLE_CMD 0x00A6 |
| #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8 |
| #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC |
| #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE |
| #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 |
| #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 |
| #define ASC_MC_SDTR_DONE 0x00B6 |
| #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 |
| #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 |
| #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 |
| #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ |
| #define ASC_MC_WDTR_DONE 0x0124 |
| #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */ |
| #define ASC_MC_ICQ 0x0160 |
| #define ASC_MC_IRQ 0x0164 |
| #define ASC_MC_PPR_ABLE 0x017A |
| |
| /* |
| * BIOS LRAM variable absolute offsets. |
| */ |
| #define BIOS_CODESEG 0x54 |
| #define BIOS_CODELEN 0x56 |
| #define BIOS_SIGNATURE 0x58 |
| #define BIOS_VERSION 0x5A |
| |
| /* |
| * Microcode Control Flags |
| * |
| * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) |
| * and handled by the microcode. |
| */ |
| #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ |
| #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */ |
| |
| /* |
| * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format |
| */ |
| #define HSHK_CFG_WIDE_XFR 0x8000 |
| #define HSHK_CFG_RATE 0x0F00 |
| #define HSHK_CFG_OFFSET 0x001F |
| |
| #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ |
| #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ |
| #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ |
| #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ |
| |
| #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */ |
| #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */ |
| #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */ |
| #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */ |
| #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */ |
| |
| #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */ |
| #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */ |
| #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */ |
| #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */ |
| #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */ |
| /* |
| * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or |
| * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. |
| */ |
| #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */ |
| #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */ |
| |
| /* |
| * All fields here are accessed by the board microcode and need to be |
| * little-endian. |
| */ |
| typedef struct adv_carr_t { |
| __le32 carr_va; /* Carrier Virtual Address */ |
| __le32 carr_pa; /* Carrier Physical Address */ |
| __le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */ |
| /* |
| * next_vpa [31:4] Carrier Virtual or Physical Next Pointer |
| * |
| * next_vpa [3:1] Reserved Bits |
| * next_vpa [0] Done Flag set in Response Queue. |
| */ |
| __le32 next_vpa; |
| } ADV_CARR_T; |
| |
| /* |
| * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. |
| */ |
| #define ADV_NEXT_VPA_MASK 0xFFFFFFF0 |
| |
| #define ADV_RQ_DONE 0x00000001 |
| #define ADV_RQ_GOOD 0x00000002 |
| #define ADV_CQ_STOPPER 0x00000000 |
| |
| #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK) |
| |
| /* |
| * Each carrier is 64 bytes, and we need three additional |
| * carrier for icq, irq, and the termination carrier. |
| */ |
| #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3) |
| |
| #define ADV_CARRIER_BUFSIZE \ |
| (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) |
| |
| #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */ |
| #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */ |
| #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */ |
| |
| /* |
| * Adapter temporary configuration structure |
| * |
| * This structure can be discarded after initialization. Don't add |
| * fields here needed after initialization. |
| * |
| * Field naming convention: |
| * |
| * *_enable indicates the field enables or disables a feature. The |
| * value of the field is never reset. |
| */ |
| typedef struct adv_dvc_cfg { |
| ushort disc_enable; /* enable disconnection */ |
| uchar chip_version; /* chip version */ |
| uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ |
| ushort control_flag; /* Microcode Control Flag */ |
| ushort mcode_date; /* Microcode date */ |
| ushort mcode_version; /* Microcode version */ |
| ushort serial1; /* EEPROM serial number word 1 */ |
| ushort serial2; /* EEPROM serial number word 2 */ |
| ushort serial3; /* EEPROM serial number word 3 */ |
| } ADV_DVC_CFG; |
| |
| struct adv_dvc_var; |
| struct adv_scsi_req_q; |
| |
| typedef struct adv_sg_block { |
| uchar reserved1; |
| uchar reserved2; |
| uchar reserved3; |
| uchar sg_cnt; /* Valid entries in block. */ |
| __le32 sg_ptr; /* Pointer to next sg block. */ |
| struct { |
| __le32 sg_addr; /* SG element address. */ |
| __le32 sg_count; /* SG element count. */ |
| } sg_list[NO_OF_SG_PER_BLOCK]; |
| } ADV_SG_BLOCK; |
| |
| /* |
| * ADV_SCSI_REQ_Q - microcode request structure |
| * |
| * All fields in this structure up to byte 60 are used by the microcode. |
| * The microcode makes assumptions about the size and ordering of fields |
| * in this structure. Do not change the structure definition here without |
| * coordinating the change with the microcode. |
| * |
| * All fields accessed by microcode must be maintained in little_endian |
| * order. |
| */ |
| typedef struct adv_scsi_req_q { |
| uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ |
| uchar target_cmd; |
| uchar target_id; /* Device target identifier. */ |
| uchar target_lun; /* Device target logical unit number. */ |
| __le32 data_addr; /* Data buffer physical address. */ |
| __le32 data_cnt; /* Data count. Ucode sets to residual. */ |
| __le32 sense_addr; |
| __le32 carr_pa; |
| uchar mflag; |
| uchar sense_len; |
| uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */ |
| uchar scsi_cntl; |
| uchar done_status; /* Completion status. */ |
| uchar scsi_status; /* SCSI status byte. */ |
| uchar host_status; /* Ucode host status. */ |
| uchar sg_working_ix; |
| uchar cdb[12]; /* SCSI CDB bytes 0-11. */ |
| __le32 sg_real_addr; /* SG list physical address. */ |
| __le32 scsiq_rptr; |
| uchar cdb16[4]; /* SCSI CDB bytes 12-15. */ |
| __le32 scsiq_ptr; |
| __le32 carr_va; |
| /* |
| * End of microcode structure - 60 bytes. The rest of the structure |
| * is used by the Adv Library and ignored by the microcode. |
| */ |
| u32 srb_tag; |
| ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ |
| } ADV_SCSI_REQ_Q; |
| |
| /* |
| * The following two structures are used to process Wide Board requests. |
| * |
| * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library |
| * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the |
| * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points |
| * to the Mid-Level SCSI request structure. |
| * |
| * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each |
| * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux |
| * up to 255 scatter-gather elements may be used per request or |
| * ADV_SCSI_REQ_Q. |
| * |
| * Both structures must be 32 byte aligned. |
| */ |
| typedef struct adv_sgblk { |
| ADV_SG_BLOCK sg_block; /* Sgblock structure. */ |
| dma_addr_t sg_addr; /* Physical address */ |
| struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ |
| } adv_sgblk_t; |
| |
| typedef struct adv_req { |
| ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ |
| uchar align[24]; /* Request structure padding. */ |
| struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */ |
| dma_addr_t req_addr; |
| adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ |
| } adv_req_t __aligned(32); |
| |
| /* |
| * Adapter operation variable structure. |
| * |
| * One structure is required per host adapter. |
| * |
| * Field naming convention: |
| * |
| * *_able indicates both whether a feature should be enabled or disabled |
| * and whether a device isi capable of the feature. At initialization |
| * this field may be set, but later if a device is found to be incapable |
| * of the feature, the field is cleared. |
| */ |
| typedef struct adv_dvc_var { |
| AdvPortAddr iop_base; /* I/O port address */ |
| ushort err_code; /* fatal error code */ |
| ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ |
| ushort wdtr_able; /* try WDTR for a device */ |
| ushort sdtr_able; /* try SDTR for a device */ |
| ushort ultra_able; /* try SDTR Ultra speed for a device */ |
| ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */ |
| ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */ |
| ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */ |
| ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */ |
| ushort tagqng_able; /* try tagged queuing with a device */ |
| ushort ppr_able; /* PPR message capable per TID bitmask. */ |
| uchar max_dvc_qng; /* maximum number of tagged commands per device */ |
| ushort start_motor; /* start motor command allowed */ |
| uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ |
| uchar chip_no; /* should be assigned by caller */ |
| uchar max_host_qng; /* maximum number of Q'ed command allowed */ |
| ushort no_scam; /* scam_tolerant of EEPROM */ |
| struct asc_board *drv_ptr; /* driver pointer to private structure */ |
| uchar chip_scsi_id; /* chip SCSI target ID */ |
| uchar chip_type; |
| uchar bist_err_code; |
| ADV_CARR_T *carrier; |
| ADV_CARR_T *carr_freelist; /* Carrier free list. */ |
| dma_addr_t carrier_addr; |
| ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */ |
| ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */ |
| ushort carr_pending_cnt; /* Count of pending carriers. */ |
| /* |
| * Note: The following fields will not be used after initialization. The |
| * driver may discard the buffer after initialization is done. |
| */ |
| ADV_DVC_CFG *cfg; /* temporary configuration structure */ |
| } ADV_DVC_VAR; |
| |
| /* |
| * Microcode idle loop commands |
| */ |
| #define IDLE_CMD_COMPLETED 0 |
| #define IDLE_CMD_STOP_CHIP 0x0001 |
| #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 |
| #define IDLE_CMD_SEND_INT 0x0004 |
| #define IDLE_CMD_ABORT 0x0008 |
| #define IDLE_CMD_DEVICE_RESET 0x0010 |
| #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */ |
| #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */ |
| #define IDLE_CMD_SCSIREQ 0x0080 |
| |
| #define IDLE_CMD_STATUS_SUCCESS 0x0001 |
| #define IDLE_CMD_STATUS_FAILURE 0x0002 |
| |
| /* |
| * AdvSendIdleCmd() flag definitions. |
| */ |
| #define ADV_NOWAIT 0x01 |
| |
| /* |
| * Wait loop time out values. |
| */ |
| #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */ |
| #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */ |
| #define SCSI_MAX_RETRY 10 /* retry count */ |
| |
| #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */ |
| #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */ |
| #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */ |
| #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */ |
| |
| #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */ |
| |
| /* Read byte from a register. */ |
| #define AdvReadByteRegister(iop_base, reg_off) \ |
| (ADV_MEM_READB((iop_base) + (reg_off))) |
| |
| /* Write byte to a register. */ |
| #define AdvWriteByteRegister(iop_base, reg_off, byte) \ |
| (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) |
| |
| /* Read word (2 bytes) from a register. */ |
| #define AdvReadWordRegister(iop_base, reg_off) \ |
| (ADV_MEM_READW((iop_base) + (reg_off))) |
| |
| /* Write word (2 bytes) to a register. */ |
| #define AdvWriteWordRegister(iop_base, reg_off, word) \ |
| (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) |
| |
| /* Write dword (4 bytes) to a register. */ |
| #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ |
| (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) |
| |
| /* Read byte from LRAM. */ |
| #define AdvReadByteLram(iop_base, addr, byte) \ |
| do { \ |
| ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ |
| (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ |
| } while (0) |
| |
| /* Write byte to LRAM. */ |
| #define AdvWriteByteLram(iop_base, addr, byte) \ |
| (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ |
| ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) |
| |
| /* Read word (2 bytes) from LRAM. */ |
| #define AdvReadWordLram(iop_base, addr, word) \ |
| do { \ |
| ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ |
| (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ |
| } while (0) |
| |
| /* Write word (2 bytes) to LRAM. */ |
| #define AdvWriteWordLram(iop_base, addr, word) \ |
| (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ |
| ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) |
| |
| /* Write little-endian double word (4 bytes) to LRAM */ |
| /* Because of unspecified C language ordering don't use auto-increment. */ |
| #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ |
| ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ |
| ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ |
| cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ |
| (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ |
| ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ |
| cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) |
| |
| /* Read word (2 bytes) from LRAM assuming that the address is already set. */ |
| #define AdvReadWordAutoIncLram(iop_base) \ |
| (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) |
| |
| /* Write word (2 bytes) to LRAM assuming that the address is already set. */ |
| #define AdvWriteWordAutoIncLram(iop_base, word) \ |
| (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) |
| |
| /* |
| * Define macro to check for Condor signature. |
| * |
| * Evaluate to ADV_TRUE if a Condor chip is found the specified port |
| * address 'iop_base'. Otherwise evalue to ADV_FALSE. |
| */ |
| #define AdvFindSignature(iop_base) \ |
| (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ |
| ADV_CHIP_ID_BYTE) && \ |
| (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ |
| ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) |
| |
| /* |
| * Define macro to Return the version number of the chip at 'iop_base'. |
| * |
| * The second parameter 'bus_type' is currently unused. |
| */ |
| #define AdvGetChipVersion(iop_base, bus_type) \ |
| AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) |
| |
| /* |
| * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must |
| * match the ADV_SCSI_REQ_Q 'srb_tag' field. |
| * |
| * If the request has not yet been sent to the device it will simply be |
| * aborted from RISC memory. If the request is disconnected it will be |
| * aborted on reselection by sending an Abort Message to the target ID. |
| * |
| * Return value: |
| * ADV_TRUE(1) - Queue was successfully aborted. |
| * ADV_FALSE(0) - Queue was not found on the active queue list. |
| */ |
| #define AdvAbortQueue(asc_dvc, srb_tag) \ |
| AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ |
| (ADV_DCNT) (srb_tag)) |
| |
| /* |
| * Send a Bus Device Reset Message to the specified target ID. |
| * |
| * All outstanding commands will be purged if sending the |
| * Bus Device Reset Message is successful. |
| * |
| * Return Value: |
| * ADV_TRUE(1) - All requests on the target are purged. |
| * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests |
| * are not purged. |
| */ |
| #define AdvResetDevice(asc_dvc, target_id) \ |
| AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ |
| (ADV_DCNT) (target_id)) |
| |
| /* |
| * SCSI Wide Type definition. |
| */ |
| #define ADV_SCSI_BIT_ID_TYPE ushort |
| |
| /* |
| * AdvInitScsiTarget() 'cntl_flag' options. |
| */ |
| #define ADV_SCAN_LUN 0x01 |
| #define ADV_CAPINFO_NOLUN 0x02 |
| |
| /* |
| * Convert target id to target id bit mask. |
| */ |
| #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) |
| |
| /* |
| * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values. |
| */ |
| |
| #define QD_NO_STATUS 0x00 /* Request not completed yet. */ |
| #define QD_NO_ERROR 0x01 |
| #define QD_ABORTED_BY_HOST 0x02 |
| #define QD_WITH_ERROR 0x04 |
| |
| #define QHSTA_NO_ERROR 0x00 |
| #define QHSTA_M_SEL_TIMEOUT 0x11 |
| #define QHSTA_M_DATA_OVER_RUN 0x12 |
| #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 |
| #define QHSTA_M_QUEUE_ABORTED 0x15 |
| #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ |
| #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ |
| #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ |
| #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ |
| #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ |
| #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ |
| #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ |
| /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ |
| #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ |
| #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ |
| #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ |
| #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */ |
| #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */ |
| #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */ |
| #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */ |
| #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */ |
| #define QHSTA_M_WTM_TIMEOUT 0x41 |
| #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 |
| #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 |
| #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 |
| #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ |
| #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */ |
| #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */ |
| |
| /* Return the address that is aligned at the next doubleword >= to 'addr'. */ |
| #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F) |
| |
| /* |
| * Total contiguous memory needed for driver SG blocks. |
| * |
| * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum |
| * number of scatter-gather elements the driver supports in a |
| * single request. |
| */ |
| |
| #define ADV_SG_LIST_MAX_BYTE_SIZE \ |
| (sizeof(ADV_SG_BLOCK) * \ |
| ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) |
| |
| /* struct asc_board flags */ |
| #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ |
| |
| #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) |
| |
| #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ |
| |
| #define ASC_INFO_SIZE 128 /* advansys_info() line size */ |
| |
| /* Asc Library return codes */ |
| #define ASC_TRUE 1 |
| #define ASC_FALSE 0 |
| #define ASC_NOERROR 1 |
| #define ASC_BUSY 0 |
| #define ASC_ERROR (-1) |
| |
| /* struct scsi_cmnd function return codes */ |
| #define STATUS_BYTE(byte) (byte) |
| #define MSG_BYTE(byte) ((byte) << 8) |
| #define HOST_BYTE(byte) ((byte) << 16) |
| #define DRIVER_BYTE(byte) ((byte) << 24) |
| |
| #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) |
| #ifndef ADVANSYS_STATS |
| #define ASC_STATS_ADD(shost, counter, count) |
| #else /* ADVANSYS_STATS */ |
| #define ASC_STATS_ADD(shost, counter, count) \ |
| (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) |
| #endif /* ADVANSYS_STATS */ |
| |
| /* If the result wraps when calculating tenths, return 0. */ |
| #define ASC_TENTHS(num, den) \ |
| (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ |
| 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) |
| |
| /* |
| * Display a message to the console. |
| */ |
| #define ASC_PRINT(s) \ |
| { \ |
| printk("advansys: "); \ |
| printk(s); \ |
| } |
| |
| #define ASC_PRINT1(s, a1) \ |
| { \ |
| printk("advansys: "); \ |
| printk((s), (a1)); \ |
| } |
| |
| #define ASC_PRINT2(s, a1, a2) \ |
| { \ |
| printk("advansys: "); \ |
| printk((s), (a1), (a2)); \ |
| } |
| |
| #define ASC_PRINT3(s, a1, a2, a3) \ |
| { \ |
| printk("advansys: "); \ |
| printk((s), (a1), (a2), (a3)); \ |
| } |
| |
| #define ASC_PRINT4(s, a1, a2, a3, a4) \ |
| { \ |
| printk("advansys: "); \ |
| printk((s), (a1), (a2), (a3), (a4)); \ |
| } |
| |
| #ifndef ADVANSYS_DEBUG |
| |
| #define ASC_DBG(lvl, s...) |
| #define ASC_DBG_PRT_SCSI_HOST(lvl, s) |
| #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) |
| #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) |
| #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) |
| #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) |
| #define ASC_DBG_PRT_HEX(lvl, name, start, length) |
| #define ASC_DBG_PRT_CDB(lvl, cdb, len) |
| #define ASC_DBG_PRT_SENSE(lvl, sense, len) |
| #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) |
| |
| #else /* ADVANSYS_DEBUG */ |
| |
| /* |
| * Debugging Message Levels: |
| * 0: Errors Only |
| * 1: High-Level Tracing |
| * 2-N: Verbose Tracing |
| */ |
| |
| #define ASC_DBG(lvl, format, arg...) { \ |
| if (asc_dbglvl >= (lvl)) \ |
| printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \ |
| __func__ , ## arg); \ |
| } |
| |
| #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ |
| { \ |
| if (asc_dbglvl >= (lvl)) { \ |
| asc_prt_scsi_host(s); \ |
| } \ |
| } |
| |
| #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ |
| { \ |
| if (asc_dbglvl >= (lvl)) { \ |
| asc_prt_asc_scsi_q(scsiqp); \ |
| } \ |
| } |
| |
| #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ |
| { \ |
| if (asc_dbglvl >= (lvl)) { \ |
| asc_prt_asc_qdone_info(qdone); \ |
| } \ |
| } |
| |
| #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ |
| { \ |
| if (asc_dbglvl >= (lvl)) { \ |
| asc_prt_adv_scsi_req_q(scsiqp); \ |
| } \ |
| } |
| |
| #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ |
| { \ |
| if (asc_dbglvl >= (lvl)) { \ |
| asc_prt_hex((name), (start), (length)); \ |
| } \ |
| } |
| |
| #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ |
| ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); |
| |
| #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ |
| ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); |
| |
| #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ |
| ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); |
| #endif /* ADVANSYS_DEBUG */ |
| |
| #ifdef ADVANSYS_STATS |
| |
| /* Per board statistics structure */ |
| struct asc_stats { |
| /* Driver Entrypoint Statistics */ |
| unsigned int queuecommand; /* # calls to advansys_queuecommand() */ |
| unsigned int reset; /* # calls to advansys_eh_bus_reset() */ |
| unsigned int biosparam; /* # calls to advansys_biosparam() */ |
| unsigned int interrupt; /* # advansys_interrupt() calls */ |
| unsigned int callback; /* # calls to asc/adv_isr_callback() */ |
| unsigned int done; /* # calls to request's scsi_done function */ |
| unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ |
| unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ |
| unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ |
| /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ |
| unsigned int exe_noerror; /* # ASC_NOERROR returns. */ |
| unsigned int exe_busy; /* # ASC_BUSY returns. */ |
| unsigned int exe_error; /* # ASC_ERROR returns. */ |
| unsigned int exe_unknown; /* # unknown returns. */ |
| /* Data Transfer Statistics */ |
| unsigned int xfer_cnt; /* # I/O requests received */ |
| unsigned int xfer_elem; /* # scatter-gather elements */ |
| unsigned int xfer_sect; /* # 512-byte blocks */ |
| }; |
| #endif /* ADVANSYS_STATS */ |
| |
| /* |
| * Structure allocated for each board. |
| * |
| * This structure is allocated by scsi_host_alloc() at the end |
| * of the 'Scsi_Host' structure starting at the 'hostdata' |
| * field. It is guaranteed to be allocated from DMA-able memory. |
| */ |
| struct asc_board { |
| struct device *dev; |
| struct Scsi_Host *shost; |
| uint flags; /* Board flags */ |
| unsigned int irq; |
| union { |
| ASC_DVC_VAR asc_dvc_var; /* Narrow board */ |
| ADV_DVC_VAR adv_dvc_var; /* Wide board */ |
| } dvc_var; |
| union { |
| ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ |
| ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ |
| } dvc_cfg; |
| ushort asc_n_io_port; /* Number I/O ports. */ |
| ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ |
| ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */ |
| ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ |
| ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */ |
| union { |
| ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ |
| ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */ |
| ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */ |
| ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */ |
| } eep_config; |
| /* /proc/scsi/advansys/[0...] */ |
| #ifdef ADVANSYS_STATS |
| struct asc_stats asc_stats; /* Board statistics */ |
| #endif /* ADVANSYS_STATS */ |
| /* |
| * The following fields are used only for Narrow Boards. |
| */ |
| uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */ |
| /* |
| * The following fields are used only for Wide Boards. |
| */ |
| void __iomem *ioremap_addr; /* I/O Memory remap address. */ |
| ushort ioport; /* I/O Port address. */ |
| adv_req_t *adv_reqp; /* Request structures. */ |
| dma_addr_t adv_reqp_addr; |
| size_t adv_reqp_size; |
| struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */ |
| ushort bios_signature; /* BIOS Signature. */ |
| ushort bios_version; /* BIOS Version. */ |
| ushort bios_codeseg; /* BIOS Code Segment. */ |
| ushort bios_codelen; /* BIOS Code Segment Length. */ |
| }; |
| |
| #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ |
| dvc_var.asc_dvc_var) |
| #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ |
| dvc_var.adv_dvc_var) |
| #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) |
| |
| #ifdef ADVANSYS_DEBUG |
| static int asc_dbglvl = 3; |
| |
| /* |
| * asc_prt_asc_dvc_var() |
| */ |
| static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) |
| { |
| printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); |
| |
| printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " |
| "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); |
| |
| printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, |
| (unsigned)h->init_sdtr); |
| |
| printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " |
| "chip_no 0x%x,\n", (unsigned)h->sdtr_done, |
| (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, |
| (unsigned)h->chip_no); |
| |
| printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " |
| "%u,\n", (unsigned)h->queue_full_or_busy, |
| (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); |
| |
| printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " |
| "in_critical_cnt %u,\n", (unsigned)h->is_in_int, |
| (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, |
| (unsigned)h->in_critical_cnt); |
| |
| printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " |
| "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, |
| (unsigned)h->init_state, (unsigned)h->no_scam, |
| (unsigned)h->pci_fix_asyn_xfer); |
| |
| printk(" cfg 0x%lx\n", (ulong)h->cfg); |
| } |
| |
| /* |
| * asc_prt_asc_dvc_cfg() |
| */ |
| static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) |
| { |
| printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); |
| |
| printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", |
| h->can_tagged_qng, h->cmd_qng_enabled); |
| printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", |
| h->disc_enable, h->sdtr_enable); |
| |
| printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, " |
| "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed, |
| h->isa_dma_channel, h->chip_version); |
| |
| printk(" mcode_date 0x%x, mcode_version %d\n", |
| h->mcode_date, h->mcode_version); |
| } |
| |
| /* |
| * asc_prt_adv_dvc_var() |
| * |
| * Display an ADV_DVC_VAR structure. |
| */ |
| static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) |
| { |
| printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); |
| |
| printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", |
| (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); |
| |
| printk(" sdtr_able 0x%x, wdtr_able 0x%x\n", |
| (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); |
| |
| printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n", |
| (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); |
| |
| printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n", |
| (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, |
| h->carr_freelist); |
| |
| printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp); |
| |
| printk(" no_scam 0x%x, tagqng_able 0x%x\n", |
| (unsigned)h->no_scam, (unsigned)h->tagqng_able); |
| |
| printk(" chip_scsi_id 0x%x, cfg 0x%lx\n", |
| (unsigned)h->chip_scsi_id, (ulong)h->cfg); |
| } |
| |
| /* |
| * asc_prt_adv_dvc_cfg() |
| * |
| * Display an ADV_DVC_CFG structure. |
| */ |
| static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) |
| { |
| printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); |
| |
| printk(" disc_enable 0x%x, termination 0x%x\n", |
| h->disc_enable, h->termination); |
| |
| printk(" chip_version 0x%x, mcode_date 0x%x\n", |
| h->chip_version, h->mcode_date); |
| |
| printk(" mcode_version 0x%x, control_flag 0x%x\n", |
| h->mcode_version, h->control_flag); |
| } |
| |
| /* |
| * asc_prt_scsi_host() |
| */ |
| static void asc_prt_scsi_host(struct Scsi_Host *s) |
| { |
| struct asc_board *boardp = shost_priv(s); |
| |
| printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); |
| printk(" host_busy %d, host_no %d,\n", |
| scsi_host_busy(s), s->host_no); |
| |
| printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", |
| (ulong)s->base, (ulong)s->io_port, boardp->irq); |
| |
| printk(" dma_channel %d, this_id %d, can_queue %d,\n", |
| s->dma_channel, s->this_id, s->can_queue); |
| |
| printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n", |
| s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma); |
| |
| if (ASC_NARROW_BOARD(boardp)) { |
| asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); |
| asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); |
| } else { |
| asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); |
| asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); |
| } |
| } |
| |
| /* |
| * asc_prt_hex() |
| * |
| * Print hexadecimal output in 4 byte groupings 32 bytes |
| * or 8 double-words per line. |
| */ |
| static void asc_prt_hex(char *f, uchar *s, int l) |
| { |
| int i; |
| int j; |
| int k; |
| int m; |
| |
| printk("%s: (%d bytes)\n", f, l); |
| |
| for (i = 0; i < l; i += 32) { |
| |
| /* Display a maximum of 8 double-words per line. */ |
| if ((k = (l - i) / 4) >= 8) { |
| k = 8; |
| m = 0; |
| } else { |
| m = (l - i) % 4; |
| } |
| |
| for (j = 0; j < k; j++) { |
| printk(" %2.2X%2.2X%2.2X%2.2X", |
| (unsigned)s[i + (j * 4)], |
| (unsigned)s[i + (j * 4) + 1], |
| (unsigned)s[i + (j * 4) + 2], |
| (unsigned)s[i + (j * 4) + 3]); |
| } |
| |
| switch (m) { |
| case 0: |
| default: |
| break; |
| case 1: |
| printk(" %2.2X", (unsigned)s[i + (j * 4)]); |
| break; |
| case 2: |
| printk(" %2.2X%2.2X", |
| (unsigned)s[i + (j * 4)], |
| (unsigned)s[i + (j * 4) + 1]); |
| break; |
| case 3: |
| printk(" %2.2X%2.2X%2.2X", |
| (unsigned)s[i + (j * 4) + 1], |
| (unsigned)s[i + (j * 4) + 2], |
| (unsigned)s[i + (j * 4) + 3]); |
| break; |
| } |
| |
| printk("\n"); |
| } |
| } |
| |
| /* |
| * asc_prt_asc_scsi_q() |
| */ |
| static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) |
| { |
| ASC_SG_HEAD *sgp; |
| int i; |
| |
| printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); |
| |
| printk |
| (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n", |
| q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag, |
| q->q2.tag_code); |
| |
| printk |
| (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", |
| (ulong)le32_to_cpu(q->q1.data_addr), |
| (ulong)le32_to_cpu(q->q1.data_cnt), |
| (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); |
| |
| printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", |
| (ulong)q->cdbptr, q->q2.cdb_len, |
| (ulong)q->sg_head, q->q1.sg_queue_cnt); |
| |
| if (q->sg_head) { |
| sgp = q->sg_head; |
| printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); |
| printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, |
| sgp->queue_cnt); |
| for (i = 0; i < sgp->entry_cnt; i++) { |
| printk(" [%u]: addr 0x%lx, bytes %lu\n", |
| i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), |
| (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); |
| } |
| |
| } |
| } |
| |
| /* |
| * asc_prt_asc_qdone_info() |
| */ |
| static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) |
| { |
| printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); |
| printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n", |
| q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len, |
| q->d2.tag_code); |
| printk |
| (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", |
| q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); |
| } |
| |
| /* |
| * asc_prt_adv_sgblock() |
| * |
| * Display an ADV_SG_BLOCK structure. |
| */ |
| static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) |
| { |
| int i; |
| |
| printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", |
| (ulong)b, sgblockno); |
| printk(" sg_cnt %u, sg_ptr 0x%x\n", |
| b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr)); |
| BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); |
| if (b->sg_ptr != 0) |
| BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); |
| for (i = 0; i < b->sg_cnt; i++) { |
| printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n", |
| i, (u32)le32_to_cpu(b->sg_list[i].sg_addr), |
| (u32)le32_to_cpu(b->sg_list[i].sg_count)); |
| } |
| } |
| |
| /* |
| * asc_prt_adv_scsi_req_q() |
| * |
| * Display an ADV_SCSI_REQ_Q structure. |
| */ |
| static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) |
| { |
| int sg_blk_cnt; |
| struct adv_sg_block *sg_ptr; |
| adv_sgblk_t *sgblkp; |
| |
| printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); |
| |
| printk(" target_id %u, target_lun %u, srb_tag 0x%x\n", |
| q->target_id, q->target_lun, q->srb_tag); |
| |
| printk(" cntl 0x%x, data_addr 0x%lx\n", |
| q->cntl, (ulong)le32_to_cpu(q->data_addr)); |
| |
| printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", |
| (ulong)le32_to_cpu(q->data_cnt), |
| (ulong)le32_to_cpu(q->sense_addr), q->sense_len); |
| |
| printk |
| (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", |
| q->cdb_len, q->done_status, q->host_status, q->scsi_status); |
| |
| printk(" sg_working_ix 0x%x, target_cmd %u\n", |
| q->sg_working_ix, q->target_cmd); |
| |
| printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", |
| (ulong)le32_to_cpu(q->scsiq_rptr), |
| (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); |
| |
| /* Display the request's ADV_SG_BLOCK structures. */ |
| if (q->sg_list_ptr != NULL) { |
| sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block); |
| sg_blk_cnt = 0; |
| while (sgblkp) { |
| sg_ptr = &sgblkp->sg_block; |
| asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); |
| if (sg_ptr->sg_ptr == 0) { |
| break; |
| } |
| sgblkp = sgblkp->next_sgblkp; |
| sg_blk_cnt++; |
| } |
| } |
| } |
| #endif /* ADVANSYS_DEBUG */ |
| |
| /* |
| * advansys_info() |
| * |
| * Return suitable for printing on the console with the argument |
| * adapter's configuration information. |
| * |
| * Note: The information line should not exceed ASC_INFO_SIZE bytes, |
| * otherwise the static 'info' array will be overrun. |
| */ |
| static const char *advansys_info(struct Scsi_Host *shost) |
| { |
| static char info[ASC_INFO_SIZE]; |
| struct asc_board *boardp = shost_priv(shost); |
| ASC_DVC_VAR *asc_dvc_varp; |
| ADV_DVC_VAR *adv_dvc_varp; |
| char *busname; |
| char *widename = NULL; |
| |
| if (ASC_NARROW_BOARD(boardp)) { |
| asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; |
| ASC_DBG(1, "begin\n"); |
| if (asc_dvc_varp->bus_type & ASC_IS_ISA) { |
| if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) == |
| ASC_IS_ISAPNP) { |
| busname = "ISA PnP"; |
| } else { |
| busname = "ISA"; |
| } |
| sprintf(info, |
| "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X", |
| ASC_VERSION, busname, |
| (ulong)shost->io_port, |
| (ulong)shost->io_port + ASC_IOADR_GAP - 1, |
| boardp->irq, shost->dma_channel); |
| } else { |
| if (asc_dvc_varp->bus_type & ASC_IS_VL) { |
| busname = "VL"; |
| } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { |
| busname = "EISA"; |
| } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { |
| if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) |
| == ASC_IS_PCI_ULTRA) { |
| busname = "PCI Ultra"; |
| } else { |
| busname = "PCI"; |
| } |
| } else { |
| busname = "?"; |
| shost_printk(KERN_ERR, shost, "unknown bus " |
| "type %d\n", asc_dvc_varp->bus_type); |
| } |
| sprintf(info, |
| "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", |
| ASC_VERSION, busname, (ulong)shost->io_port, |
| (ulong)shost->io_port + ASC_IOADR_GAP - 1, |
| boardp->irq); |
| } |
| } else { |
| /* |
| * Wide Adapter Information |
| * |
| * Memory-mapped I/O is used instead of I/O space to access |
| * the adapter, but display the I/O Port range. The Memory |
| * I/O address is displayed through the driver /proc file. |
| */ |
| adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| widename = "Ultra-Wide"; |
| } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { |
| widename = "Ultra2-Wide"; |
| } else { |
| widename = "Ultra3-Wide"; |
| } |
| sprintf(info, |
| "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", |
| ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, |
| (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); |
| } |
| BUG_ON(strlen(info) >= ASC_INFO_SIZE); |
| ASC_DBG(1, "end\n"); |
| return info; |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| |
| /* |
| * asc_prt_board_devices() |
| * |
| * Print driver information for devices attached to the board. |
| */ |
| static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost) |
| { |
| struct asc_board *boardp = shost_priv(shost); |
| int chip_scsi_id; |
| int i; |
| |
| seq_printf(m, |
| "\nDevice Information for AdvanSys SCSI Host %d:\n", |
| shost->host_no); |
| |
| if (ASC_NARROW_BOARD(boardp)) { |
| chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; |
| } else { |
| chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; |
| } |
| |
| seq_puts(m, "Target IDs Detected:"); |
| for (i = 0; i <= ADV_MAX_TID; i++) { |
| if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) |
| seq_printf(m, " %X,", i); |
| } |
| seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id); |
| } |
| |
| /* |
| * Display Wide Board BIOS Information. |
| */ |
| static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost) |
| { |
| struct asc_board *boardp = shost_priv(shost); |
| ushort major, minor, letter; |
| |
| seq_puts(m, "\nROM BIOS Version: "); |
| |
| /* |
| * If the BIOS saved a valid signature, then fill in |
| * the BIOS code segment base address. |
| */ |
| if (boardp->bios_signature != 0x55AA) { |
| seq_puts(m, "Disabled or Pre-3.1\n" |
| "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n" |
| "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); |
| } else { |
| major = (boardp->bios_version >> 12) & 0xF; |
| minor = (boardp->bios_version >> 8) & 0xF; |
| letter = (boardp->bios_version & 0xFF); |
| |
| seq_printf(m, "%d.%d%c\n", |
| major, minor, |
| letter >= 26 ? '?' : letter + 'A'); |
| /* |
| * Current available ROM BIOS release is 3.1I for UW |
| * and 3.2I for U2W. This code doesn't differentiate |
| * UW and U2W boards. |
| */ |
| if (major < 3 || (major <= 3 && minor < 1) || |
| (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { |
| seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n" |
| "ftp://ftp.connectcom.net/pub\n"); |
| } |
| } |
| } |
| |
| /* |
| * Add serial number to information bar if signature AAh |
| * is found in at bit 15-9 (7 bits) of word 1. |
| * |
| * Serial Number consists fo 12 alpha-numeric digits. |
| * |
| * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) |
| * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) |
| * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits) |
| * 5 - Product revision (A-J) Word0: " " |
| * |
| * Signature Word1: 15-9 (7 bits) |
| * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit) |
| * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits) |
| * |
| * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) |
| * |
| * Note 1: Only production cards will have a serial number. |
| * |
| * Note 2: Signature is most significant 7 bits (0xFE). |
| * |
| * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. |
| */ |
| static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) |
| { |
| ushort w, num; |
| |
| if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { |
| return ASC_FALSE; |
| } else { |
| /* |
| * First word - 6 digits. |
| */ |
| w = serialnum[0]; |
| |
| /* Product type - 1st digit. */ |
| if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { |
| /* Product type is P=Prototype */ |
| *cp += 0x8; |
| } |
| cp++; |
| |
| /* Manufacturing location - 2nd digit. */ |
| *cp++ = 'A' + ((w & 0x1C00) >> 10); |
| |
| /* Product ID - 3rd, 4th digits. */ |
| num = w & 0x3FF; |
| *cp++ = '0' + (num / 100); |
| num %= 100; |
| *cp++ = '0' + (num / 10); |
| |
| /* Product revision - 5th digit. */ |
| *cp++ = 'A' + (num % 10); |
| |
| /* |
| * Second word |
| */ |
| w = serialnum[1]; |
| |
| /* |
| * Year - 6th digit. |
| * |
| * If bit 15 of third word is set, then the |
| * last digit of the year is greater than 7. |
| */ |
| if (serialnum[2] & 0x8000) { |
| *cp++ = '8' + ((w & 0x1C0) >> 6); |
| } else { |
| *cp++ = '0' + ((w & 0x1C0) >> 6); |
| } |
| |
| /* Week of year - 7th, 8th digits. */ |
| num = w & 0x003F; |
| *cp++ = '0' + num / 10; |
| num %= 10; |
| *cp++ = '0' + num; |
| |
| /* |
| * Third word |
| */ |
| w = serialnum[2] & 0x7FFF; |
| |
| /* Serial number - 9th digit. */ |
| *cp++ = 'A' + (w / 1000); |
| |
| /* 10th, 11th, 12th digits. */ |
| num = w % 1000; |
| *cp++ = '0' + num / 100; |
| num %= 100; |
| *cp++ = '0' + num / 10; |
| num %= 10; |
| *cp++ = '0' + num; |
| |
| *cp = '\0'; /* Null Terminate the string. */ |
| return ASC_TRUE; |
| } |
| } |
| |
| /* |
| * asc_prt_asc_board_eeprom() |
| * |
| * Print board EEPROM configuration. |
| */ |
| static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) |
| { |
| struct asc_board *boardp = shost_priv(shost); |
| ASC_DVC_VAR *asc_dvc_varp; |
| ASCEEP_CONFIG *ep; |
| int i; |
| #ifdef CONFIG_ISA |
| int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 }; |
| #endif /* CONFIG_ISA */ |
| uchar serialstr[13]; |
| |
| asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; |
| ep = &boardp->eep_config.asc_eep; |
| |
| seq_printf(m, |
| "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", |
| shost->host_no); |
| |
| if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) |
| == ASC_TRUE) |
| seq_printf(m, " Serial Number: %s\n", serialstr); |
| else if (ep->adapter_info[5] == 0xBB) |
| seq_puts(m, |
| " Default Settings Used for EEPROM-less Adapter.\n"); |
| else |
| seq_puts(m, " Serial Number Signature Not Present.\n"); |
| |
| seq_printf(m, |
| " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", |
| ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, |
| ep->max_tag_qng); |
| |
| seq_printf(m, |
| " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); |
| |
| seq_puts(m, " Target ID: "); |
| for (i = 0; i <= ASC_MAX_TID; i++) |
| seq_printf(m, " %d", i); |
| |
| seq_puts(m, "\n Disconnects: "); |
| for (i = 0; i <= ASC_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| |
| seq_puts(m, "\n Command Queuing: "); |
| for (i = 0; i <= ASC_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| |
| seq_puts(m, "\n Start Motor: "); |
| for (i = 0; i <= ASC_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| |
| seq_puts(m, "\n Synchronous Transfer:"); |
| for (i = 0; i <= ASC_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| seq_putc(m, '\n'); |
| |
| #ifdef CONFIG_ISA |
| if (asc_dvc_varp->bus_type & ASC_IS_ISA) { |
| seq_printf(m, |
| " Host ISA DMA speed: %d MB/S\n", |
| isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]); |
| } |
| #endif /* CONFIG_ISA */ |
| } |
| |
| /* |
| * asc_prt_adv_board_eeprom() |
| * |
| * Print board EEPROM configuration. |
| */ |
| static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) |
| { |
| struct asc_board *boardp = shost_priv(shost); |
| ADV_DVC_VAR *adv_dvc_varp; |
| int i; |
| char *termstr; |
| uchar serialstr[13]; |
| ADVEEP_3550_CONFIG *ep_3550 = NULL; |
| ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; |
| ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; |
| ushort word; |
| ushort *wordp; |
| ushort sdtr_speed = 0; |
| |
| adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| ep_3550 = &boardp->eep_config.adv_3550_eep; |
| } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { |
| ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; |
| } else { |
| ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; |
| } |
| |
| seq_printf(m, |
| "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", |
| shost->host_no); |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| wordp = &ep_3550->serial_number_word1; |
| } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { |
| wordp = &ep_38C0800->serial_number_word1; |
| } else { |
| wordp = &ep_38C1600->serial_number_word1; |
| } |
| |
| if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) |
| seq_printf(m, " Serial Number: %s\n", serialstr); |
| else |
| seq_puts(m, " Serial Number Signature Not Present.\n"); |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) |
| seq_printf(m, |
| " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", |
| ep_3550->adapter_scsi_id, |
| ep_3550->max_host_qng, ep_3550->max_dvc_qng); |
| else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) |
| seq_printf(m, |
| " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", |
| ep_38C0800->adapter_scsi_id, |
| ep_38C0800->max_host_qng, |
| ep_38C0800->max_dvc_qng); |
| else |
| seq_printf(m, |
| " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", |
| ep_38C1600->adapter_scsi_id, |
| ep_38C1600->max_host_qng, |
| ep_38C1600->max_dvc_qng); |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| word = ep_3550->termination; |
| } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { |
| word = ep_38C0800->termination_lvd; |
| } else { |
| word = ep_38C1600->termination_lvd; |
| } |
| switch (word) { |
| case 1: |
| termstr = "Low Off/High Off"; |
| break; |
| case 2: |
| termstr = "Low Off/High On"; |
| break; |
| case 3: |
| termstr = "Low On/High On"; |
| break; |
| default: |
| case 0: |
| termstr = "Automatic"; |
| break; |
| } |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) |
| seq_printf(m, |
| " termination: %u (%s), bios_ctrl: 0x%x\n", |
| ep_3550->termination, termstr, |
| ep_3550->bios_ctrl); |
| else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) |
| seq_printf(m, |
| " termination: %u (%s), bios_ctrl: 0x%x\n", |
| ep_38C0800->termination_lvd, termstr, |
| ep_38C0800->bios_ctrl); |
| else |
| seq_printf(m, |
| " termination: %u (%s), bios_ctrl: 0x%x\n", |
| ep_38C1600->termination_lvd, termstr, |
| ep_38C1600->bios_ctrl); |
| |
| seq_puts(m, " Target ID: "); |
| for (i = 0; i <= ADV_MAX_TID; i++) |
| seq_printf(m, " %X", i); |
| seq_putc(m, '\n'); |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| word = ep_3550->disc_enable; |
| } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { |
| word = ep_38C0800->disc_enable; |
| } else { |
| word = ep_38C1600->disc_enable; |
| } |
| seq_puts(m, " Disconnects: "); |
| for (i = 0; i <= ADV_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| seq_putc(m, '\n'); |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| word = ep_3550->tagqng_able; |
| } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { |
| word = ep_38C0800->tagqng_able; |
| } else { |
| word = ep_38C1600->tagqng_able; |
| } |
| seq_puts(m, " Command Queuing: "); |
| for (i = 0; i <= ADV_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| seq_putc(m, '\n'); |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| word = ep_3550->start_motor; |
| } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { |
| word = ep_38C0800->start_motor; |
| } else { |
| word = ep_38C1600->start_motor; |
| } |
| seq_puts(m, " Start Motor: "); |
| for (i = 0; i <= ADV_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| seq_putc(m, '\n'); |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| seq_puts(m, " Synchronous Transfer:"); |
| for (i = 0; i <= ADV_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ? |
| 'Y' : 'N'); |
| seq_putc(m, '\n'); |
| } |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| seq_puts(m, " Ultra Transfer: "); |
| for (i = 0; i <= ADV_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i)) |
| ? 'Y' : 'N'); |
| seq_putc(m, '\n'); |
| } |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| word = ep_3550->wdtr_able; |
| } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { |
| word = ep_38C0800->wdtr_able; |
| } else { |
| word = ep_38C1600->wdtr_able; |
| } |
| seq_puts(m, " Wide Transfer: "); |
| for (i = 0; i <= ADV_MAX_TID; i++) |
| seq_printf(m, " %c", |
| (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| seq_putc(m, '\n'); |
| |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || |
| adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { |
| seq_puts(m, " Synchronous Transfer Speed (Mhz):\n "); |
| for (i = 0; i <= ADV_MAX_TID; i++) { |
| char *speed_str; |
| |
| if (i == 0) { |
| sdtr_speed = adv_dvc_varp->sdtr_speed1; |
| } else if (i == 4) { |
| sdtr_speed = adv_dvc_varp->sdtr_speed2; |
| } else if (i == 8) { |
| sdtr_speed = adv_dvc_varp->sdtr_speed3; |
| } else if (i == 12) { |
| sdtr_speed = adv_dvc_varp->sdtr_speed4; |
| } |
| switch (sdtr_speed & ADV_MAX_TID) { |
| case 0: |
| speed_str = "Off"; |
| break; |
| case 1: |
| speed_str = " 5"; |
| break; |
| case 2: |
| speed_str = " 10"; |
| break; |
| case 3: |
| speed_str = " 20"; |
| break; |
| case 4: |
| speed_str = " 40"; |
| break; |
| case 5: |
| speed_str = " 80"; |
| break; |
| default: |
| speed_str = "Unk"; |
| break; |
| } |
| seq_printf(m, "%X:%s ", i, speed_str); |
| if (i == 7) |
| seq_puts(m, "\n "); |
| sdtr_speed >>= 4; |
| } |
| seq_putc(m, '\n'); |
| } |
| } |
| |
| /* |
| * asc_prt_driver_conf() |
| */ |
| static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost) |
| { |
| struct asc_board *boardp = shost_priv(shost); |
| int chip_scsi_id; |
| |
| seq_printf(m, |
| "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", |
| shost->host_no); |
| |
| seq_printf(m, |
| " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n", |
| scsi_host_busy(shost), shost->max_id, |
| shost->max_lun, shost->max_channel); |
| |
| seq_printf(m, |
| " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", |
| shost->unique_id, shost->can_queue, shost->this_id, |
| shost->sg_tablesize, shost->cmd_per_lun); |
| |
| seq_printf(m, |
| " unchecked_isa_dma %d, use_clustering %d\n", |
| shost->unchecked_isa_dma, shost->use_clustering); |
| |
| seq_printf(m, |
| " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n", |
| boardp->flags, shost->last_reset, jiffies, |
| boardp->asc_n_io_port); |
| |
| seq_printf(m, " io_port 0x%lx\n", shost->io_port); |
| |
| if (ASC_NARROW_BOARD(boardp)) { |
| chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; |
| } else { |
| chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; |
| } |
| } |
| |
| /* |
| * asc_prt_asc_board_info() |
| * |
| * Print dynamic board configuration information. |
| */ |
| static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost) |
| { |
| struct asc_board *boardp = shost_priv(shost); |
| int chip_scsi_id; |
| ASC_DVC_VAR *v; |
| ASC_DVC_CFG *c; |
| int i; |
| int renegotiate = 0; |
| |
| v = &boardp->dvc_var.asc_dvc_var; |
| c = &boardp->dvc_cfg.asc_dvc_cfg; |
| chip_scsi_id = c->chip_scsi_id; |
| |
| seq_printf(m, |
| "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", |
| shost->host_no); |
| |
| seq_printf(m, " chip_version %u, mcode_date 0x%x, " |
| "mcode_version 0x%x, err_code %u\n", |
| c->chip_version, c->mcode_date, c->mcode_version, |
| v->err_code); |
| |
| /* Current number of commands waiting for the host. */ |
| seq_printf(m, |
| " Total Command Pending: %d\n", v->cur_total_qng); |
| |
| seq_puts(m, " Command Queuing:"); |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| seq_printf(m, " %X:%c", |
| i, |
| (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| } |
| |
| /* Current number of commands waiting for a device. */ |
| seq_puts(m, "\n Command Queue Pending:"); |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]); |
| } |
| |
| /* Current limit on number of commands that can be sent to a device. */ |
| seq_puts(m, "\n Command Queue Limit:"); |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]); |
| } |
| |
| /* Indicate whether the device has returned queue full status. */ |
| seq_puts(m, "\n Command Queue Full:"); |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) |
| seq_printf(m, " %X:Y-%d", |
| i, boardp->queue_full_cnt[i]); |
| else |
| seq_printf(m, " %X:N", i); |
| } |
| |
| seq_puts(m, "\n Synchronous Transfer:"); |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| seq_printf(m, " %X:%c", |
| i, |
| (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| } |
| seq_putc(m, '\n'); |
| |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| uchar syn_period_ix; |
| |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || |
| ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| |
| seq_printf(m, " %X:", i); |
| |
| if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { |
| seq_puts(m, " Asynchronous"); |
| } else { |
| syn_period_ix = |
| (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - |
| 1); |
| |
| seq_printf(m, |
| " Transfer Period Factor: %d (%d.%d Mhz),", |
| v->sdtr_period_tbl[syn_period_ix], |
| 250 / v->sdtr_period_tbl[syn_period_ix], |
| ASC_TENTHS(250, |
| v->sdtr_period_tbl[syn_period_ix])); |
| |
| seq_printf(m, " REQ/ACK Offset: %d", |
| boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET); |
| } |
| |
| if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { |
| seq_puts(m, "*\n"); |
| renegotiate = 1; |
| } else { |
| seq_putc(m, '\n'); |
| } |
| } |
| |
| if (renegotiate) { |
| seq_puts(m, " * = Re-negotiation pending before next command.\n"); |
| } |
| } |
| |
| /* |
| * asc_prt_adv_board_info() |
| * |
| * Print dynamic board configuration information. |
| */ |
| static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost) |
| { |
| struct asc_board *boardp = shost_priv(shost); |
| int i; |
| ADV_DVC_VAR *v; |
| ADV_DVC_CFG *c; |
| AdvPortAddr iop_base; |
| ushort chip_scsi_id; |
| ushort lramword; |
| uchar lrambyte; |
| ushort tagqng_able; |
| ushort sdtr_able, wdtr_able; |
| ushort wdtr_done, sdtr_done; |
| ushort period = 0; |
| int renegotiate = 0; |
| |
| v = &boardp->dvc_var.adv_dvc_var; |
| c = &boardp->dvc_cfg.adv_dvc_cfg; |
| iop_base = v->iop_base; |
| chip_scsi_id = v->chip_scsi_id; |
| |
| seq_printf(m, |
| "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", |
| shost->host_no); |
| |
| seq_printf(m, |
| " iop_base 0x%lx, cable_detect: %X, err_code %u\n", |
| (unsigned long)v->iop_base, |
| AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT, |
| v->err_code); |
| |
| seq_printf(m, " chip_version %u, mcode_date 0x%x, " |
| "mcode_version 0x%x\n", c->chip_version, |
| c->mcode_date, c->mcode_version); |
| |
| AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); |
| seq_puts(m, " Queuing Enabled:"); |
| for (i = 0; i <= ADV_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| |
| seq_printf(m, " %X:%c", |
| i, |
| (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| } |
| |
| seq_puts(m, "\n Queue Limit:"); |
| for (i = 0; i <= ADV_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| |
| AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, |
| lrambyte); |
| |
| seq_printf(m, " %X:%d", i, lrambyte); |
| } |
| |
| seq_puts(m, "\n Command Pending:"); |
| for (i = 0; i <= ADV_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| |
| AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, |
| lrambyte); |
| |
| seq_printf(m, " %X:%d", i, lrambyte); |
| } |
| seq_putc(m, '\n'); |
| |
| AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); |
| seq_puts(m, " Wide Enabled:"); |
| for (i = 0; i <= ADV_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| |
| seq_printf(m, " %X:%c", |
| i, |
| (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| } |
| seq_putc(m, '\n'); |
| |
| AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); |
| seq_puts(m, " Transfer Bit Width:"); |
| for (i = 0; i <= ADV_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| |
| AdvReadWordLram(iop_base, |
| ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), |
| lramword); |
| |
| seq_printf(m, " %X:%d", |
| i, (lramword & 0x8000) ? 16 : 8); |
| |
| if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && |
| (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { |
| seq_putc(m, '*'); |
| renegotiate = 1; |
| } |
| } |
| seq_putc(m, '\n'); |
| |
| AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); |
| seq_puts(m, " Synchronous Enabled:"); |
| for (i = 0; i <= ADV_MAX_TID; i++) { |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| |
| seq_printf(m, " %X:%c", |
| i, |
| (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); |
| } |
| seq_putc(m, '\n'); |
| |
| AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); |
| for (i = 0; i <= ADV_MAX_TID; i++) { |
| |
| AdvReadWordLram(iop_base, |
| ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), |
| lramword); |
| lramword &= ~0x8000; |
| |
| if ((chip_scsi_id == i) || |
| ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || |
| ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { |
| continue; |
| } |
| |
| seq_printf(m, " %X:", i); |
| |
| if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */ |
| seq_puts(m, " Asynchronous"); |
| } else { |
| seq_puts(m, " Transfer Period Factor: "); |
| |
| if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */ |
| seq_puts(m, "9 (80.0 Mhz),"); |
| } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */ |
| seq_puts(m, "10 (40.0 Mhz),"); |
| } else { /* 20 Mhz or below. */ |
| |
| period = (((lramword >> 8) * 25) + 50) / 4; |
| |
| if (period == 0) { /* Should never happen. */ |
| seq_printf(m, "%d (? Mhz), ", period); |
| } else { |
| seq_printf(m, |
| "%d (%d.%d Mhz),", |
| period, 250 / period, |
| ASC_TENTHS(250, period)); |
| } |
| } |
| |
| seq_printf(m, " REQ/ACK Offset: %d", |
| lramword & 0x1F); |
| } |
| |
| if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { |
| seq_puts(m, "*\n"); |
| renegotiate = 1; |
| } else { |
| seq_putc(m, '\n'); |
| } |
| } |
| |
| if (renegotiate) { |
| seq_puts(m, " * = Re-negotiation pending before next command.\n"); |
| } |
| } |
| |
| #ifdef ADVANSYS_STATS |
| /* |
| * asc_prt_board_stats() |
| */ |
| static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost) |
| { |
| struct asc_board *boardp = shost_priv(shost); |
| struct asc_stats *s = &boardp->asc_stats; |
| |
| seq_printf(m, |
| "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", |
| shost->host_no); |
| |
| seq_printf(m, |
| " queuecommand %u, reset %u, biosparam %u, interrupt %u\n", |
| s->queuecommand, s->reset, s->biosparam, |
| s->interrupt); |
| |
| seq_printf(m, |
| " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n", |
| s->callback, s->done, s->build_error, |
| s->adv_build_noreq, s->adv_build_nosg); |
| |
| seq_printf(m, |
| " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n", |
| s->exe_noerror, s->exe_busy, s->exe_error, |
| s->exe_unknown); |
| |
| /* |
| * Display data transfer statistics. |
| */ |
| if (s->xfer_cnt > 0) { |
| seq_printf(m, " xfer_cnt %u, xfer_elem %u, ", |
| s->xfer_cnt, s->xfer_elem); |
| |
| seq_printf(m, "xfer_bytes %u.%01u kb\n", |
| s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); |
| |
| /* Scatter gather transfer statistics */ |
| seq_printf(m, " avg_num_elem %u.%01u, ", |
| s->xfer_elem / s->xfer_cnt, |
| ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); |
| |
| seq_printf(m, "avg_elem_size %u.%01u kb, ", |
| (s->xfer_sect / 2) / s->xfer_elem, |
| ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); |
| |
| seq_printf(m, "avg_xfer_size %u.%01u kb\n", |
| (s->xfer_sect / 2) / s->xfer_cnt, |
| ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); |
| } |
| } |
| #endif /* ADVANSYS_STATS */ |
| |
| /* |
| * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...} |
| * |
| * m: seq_file to print into |
| * shost: Scsi_Host |
| * |
| * Return the number of bytes read from or written to a |
| * /proc/scsi/advansys/[0...] file. |
| */ |
| static int |
| advansys_show_info(struct seq_file *m, struct Scsi_Host *shost) |
| { |
| struct asc_board *boardp = shost_priv(shost); |
| |
| ASC_DBG(1, "begin\n"); |
| |
| /* |
| * User read of /proc/scsi/advansys/[0...] file. |
| */ |
| |
| /* |
| * Get board configuration information. |
| * |
| * advansys_info() returns the board string from its own static buffer. |
| */ |
| /* Copy board information. */ |
| seq_printf(m, "%s\n", (char *)advansys_info(shost)); |
| /* |
| * Display Wide Board BIOS Information. |
| */ |
| if (!ASC_NARROW_BOARD(boardp)) |
| asc_prt_adv_bios(m, shost); |
| |
| /* |
| * Display driver information for each device attached to the board. |
| */ |
| asc_prt_board_devices(m, shost); |
| |
| /* |
| * Display EEPROM configuration for the board. |
| */ |
| if (ASC_NARROW_BOARD(boardp)) |
| asc_prt_asc_board_eeprom(m, shost); |
| else |
| asc_prt_adv_board_eeprom(m, shost); |
| |
| /* |
| * Display driver configuration and information for the board. |
| */ |
| asc_prt_driver_conf(m, shost); |
| |
| #ifdef ADVANSYS_STATS |
| /* |
| * Display driver statistics for the board. |
| */ |
| asc_prt_board_stats(m, shost); |
| #endif /* ADVANSYS_STATS */ |
| |
| /* |
| * Display Asc Library dynamic configuration information |
| * for the board. |
| */ |
| if (ASC_NARROW_BOARD(boardp)) |
| asc_prt_asc_board_info(m, shost); |
| else |
| asc_prt_adv_board_info(m, shost); |
| return 0; |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| static void asc_scsi_done(struct scsi_cmnd *scp) |
| { |
| scsi_dma_unmap(scp); |
| ASC_STATS(scp->device->host, done); |
| scp->scsi_done(scp); |
| } |
| |
| static void AscSetBank(PortAddr iop_base, uchar bank) |
| { |
| uchar val; |
| |
| val = AscGetChipControl(iop_base) & |
| (~ |
| (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | |
| CC_CHIP_RESET)); |
| if (bank == 1) { |
| val |= CC_BANK_ONE; |
| } else if (bank == 2) { |
| val |= CC_DIAG | CC_BANK_ONE; |
| } else { |
| val &= ~CC_BANK_ONE; |
| } |
| AscSetChipControl(iop_base, val); |
| } |
| |
| static void AscSetChipIH(PortAddr iop_base, ushort ins_code) |
| { |
| AscSetBank(iop_base, 1); |
| AscWriteChipIH(iop_base, ins_code); |
| AscSetBank(iop_base, 0); |
| } |
| |
| static int AscStartChip(PortAddr iop_base) |
| { |
| AscSetChipControl(iop_base, 0); |
| if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { |
| return (0); |
| } |
| return (1); |
| } |
| |
| static bool AscStopChip(PortAddr iop_base) |
| { |
| uchar cc_val; |
| |
| cc_val = |
| AscGetChipControl(iop_base) & |
| (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); |
| AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); |
| AscSetChipIH(iop_base, INS_HALT); |
| AscSetChipIH(iop_base, INS_RFLAG_WTM); |
| if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool AscIsChipHalted(PortAddr iop_base) |
| { |
| if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { |
| if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) |
| { |
| PortAddr iop_base; |
| int i = 10; |
| |
| iop_base = asc_dvc->iop_base; |
| while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) |
| && (i-- > 0)) { |
| mdelay(100); |
| } |
| AscStopChip(iop_base); |
| AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); |
| udelay(60); |
| AscSetChipIH(iop_base, INS_RFLAG_WTM); |
| AscSetChipIH(iop_base, INS_HALT); |
| AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); |
| AscSetChipControl(iop_base, CC_HALT); |
| mdelay(200); |
| AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); |
| AscSetChipStatus(iop_base, 0); |
| return (AscIsChipHalted(iop_base)); |
| } |
| |
| static int AscFindSignature(PortAddr iop_base) |
| { |
| ushort sig_word; |
| |
| ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", |
| iop_base, AscGetChipSignatureByte(iop_base)); |
| if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { |
| ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", |
| iop_base, AscGetChipSignatureWord(iop_base)); |
| sig_word = AscGetChipSignatureWord(iop_base); |
| if ((sig_word == (ushort)ASC_1000_ID0W) || |
| (sig_word == (ushort)ASC_1000_ID0W_FIX)) { |
| return (1); |
| } |
| } |
| return (0); |
| } |
| |
| static void AscEnableInterrupt(PortAddr iop_base) |
| { |
| ushort cfg; |
| |
| cfg = AscGetChipCfgLsw(iop_base); |
| AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); |
| } |
| |
| static void AscDisableInterrupt(PortAddr iop_base) |
| { |
| ushort cfg; |
| |
| cfg = AscGetChipCfgLsw(iop_base); |
| AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); |
| } |
| |
| static uchar AscReadLramByte(PortAddr iop_base, ushort addr) |
| { |
| unsigned char byte_data; |
| unsigned short word_data; |
| |
| if (isodd_word(addr)) { |
| AscSetChipLramAddr(iop_base, addr - 1); |
| word_data = AscGetChipLramData(iop_base); |
| byte_data = (word_data >> 8) & 0xFF; |
| } else { |
| AscSetChipLramAddr(iop_base, addr); |
| word_data = AscGetChipLramData(iop_base); |
| byte_data = word_data & 0xFF; |
| } |
| return byte_data; |
| } |
| |
| static ushort AscReadLramWord(PortAddr iop_base, ushort addr) |
| { |
| ushort word_data; |
| |
| AscSetChipLramAddr(iop_base, addr); |
| word_data = AscGetChipLramData(iop_base); |
| return (word_data); |
| } |
| |
| static void |
| AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) |
| { |
| int i; |
| |
| AscSetChipLramAddr(iop_base, s_addr); |
| for (i = 0; i < words; i++) { |
| AscSetChipLramData(iop_base, set_wval); |
| } |
| } |
| |
| static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) |
| { |
| AscSetChipLramAddr(iop_base, addr); |
| AscSetChipLramData(iop_base, word_val); |
| } |
| |
| static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) |
| { |
| ushort word_data; |
| |
| if (isodd_word(addr)) { |
| addr--; |
| word_data = AscReadLramWord(iop_base, addr); |
| word_data &= 0x00FF; |
| word_data |= (((ushort)byte_val << 8) & 0xFF00); |
| } else { |
| word_data = AscReadLramWord(iop_base, addr); |
| word_data &= 0xFF00; |
| word_data |= ((ushort)byte_val & 0x00FF); |
| } |
| AscWriteLramWord(iop_base, addr, word_data); |
| } |
| |
| /* |
| * Copy 2 bytes to LRAM. |
| * |
| * The source data is assumed to be in little-endian order in memory |
| * and is maintained in little-endian order when written to LRAM. |
| */ |
| static void |
| AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, |
| const uchar *s_buffer, int words) |
| { |
| int i; |
| |
| AscSetChipLramAddr(iop_base, s_addr); |
| for (i = 0; i < 2 * words; i += 2) { |
| /* |
| * On a little-endian system the second argument below |
| * produces a little-endian ushort which is written to |
| * LRAM in little-endian order. On a big-endian system |
| * the second argument produces a big-endian ushort which |
| * is "transparently" byte-swapped by outpw() and written |
| * in little-endian order to LRAM. |
| */ |
| outpw(iop_base + IOP_RAM_DATA, |
| ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); |
| } |
| } |
| |
| /* |
| * Copy 4 bytes to LRAM. |
| * |
| * The source data is assumed to be in little-endian order in memory |
| * and is maintained in little-endian order when written to LRAM. |
| */ |
| static void |
| AscMemDWordCopyPtrToLram(PortAddr iop_base, |
| ushort s_addr, uchar *s_buffer, int dwords) |
| { |
| int i; |
| |
| AscSetChipLramAddr(iop_base, s_addr); |
| for (i = 0; i < 4 * dwords; i += 4) { |
| outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */ |
| outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */ |
| } |
| } |
| |
| /* |
| * Copy 2 bytes from LRAM. |
| * |
| * The source data is assumed to be in little-endian order in LRAM |
| * and is maintained in little-endian order when written to memory. |
| */ |
| static void |
| AscMemWordCopyPtrFromLram(PortAddr iop_base, |
| ushort s_addr, uchar *d_buffer, int words) |
| { |
| int i; |
| ushort word; |
| |
| AscSetChipLramAddr(iop_base, s_addr); |
| for (i = 0; i < 2 * words; i += 2) { |
| word = inpw(iop_base + IOP_RAM_DATA); |
| d_buffer[i] = word & 0xff; |
| d_buffer[i + 1] = (word >> 8) & 0xff; |
| } |
| } |
| |
| static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) |
| { |
| u32 sum = 0; |
| int i; |
| |
| for (i = 0; i < words; i++, s_addr += 2) { |
| sum += AscReadLramWord(iop_base, s_addr); |
| } |
| return (sum); |
| } |
| |
| static void AscInitLram(ASC_DVC_VAR *asc_dvc) |
| { |
| uchar i; |
| ushort s_addr; |
| PortAddr iop_base; |
| |
| iop_base = asc_dvc->iop_base; |
| AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, |
| (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * |
| 64) >> 1)); |
| i = ASC_MIN_ACTIVE_QNO; |
| s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; |
| AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), |
| (uchar)(i + 1)); |
| AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), |
| (uchar)(asc_dvc->max_total_qng)); |
| AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), |
| (uchar)i); |
| i++; |
| s_addr += ASC_QBLK_SIZE; |
| for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { |
| AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), |
| (uchar)(i + 1)); |
| AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), |
| (uchar)(i - 1)); |
| AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), |
| (uchar)i); |
| } |
| AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), |
| (uchar)ASC_QLINK_END); |
| AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), |
| (uchar)(asc_dvc->max_total_qng - 1)); |
| AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), |
| (uchar)asc_dvc->max_total_qng); |
| i++; |
| s_addr += ASC_QBLK_SIZE; |
| for (; i <= (uchar)(asc_dvc->max_total_qng + 3); |
| i++, s_addr += ASC_QBLK_SIZE) { |
| AscWriteLramByte(iop_base, |
| (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); |
| AscWriteLramByte(iop_base, |
| (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); |
| AscWriteLramByte(iop_base, |
| (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); |
| } |
| } |
| |
| static u32 |
| AscLoadMicroCode(PortAddr iop_base, ushort s_addr, |
| const uchar *mcode_buf, ushort mcode_size) |
| { |
| u32 chksum; |
| ushort mcode_word_size; |
| ushort mcode_chksum; |
| |
| /* Write the microcode buffer starting at LRAM address 0. */ |
| mcode_word_size = (ushort)(mcode_size >> 1); |
| AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); |
| AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); |
| |
| chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); |
| ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); |
| mcode_chksum = (ushort)AscMemSumLramWord(iop_base, |
| (ushort)ASC_CODE_SEC_BEG, |
| (ushort)((mcode_size - |
| s_addr - (ushort) |
| ASC_CODE_SEC_BEG) / |
| 2)); |
| ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); |
| AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); |
| AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); |
| return chksum; |
| } |
| |
| static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) |
| { |
| PortAddr iop_base; |
| int i; |
| ushort lram_addr; |
| |
| iop_base = asc_dvc->iop_base; |
| AscPutRiscVarFreeQHead(iop_base, 1); |
| AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); |
| AscPutVarFreeQHead(iop_base, 1); |
| AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); |
| AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, |
| (uchar)((int)asc_dvc->max_total_qng + 1)); |
| AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, |
| (uchar)((int)asc_dvc->max_total_qng + 2)); |
| AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, |
| asc_dvc->max_total_qng); |
| AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); |
| AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); |
| AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); |
| AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); |
| AscPutQDoneInProgress(iop_base, 0); |
| lram_addr = ASC_QADR_BEG; |
| for (i = 0; i < 32; i++, lram_addr += 2) { |
| AscWriteLramWord(iop_base, lram_addr, 0); |
| } |
| } |
| |
| static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) |
| { |
| int i; |
| int warn_code; |
| PortAddr iop_base; |
| __le32 phy_addr; |
| __le32 phy_size; |
| struct asc_board *board = asc_dvc_to_board(asc_dvc); |
| |
| iop_base = asc_dvc->iop_base; |
| warn_code = 0; |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| AscPutMCodeInitSDTRAtID(iop_base, i, |
| asc_dvc->cfg->sdtr_period_offset[i]); |
| } |
| |
| AscInitQLinkVar(asc_dvc); |
| AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, |
| asc_dvc->cfg->disc_enable); |
| AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, |
| ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); |
| |
| /* Ensure overrun buffer is aligned on an 8 byte boundary. */ |
| BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); |
| asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, |
| ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); |
| if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { |
| warn_code = -ENOMEM; |
| goto err_dma_map; |
| } |
| phy_addr = cpu_to_le32(asc_dvc->overrun_dma); |
| AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, |
| (uchar *)&phy_addr, 1); |
| phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); |
| AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, |
| (uchar *)&phy_size, 1); |
| |
| asc_dvc->cfg->mcode_date = |
| AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); |
| asc_dvc->cfg->mcode_version = |
| AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); |
| |
| AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); |
| if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { |
| asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; |
| warn_code = -EINVAL; |
| goto err_mcode_start; |
| } |
| if (AscStartChip(iop_base) != 1) { |
| asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; |
| warn_code = -EIO; |
| goto err_mcode_start; |
| } |
| |
| return warn_code; |
| |
| err_mcode_start: |
| dma_unmap_single(board->dev, asc_dvc->overrun_dma, |
| ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); |
| err_dma_map: |
| asc_dvc->overrun_dma = 0; |
| return warn_code; |
| } |
| |
| static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) |
| { |
| const struct firmware *fw; |
| const char fwname[] = "advansys/mcode.bin"; |
| int err; |
| unsigned long chksum; |
| int warn_code; |
| PortAddr iop_base; |
| |
| iop_base = asc_dvc->iop_base; |
| warn_code = 0; |
| if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && |
| !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { |
| AscResetChipAndScsiBus(asc_dvc); |
| mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ |
| } |
| asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; |
| if (asc_dvc->err_code != 0) |
| return ASC_ERROR; |
| if (!AscFindSignature(asc_dvc->iop_base)) { |
| asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; |
| return warn_code; |
| } |
| AscDisableInterrupt(iop_base); |
| AscInitLram(asc_dvc); |
| |
| err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); |
| if (err) { |
| printk(KERN_ERR "Failed to load image \"%s\" err %d\n", |
| fwname, err); |
| asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; |
| return err; |
| } |
| if (fw->size < 4) { |
| printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", |
| fw->size, fwname); |
| release_firmware(fw); |
| asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; |
| return -EINVAL; |
| } |
| chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | |
| (fw->data[1] << 8) | fw->data[0]; |
| ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); |
| if (AscLoadMicroCode(iop_base, 0, &fw->data[4], |
| fw->size - 4) != chksum) { |
| asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; |
| release_firmware(fw); |
| return warn_code; |
| } |
| release_firmware(fw); |
| warn_code |= AscInitMicroCodeVar(asc_dvc); |
| if (!asc_dvc->overrun_dma) |
| return warn_code; |
| asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; |
| AscEnableInterrupt(iop_base); |
| return warn_code; |
| } |
| |
| /* |
| * Load the Microcode |
| * |
| * Write the microcode image to RISC memory starting at address 0. |
| * |
| * The microcode is stored compressed in the following format: |
| * |
| * 254 word (508 byte) table indexed by byte code followed |
| * by the following byte codes: |
| * |
| * 1-Byte Code: |
| * 00: Emit word 0 in table. |
| * 01: Emit word 1 in table. |
| * . |
| * FD: Emit word 253 in table. |
| * |
| * Multi-Byte Code: |
| * FE WW WW: (3 byte code) Word to emit is the next word WW WW. |
| * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. |
| * |
| * Returns 0 or an error if the checksum doesn't match |
| */ |
| static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, |
| int size, int memsize, int chksum) |
| { |
| int i, j, end, len = 0; |
| u32 sum; |
| |
| AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); |
| |
| for (i = 253 * 2; i < size; i++) { |
| if (buf[i] == 0xff) { |
| unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; |
| for (j = 0; j < buf[i + 1]; j++) { |
| AdvWriteWordAutoIncLram(iop_base, word); |
| len += 2; |
| } |
| i += 3; |
| } else if (buf[i] == 0xfe) { |
| unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; |
| AdvWriteWordAutoIncLram(iop_base, word); |
| i += 2; |
| len += 2; |
| } else { |
| unsigned int off = buf[i] * 2; |
| unsigned short word = (buf[off + 1] << 8) | buf[off]; |
| AdvWriteWordAutoIncLram(iop_base, word); |
| len += 2; |
| } |
| } |
| |
| end = len; |
| |
| while (len < memsize) { |
| AdvWriteWordAutoIncLram(iop_base, 0); |
| len += 2; |
| } |
| |
| /* Verify the microcode checksum. */ |
| sum = 0; |
| AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); |
| |
| for (len = 0; len < end; len += 2) { |
| sum += AdvReadWordAutoIncLram(iop_base); |
| } |
| |
| if (sum != chksum) |
| return ASC_IERR_MCODE_CHKSUM; |
| |
| return 0; |
| } |
| |
| static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc) |
| { |
| off_t carr_offset = 0, next_offset; |
| dma_addr_t carr_paddr; |
| int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i; |
| |
| for (i = 0; i < carr_num; i++) { |
| carr_offset = i * sizeof(ADV_CARR_T); |
| /* Get physical address of the carrier 'carrp'. */ |
| carr_paddr = adv_dvc->carrier_addr + carr_offset; |
| |
| adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr); |
| adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset); |
| adv_dvc->carrier[i].areq_vpa = 0; |
| next_offset = carr_offset + sizeof(ADV_CARR_T); |
| if (i == carr_num) |
| next_offset = ~0; |
| adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset); |
| } |
| /* |
| * We cannot have a carrier with 'carr_va' of '0', as |
| * a reference to this carrier would be interpreted as |
| * list termination. |
| * So start at carrier 1 with the freelist. |
| */ |
| adv_dvc->carr_freelist = &adv_dvc->carrier[1]; |
| } |
| |
| static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset) |
| { |
| int index; |
| |
| BUG_ON(offset > ADV_CARRIER_BUFSIZE); |
| |
| index = offset / sizeof(ADV_CARR_T); |
| return &adv_dvc->carrier[index]; |
| } |
| |
| static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc) |
| { |
| ADV_CARR_T *carrp = adv_dvc->carr_freelist; |
| u32 next_vpa = le32_to_cpu(carrp->next_vpa); |
| |
| if (next_vpa == 0 || next_vpa == ~0) { |
| ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa); |
| return NULL; |
| } |
| |
| adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa); |
| /* |
| * insert stopper carrier to terminate list |
| */ |
| carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER); |
| |
| return carrp; |
| } |
| |
| /* |
| * 'offset' is the index in the request pointer array |
| */ |
| static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset) |
| { |
| struct asc_board *boardp = adv_dvc->drv_ptr; |
| |
| BUG_ON(offset > adv_dvc->max_host_qng); |
| return &boardp->adv_reqp[offset]; |
| } |
| |
| /* |
| * Send an idle command to the chip and wait for completion. |
| * |
| * Command completion is polled for once per microsecond. |
| * |
| * The function can be called from anywhere including an interrupt handler. |
| * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() |
| * functions to prevent reentrancy. |
| * |
| * Return Values: |
| * ADV_TRUE - command completed successfully |
| * ADV_FALSE - command failed |
| * ADV_ERROR - command timed out |
| */ |
| static int |
| AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, |
| ushort idle_cmd, u32 idle_cmd_parameter) |
| { |
| int result, i, j; |
| AdvPortAddr iop_base; |
| |
| iop_base = asc_dvc->iop_base; |
| |
| /* |
| * Clear the idle command status which is set by the microcode |
| * to a non-zero value to indicate when the command is completed. |
| * The non-zero result is one of the IDLE_CMD_STATUS_* values |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); |
| |
| /* |
| * Write the idle command value after the idle command parameter |
| * has been written to avoid a race condition. If the order is not |
| * followed, the microcode may process the idle command before the |
| * parameters have been written to LRAM. |
| */ |
| AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, |
| cpu_to_le32(idle_cmd_parameter)); |
| AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); |
| |
| /* |
| * Tickle the RISC to tell it to process the idle command. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); |
| if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { |
| /* |
| * Clear the tickle value. In the ASC-3550 the RISC flag |
| * command 'clr_tickle_b' does not work unless the host |
| * value is cleared. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); |
| } |
| |
| /* Wait for up to 100 millisecond for the idle command to timeout. */ |
| for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { |
| /* Poll once each microsecond for command completion. */ |
| for (j = 0; j < SCSI_US_PER_MSEC; j++) { |
| AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, |
| result); |
| if (result != 0) |
| return result; |
| udelay(1); |
| } |
| } |
| |
| BUG(); /* The idle command should never timeout. */ |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Reset SCSI Bus and purge all outstanding requests. |
| * |
| * Return Value: |
| * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. |
| * ADV_FALSE(0) - Microcode command failed. |
| * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC |
| * may be hung which requires driver recovery. |
| */ |
| static int AdvResetSB(ADV_DVC_VAR *asc_dvc) |
| { |
| int status; |
| |
| /* |
| * Send the SCSI Bus Reset idle start idle command which asserts |
| * the SCSI Bus Reset signal. |
| */ |
| status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); |
| if (status != ADV_TRUE) { |
| return status; |
| } |
| |
| /* |
| * Delay for the specified SCSI Bus Reset hold time. |
| * |
| * The hold time delay is done on the host because the RISC has no |
| * microsecond accurate timer. |
| */ |
| udelay(ASC_SCSI_RESET_HOLD_TIME_US); |
| |
| /* |
| * Send the SCSI Bus Reset end idle command which de-asserts |
| * the SCSI Bus Reset signal and purges any pending requests. |
| */ |
| status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); |
| if (status != ADV_TRUE) { |
| return status; |
| } |
| |
| mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ |
| |
| return status; |
| } |
| |
| /* |
| * Initialize the ASC-3550. |
| * |
| * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. |
| * |
| * For a non-fatal error return a warning code. If there are no warnings |
| * then 0 is returned. |
| * |
| * Needed after initialization for error recovery. |
| */ |
| static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) |
| { |
| const struct firmware *fw; |
| const char fwname[] = "advansys/3550.bin"; |
| AdvPortAddr iop_base; |
| ushort warn_code; |
| int begin_addr; |
| int end_addr; |
| ushort code_sum; |
| int word; |
| int i; |
| int err; |
| unsigned long chksum; |
| ushort scsi_cfg1; |
| uchar tid; |
| ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ |
| ushort wdtr_able = 0, sdtr_able, tagqng_able; |
| uchar max_cmd[ADV_MAX_TID + 1]; |
| |
| /* If there is already an error, don't continue. */ |
| if (asc_dvc->err_code != 0) |
| return ADV_ERROR; |
| |
| /* |
| * The caller must set 'chip_type' to ADV_CHIP_ASC3550. |
| */ |
| if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { |
| asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; |
| return ADV_ERROR; |
| } |
| |
| warn_code = 0; |
| iop_base = asc_dvc->iop_base; |
| |
| /* |
| * Save the RISC memory BIOS region before writing the microcode. |
| * The BIOS may already be loaded and using its RISC LRAM region |
| * so its region must be saved and restored. |
| * |
| * Note: This code makes the assumption, which is currently true, |
| * that a chip reset does not clear RISC LRAM. |
| */ |
| for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { |
| AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), |
| bios_mem[i]); |
| } |
| |
| /* |
| * Save current per TID negotiated values. |
| */ |
| if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { |
| ushort bios_version, major, minor; |
| |
| bios_version = |
| bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; |
| major = (bios_version >> 12) & 0xF; |
| minor = (bios_version >> 8) & 0xF; |
| if (major < 3 || (major == 3 && minor == 1)) { |
| /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ |
| AdvReadWordLram(iop_base, 0x120, wdtr_able); |
| } else { |
| AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); |
| } |
| } |
| AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); |
| AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); |
| for (tid = 0; tid <= ADV_MAX_TID; tid++) { |
| AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, |
| max_cmd[tid]); |
| } |
| |
| err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); |
| if (err) { |
| printk(KERN_ERR "Failed to load image \"%s\" err %d\n", |
| fwname, err); |
| asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; |
| return err; |
| } |
| if (fw->size < 4) { |
| printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", |
| fw->size, fwname); |
| release_firmware(fw); |
| asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; |
| return -EINVAL; |
| } |
| chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | |
| (fw->data[1] << 8) | fw->data[0]; |
| asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], |
| fw->size - 4, ADV_3550_MEMSIZE, |
| chksum); |
| release_firmware(fw); |
| if (asc_dvc->err_code) |
| return ADV_ERROR; |
| |
| /* |
| * Restore the RISC memory BIOS region. |
| */ |
| for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { |
| AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), |
| bios_mem[i]); |
| } |
| |
| /* |
| * Calculate and write the microcode code checksum to the microcode |
| * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); |
| AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); |
| code_sum = 0; |
| AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); |
| for (word = begin_addr; word < end_addr; word += 2) { |
| code_sum += AdvReadWordAutoIncLram(iop_base); |
| } |
| AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); |
| |
| /* |
| * Read and save microcode version and date. |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, |
| asc_dvc->cfg->mcode_date); |
| AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, |
| asc_dvc->cfg->mcode_version); |
| |
| /* |
| * Set the chip type to indicate the ASC3550. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); |
| |
| /* |
| * If the PCI Configuration Command Register "Parity Error Response |
| * Control" Bit was clear (0), then set the microcode variable |
| * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode |
| * to ignore DMA parity errors. |
| */ |
| if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { |
| AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); |
| word |= CONTROL_FLAG_IGNORE_PERR; |
| AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); |
| } |
| |
| /* |
| * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO |
| * threshold of 128 bytes. This register is only accessible to the host. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, |
| START_CTL_EMFU | READ_CMD_MRM); |
| |
| /* |
| * Microcode operating variables for WDTR, SDTR, and command tag |
| * queuing will be set in slave_configure() based on what a |
| * device reports it is capable of in Inquiry byte 7. |
| * |
| * If SCSI Bus Resets have been disabled, then directly set |
| * SDTR and WDTR from the EEPROM configuration. This will allow |
| * the BIOS and warm boot to work without a SCSI bus hang on |
| * the Inquiry caused by host and target mismatched DTR values. |
| * Without the SCSI Bus Reset, before an Inquiry a device can't |
| * be assumed to be in Asynchronous, Narrow mode. |
| */ |
| if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { |
| AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, |
| asc_dvc->wdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, |
| asc_dvc->sdtr_able); |
| } |
| |
| /* |
| * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, |
| * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID |
| * bitmask. These values determine the maximum SDTR speed negotiated |
| * with a device. |
| * |
| * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, |
| * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them |
| * without determining here whether the device supports SDTR. |
| * |
| * 4-bit speed SDTR speed name |
| * =========== =============== |
| * 0000b (0x0) SDTR disabled |
| * 0001b (0x1) 5 Mhz |
| * 0010b (0x2) 10 Mhz |
| * 0011b (0x3) 20 Mhz (Ultra) |
| * 0100b (0x4) 40 Mhz (LVD/Ultra2) |
| * 0101b (0x5) 80 Mhz (LVD2/Ultra3) |
| * 0110b (0x6) Undefined |
| * . |
| * 1111b (0xF) Undefined |
| */ |
| word = 0; |
| for (tid = 0; tid <= ADV_MAX_TID; tid++) { |
| if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { |
| /* Set Ultra speed for TID 'tid'. */ |
| word |= (0x3 << (4 * (tid % 4))); |
| } else { |
| /* Set Fast speed for TID 'tid'. */ |
| word |= (0x2 << (4 * (tid % 4))); |
| } |
| if (tid == 3) { /* Check if done with sdtr_speed1. */ |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); |
| word = 0; |
| } else if (tid == 7) { /* Check if done with sdtr_speed2. */ |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); |
| word = 0; |
| } else if (tid == 11) { /* Check if done with sdtr_speed3. */ |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); |
| word = 0; |
| } else if (tid == 15) { /* Check if done with sdtr_speed4. */ |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); |
| /* End of loop. */ |
| } |
| } |
| |
| /* |
| * Set microcode operating variable for the disconnect per TID bitmask. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, |
| asc_dvc->cfg->disc_enable); |
| |
| /* |
| * Set SCSI_CFG0 Microcode Default Value. |
| * |
| * The microcode will set the SCSI_CFG0 register using this value |
| * after it is started below. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, |
| PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | |
| asc_dvc->chip_scsi_id); |
| |
| /* |
| * Determine SCSI_CFG1 Microcode Default Value. |
| * |
| * The microcode will set the SCSI_CFG1 register using this value |
| * after it is started below. |
| */ |
| |
| /* Read current SCSI_CFG1 Register value. */ |
| scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); |
| |
| /* |
| * If all three connectors are in use, return an error. |
| */ |
| if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || |
| (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { |
| asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * If the internal narrow cable is reversed all of the SCSI_CTRL |
| * register signals will be set. Check for and return an error if |
| * this condition is found. |
| */ |
| if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { |
| asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * If this is a differential board and a single-ended device |
| * is attached to one of the connectors, return an error. |
| */ |
| if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { |
| asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * If automatic termination control is enabled, then set the |
| * termination value based on a table listed in a_condor.h. |
| * |
| * If manual termination was specified with an EEPROM setting |
| * then 'termination' was set-up in AdvInitFrom3550EEPROM() and |
| * is ready to be 'ored' into SCSI_CFG1. |
| */ |
| if (asc_dvc->cfg->termination == 0) { |
| /* |
| * The software always controls termination by setting TERM_CTL_SEL. |
| * If TERM_CTL_SEL were set to 0, the hardware would set termination. |
| */ |
| asc_dvc->cfg->termination |= TERM_CTL_SEL; |
| |
| switch (scsi_cfg1 & CABLE_DETECT) { |
| /* TERM_CTL_H: on, TERM_CTL_L: on */ |
| case 0x3: |
| case 0x7: |
| case 0xB: |
| case 0xD: |
| case 0xE: |
| case 0xF: |
| asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); |
| break; |
| |
| /* TERM_CTL_H: on, TERM_CTL_L: off */ |
| case 0x1: |
| case 0x5: |
| case 0x9: |
| case 0xA: |
| case 0xC: |
| asc_dvc->cfg->termination |= TERM_CTL_H; |
| break; |
| |
| /* TERM_CTL_H: off, TERM_CTL_L: off */ |
| case 0x2: |
| case 0x6: |
| break; |
| } |
| } |
| |
| /* |
| * Clear any set TERM_CTL_H and TERM_CTL_L bits. |
| */ |
| scsi_cfg1 &= ~TERM_CTL; |
| |
| /* |
| * Invert the TERM_CTL_H and TERM_CTL_L bits and then |
| * set 'scsi_cfg1'. The TERM_POL bit does not need to be |
| * referenced, because the hardware internally inverts |
| * the Termination High and Low bits if TERM_POL is set. |
| */ |
| scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); |
| |
| /* |
| * Set SCSI_CFG1 Microcode Default Value |
| * |
| * Set filter value and possibly modified termination control |
| * bits in the Microcode SCSI_CFG1 Register Value. |
| * |
| * The microcode will set the SCSI_CFG1 register using this value |
| * after it is started below. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, |
| FLTR_DISABLE | scsi_cfg1); |
| |
| /* |
| * Set MEM_CFG Microcode Default Value |
| * |
| * The microcode will set the MEM_CFG register using this value |
| * after it is started below. |
| * |
| * MEM_CFG may be accessed as a word or byte, but only bits 0-7 |
| * are defined. |
| * |
| * ASC-3550 has 8KB internal memory. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, |
| BIOS_EN | RAM_SZ_8KB); |
| |
| /* |
| * Set SEL_MASK Microcode Default Value |
| * |
| * The microcode will set the SEL_MASK register using this value |
| * after it is started below. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, |
| ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); |
| |
| AdvBuildCarrierFreelist(asc_dvc); |
| |
| /* |
| * Set-up the Host->RISC Initiator Command Queue (ICQ). |
| */ |
| |
| asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); |
| if (!asc_dvc->icq_sp) { |
| asc_dvc->err_code |= ASC_IERR_NO_CARRIER; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Set RISC ICQ physical address start value. |
| */ |
| AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); |
| |
| /* |
| * Set-up the RISC->Host Initiator Response Queue (IRQ). |
| */ |
| asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); |
| if (!asc_dvc->irq_sp) { |
| asc_dvc->err_code |= ASC_IERR_NO_CARRIER; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Set RISC IRQ physical address start value. |
| */ |
| AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); |
| asc_dvc->carr_pending_cnt = 0; |
| |
| AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, |
| (ADV_INTR_ENABLE_HOST_INTR | |
| ADV_INTR_ENABLE_GLOBAL_INTR)); |
| |
| AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); |
| AdvWriteWordRegister(iop_base, IOPW_PC, word); |
| |
| /* finally, finally, gentlemen, start your engine */ |
| AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); |
| |
| /* |
| * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus |
| * Resets should be performed. The RISC has to be running |
| * to issue a SCSI Bus Reset. |
| */ |
| if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { |
| /* |
| * If the BIOS Signature is present in memory, restore the |
| * BIOS Handshake Configuration Table and do not perform |
| * a SCSI Bus Reset. |
| */ |
| if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == |
| 0x55AA) { |
| /* |
| * Restore per TID negotiated values. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, |
| tagqng_able); |
| for (tid = 0; tid <= ADV_MAX_TID; tid++) { |
| AdvWriteByteLram(iop_base, |
| ASC_MC_NUMBER_OF_MAX_CMD + tid, |
| max_cmd[tid]); |
| } |
| } else { |
| if (AdvResetSB(asc_dvc) != ADV_TRUE) { |
| warn_code = ASC_WARN_BUSRESET_ERROR; |
| } |
| } |
| } |
| |
| return warn_code; |
| } |
| |
| /* |
| * Initialize the ASC-38C0800. |
| * |
| * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. |
| * |
| * For a non-fatal error return a warning code. If there are no warnings |
| * then 0 is returned. |
| * |
| * Needed after initialization for error recovery. |
| */ |
| static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) |
| { |
| const struct firmware *fw; |
| const char fwname[] = "advansys/38C0800.bin"; |
| AdvPortAddr iop_base; |
| ushort warn_code; |
| int begin_addr; |
| int end_addr; |
| ushort code_sum; |
| int word; |
| int i; |
| int err; |
| unsigned long chksum; |
| ushort scsi_cfg1; |
| uchar byte; |
| uchar tid; |
| ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ |
| ushort wdtr_able, sdtr_able, tagqng_able; |
| uchar max_cmd[ADV_MAX_TID + 1]; |
| |
| /* If there is already an error, don't continue. */ |
| if (asc_dvc->err_code != 0) |
| return ADV_ERROR; |
| |
| /* |
| * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. |
| */ |
| if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { |
| asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; |
| return ADV_ERROR; |
| } |
| |
| warn_code = 0; |
| iop_base = asc_dvc->iop_base; |
| |
| /* |
| * Save the RISC memory BIOS region before writing the microcode. |
| * The BIOS may already be loaded and using its RISC LRAM region |
| * so its region must be saved and restored. |
| * |
| * Note: This code makes the assumption, which is currently true, |
| * that a chip reset does not clear RISC LRAM. |
| */ |
| for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { |
| AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), |
| bios_mem[i]); |
| } |
| |
| /* |
| * Save current per TID negotiated values. |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); |
| AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); |
| AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); |
| for (tid = 0; tid <= ADV_MAX_TID; tid++) { |
| AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, |
| max_cmd[tid]); |
| } |
| |
| /* |
| * RAM BIST (RAM Built-In Self Test) |
| * |
| * Address : I/O base + offset 0x38h register (byte). |
| * Function: Bit 7-6(RW) : RAM mode |
| * Normal Mode : 0x00 |
| * Pre-test Mode : 0x40 |
| * RAM Test Mode : 0x80 |
| * Bit 5 : unused |
| * Bit 4(RO) : Done bit |
| * Bit 3-0(RO) : Status |
| * Host Error : 0x08 |
| * Int_RAM Error : 0x04 |
| * RISC Error : 0x02 |
| * SCSI Error : 0x01 |
| * No Error : 0x00 |
| * |
| * Note: RAM BIST code should be put right here, before loading the |
| * microcode and after saving the RISC memory BIOS region. |
| */ |
| |
| /* |
| * LRAM Pre-test |
| * |
| * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. |
| * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return |
| * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset |
| * to NORMAL_MODE, return an error too. |
| */ |
| for (i = 0; i < 2; i++) { |
| AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); |
| mdelay(10); /* Wait for 10ms before reading back. */ |
| byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); |
| if ((byte & RAM_TEST_DONE) == 0 |
| || (byte & 0x0F) != PRE_TEST_VALUE) { |
| asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; |
| return ADV_ERROR; |
| } |
| |
| AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); |
| mdelay(10); /* Wait for 10ms before reading back. */ |
| if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) |
| != NORMAL_VALUE) { |
| asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; |
| return ADV_ERROR; |
| } |
| } |
| |
| /* |
| * LRAM Test - It takes about 1.5 ms to run through the test. |
| * |
| * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. |
| * If Done bit not set or Status not 0, save register byte, set the |
| * err_code, and return an error. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); |
| mdelay(10); /* Wait for 10ms before checking status. */ |
| |
| byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); |
| if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { |
| /* Get here if Done bit not set or Status not 0. */ |
| asc_dvc->bist_err_code = byte; /* for BIOS display message */ |
| asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; |
| return ADV_ERROR; |
| } |
| |
| /* We need to reset back to normal mode after LRAM test passes. */ |
| AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); |
| |
| err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); |
| if (err) { |
| printk(KERN_ERR "Failed to load image \"%s\" err %d\n", |
| fwname, err); |
| asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; |
| return err; |
| } |
| if (fw->size < 4) { |
| printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", |
| fw->size, fwname); |
| release_firmware(fw); |
| asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; |
| return -EINVAL; |
| } |
| chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | |
| (fw->data[1] << 8) | fw->data[0]; |
| asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], |
| fw->size - 4, ADV_38C0800_MEMSIZE, |
| chksum); |
| release_firmware(fw); |
| if (asc_dvc->err_code) |
| return ADV_ERROR; |
| |
| /* |
| * Restore the RISC memory BIOS region. |
| */ |
| for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { |
| AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), |
| bios_mem[i]); |
| } |
| |
| /* |
| * Calculate and write the microcode code checksum to the microcode |
| * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); |
| AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); |
| code_sum = 0; |
| AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); |
| for (word = begin_addr; word < end_addr; word += 2) { |
| code_sum += AdvReadWordAutoIncLram(iop_base); |
| } |
| AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); |
| |
| /* |
| * Read microcode version and date. |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, |
| asc_dvc->cfg->mcode_date); |
| AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, |
| asc_dvc->cfg->mcode_version); |
| |
| /* |
| * Set the chip type to indicate the ASC38C0800. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); |
| |
| /* |
| * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. |
| * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current |
| * cable detection and then we are able to read C_DET[3:0]. |
| * |
| * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 |
| * Microcode Default Value' section below. |
| */ |
| scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); |
| AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, |
| scsi_cfg1 | DIS_TERM_DRV); |
| |
| /* |
| * If the PCI Configuration Command Register "Parity Error Response |
| * Control" Bit was clear (0), then set the microcode variable |
| * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode |
| * to ignore DMA parity errors. |
| */ |
| if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { |
| AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); |
| word |= CONTROL_FLAG_IGNORE_PERR; |
| AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); |
| } |
| |
| /* |
| * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] |
| * bits for the default FIFO threshold. |
| * |
| * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. |
| * |
| * For DMA Errata #4 set the BC_THRESH_ENB bit. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, |
| BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | |
| READ_CMD_MRM); |
| |
| /* |
| * Microcode operating variables for WDTR, SDTR, and command tag |
| * queuing will be set in slave_configure() based on what a |
| * device reports it is capable of in Inquiry byte 7. |
| * |
| * If SCSI Bus Resets have been disabled, then directly set |
| * SDTR and WDTR from the EEPROM configuration. This will allow |
| * the BIOS and warm boot to work without a SCSI bus hang on |
| * the Inquiry caused by host and target mismatched DTR values. |
| * Without the SCSI Bus Reset, before an Inquiry a device can't |
| * be assumed to be in Asynchronous, Narrow mode. |
| */ |
| if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { |
| AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, |
| asc_dvc->wdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, |
| asc_dvc->sdtr_able); |
| } |
| |
| /* |
| * Set microcode operating variables for DISC and SDTR_SPEED1, |
| * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM |
| * configuration values. |
| * |
| * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, |
| * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them |
| * without determining here whether the device supports SDTR. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, |
| asc_dvc->cfg->disc_enable); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); |
| |
| /* |
| * Set SCSI_CFG0 Microcode Default Value. |
| * |
| * The microcode will set the SCSI_CFG0 register using this value |
| * after it is started below. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, |
| PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | |
| asc_dvc->chip_scsi_id); |
| |
| /* |
| * Determine SCSI_CFG1 Microcode Default Value. |
| * |
| * The microcode will set the SCSI_CFG1 register using this value |
| * after it is started below. |
| */ |
| |
| /* Read current SCSI_CFG1 Register value. */ |
| scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); |
| |
| /* |
| * If the internal narrow cable is reversed all of the SCSI_CTRL |
| * register signals will be set. Check for and return an error if |
| * this condition is found. |
| */ |
| if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { |
| asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * All kind of combinations of devices attached to one of four |
| * connectors are acceptable except HVD device attached. For example, |
| * LVD device can be attached to SE connector while SE device attached |
| * to LVD connector. If LVD device attached to SE connector, it only |
| * runs up to Ultra speed. |
| * |
| * If an HVD device is attached to one of LVD connectors, return an |
| * error. However, there is no way to detect HVD device attached to |
| * SE connectors. |
| */ |
| if (scsi_cfg1 & HVD) { |
| asc_dvc->err_code = ASC_IERR_HVD_DEVICE; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * If either SE or LVD automatic termination control is enabled, then |
| * set the termination value based on a table listed in a_condor.h. |
| * |
| * If manual termination was specified with an EEPROM setting then |
| * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready |
| * to be 'ored' into SCSI_CFG1. |
| */ |
| if ((asc_dvc->cfg->termination & TERM_SE) == 0) { |
| /* SE automatic termination control is enabled. */ |
| switch (scsi_cfg1 & C_DET_SE) { |
| /* TERM_SE_HI: on, TERM_SE_LO: on */ |
| case 0x1: |
| case 0x2: |
| case 0x3: |
| asc_dvc->cfg->termination |= TERM_SE; |
| break; |
| |
| /* TERM_SE_HI: on, TERM_SE_LO: off */ |
| case 0x0: |
| asc_dvc->cfg->termination |= TERM_SE_HI; |
| break; |
| } |
| } |
| |
| if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { |
| /* LVD automatic termination control is enabled. */ |
| switch (scsi_cfg1 & C_DET_LVD) { |
| /* TERM_LVD_HI: on, TERM_LVD_LO: on */ |
| case 0x4: |
| case 0x8: |
| case 0xC: |
| asc_dvc->cfg->termination |= TERM_LVD; |
| break; |
| |
| /* TERM_LVD_HI: off, TERM_LVD_LO: off */ |
| case 0x0: |
| break; |
| } |
| } |
| |
| /* |
| * Clear any set TERM_SE and TERM_LVD bits. |
| */ |
| scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); |
| |
| /* |
| * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. |
| */ |
| scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); |
| |
| /* |
| * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE |
| * bits and set possibly modified termination control bits in the |
| * Microcode SCSI_CFG1 Register Value. |
| */ |
| scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); |
| |
| /* |
| * Set SCSI_CFG1 Microcode Default Value |
| * |
| * Set possibly modified termination control and reset DIS_TERM_DRV |
| * bits in the Microcode SCSI_CFG1 Register Value. |
| * |
| * The microcode will set the SCSI_CFG1 register using this value |
| * after it is started below. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); |
| |
| /* |
| * Set MEM_CFG Microcode Default Value |
| * |
| * The microcode will set the MEM_CFG register using this value |
| * after it is started below. |
| * |
| * MEM_CFG may be accessed as a word or byte, but only bits 0-7 |
| * are defined. |
| * |
| * ASC-38C0800 has 16KB internal memory. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, |
| BIOS_EN | RAM_SZ_16KB); |
| |
| /* |
| * Set SEL_MASK Microcode Default Value |
| * |
| * The microcode will set the SEL_MASK register using this value |
| * after it is started below. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, |
| ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); |
| |
| AdvBuildCarrierFreelist(asc_dvc); |
| |
| /* |
| * Set-up the Host->RISC Initiator Command Queue (ICQ). |
| */ |
| |
| asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); |
| if (!asc_dvc->icq_sp) { |
| ASC_DBG(0, "Failed to get ICQ carrier\n"); |
| asc_dvc->err_code |= ASC_IERR_NO_CARRIER; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Set RISC ICQ physical address start value. |
| * carr_pa is LE, must be native before write |
| */ |
| AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); |
| |
| /* |
| * Set-up the RISC->Host Initiator Response Queue (IRQ). |
| */ |
| asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); |
| if (!asc_dvc->irq_sp) { |
| ASC_DBG(0, "Failed to get IRQ carrier\n"); |
| asc_dvc->err_code |= ASC_IERR_NO_CARRIER; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Set RISC IRQ physical address start value. |
| * |
| * carr_pa is LE, must be native before write * |
| */ |
| AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); |
| asc_dvc->carr_pending_cnt = 0; |
| |
| AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, |
| (ADV_INTR_ENABLE_HOST_INTR | |
| ADV_INTR_ENABLE_GLOBAL_INTR)); |
| |
| AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); |
| AdvWriteWordRegister(iop_base, IOPW_PC, word); |
| |
| /* finally, finally, gentlemen, start your engine */ |
| AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); |
| |
| /* |
| * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus |
| * Resets should be performed. The RISC has to be running |
| * to issue a SCSI Bus Reset. |
| */ |
| if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { |
| /* |
| * If the BIOS Signature is present in memory, restore the |
| * BIOS Handshake Configuration Table and do not perform |
| * a SCSI Bus Reset. |
| */ |
| if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == |
| 0x55AA) { |
| /* |
| * Restore per TID negotiated values. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, |
| tagqng_able); |
| for (tid = 0; tid <= ADV_MAX_TID; tid++) { |
| AdvWriteByteLram(iop_base, |
| ASC_MC_NUMBER_OF_MAX_CMD + tid, |
| max_cmd[tid]); |
| } |
| } else { |
| if (AdvResetSB(asc_dvc) != ADV_TRUE) { |
| warn_code = ASC_WARN_BUSRESET_ERROR; |
| } |
| } |
| } |
| |
| return warn_code; |
| } |
| |
| /* |
| * Initialize the ASC-38C1600. |
| * |
| * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. |
| * |
| * For a non-fatal error return a warning code. If there are no warnings |
| * then 0 is returned. |
| * |
| * Needed after initialization for error recovery. |
| */ |
| static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) |
| { |
| const struct firmware *fw; |
| const char fwname[] = "advansys/38C1600.bin"; |
| AdvPortAddr iop_base; |
| ushort warn_code; |
| int begin_addr; |
| int end_addr; |
| ushort code_sum; |
| long word; |
| int i; |
| int err; |
| unsigned long chksum; |
| ushort scsi_cfg1; |
| uchar byte; |
| uchar tid; |
| ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ |
| ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; |
| uchar max_cmd[ASC_MAX_TID + 1]; |
| |
| /* If there is already an error, don't continue. */ |
| if (asc_dvc->err_code != 0) { |
| return ADV_ERROR; |
| } |
| |
| /* |
| * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. |
| */ |
| if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { |
| asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; |
| return ADV_ERROR; |
| } |
| |
| warn_code = 0; |
| iop_base = asc_dvc->iop_base; |
| |
| /* |
| * Save the RISC memory BIOS region before writing the microcode. |
| * The BIOS may already be loaded and using its RISC LRAM region |
| * so its region must be saved and restored. |
| * |
| * Note: This code makes the assumption, which is currently true, |
| * that a chip reset does not clear RISC LRAM. |
| */ |
| for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { |
| AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), |
| bios_mem[i]); |
| } |
| |
| /* |
| * Save current per TID negotiated values. |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); |
| AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); |
| AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); |
| AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); |
| for (tid = 0; tid <= ASC_MAX_TID; tid++) { |
| AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, |
| max_cmd[tid]); |
| } |
| |
| /* |
| * RAM BIST (Built-In Self Test) |
| * |
| * Address : I/O base + offset 0x38h register (byte). |
| * Function: Bit 7-6(RW) : RAM mode |
| * Normal Mode : 0x00 |
| * Pre-test Mode : 0x40 |
| * RAM Test Mode : 0x80 |
| * Bit 5 : unused |
| * Bit 4(RO) : Done bit |
| * Bit 3-0(RO) : Status |
| * Host Error : 0x08 |
| * Int_RAM Error : 0x04 |
| * RISC Error : 0x02 |
| * SCSI Error : 0x01 |
| * No Error : 0x00 |
| * |
| * Note: RAM BIST code should be put right here, before loading the |
| * microcode and after saving the RISC memory BIOS region. |
| */ |
| |
| /* |
| * LRAM Pre-test |
| * |
| * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. |
| * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return |
| * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset |
| * to NORMAL_MODE, return an error too. |
| */ |
| for (i = 0; i < 2; i++) { |
| AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); |
| mdelay(10); /* Wait for 10ms before reading back. */ |
| byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); |
| if ((byte & RAM_TEST_DONE) == 0 |
| || (byte & 0x0F) != PRE_TEST_VALUE) { |
| asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; |
| return ADV_ERROR; |
| } |
| |
| AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); |
| mdelay(10); /* Wait for 10ms before reading back. */ |
| if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) |
| != NORMAL_VALUE) { |
| asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; |
| return ADV_ERROR; |
| } |
| } |
| |
| /* |
| * LRAM Test - It takes about 1.5 ms to run through the test. |
| * |
| * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. |
| * If Done bit not set or Status not 0, save register byte, set the |
| * err_code, and return an error. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); |
| mdelay(10); /* Wait for 10ms before checking status. */ |
| |
| byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); |
| if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { |
| /* Get here if Done bit not set or Status not 0. */ |
| asc_dvc->bist_err_code = byte; /* for BIOS display message */ |
| asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; |
| return ADV_ERROR; |
| } |
| |
| /* We need to reset back to normal mode after LRAM test passes. */ |
| AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); |
| |
| err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); |
| if (err) { |
| printk(KERN_ERR "Failed to load image \"%s\" err %d\n", |
| fwname, err); |
| asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; |
| return err; |
| } |
| if (fw->size < 4) { |
| printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", |
| fw->size, fwname); |
| release_firmware(fw); |
| asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; |
| return -EINVAL; |
| } |
| chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | |
| (fw->data[1] << 8) | fw->data[0]; |
| asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], |
| fw->size - 4, ADV_38C1600_MEMSIZE, |
| chksum); |
| release_firmware(fw); |
| if (asc_dvc->err_code) |
| return ADV_ERROR; |
| |
| /* |
| * Restore the RISC memory BIOS region. |
| */ |
| for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { |
| AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), |
| bios_mem[i]); |
| } |
| |
| /* |
| * Calculate and write the microcode code checksum to the microcode |
| * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); |
| AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); |
| code_sum = 0; |
| AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); |
| for (word = begin_addr; word < end_addr; word += 2) { |
| code_sum += AdvReadWordAutoIncLram(iop_base); |
| } |
| AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); |
| |
| /* |
| * Read microcode version and date. |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, |
| asc_dvc->cfg->mcode_date); |
| AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, |
| asc_dvc->cfg->mcode_version); |
| |
| /* |
| * Set the chip type to indicate the ASC38C1600. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); |
| |
| /* |
| * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. |
| * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current |
| * cable detection and then we are able to read C_DET[3:0]. |
| * |
| * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 |
| * Microcode Default Value' section below. |
| */ |
| scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); |
| AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, |
| scsi_cfg1 | DIS_TERM_DRV); |
| |
| /* |
| * If the PCI Configuration Command Register "Parity Error Response |
| * Control" Bit was clear (0), then set the microcode variable |
| * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode |
| * to ignore DMA parity errors. |
| */ |
| if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { |
| AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); |
| word |= CONTROL_FLAG_IGNORE_PERR; |
| AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); |
| } |
| |
| /* |
| * If the BIOS control flag AIPP (Asynchronous Information |
| * Phase Protection) disable bit is not set, then set the firmware |
| * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable |
| * AIPP checking and encoding. |
| */ |
| if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { |
| AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); |
| word |= CONTROL_FLAG_ENABLE_AIPP; |
| AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); |
| } |
| |
| /* |
| * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], |
| * and START_CTL_TH [3:2]. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, |
| FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); |
| |
| /* |
| * Microcode operating variables for WDTR, SDTR, and command tag |
| * queuing will be set in slave_configure() based on what a |
| * device reports it is capable of in Inquiry byte 7. |
| * |
| * If SCSI Bus Resets have been disabled, then directly set |
| * SDTR and WDTR from the EEPROM configuration. This will allow |
| * the BIOS and warm boot to work without a SCSI bus hang on |
| * the Inquiry caused by host and target mismatched DTR values. |
| * Without the SCSI Bus Reset, before an Inquiry a device can't |
| * be assumed to be in Asynchronous, Narrow mode. |
| */ |
| if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { |
| AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, |
| asc_dvc->wdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, |
| asc_dvc->sdtr_able); |
| } |
| |
| /* |
| * Set microcode operating variables for DISC and SDTR_SPEED1, |
| * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM |
| * configuration values. |
| * |
| * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, |
| * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them |
| * without determining here whether the device supports SDTR. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, |
| asc_dvc->cfg->disc_enable); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); |
| |
| /* |
| * Set SCSI_CFG0 Microcode Default Value. |
| * |
| * The microcode will set the SCSI_CFG0 register using this value |
| * after it is started below. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, |
| PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | |
| asc_dvc->chip_scsi_id); |
| |
| /* |
| * Calculate SCSI_CFG1 Microcode Default Value. |
| * |
| * The microcode will set the SCSI_CFG1 register using this value |
| * after it is started below. |
| * |
| * Each ASC-38C1600 function has only two cable detect bits. |
| * The bus mode override bits are in IOPB_SOFT_OVER_WR. |
| */ |
| scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); |
| |
| /* |
| * If the cable is reversed all of the SCSI_CTRL register signals |
| * will be set. Check for and return an error if this condition is |
| * found. |
| */ |
| if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { |
| asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Each ASC-38C1600 function has two connectors. Only an HVD device |
| * can not be connected to either connector. An LVD device or SE device |
| * may be connected to either connecor. If an SE device is connected, |
| * then at most Ultra speed (20 Mhz) can be used on both connectors. |
| * |
| * If an HVD device is attached, return an error. |
| */ |
| if (scsi_cfg1 & HVD) { |
| asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Each function in the ASC-38C1600 uses only the SE cable detect and |
| * termination because there are two connectors for each function. Each |
| * function may use either LVD or SE mode. Corresponding the SE automatic |
| * termination control EEPROM bits are used for each function. Each |
| * function has its own EEPROM. If SE automatic control is enabled for |
| * the function, then set the termination value based on a table listed |
| * in a_condor.h. |
| * |
| * If manual termination is specified in the EEPROM for the function, |
| * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is |
| * ready to be 'ored' into SCSI_CFG1. |
| */ |
| if ((asc_dvc->cfg->termination & TERM_SE) == 0) { |
| struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); |
| /* SE automatic termination control is enabled. */ |
| switch (scsi_cfg1 & C_DET_SE) { |
| /* TERM_SE_HI: on, TERM_SE_LO: on */ |
| case 0x1: |
| case 0x2: |
| case 0x3: |
| asc_dvc->cfg->termination |= TERM_SE; |
| break; |
| |
| case 0x0: |
| if (PCI_FUNC(pdev->devfn) == 0) { |
| /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ |
| } else { |
| /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ |
| asc_dvc->cfg->termination |= TERM_SE_HI; |
| } |
| break; |
| } |
| } |
| |
| /* |
| * Clear any set TERM_SE bits. |
| */ |
| scsi_cfg1 &= ~TERM_SE; |
| |
| /* |
| * Invert the TERM_SE bits and then set 'scsi_cfg1'. |
| */ |
| scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); |
| |
| /* |
| * Clear Big Endian and Terminator Polarity bits and set possibly |
| * modified termination control bits in the Microcode SCSI_CFG1 |
| * Register Value. |
| * |
| * Big Endian bit is not used even on big endian machines. |
| */ |
| scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); |
| |
| /* |
| * Set SCSI_CFG1 Microcode Default Value |
| * |
| * Set possibly modified termination control bits in the Microcode |
| * SCSI_CFG1 Register Value. |
| * |
| * The microcode will set the SCSI_CFG1 register using this value |
| * after it is started below. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); |
| |
| /* |
| * Set MEM_CFG Microcode Default Value |
| * |
| * The microcode will set the MEM_CFG register using this value |
| * after it is started below. |
| * |
| * MEM_CFG may be accessed as a word or byte, but only bits 0-7 |
| * are defined. |
| * |
| * ASC-38C1600 has 32KB internal memory. |
| * |
| * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come |
| * out a special 16K Adv Library and Microcode version. After the issue |
| * resolved, we should turn back to the 32K support. Both a_condor.h and |
| * mcode.sas files also need to be updated. |
| * |
| * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, |
| * BIOS_EN | RAM_SZ_32KB); |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, |
| BIOS_EN | RAM_SZ_16KB); |
| |
| /* |
| * Set SEL_MASK Microcode Default Value |
| * |
| * The microcode will set the SEL_MASK register using this value |
| * after it is started below. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, |
| ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); |
| |
| AdvBuildCarrierFreelist(asc_dvc); |
| |
| /* |
| * Set-up the Host->RISC Initiator Command Queue (ICQ). |
| */ |
| asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); |
| if (!asc_dvc->icq_sp) { |
| asc_dvc->err_code |= ASC_IERR_NO_CARRIER; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Set RISC ICQ physical address start value. Initialize the |
| * COMMA register to the same value otherwise the RISC will |
| * prematurely detect a command is available. |
| */ |
| AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); |
| AdvWriteDWordRegister(iop_base, IOPDW_COMMA, |
| le32_to_cpu(asc_dvc->icq_sp->carr_pa)); |
| |
| /* |
| * Set-up the RISC->Host Initiator Response Queue (IRQ). |
| */ |
| asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); |
| if (!asc_dvc->irq_sp) { |
| asc_dvc->err_code |= ASC_IERR_NO_CARRIER; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Set RISC IRQ physical address start value. |
| */ |
| AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); |
| asc_dvc->carr_pending_cnt = 0; |
| |
| AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, |
| (ADV_INTR_ENABLE_HOST_INTR | |
| ADV_INTR_ENABLE_GLOBAL_INTR)); |
| AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); |
| AdvWriteWordRegister(iop_base, IOPW_PC, word); |
| |
| /* finally, finally, gentlemen, start your engine */ |
| AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); |
| |
| /* |
| * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus |
| * Resets should be performed. The RISC has to be running |
| * to issue a SCSI Bus Reset. |
| */ |
| if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { |
| /* |
| * If the BIOS Signature is present in memory, restore the |
| * per TID microcode operating variables. |
| */ |
| if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == |
| 0x55AA) { |
| /* |
| * Restore per TID negotiated values. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, |
| tagqng_able); |
| for (tid = 0; tid <= ASC_MAX_TID; tid++) { |
| AdvWriteByteLram(iop_base, |
| ASC_MC_NUMBER_OF_MAX_CMD + tid, |
| max_cmd[tid]); |
| } |
| } else { |
| if (AdvResetSB(asc_dvc) != ADV_TRUE) { |
| warn_code = ASC_WARN_BUSRESET_ERROR; |
| } |
| } |
| } |
| |
| return warn_code; |
| } |
| |
| /* |
| * Reset chip and SCSI Bus. |
| * |
| * Return Value: |
| * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. |
| * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. |
| */ |
| static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) |
| { |
| int status; |
| ushort wdtr_able, sdtr_able, tagqng_able; |
| ushort ppr_able = 0; |
| uchar tid, max_cmd[ADV_MAX_TID + 1]; |
| AdvPortAddr iop_base; |
| ushort bios_sig; |
| |
| iop_base = asc_dvc->iop_base; |
| |
| /* |
| * Save current per TID negotiated values. |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); |
| AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); |
| if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { |
| AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); |
| } |
| AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); |
| for (tid = 0; tid <= ADV_MAX_TID; tid++) { |
| AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, |
| max_cmd[tid]); |
| } |
| |
| /* |
| * Force the AdvInitAsc3550/38C0800Driver() function to |
| * perform a SCSI Bus Reset by clearing the BIOS signature word. |
| * The initialization functions assumes a SCSI Bus Reset is not |
| * needed if the BIOS signature word is present. |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); |
| AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); |
| |
| /* |
| * Stop chip and reset it. |
| */ |
| AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); |
| AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); |
| mdelay(100); |
| AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, |
| ADV_CTRL_REG_CMD_WR_IO_REG); |
| |
| /* |
| * Reset Adv Library error code, if any, and try |
| * re-initializing the chip. |
| */ |
| asc_dvc->err_code = 0; |
| if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { |
| status = AdvInitAsc38C1600Driver(asc_dvc); |
| } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { |
| status = AdvInitAsc38C0800Driver(asc_dvc); |
| } else { |
| status = AdvInitAsc3550Driver(asc_dvc); |
| } |
| |
| /* Translate initialization return value to status value. */ |
| if (status == 0) { |
| status = ADV_TRUE; |
| } else { |
| status = ADV_FALSE; |
| } |
| |
| /* |
| * Restore the BIOS signature word. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); |
| |
| /* |
| * Restore per TID negotiated values. |
| */ |
| AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); |
| if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { |
| AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); |
| } |
| AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); |
| for (tid = 0; tid <= ADV_MAX_TID; tid++) { |
| AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, |
| max_cmd[tid]); |
| } |
| |
| return status; |
| } |
| |
| /* |
| * adv_async_callback() - Adv Library asynchronous event callback function. |
| */ |
| static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) |
| { |
| switch (code) { |
| case ADV_ASYNC_SCSI_BUS_RESET_DET: |
| /* |
| * The firmware detected a SCSI Bus reset. |
| */ |
| ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); |
| break; |
| |
| case ADV_ASYNC_RDMA_FAILURE: |
| /* |
| * Handle RDMA failure by resetting the SCSI Bus and |
| * possibly the chip if it is unresponsive. Log the error |
| * with a unique code. |
| */ |
| ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); |
| AdvResetChipAndSB(adv_dvc_varp); |
| break; |
| |
| case ADV_HOST_SCSI_BUS_RESET: |
| /* |
| * Host generated SCSI bus reset occurred. |
| */ |
| ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); |
| break; |
| |
| default: |
| ASC_DBG(0, "unknown code 0x%x\n", code); |
| break; |
| } |
| } |
| |
| /* |
| * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). |
| * |
| * Callback function for the Wide SCSI Adv Library. |
| */ |
| static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) |
| { |
| struct asc_board *boardp = adv_dvc_varp->drv_ptr; |
| adv_req_t *reqp; |
| adv_sgblk_t *sgblkp; |
| struct scsi_cmnd *scp; |
| u32 resid_cnt; |
| dma_addr_t sense_addr; |
| |
| ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n", |
| adv_dvc_varp, scsiqp); |
| ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); |
| |
| /* |
| * Get the adv_req_t structure for the command that has been |
| * completed. The adv_req_t structure actually contains the |
| * completed ADV_SCSI_REQ_Q structure. |
| */ |
| scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag); |
| |
| ASC_DBG(1, "scp 0x%p\n", scp); |
| if (scp == NULL) { |
| ASC_PRINT |
| ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); |
| return; |
| } |
| ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); |
| |
| reqp = (adv_req_t *)scp->host_scribble; |
| ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); |
| if (reqp == NULL) { |
| ASC_PRINT("adv_isr_callback: reqp is NULL\n"); |
| return; |
| } |
| /* |
| * Remove backreferences to avoid duplicate |
| * command completions. |
| */ |
| scp->host_scribble = NULL; |
| reqp->cmndp = NULL; |
| |
| ASC_STATS(boardp->shost, callback); |
| ASC_DBG(1, "shost 0x%p\n", boardp->shost); |
| |
| sense_addr = le32_to_cpu(scsiqp->sense_addr); |
| dma_unmap_single(boardp->dev, sense_addr, |
| SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); |
| |
| /* |
| * 'done_status' contains the command's ending status. |
| */ |
| switch (scsiqp->done_status) { |
| case QD_NO_ERROR: |
| ASC_DBG(2, "QD_NO_ERROR\n"); |
| scp->result = 0; |
| |
| /* |
| * Check for an underrun condition. |
| * |
| * If there was no error and an underrun condition, then |
| * then return the number of underrun bytes. |
| */ |
| resid_cnt = le32_to_cpu(scsiqp->data_cnt); |
| if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && |
| resid_cnt <= scsi_bufflen(scp)) { |
| ASC_DBG(1, "underrun condition %lu bytes\n", |
| (ulong)resid_cnt); |
| scsi_set_resid(scp, resid_cnt); |
| } |
| break; |
| |
| case QD_WITH_ERROR: |
| ASC_DBG(2, "QD_WITH_ERROR\n"); |
| switch (scsiqp->host_status) { |
| case QHSTA_NO_ERROR: |
| if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { |
| ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); |
| ASC_DBG_PRT_SENSE(2, scp->sense_buffer, |
| SCSI_SENSE_BUFFERSIZE); |
| /* |
| * Note: The 'status_byte()' macro used by |
| * target drivers defined in scsi.h shifts the |
| * status byte returned by host drivers right |
| * by 1 bit. This is why target drivers also |
| * use right shifted status byte definitions. |
| * For instance target drivers use |
| * CHECK_CONDITION, defined to 0x1, instead of |
| * the SCSI defined check condition value of |
| * 0x2. Host drivers are supposed to return |
| * the status byte as it is defined by SCSI. |
| */ |
| scp->result = DRIVER_BYTE(DRIVER_SENSE) | |
| STATUS_BYTE(scsiqp->scsi_status); |
| } else { |
| scp->result = STATUS_BYTE(scsiqp->scsi_status); |
| } |
| break; |
| |
| default: |
| /* Some other QHSTA error occurred. */ |
| ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); |
| scp->result = HOST_BYTE(DID_BAD_TARGET); |
| break; |
| } |
| break; |
| |
| case QD_ABORTED_BY_HOST: |
| ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); |
| scp->result = |
| HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status); |
| break; |
| |
| default: |
| ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); |
| scp->result = |
| HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status); |
| break; |
| } |
| |
| /* |
| * If the 'init_tidmask' bit isn't already set for the target and the |
| * current request finished normally, then set the bit for the target |
| * to indicate that a device is present. |
| */ |
| if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && |
| scsiqp->done_status == QD_NO_ERROR && |
| scsiqp->host_status == QHSTA_NO_ERROR) { |
| boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); |
| } |
| |
| asc_scsi_done(scp); |
| |
| /* |
| * Free all 'adv_sgblk_t' structures allocated for the request. |
| */ |
| while ((sgblkp = reqp->sgblkp) != NULL) { |
| /* Remove 'sgblkp' from the request list. */ |
| reqp->sgblkp = sgblkp->next_sgblkp; |
| |
| dma_pool_free(boardp->adv_sgblk_pool, sgblkp, |
| sgblkp->sg_addr); |
| } |
| |
| ASC_DBG(1, "done\n"); |
| } |
| |
| /* |
| * Adv Library Interrupt Service Routine |
| * |
| * This function is called by a driver's interrupt service routine. |
| * The function disables and re-enables interrupts. |
| * |
| * When a microcode idle command is completed, the ADV_DVC_VAR |
| * 'idle_cmd_done' field is set to ADV_TRUE. |
| * |
| * Note: AdvISR() can be called when interrupts are disabled or even |
| * when there is no hardware interrupt condition present. It will |
| * always check for completed idle commands and microcode requests. |
| * This is an important feature that shouldn't be changed because it |
| * allows commands to be completed from polling mode loops. |
| * |
| * Return: |
| * ADV_TRUE(1) - interrupt was pending |
| * ADV_FALSE(0) - no interrupt was pending |
| */ |
| static int AdvISR(ADV_DVC_VAR *asc_dvc) |
| { |
| AdvPortAddr iop_base; |
| uchar int_stat; |
| ushort target_bit; |
| ADV_CARR_T *free_carrp; |
| __le32 irq_next_vpa; |
| ADV_SCSI_REQ_Q *scsiq; |
| adv_req_t *reqp; |
| |
| iop_base = asc_dvc->iop_base; |
| |
| /* Reading the register clears the interrupt. */ |
| int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); |
| |
| if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | |
| ADV_INTR_STATUS_INTRC)) == 0) { |
| return ADV_FALSE; |
| } |
| |
| /* |
| * Notify the driver of an asynchronous microcode condition by |
| * calling the adv_async_callback function. The function |
| * is passed the microcode ASC_MC_INTRB_CODE byte value. |
| */ |
| if (int_stat & ADV_INTR_STATUS_INTRB) { |
| uchar intrb_code; |
| |
| AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); |
| |
| if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || |
| asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { |
| if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && |
| asc_dvc->carr_pending_cnt != 0) { |
| AdvWriteByteRegister(iop_base, IOPB_TICKLE, |
| ADV_TICKLE_A); |
| if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { |
| AdvWriteByteRegister(iop_base, |
| IOPB_TICKLE, |
| ADV_TICKLE_NOP); |
| } |
| } |
| } |
| |
| adv_async_callback(asc_dvc, intrb_code); |
| } |
| |
| /* |
| * Check if the IRQ stopper carrier contains a completed request. |
| */ |
| while (((irq_next_vpa = |
| le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) { |
| /* |
| * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. |
| * The RISC will have set 'areq_vpa' to a virtual address. |
| * |
| * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr |
| * field to the carrier ADV_CARR_T.areq_vpa field. The conversion |
| * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr' |
| * in AdvExeScsiQueue(). |
| */ |
| u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa); |
| ASC_DBG(1, "irq_sp %p areq_vpa %u\n", |
| asc_dvc->irq_sp, pa_offset); |
| reqp = adv_get_reqp(asc_dvc, pa_offset); |
| scsiq = &reqp->scsi_req_q; |
| |
| /* |
| * Request finished with good status and the queue was not |
| * DMAed to host memory by the firmware. Set all status fields |
| * to indicate good status. |
| */ |
| if ((irq_next_vpa & ADV_RQ_GOOD) != 0) { |
| scsiq->done_status = QD_NO_ERROR; |
| scsiq->host_status = scsiq->scsi_status = 0; |
| scsiq->data_cnt = 0L; |
| } |
| |
| /* |
| * Advance the stopper pointer to the next carrier |
| * ignoring the lower four bits. Free the previous |
| * stopper carrier. |
| */ |
| free_carrp = asc_dvc->irq_sp; |
| asc_dvc->irq_sp = adv_get_carrier(asc_dvc, |
| ADV_GET_CARRP(irq_next_vpa)); |
| |
| free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va; |
| asc_dvc->carr_freelist = free_carrp; |
| asc_dvc->carr_pending_cnt--; |
| |
| target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id); |
| |
| /* |
| * Clear request microcode control flag. |
| */ |
| scsiq->cntl = 0; |
| |
| /* |
| * Notify the driver of the completed request by passing |
| * the ADV_SCSI_REQ_Q pointer to its callback function. |
| */ |
| adv_isr_callback(asc_dvc, scsiq); |
| /* |
| * Note: After the driver callback function is called, 'scsiq' |
| * can no longer be referenced. |
| * |
| * Fall through and continue processing other completed |
| * requests... |
| */ |
| } |
| return ADV_TRUE; |
| } |
| |
| static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) |
| { |
| if (asc_dvc->err_code == 0) { |
| asc_dvc->err_code = err_code; |
| AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, |
| err_code); |
| } |
| return err_code; |
| } |
| |
| static void AscAckInterrupt(PortAddr iop_base) |
| { |
| uchar host_flag; |
| uchar risc_flag; |
| ushort loop; |
| |
| loop = 0; |
| do { |
| risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); |
| if (loop++ > 0x7FFF) { |
| break; |
| } |
| } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); |
| host_flag = |
| AscReadLramByte(iop_base, |
| ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); |
| AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, |
| (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); |
| AscSetChipStatus(iop_base, CIW_INT_ACK); |
| loop = 0; |
| while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { |
| AscSetChipStatus(iop_base, CIW_INT_ACK); |
| if (loop++ > 3) { |
| break; |
| } |
| } |
| AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); |
| } |
| |
| static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) |
| { |
| const uchar *period_table; |
| int max_index; |
| int min_index; |
| int i; |
| |
| period_table = asc_dvc->sdtr_period_tbl; |
| max_index = (int)asc_dvc->max_sdtr_index; |
| min_index = (int)asc_dvc->min_sdtr_index; |
| if ((syn_time <= period_table[max_index])) { |
| for (i = min_index; i < (max_index - 1); i++) { |
| if (syn_time <= period_table[i]) { |
| return (uchar)i; |
| } |
| } |
| return (uchar)max_index; |
| } else { |
| return (uchar)(max_index + 1); |
| } |
| } |
| |
| static uchar |
| AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) |
| { |
| PortAddr iop_base = asc_dvc->iop_base; |
| uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); |
| EXT_MSG sdtr_buf = { |
| .msg_type = EXTENDED_MESSAGE, |
| .msg_len = MS_SDTR_LEN, |
| .msg_req = EXTENDED_SDTR, |
| .xfer_period = sdtr_period, |
| .req_ack_offset = sdtr_offset, |
| }; |
| sdtr_offset &= ASC_SYN_MAX_OFFSET; |
| |
| if (sdtr_period_index <= asc_dvc->max_sdtr_index) { |
| AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, |
| (uchar *)&sdtr_buf, |
| sizeof(EXT_MSG) >> 1); |
| return ((sdtr_period_index << 4) | sdtr_offset); |
| } else { |
| sdtr_buf.req_ack_offset = 0; |
| AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, |
| (uchar *)&sdtr_buf, |
| sizeof(EXT_MSG) >> 1); |
| return 0; |
| } |
| } |
| |
| static uchar |
| AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) |
| { |
| uchar byte; |
| uchar sdtr_period_ix; |
| |
| sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); |
| if (sdtr_period_ix > asc_dvc->max_sdtr_index) |
| return 0xFF; |
| byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); |
| return byte; |
| } |
| |
| static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) |
| { |
| ASC_SCSI_BIT_ID_TYPE org_id; |
| int i; |
| bool sta = true; |
| |
| AscSetBank(iop_base, 1); |
| org_id = AscReadChipDvcID(iop_base); |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| if (org_id == (0x01 << i)) |
| break; |
| } |
| org_id = (ASC_SCSI_BIT_ID_TYPE) i; |
| AscWriteChipDvcID(iop_base, id); |
| if (AscReadChipDvcID(iop_base) == (0x01 << id)) { |
| AscSetBank(iop_base, 0); |
| AscSetChipSyn(iop_base, sdtr_data); |
| if (AscGetChipSyn(iop_base) != sdtr_data) { |
| sta = false; |
| } |
| } else { |
| sta = false; |
| } |
| AscSetBank(iop_base, 1); |
| AscWriteChipDvcID(iop_base, org_id); |
| AscSetBank(iop_base, 0); |
| return (sta); |
| } |
| |
| static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) |
| { |
| AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); |
| AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); |
| } |
| |
| static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) |
| { |
| EXT_MSG ext_msg; |
| EXT_MSG out_msg; |
| ushort halt_q_addr; |
| bool sdtr_accept; |
| ushort int_halt_code; |
| ASC_SCSI_BIT_ID_TYPE scsi_busy; |
| ASC_SCSI_BIT_ID_TYPE target_id; |
| PortAddr iop_base; |
| uchar tag_code; |
| uchar q_status; |
| uchar halt_qp; |
| uchar sdtr_data; |
| uchar target_ix; |
| uchar q_cntl, tid_no; |
| uchar cur_dvc_qng; |
| uchar asyn_sdtr; |
| uchar scsi_status; |
| struct asc_board *boardp; |
| |
| BUG_ON(!asc_dvc->drv_ptr); |
| boardp = asc_dvc->drv_ptr; |
| |
| iop_base = asc_dvc->iop_base; |
| int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); |
| |
| halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); |
| halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); |
| target_ix = AscReadLramByte(iop_base, |
| (ushort)(halt_q_addr + |
| (ushort)ASC_SCSIQ_B_TARGET_IX)); |
| q_cntl = AscReadLramByte(iop_base, |
| (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); |
| tid_no = ASC_TIX_TO_TID(target_ix); |
| target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); |
| if (asc_dvc->pci_fix_asyn_xfer & target_id) { |
| asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; |
| } else { |
| asyn_sdtr = 0; |
| } |
| if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { |
| if (asc_dvc->pci_fix_asyn_xfer & target_id) { |
| AscSetChipSDTR(iop_base, 0, tid_no); |
| boardp->sdtr_data[tid_no] = 0; |
| } |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); |
| return; |
| } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { |
| if (asc_dvc->pci_fix_asyn_xfer & target_id) { |
| AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); |
| boardp->sdtr_data[tid_no] = asyn_sdtr; |
| } |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); |
| return; |
| } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { |
| AscMemWordCopyPtrFromLram(iop_base, |
| ASCV_MSGIN_BEG, |
| (uchar *)&ext_msg, |
| sizeof(EXT_MSG) >> 1); |
| |
| if (ext_msg.msg_type == EXTENDED_MESSAGE && |
| ext_msg.msg_req == EXTENDED_SDTR && |
| ext_msg.msg_len == MS_SDTR_LEN) { |
| sdtr_accept = true; |
| if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { |
| |
| sdtr_accept = false; |
| ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; |
| } |
| if ((ext_msg.xfer_period < |
| asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) |
| || (ext_msg.xfer_period > |
| asc_dvc->sdtr_period_tbl[asc_dvc-> |
| max_sdtr_index])) { |
| sdtr_accept = false; |
| ext_msg.xfer_period = |
| asc_dvc->sdtr_period_tbl[asc_dvc-> |
| min_sdtr_index]; |
| } |
| if (sdtr_accept) { |
| sdtr_data = |
| AscCalSDTRData(asc_dvc, ext_msg.xfer_period, |
| ext_msg.req_ack_offset); |
| if (sdtr_data == 0xFF) { |
| |
| q_cntl |= QC_MSG_OUT; |
| asc_dvc->init_sdtr &= ~target_id; |
| asc_dvc->sdtr_done &= ~target_id; |
| AscSetChipSDTR(iop_base, asyn_sdtr, |
| tid_no); |
| boardp->sdtr_data[tid_no] = asyn_sdtr; |
| } |
| } |
| if (ext_msg.req_ack_offset == 0) { |
| |
| q_cntl &= ~QC_MSG_OUT; |
| asc_dvc->init_sdtr &= ~target_id; |
| asc_dvc->sdtr_done &= ~target_id; |
| AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); |
| } else { |
| if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { |
| q_cntl &= ~QC_MSG_OUT; |
| asc_dvc->sdtr_done |= target_id; |
| asc_dvc->init_sdtr |= target_id; |
| asc_dvc->pci_fix_asyn_xfer &= |
| ~target_id; |
| sdtr_data = |
| AscCalSDTRData(asc_dvc, |
| ext_msg.xfer_period, |
| ext_msg. |
| req_ack_offset); |
| AscSetChipSDTR(iop_base, sdtr_data, |
| tid_no); |
| boardp->sdtr_data[tid_no] = sdtr_data; |
| } else { |
| q_cntl |= QC_MSG_OUT; |
| AscMsgOutSDTR(asc_dvc, |
| ext_msg.xfer_period, |
| ext_msg.req_ack_offset); |
| asc_dvc->pci_fix_asyn_xfer &= |
| ~target_id; |
| sdtr_data = |
| AscCalSDTRData(asc_dvc, |
| ext_msg.xfer_period, |
| ext_msg. |
| req_ack_offset); |
| AscSetChipSDTR(iop_base, sdtr_data, |
| tid_no); |
| boardp->sdtr_data[tid_no] = sdtr_data; |
| asc_dvc->sdtr_done |= target_id; |
| asc_dvc->init_sdtr |= target_id; |
| } |
| } |
| |
| AscWriteLramByte(iop_base, |
| (ushort)(halt_q_addr + |
| (ushort)ASC_SCSIQ_B_CNTL), |
| q_cntl); |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); |
| return; |
| } else if (ext_msg.msg_type == EXTENDED_MESSAGE && |
| ext_msg.msg_req == EXTENDED_WDTR && |
| ext_msg.msg_len == MS_WDTR_LEN) { |
| |
| ext_msg.wdtr_width = 0; |
| AscMemWordCopyPtrToLram(iop_base, |
| ASCV_MSGOUT_BEG, |
| (uchar *)&ext_msg, |
| sizeof(EXT_MSG) >> 1); |
| q_cntl |= QC_MSG_OUT; |
| AscWriteLramByte(iop_base, |
| (ushort)(halt_q_addr + |
| (ushort)ASC_SCSIQ_B_CNTL), |
| q_cntl); |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); |
| return; |
| } else { |
| |
| ext_msg.msg_type = MESSAGE_REJECT; |
| AscMemWordCopyPtrToLram(iop_base, |
| ASCV_MSGOUT_BEG, |
| (uchar *)&ext_msg, |
| sizeof(EXT_MSG) >> 1); |
| q_cntl |= QC_MSG_OUT; |
| AscWriteLramByte(iop_base, |
| (ushort)(halt_q_addr + |
| (ushort)ASC_SCSIQ_B_CNTL), |
| q_cntl); |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); |
| return; |
| } |
| } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { |
| |
| q_cntl |= QC_REQ_SENSE; |
| |
| if ((asc_dvc->init_sdtr & target_id) != 0) { |
| |
| asc_dvc->sdtr_done &= ~target_id; |
| |
| sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); |
| q_cntl |= QC_MSG_OUT; |
| AscMsgOutSDTR(asc_dvc, |
| asc_dvc-> |
| sdtr_period_tbl[(sdtr_data >> 4) & |
| (uchar)(asc_dvc-> |
| max_sdtr_index - |
| 1)], |
| (uchar)(sdtr_data & (uchar) |
| ASC_SYN_MAX_OFFSET)); |
| } |
| |
| AscWriteLramByte(iop_base, |
| (ushort)(halt_q_addr + |
| (ushort)ASC_SCSIQ_B_CNTL), q_cntl); |
| |
| tag_code = AscReadLramByte(iop_base, |
| (ushort)(halt_q_addr + (ushort) |
| ASC_SCSIQ_B_TAG_CODE)); |
| tag_code &= 0xDC; |
| if ((asc_dvc->pci_fix_asyn_xfer & target_id) |
| && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) |
| ) { |
| |
| tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT |
| | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); |
| |
| } |
| AscWriteLramByte(iop_base, |
| (ushort)(halt_q_addr + |
| (ushort)ASC_SCSIQ_B_TAG_CODE), |
| tag_code); |
| |
| q_status = AscReadLramByte(iop_base, |
| (ushort)(halt_q_addr + (ushort) |
| ASC_SCSIQ_B_STATUS)); |
| q_status |= (QS_READY | QS_BUSY); |
| AscWriteLramByte(iop_base, |
| (ushort)(halt_q_addr + |
| (ushort)ASC_SCSIQ_B_STATUS), |
| q_status); |
| |
| scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); |
| scsi_busy &= ~target_id; |
| AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); |
| |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); |
| return; |
| } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { |
| |
| AscMemWordCopyPtrFromLram(iop_base, |
| ASCV_MSGOUT_BEG, |
| (uchar *)&out_msg, |
| sizeof(EXT_MSG) >> 1); |
| |
| if ((out_msg.msg_type == EXTENDED_MESSAGE) && |
| (out_msg.msg_len == MS_SDTR_LEN) && |
| (out_msg.msg_req == EXTENDED_SDTR)) { |
| |
| asc_dvc->init_sdtr &= ~target_id; |
| asc_dvc->sdtr_done &= ~target_id; |
| AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); |
| boardp->sdtr_data[tid_no] = asyn_sdtr; |
| } |
| q_cntl &= ~QC_MSG_OUT; |
| AscWriteLramByte(iop_base, |
| (ushort)(halt_q_addr + |
| (ushort)ASC_SCSIQ_B_CNTL), q_cntl); |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); |
| return; |
| } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { |
| |
| scsi_status = AscReadLramByte(iop_base, |
| (ushort)((ushort)halt_q_addr + |
| (ushort) |
| ASC_SCSIQ_SCSI_STATUS)); |
| cur_dvc_qng = |
| AscReadLramByte(iop_base, |
| (ushort)((ushort)ASC_QADR_BEG + |
| (ushort)target_ix)); |
| if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { |
| |
| scsi_busy = AscReadLramByte(iop_base, |
| (ushort)ASCV_SCSIBUSY_B); |
| scsi_busy |= target_id; |
| AscWriteLramByte(iop_base, |
| (ushort)ASCV_SCSIBUSY_B, scsi_busy); |
| asc_dvc->queue_full_or_busy |= target_id; |
| |
| if (scsi_status == SAM_STAT_TASK_SET_FULL) { |
| if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { |
| cur_dvc_qng -= 1; |
| asc_dvc->max_dvc_qng[tid_no] = |
| cur_dvc_qng; |
| |
| AscWriteLramByte(iop_base, |
| (ushort)((ushort) |
| ASCV_MAX_DVC_QNG_BEG |
| + (ushort) |
| tid_no), |
| cur_dvc_qng); |
| |
| /* |
| * Set the device queue depth to the |
| * number of active requests when the |
| * QUEUE FULL condition was encountered. |
| */ |
| boardp->queue_full |= target_id; |
| boardp->queue_full_cnt[tid_no] = |
| cur_dvc_qng; |
| } |
| } |
| } |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); |
| return; |
| } |
| return; |
| } |
| |
| /* |
| * void |
| * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) |
| * |
| * Calling/Exit State: |
| * none |
| * |
| * Description: |
| * Input an ASC_QDONE_INFO structure from the chip |
| */ |
| static void |
| DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) |
| { |
| int i; |
| ushort word; |
| |
| AscSetChipLramAddr(iop_base, s_addr); |
| for (i = 0; i < 2 * words; i += 2) { |
| if (i == 10) { |
| continue; |
| } |
| word = inpw(iop_base + IOP_RAM_DATA); |
| inbuf[i] = word & 0xff; |
| inbuf[i + 1] = (word >> 8) & 0xff; |
| } |
| ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); |
| } |
| |
| static uchar |
| _AscCopyLramScsiDoneQ(PortAddr iop_base, |
| ushort q_addr, |
| ASC_QDONE_INFO *scsiq, unsigned int max_dma_count) |
| { |
| ushort _val; |
| uchar sg_queue_cnt; |
| |
| DvcGetQinfo(iop_base, |
| q_addr + ASC_SCSIQ_DONE_INFO_BEG, |
| (uchar *)scsiq, |
| (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); |
| |
| _val = AscReadLramWord(iop_base, |
| (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); |
| scsiq->q_status = (uchar)_val; |
| scsiq->q_no = (uchar)(_val >> 8); |
| _val = AscReadLramWord(iop_base, |
| (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); |
| scsiq->cntl = (uchar)_val; |
| sg_queue_cnt = (uchar)(_val >> 8); |
| _val = AscReadLramWord(iop_base, |
| (ushort)(q_addr + |
| (ushort)ASC_SCSIQ_B_SENSE_LEN)); |
| scsiq->sense_len = (uchar)_val; |
| scsiq->extra_bytes = (uchar)(_val >> 8); |
| |
| /* |
| * Read high word of remain bytes from alternate location. |
| */ |
| scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base, |
| (ushort)(q_addr + |
| (ushort) |
| ASC_SCSIQ_W_ALT_DC1))) |
| << 16); |
| /* |
| * Read low word of remain bytes from original location. |
| */ |
| scsiq->remain_bytes += AscReadLramWord(iop_base, |
| (ushort)(q_addr + (ushort) |
| ASC_SCSIQ_DW_REMAIN_XFER_CNT)); |
| |
| scsiq->remain_bytes &= max_dma_count; |
| return sg_queue_cnt; |
| } |
| |
| /* |
| * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). |
| * |
| * Interrupt callback function for the Narrow SCSI Asc Library. |
| */ |
| static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) |
| { |
| struct asc_board *boardp = asc_dvc_varp->drv_ptr; |
| u32 srb_tag; |
| struct scsi_cmnd *scp; |
| |
| ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); |
| ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); |
| |
| /* |
| * Decrease the srb_tag by 1 to find the SCSI command |
| */ |
| srb_tag = qdonep->d2.srb_tag - 1; |
| scp = scsi_host_find_tag(boardp->shost, srb_tag); |
| if (!scp) |
| return; |
| |
| ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); |
| |
| ASC_STATS(boardp->shost, callback); |
| |
| dma_unmap_single(boardp->dev, scp->SCp.dma_handle, |
| SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); |
| /* |
| * 'qdonep' contains the command's ending status. |
| */ |
| switch (qdonep->d3.done_stat) { |
| case QD_NO_ERROR: |
| ASC_DBG(2, "QD_NO_ERROR\n"); |
| scp->result = 0; |
| |
| /* |
| * Check for an underrun condition. |
| * |
| * If there was no error and an underrun condition, then |
| * return the number of underrun bytes. |
| */ |
| if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && |
| qdonep->remain_bytes <= scsi_bufflen(scp)) { |
| ASC_DBG(1, "underrun condition %u bytes\n", |
| (unsigned)qdonep->remain_bytes); |
| scsi_set_resid(scp, qdonep->remain_bytes); |
| } |
| break; |
| |
| case QD_WITH_ERROR: |
| ASC_DBG(2, "QD_WITH_ERROR\n"); |
| switch (qdonep->d3.host_stat) { |
| case QHSTA_NO_ERROR: |
| if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { |
| ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); |
| ASC_DBG_PRT_SENSE(2, scp->sense_buffer, |
| SCSI_SENSE_BUFFERSIZE); |
| /* |
| * Note: The 'status_byte()' macro used by |
| * target drivers defined in scsi.h shifts the |
| * status byte returned by host drivers right |
| * by 1 bit. This is why target drivers also |
| * use right shifted status byte definitions. |
| * For instance target drivers use |
| * CHECK_CONDITION, defined to 0x1, instead of |
| * the SCSI defined check condition value of |
| * 0x2. Host drivers are supposed to return |
| * the status byte as it is defined by SCSI. |
| */ |
| scp->result = DRIVER_BYTE(DRIVER_SENSE) | |
| STATUS_BYTE(qdonep->d3.scsi_stat); |
| } else { |
| scp->result = STATUS_BYTE(qdonep->d3.scsi_stat); |
| } |
| break; |
| |
| default: |
| /* QHSTA error occurred */ |
| ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); |
| scp->result = HOST_BYTE(DID_BAD_TARGET); |
| break; |
| } |
| break; |
| |
| case QD_ABORTED_BY_HOST: |
| ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); |
| scp->result = |
| HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3. |
| scsi_msg) | |
| STATUS_BYTE(qdonep->d3.scsi_stat); |
| break; |
| |
| default: |
| ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); |
| scp->result = |
| HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3. |
| scsi_msg) | |
| STATUS_BYTE(qdonep->d3.scsi_stat); |
| break; |
| } |
| |
| /* |
| * If the 'init_tidmask' bit isn't already set for the target and the |
| * current request finished normally, then set the bit for the target |
| * to indicate that a device is present. |
| */ |
| if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && |
| qdonep->d3.done_stat == QD_NO_ERROR && |
| qdonep->d3.host_stat == QHSTA_NO_ERROR) { |
| boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); |
| } |
| |
| asc_scsi_done(scp); |
| } |
| |
| static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) |
| { |
| uchar next_qp; |
| uchar n_q_used; |
| uchar sg_list_qp; |
| uchar sg_queue_cnt; |
| uchar q_cnt; |
| uchar done_q_tail; |
| uchar tid_no; |
| ASC_SCSI_BIT_ID_TYPE scsi_busy; |
| ASC_SCSI_BIT_ID_TYPE target_id; |
| PortAddr iop_base; |
| ushort q_addr; |
| ushort sg_q_addr; |
| uchar cur_target_qng; |
| ASC_QDONE_INFO scsiq_buf; |
| ASC_QDONE_INFO *scsiq; |
| bool false_overrun; |
| |
| iop_base = asc_dvc->iop_base; |
| n_q_used = 1; |
| scsiq = (ASC_QDONE_INFO *)&scsiq_buf; |
| done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); |
| q_addr = ASC_QNO_TO_QADDR(done_q_tail); |
| next_qp = AscReadLramByte(iop_base, |
| (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); |
| if (next_qp != ASC_QLINK_END) { |
| AscPutVarDoneQTail(iop_base, next_qp); |
| q_addr = ASC_QNO_TO_QADDR(next_qp); |
| sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, |
| asc_dvc->max_dma_count); |
| AscWriteLramByte(iop_base, |
| (ushort)(q_addr + |
| (ushort)ASC_SCSIQ_B_STATUS), |
| (uchar)(scsiq-> |
| q_status & (uchar)~(QS_READY | |
| QS_ABORTED))); |
| tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); |
| target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); |
| if ((scsiq->cntl & QC_SG_HEAD) != 0) { |
| sg_q_addr = q_addr; |
| sg_list_qp = next_qp; |
| for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { |
| sg_list_qp = AscReadLramByte(iop_base, |
| (ushort)(sg_q_addr |
| + (ushort) |
| ASC_SCSIQ_B_FWD)); |
| sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); |
| if (sg_list_qp == ASC_QLINK_END) { |
| AscSetLibErrorCode(asc_dvc, |
| ASCQ_ERR_SG_Q_LINKS); |
| scsiq->d3.done_stat = QD_WITH_ERROR; |
| scsiq->d3.host_stat = |
| QHSTA_D_QDONE_SG_LIST_CORRUPTED; |
| goto FATAL_ERR_QDONE; |
| } |
| AscWriteLramByte(iop_base, |
| (ushort)(sg_q_addr + (ushort) |
| ASC_SCSIQ_B_STATUS), |
| QS_FREE); |
| } |
| n_q_used = sg_queue_cnt + 1; |
| AscPutVarDoneQTail(iop_base, sg_list_qp); |
| } |
| if (asc_dvc->queue_full_or_busy & target_id) { |
| cur_target_qng = AscReadLramByte(iop_base, |
| (ushort)((ushort) |
| ASC_QADR_BEG |
| + (ushort) |
| scsiq->d2. |
| target_ix)); |
| if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { |
| scsi_busy = AscReadLramByte(iop_base, (ushort) |
| ASCV_SCSIBUSY_B); |
| scsi_busy &= ~target_id; |
| AscWriteLramByte(iop_base, |
| (ushort)ASCV_SCSIBUSY_B, |
| scsi_busy); |
| asc_dvc->queue_full_or_busy &= ~target_id; |
| } |
| } |
| if (asc_dvc->cur_total_qng >= n_q_used) { |
| asc_dvc->cur_total_qng -= n_q_used; |
| if (asc_dvc->cur_dvc_qng[tid_no] != 0) { |
| asc_dvc->cur_dvc_qng[tid_no]--; |
| } |
| } else { |
| AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); |
| scsiq->d3.done_stat = QD_WITH_ERROR; |
| goto FATAL_ERR_QDONE; |
| } |
| if ((scsiq->d2.srb_tag == 0UL) || |
| ((scsiq->q_status & QS_ABORTED) != 0)) { |
| return (0x11); |
| } else if (scsiq->q_status == QS_DONE) { |
| /* |
| * This is also curious. |
| * false_overrun will _always_ be set to 'false' |
| */ |
| false_overrun = false; |
| if (scsiq->extra_bytes != 0) { |
| scsiq->remain_bytes += scsiq->extra_bytes; |
| } |
| if (scsiq->d3.done_stat == QD_WITH_ERROR) { |
| if (scsiq->d3.host_stat == |
| QHSTA_M_DATA_OVER_RUN) { |
| if ((scsiq-> |
| cntl & (QC_DATA_IN | QC_DATA_OUT)) |
| == 0) { |
| scsiq->d3.done_stat = |
| QD_NO_ERROR; |
| scsiq->d3.host_stat = |
| QHSTA_NO_ERROR; |
| } else if (false_overrun) { |
| scsiq->d3.done_stat = |
| QD_NO_ERROR; |
| scsiq->d3.host_stat = |
| QHSTA_NO_ERROR; |
| } |
| } else if (scsiq->d3.host_stat == |
| QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { |
| AscStopChip(iop_base); |
| AscSetChipControl(iop_base, |
| (uchar)(CC_SCSI_RESET |
| | CC_HALT)); |
| udelay(60); |
| AscSetChipControl(iop_base, CC_HALT); |
| AscSetChipStatus(iop_base, |
| CIW_CLR_SCSI_RESET_INT); |
| AscSetChipStatus(iop_base, 0); |
| AscSetChipControl(iop_base, 0); |
| } |
| } |
| if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { |
| asc_isr_callback(asc_dvc, scsiq); |
| } else { |
| if ((AscReadLramByte(iop_base, |
| (ushort)(q_addr + (ushort) |
| ASC_SCSIQ_CDB_BEG)) |
| == START_STOP)) { |
| asc_dvc->unit_not_ready &= ~target_id; |
| if (scsiq->d3.done_stat != QD_NO_ERROR) { |
| asc_dvc->start_motor &= |
| ~target_id; |
| } |
| } |
| } |
| return (1); |
| } else { |
| AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); |
| FATAL_ERR_QDONE: |
| if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { |
| asc_isr_callback(asc_dvc, scsiq); |
| } |
| return (0x80); |
| } |
| } |
| return (0); |
| } |
| |
| static int AscISR(ASC_DVC_VAR *asc_dvc) |
| { |
| ASC_CS_TYPE chipstat; |
| PortAddr iop_base; |
| ushort saved_ram_addr; |
| uchar ctrl_reg; |
| uchar saved_ctrl_reg; |
| int int_pending; |
| int status; |
| uchar host_flag; |
| |
| iop_base = asc_dvc->iop_base; |
| int_pending = ASC_FALSE; |
| |
| if (AscIsIntPending(iop_base) == 0) |
| return int_pending; |
| |
| if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { |
| return ASC_ERROR; |
| } |
| if (asc_dvc->in_critical_cnt != 0) { |
| AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); |
| return ASC_ERROR; |
| } |
| if (asc_dvc->is_in_int) { |
| AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); |
| return ASC_ERROR; |
| } |
| asc_dvc->is_in_int = true; |
| ctrl_reg = AscGetChipControl(iop_base); |
| saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | |
| CC_SINGLE_STEP | CC_DIAG | CC_TEST)); |
| chipstat = AscGetChipStatus(iop_base); |
| if (chipstat & CSW_SCSI_RESET_LATCH) { |
| if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { |
| int i = 10; |
| int_pending = ASC_TRUE; |
| asc_dvc->sdtr_done = 0; |
| saved_ctrl_reg &= (uchar)(~CC_HALT); |
| while ((AscGetChipStatus(iop_base) & |
| CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { |
| mdelay(100); |
| } |
| AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); |
| AscSetChipControl(iop_base, CC_HALT); |
| AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); |
| AscSetChipStatus(iop_base, 0); |
| chipstat = AscGetChipStatus(iop_base); |
| } |
| } |
| saved_ram_addr = AscGetChipLramAddr(iop_base); |
| host_flag = AscReadLramByte(iop_base, |
| ASCV_HOST_FLAG_B) & |
| (uchar)(~ASC_HOST_FLAG_IN_ISR); |
| AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, |
| (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); |
| if ((chipstat & CSW_INT_PENDING) || (int_pending)) { |
| AscAckInterrupt(iop_base); |
| int_pending = ASC_TRUE; |
| if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { |
| AscIsrChipHalted(asc_dvc); |
| saved_ctrl_reg &= (uchar)(~CC_HALT); |
| } else { |
| if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { |
| while (((status = |
| AscIsrQDone(asc_dvc)) & 0x01) != 0) { |
| } |
| } else { |
| do { |
| if ((status = |
| AscIsrQDone(asc_dvc)) == 1) { |
| break; |
| } |
| } while (status == 0x11); |
| } |
| if ((status & 0x80) != 0) |
| int_pending = ASC_ERROR; |
| } |
| } |
| AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); |
| AscSetChipLramAddr(iop_base, saved_ram_addr); |
| AscSetChipControl(iop_base, saved_ctrl_reg); |
| asc_dvc->is_in_int = false; |
| return int_pending; |
| } |
| |
| /* |
| * advansys_reset() |
| * |
| * Reset the host associated with the command 'scp'. |
| * |
| * This function runs its own thread. Interrupts must be blocked but |
| * sleeping is allowed and no locking other than for host structures is |
| * required. Returns SUCCESS or FAILED. |
| */ |
| static int advansys_reset(struct scsi_cmnd *scp) |
| { |
| struct Scsi_Host *shost = scp->device->host; |
| struct asc_board *boardp = shost_priv(shost); |
| unsigned long flags; |
| int status; |
| int ret = SUCCESS; |
| |
| ASC_DBG(1, "0x%p\n", scp); |
| |
| ASC_STATS(shost, reset); |
| |
| scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n"); |
| |
| if (ASC_NARROW_BOARD(boardp)) { |
| ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; |
| |
| /* Reset the chip and SCSI bus. */ |
| ASC_DBG(1, "before AscInitAsc1000Driver()\n"); |
| status = AscInitAsc1000Driver(asc_dvc); |
| |
| /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ |
| if (asc_dvc->err_code || !asc_dvc->overrun_dma) { |
| scmd_printk(KERN_INFO, scp, "SCSI host reset error: " |
| "0x%x, status: 0x%x\n", asc_dvc->err_code, |
| status); |
| ret = FAILED; |
| } else if (status) { |
| scmd_printk(KERN_INFO, scp, "SCSI host reset warning: " |
| "0x%x\n", status); |
| } else { |
| scmd_printk(KERN_INFO, scp, "SCSI host reset " |
| "successful\n"); |
| } |
| |
| ASC_DBG(1, "after AscInitAsc1000Driver()\n"); |
| } else { |
| /* |
| * If the suggest reset bus flags are set, then reset the bus. |
| * Otherwise only reset the device. |
| */ |
| ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; |
| |
| /* |
| * Reset the chip and SCSI bus. |
| */ |
| ASC_DBG(1, "before AdvResetChipAndSB()\n"); |
| switch (AdvResetChipAndSB(adv_dvc)) { |
| case ASC_TRUE: |
| scmd_printk(KERN_INFO, scp, "SCSI host reset " |
| "successful\n"); |
| break; |
| case ASC_FALSE: |
| default: |
| scmd_printk(KERN_INFO, scp, "SCSI host reset error\n"); |
| ret = FAILED; |
| break; |
| } |
| spin_lock_irqsave(shost->host_lock, flags); |
| AdvISR(adv_dvc); |
| spin_unlock_irqrestore(shost->host_lock, flags); |
| } |
| |
| ASC_DBG(1, "ret %d\n", ret); |
| |
| return ret; |
| } |
| |
| /* |
| * advansys_biosparam() |
| * |
| * Translate disk drive geometry if the "BIOS greater than 1 GB" |
| * support is enabled for a drive. |
| * |
| * ip (information pointer) is an int array with the following definition: |
| * ip[0]: heads |
| * ip[1]: sectors |
| * ip[2]: cylinders |
| */ |
| static int |
| advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev, |
| sector_t capacity, int ip[]) |
| { |
| struct asc_board *boardp = shost_priv(sdev->host); |
| |
| ASC_DBG(1, "begin\n"); |
| ASC_STATS(sdev->host, biosparam); |
| if (ASC_NARROW_BOARD(boardp)) { |
| if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & |
| ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { |
| ip[0] = 255; |
| ip[1] = 63; |
| } else { |
| ip[0] = 64; |
| ip[1] = 32; |
| } |
| } else { |
| if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & |
| BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { |
| ip[0] = 255; |
| ip[1] = 63; |
| } else { |
| ip[0] = 64; |
| ip[1] = 32; |
| } |
| } |
| ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); |
| ASC_DBG(1, "end\n"); |
| return 0; |
| } |
| |
| /* |
| * First-level interrupt handler. |
| * |
| * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. |
| */ |
| static irqreturn_t advansys_interrupt(int irq, void *dev_id) |
| { |
| struct Scsi_Host *shost = dev_id; |
| struct asc_board *boardp = shost_priv(shost); |
| irqreturn_t result = IRQ_NONE; |
| unsigned long flags; |
| |
| ASC_DBG(2, "boardp 0x%p\n", boardp); |
| spin_lock_irqsave(shost->host_lock, flags); |
| if (ASC_NARROW_BOARD(boardp)) { |
| if (AscIsIntPending(shost->io_port)) { |
| result = IRQ_HANDLED; |
| ASC_STATS(shost, interrupt); |
| ASC_DBG(1, "before AscISR()\n"); |
| AscISR(&boardp->dvc_var.asc_dvc_var); |
| } |
| } else { |
| ASC_DBG(1, "before AdvISR()\n"); |
| if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { |
| result = IRQ_HANDLED; |
| ASC_STATS(shost, interrupt); |
| } |
| } |
| spin_unlock_irqrestore(shost->host_lock, flags); |
| |
| ASC_DBG(1, "end\n"); |
| return result; |
| } |
| |
| static bool AscHostReqRiscHalt(PortAddr iop_base) |
| { |
| int count = 0; |
| bool sta = false; |
| uchar saved_stop_code; |
| |
| if (AscIsChipHalted(iop_base)) |
| return true; |
| saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); |
| AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, |
| ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); |
| do { |
| if (AscIsChipHalted(iop_base)) { |
| sta = true; |
| break; |
| } |
| mdelay(100); |
| } while (count++ < 20); |
| AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); |
| return sta; |
| } |
| |
| static bool |
| AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) |
| { |
| bool sta = false; |
| |
| if (AscHostReqRiscHalt(iop_base)) { |
| sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); |
| AscStartChip(iop_base); |
| } |
| return sta; |
| } |
| |
| static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) |
| { |
| char type = sdev->type; |
| ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; |
| |
| if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) |
| return; |
| if (asc_dvc->init_sdtr & tid_bits) |
| return; |
| |
| if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) |
| asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; |
| |
| asc_dvc->pci_fix_asyn_xfer |= tid_bits; |
| if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || |
| (type == TYPE_ROM) || (type == TYPE_TAPE)) |
| asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; |
| |
| if (asc_dvc->pci_fix_asyn_xfer & tid_bits) |
| AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, |
| ASYN_SDTR_DATA_FIX_PCI_REV_AB); |
| } |
| |
| static void |
| advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) |
| { |
| ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; |
| ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; |
| |
| if (sdev->lun == 0) { |
| ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; |
| if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { |
| asc_dvc->init_sdtr |= tid_bit; |
| } else { |
| asc_dvc->init_sdtr &= ~tid_bit; |
| } |
| |
| if (orig_init_sdtr != asc_dvc->init_sdtr) |
| AscAsyncFix(asc_dvc, sdev); |
| } |
| |
| if (sdev->tagged_supported) { |
| if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { |
| if (sdev->lun == 0) { |
| asc_dvc->cfg->can_tagged_qng |= tid_bit; |
| asc_dvc->use_tagged_qng |= tid_bit; |
| } |
| scsi_change_queue_depth(sdev, |
| asc_dvc->max_dvc_qng[sdev->id]); |
| } |
| } else { |
| if (sdev->lun == 0) { |
| asc_dvc->cfg->can_tagged_qng &= ~tid_bit; |
| asc_dvc->use_tagged_qng &= ~tid_bit; |
| } |
| } |
| |
| if ((sdev->lun == 0) && |
| (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { |
| AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, |
| asc_dvc->cfg->disc_enable); |
| AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, |
| asc_dvc->use_tagged_qng); |
| AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, |
| asc_dvc->cfg->can_tagged_qng); |
| |
| asc_dvc->max_dvc_qng[sdev->id] = |
| asc_dvc->cfg->max_tag_qng[sdev->id]; |
| AscWriteLramByte(asc_dvc->iop_base, |
| (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), |
| asc_dvc->max_dvc_qng[sdev->id]); |
| } |
| } |
| |
| /* |
| * Wide Transfers |
| * |
| * If the EEPROM enabled WDTR for the device and the device supports wide |
| * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and |
| * write the new value to the microcode. |
| */ |
| static void |
| advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) |
| { |
| unsigned short cfg_word; |
| AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); |
| if ((cfg_word & tidmask) != 0) |
| return; |
| |
| cfg_word |= tidmask; |
| AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); |
| |
| /* |
| * Clear the microcode SDTR and WDTR negotiation done indicators for |
| * the target to cause it to negotiate with the new setting set above. |
| * WDTR when accepted causes the target to enter asynchronous mode, so |
| * SDTR must be negotiated. |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); |
| cfg_word &= ~tidmask; |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); |
| AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); |
| cfg_word &= ~tidmask; |
| AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); |
| } |
| |
| /* |
| * Synchronous Transfers |
| * |
| * If the EEPROM enabled SDTR for the device and the device |
| * supports synchronous transfers, then turn on the device's |
| * 'sdtr_able' bit. Write the new value to the microcode. |
| */ |
| static void |
| advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) |
| { |
| unsigned short cfg_word; |
| AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); |
| if ((cfg_word & tidmask) != 0) |
| return; |
| |
| cfg_word |= tidmask; |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); |
| |
| /* |
| * Clear the microcode "SDTR negotiation" done indicator for the |
| * target to cause it to negotiate with the new setting set above. |
| */ |
| AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); |
| cfg_word &= ~tidmask; |
| AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); |
| } |
| |
| /* |
| * PPR (Parallel Protocol Request) Capable |
| * |
| * If the device supports DT mode, then it must be PPR capable. |
| * The PPR message will be used in place of the SDTR and WDTR |
| * messages to negotiate synchronous speed and offset, transfer |
| * width, and protocol options. |
| */ |
| static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, |
| AdvPortAddr iop_base, unsigned short tidmask) |
| { |
| AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); |
| adv_dvc->ppr_able |= tidmask; |
| AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); |
| } |
| |
| static void |
| advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) |
| { |
| AdvPortAddr iop_base = adv_dvc->iop_base; |
| unsigned short tidmask = 1 << sdev->id; |
| |
| if (sdev->lun == 0) { |
| /* |
| * Handle WDTR, SDTR, and Tag Queuing. If the feature |
| * is enabled in the EEPROM and the device supports the |
| * feature, then enable it in the microcode. |
| */ |
| |
| if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) |
| advansys_wide_enable_wdtr(iop_base, tidmask); |
| if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) |
| advansys_wide_enable_sdtr(iop_base, tidmask); |
| if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) |
| advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); |
| |
| /* |
| * Tag Queuing is disabled for the BIOS which runs in polled |
| * mode and would see no benefit from Tag Queuing. Also by |
| * disabling Tag Queuing in the BIOS devices with Tag Queuing |
| * bugs will at least work with the BIOS. |
| */ |
| if ((adv_dvc->tagqng_able & tidmask) && |
| sdev->tagged_supported) { |
| unsigned short cfg_word; |
| AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); |
| cfg_word |= tidmask; |
| AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, |
| cfg_word); |
| AdvWriteByteLram(iop_base, |
| ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, |
| adv_dvc->max_dvc_qng); |
| } |
| } |
| |
| if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) |
| scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng); |
| } |
| |
| /* |
| * Set the number of commands to queue per device for the |
| * specified host adapter. |
| */ |
| static int advansys_slave_configure(struct scsi_device *sdev) |
| { |
| struct asc_board *boardp = shost_priv(sdev->host); |
| |
| if (ASC_NARROW_BOARD(boardp)) |
| advansys_narrow_slave_configure(sdev, |
| &boardp->dvc_var.asc_dvc_var); |
| else |
| advansys_wide_slave_configure(sdev, |
| &boardp->dvc_var.adv_dvc_var); |
| |
| return 0; |
| } |
| |
| static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp) |
| { |
| struct asc_board *board = shost_priv(scp->device->host); |
| |
| scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer, |
| SCSI_SENSE_BUFFERSIZE, |
| DMA_FROM_DEVICE); |
| if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) { |
| ASC_DBG(1, "failed to map sense buffer\n"); |
| return 0; |
| } |
| return cpu_to_le32(scp->SCp.dma_handle); |
| } |
| |
| static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, |
| struct asc_scsi_q *asc_scsi_q) |
| { |
| struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; |
| int use_sg; |
| u32 srb_tag; |
| |
| memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); |
| |
| /* |
| * Set the srb_tag to the command tag + 1, as |
| * srb_tag '0' is used internally by the chip. |
| */ |
| srb_tag = scp->request->tag + 1; |
| asc_scsi_q->q2.srb_tag = srb_tag; |
| |
| /* |
| * Build the ASC_SCSI_Q request. |
| */ |
| asc_scsi_q->cdbptr = &scp->cmnd[0]; |
| asc_scsi_q->q2.cdb_len = scp->cmd_len; |
| asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); |
| asc_scsi_q->q1.target_lun = scp->device->lun; |
| asc_scsi_q->q2.target_ix = |
| ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); |
| asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp); |
| asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; |
| if (!asc_scsi_q->q1.sense_addr) |
| return ASC_BUSY; |
| |
| /* |
| * If there are any outstanding requests for the current target, |
| * then every 255th request send an ORDERED request. This heuristic |
| * tries to retain the benefit of request sorting while preventing |
| * request starvation. 255 is the max number of tags or pending commands |
| * a device may have outstanding. |
| * |
| * The request count is incremented below for every successfully |
| * started request. |
| * |
| */ |
| if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && |
| (boardp->reqcnt[scp->device->id] % 255) == 0) { |
| asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG; |
| } else { |
| asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG; |
| } |
| |
| /* Build ASC_SCSI_Q */ |
| use_sg = scsi_dma_map(scp); |
| if (use_sg < 0) { |
| ASC_DBG(1, "failed to map sglist\n"); |
| return ASC_BUSY; |
| } else if (use_sg > 0) { |
| int sgcnt; |
| struct scatterlist *slp; |
| struct asc_sg_head *asc_sg_head; |
| |
| if (use_sg > scp->device->host->sg_tablesize) { |
| scmd_printk(KERN_ERR, scp, "use_sg %d > " |
| "sg_tablesize %d\n", use_sg, |
| scp->device->host->sg_tablesize); |
| scsi_dma_unmap(scp); |
| scp->result = HOST_BYTE(DID_ERROR); |
| return ASC_ERROR; |
| } |
| |
| asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) + |
| use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC); |
| if (!asc_sg_head) { |
| scsi_dma_unmap(scp); |
| scp->result = HOST_BYTE(DID_SOFT_ERROR); |
| return ASC_ERROR; |
| } |
| |
| asc_scsi_q->q1.cntl |= QC_SG_HEAD; |
| asc_scsi_q->sg_head = asc_sg_head; |
| asc_scsi_q->q1.data_cnt = 0; |
| asc_scsi_q->q1.data_addr = 0; |
| /* This is a byte value, otherwise it would need to be swapped. */ |
| asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; |
| ASC_STATS_ADD(scp->device->host, xfer_elem, |
| asc_sg_head->entry_cnt); |
| |
| /* |
| * Convert scatter-gather list into ASC_SG_HEAD list. |
| */ |
| scsi_for_each_sg(scp, slp, use_sg, sgcnt) { |
| asc_sg_head->sg_list[sgcnt].addr = |
| cpu_to_le32(sg_dma_address(slp)); |
| asc_sg_head->sg_list[sgcnt].bytes = |
| cpu_to_le32(sg_dma_len(slp)); |
| ASC_STATS_ADD(scp->device->host, xfer_sect, |
| DIV_ROUND_UP(sg_dma_len(slp), 512)); |
| } |
| } |
| |
| ASC_STATS(scp->device->host, xfer_cnt); |
| |
| ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); |
| ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); |
| |
| return ASC_NOERROR; |
| } |
| |
| /* |
| * Build scatter-gather list for Adv Library (Wide Board). |
| * |
| * Additional ADV_SG_BLOCK structures will need to be allocated |
| * if the total number of scatter-gather elements exceeds |
| * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are |
| * assumed to be physically contiguous. |
| * |
| * Return: |
| * ADV_SUCCESS(1) - SG List successfully created |
| * ADV_ERROR(-1) - SG List creation failed |
| */ |
| static int |
| adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, |
| ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg) |
| { |
| adv_sgblk_t *sgblkp, *prev_sgblkp; |
| struct scatterlist *slp; |
| int sg_elem_cnt; |
| ADV_SG_BLOCK *sg_block, *prev_sg_block; |
| dma_addr_t sgblk_paddr; |
| int i; |
| |
| slp = scsi_sglist(scp); |
| sg_elem_cnt = use_sg; |
| prev_sgblkp = NULL; |
| prev_sg_block = NULL; |
| reqp->sgblkp = NULL; |
| |
| for (;;) { |
| /* |
| * Allocate a 'adv_sgblk_t' structure from the board free |
| * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK |
| * (15) scatter-gather elements. |
| */ |
| sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC, |
| &sgblk_paddr); |
| if (!sgblkp) { |
| ASC_DBG(1, "no free adv_sgblk_t\n"); |
| ASC_STATS(scp->device->host, adv_build_nosg); |
| |
| /* |
| * Allocation failed. Free 'adv_sgblk_t' structures |
| * already allocated for the request. |
| */ |
| while ((sgblkp = reqp->sgblkp) != NULL) { |
| /* Remove 'sgblkp' from the request list. */ |
| reqp->sgblkp = sgblkp->next_sgblkp; |
| sgblkp->next_sgblkp = NULL; |
| dma_pool_free(boardp->adv_sgblk_pool, sgblkp, |
| sgblkp->sg_addr); |
| } |
| return ASC_BUSY; |
| } |
| /* Complete 'adv_sgblk_t' board allocation. */ |
| sgblkp->sg_addr = sgblk_paddr; |
| sgblkp->next_sgblkp = NULL; |
| sg_block = &sgblkp->sg_block; |
| |
| /* |
| * Check if this is the first 'adv_sgblk_t' for the |
| * request. |
| */ |
| if (reqp->sgblkp == NULL) { |
| /* Request's first scatter-gather block. */ |
| reqp->sgblkp = sgblkp; |
| |
| /* |
| * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical |
| * address pointers. |
| */ |
| scsiqp->sg_list_ptr = sg_block; |
| scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr); |
| } else { |
| /* Request's second or later scatter-gather block. */ |
| prev_sgblkp->next_sgblkp = sgblkp; |
| |
| /* |
| * Point the previous ADV_SG_BLOCK structure to |
| * the newly allocated ADV_SG_BLOCK structure. |
| */ |
| prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr); |
| } |
| |
| for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { |
| sg_block->sg_list[i].sg_addr = |
| cpu_to_le32(sg_dma_address(slp)); |
| sg_block->sg_list[i].sg_count = |
| cpu_to_le32(sg_dma_len(slp)); |
| ASC_STATS_ADD(scp->device->host, xfer_sect, |
| DIV_ROUND_UP(sg_dma_len(slp), 512)); |
| |
| if (--sg_elem_cnt == 0) { |
| /* |
| * Last ADV_SG_BLOCK and scatter-gather entry. |
| */ |
| sg_block->sg_cnt = i + 1; |
| sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */ |
| return ADV_SUCCESS; |
| } |
| slp++; |
| } |
| sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; |
| prev_sg_block = sg_block; |
| prev_sgblkp = sgblkp; |
| } |
| } |
| |
| /* |
| * Build a request structure for the Adv Library (Wide Board). |
| * |
| * If an adv_req_t can not be allocated to issue the request, |
| * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. |
| * |
| * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the |
| * microcode for DMA addresses or math operations are byte swapped |
| * to little-endian order. |
| */ |
| static int |
| adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, |
| adv_req_t **adv_reqpp) |
| { |
| u32 srb_tag = scp->request->tag; |
| adv_req_t *reqp; |
| ADV_SCSI_REQ_Q *scsiqp; |
| int ret; |
| int use_sg; |
| dma_addr_t sense_addr; |
| |
| /* |
| * Allocate an adv_req_t structure from the board to execute |
| * the command. |
| */ |
| reqp = &boardp->adv_reqp[srb_tag]; |
| if (reqp->cmndp && reqp->cmndp != scp ) { |
| ASC_DBG(1, "no free adv_req_t\n"); |
| ASC_STATS(scp->device->host, adv_build_noreq); |
| return ASC_BUSY; |
| } |
| |
| reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t)); |
| |
| scsiqp = &reqp->scsi_req_q; |
| |
| /* |
| * Initialize the structure. |
| */ |
| scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; |
| |
| /* |
| * Set the srb_tag to the command tag. |
| */ |
| scsiqp->srb_tag = srb_tag; |
| |
| /* |
| * Set 'host_scribble' to point to the adv_req_t structure. |
| */ |
| reqp->cmndp = scp; |
| scp->host_scribble = (void *)reqp; |
| |
| /* |
| * Build the ADV_SCSI_REQ_Q request. |
| */ |
| |
| /* Set CDB length and copy it to the request structure. */ |
| scsiqp->cdb_len = scp->cmd_len; |
| /* Copy first 12 CDB bytes to cdb[]. */ |
| memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12); |
| /* Copy last 4 CDB bytes, if present, to cdb16[]. */ |
| if (scp->cmd_len > 12) { |
| int cdb16_len = scp->cmd_len - 12; |
| |
| memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len); |
| } |
| |
| scsiqp->target_id = scp->device->id; |
| scsiqp->target_lun = scp->device->lun; |
| |
| sense_addr = dma_map_single(boardp->dev, scp->sense_buffer, |
| SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); |
| if (dma_mapping_error(boardp->dev, sense_addr)) { |
| ASC_DBG(1, "failed to map sense buffer\n"); |
| ASC_STATS(scp->device->host, adv_build_noreq); |
| return ASC_BUSY; |
| } |
| scsiqp->sense_addr = cpu_to_le32(sense_addr); |
| scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE; |
| |
| /* Build ADV_SCSI_REQ_Q */ |
| |
| use_sg = scsi_dma_map(scp); |
| if (use_sg < 0) { |
| ASC_DBG(1, "failed to map SG list\n"); |
| ASC_STATS(scp->device->host, adv_build_noreq); |
| return ASC_BUSY; |
| } else if (use_sg == 0) { |
| /* Zero-length transfer */ |
| reqp->sgblkp = NULL; |
| scsiqp->data_cnt = 0; |
| |
| scsiqp->data_addr = 0; |
| scsiqp->sg_list_ptr = NULL; |
| scsiqp->sg_real_addr = 0; |
| } else { |
| if (use_sg > ADV_MAX_SG_LIST) { |
| scmd_printk(KERN_ERR, scp, "use_sg %d > " |
| "ADV_MAX_SG_LIST %d\n", use_sg, |
| scp->device->host->sg_tablesize); |
| scsi_dma_unmap(scp); |
| scp->result = HOST_BYTE(DID_ERROR); |
| reqp->cmndp = NULL; |
| scp->host_scribble = NULL; |
| |
| return ASC_ERROR; |
| } |
| |
| scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); |
| |
| ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg); |
| if (ret != ADV_SUCCESS) { |
| scsi_dma_unmap(scp); |
| scp->result = HOST_BYTE(DID_ERROR); |
| reqp->cmndp = NULL; |
| scp->host_scribble = NULL; |
| |
| return ret; |
| } |
| |
| ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); |
| } |
| |
| ASC_STATS(scp->device->host, xfer_cnt); |
| |
| ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); |
| ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); |
| |
| *adv_reqpp = reqp; |
| |
| return ASC_NOERROR; |
| } |
| |
| static int AscSgListToQueue(int sg_list) |
| { |
| int n_sg_list_qs; |
| |
| n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); |
| if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) |
| n_sg_list_qs++; |
| return n_sg_list_qs + 1; |
| } |
| |
| static uint |
| AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) |
| { |
| uint cur_used_qs; |
| uint cur_free_qs; |
| ASC_SCSI_BIT_ID_TYPE target_id; |
| uchar tid_no; |
| |
| target_id = ASC_TIX_TO_TARGET_ID(target_ix); |
| tid_no = ASC_TIX_TO_TID(target_ix); |
| if ((asc_dvc->unit_not_ready & target_id) || |
| (asc_dvc->queue_full_or_busy & target_id)) { |
| return 0; |
| } |
| if (n_qs == 1) { |
| cur_used_qs = (uint) asc_dvc->cur_total_qng + |
| (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; |
| } else { |
| cur_used_qs = (uint) asc_dvc->cur_total_qng + |
| (uint) ASC_MIN_FREE_Q; |
| } |
| if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { |
| cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; |
| if (asc_dvc->cur_dvc_qng[tid_no] >= |
| asc_dvc->max_dvc_qng[tid_no]) { |
| return 0; |
| } |
| return cur_free_qs; |
| } |
| if (n_qs > 1) { |
| if ((n_qs > asc_dvc->last_q_shortage) |
| && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { |
| asc_dvc->last_q_shortage = n_qs; |
| } |
| } |
| return 0; |
| } |
| |
| static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) |
| { |
| ushort q_addr; |
| uchar next_qp; |
| uchar q_status; |
| |
| q_addr = ASC_QNO_TO_QADDR(free_q_head); |
| q_status = (uchar)AscReadLramByte(iop_base, |
| (ushort)(q_addr + |
| ASC_SCSIQ_B_STATUS)); |
| next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); |
| if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) |
| return next_qp; |
| return ASC_QLINK_END; |
| } |
| |
| static uchar |
| AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) |
| { |
| uchar i; |
| |
| for (i = 0; i < n_free_q; i++) { |
| free_q_head = AscAllocFreeQueue(iop_base, free_q_head); |
| if (free_q_head == ASC_QLINK_END) |
| break; |
| } |
| return free_q_head; |
| } |
| |
| /* |
| * void |
| * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) |
| * |
| * Calling/Exit State: |
| * none |
| * |
| * Description: |
| * Output an ASC_SCSI_Q structure to the chip |
| */ |
| static void |
| DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) |
| { |
| int i; |
| |
| ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); |
| AscSetChipLramAddr(iop_base, s_addr); |
| for (i = 0; i < 2 * words; i += 2) { |
| if (i == 4 || i == 20) { |
| continue; |
| } |
| outpw(iop_base + IOP_RAM_DATA, |
| ((ushort)outbuf[i + 1] << 8) | outbuf[i]); |
| } |
| } |
| |
| static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) |
| { |
| ushort q_addr; |
| uchar tid_no; |
| uchar sdtr_data; |
| uchar syn_period_ix; |
| uchar syn_offset; |
| PortAddr iop_base; |
| |
| iop_base = asc_dvc->iop_base; |
| if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && |
| ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { |
| tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); |
| sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); |
| syn_period_ix = |
| (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); |
| syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; |
| AscMsgOutSDTR(asc_dvc, |
| asc_dvc->sdtr_period_tbl[syn_period_ix], |
| syn_offset); |
| scsiq->q1.cntl |= QC_MSG_OUT; |
| } |
| q_addr = ASC_QNO_TO_QADDR(q_no); |
| if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { |
| scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; |
| } |
| scsiq->q1.status = QS_FREE; |
| AscMemWordCopyPtrToLram(iop_base, |
| q_addr + ASC_SCSIQ_CDB_BEG, |
| (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); |
| |
| DvcPutScsiQ(iop_base, |
| q_addr + ASC_SCSIQ_CPY_BEG, |
| (uchar *)&scsiq->q1.cntl, |
| ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); |
| AscWriteLramWord(iop_base, |
| (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), |
| (ushort)(((ushort)scsiq->q1. |
| q_no << 8) | (ushort)QS_READY)); |
| return 1; |
| } |
| |
| static int |
| AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) |
| { |
| int sta; |
| int i; |
| ASC_SG_HEAD *sg_head; |
| ASC_SG_LIST_Q scsi_sg_q; |
| __le32 saved_data_addr; |
| __le32 saved_data_cnt; |
| PortAddr iop_base; |
| ushort sg_list_dwords; |
| ushort sg_index; |
| ushort sg_entry_cnt; |
| ushort q_addr; |
| uchar next_qp; |
| |
| iop_base = asc_dvc->iop_base; |
| sg_head = scsiq->sg_head; |
| saved_data_addr = scsiq->q1.data_addr; |
| saved_data_cnt = scsiq->q1.data_cnt; |
| scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); |
| scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); |
| /* |
| * Set sg_entry_cnt to be the number of SG elements that |
| * will fit in the allocated SG queues. It is minus 1, because |
| * the first SG element is handled above. |
| */ |
| sg_entry_cnt = sg_head->entry_cnt - 1; |
| |
| if (sg_entry_cnt != 0) { |
| scsiq->q1.cntl |= QC_SG_HEAD; |
| q_addr = ASC_QNO_TO_QADDR(q_no); |
| sg_index = 1; |
| scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; |
| scsi_sg_q.sg_head_qp = q_no; |
| scsi_sg_q.cntl = QCSG_SG_XFER_LIST; |
| for (i = 0; i < sg_head->queue_cnt; i++) { |
| scsi_sg_q.seq_no = i + 1; |
| if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { |
| sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); |
| sg_entry_cnt -= ASC_SG_LIST_PER_Q; |
| if (i == 0) { |
| scsi_sg_q.sg_list_cnt = |
| ASC_SG_LIST_PER_Q; |
| scsi_sg_q.sg_cur_list_cnt = |
| ASC_SG_LIST_PER_Q; |
| } else { |
| scsi_sg_q.sg_list_cnt = |
| ASC_SG_LIST_PER_Q - 1; |
| scsi_sg_q.sg_cur_list_cnt = |
| ASC_SG_LIST_PER_Q - 1; |
| } |
| } else { |
| scsi_sg_q.cntl |= QCSG_SG_XFER_END; |
| sg_list_dwords = sg_entry_cnt << 1; |
| if (i == 0) { |
| scsi_sg_q.sg_list_cnt = sg_entry_cnt; |
| scsi_sg_q.sg_cur_list_cnt = |
| sg_entry_cnt; |
| } else { |
| scsi_sg_q.sg_list_cnt = |
| sg_entry_cnt - 1; |
| scsi_sg_q.sg_cur_list_cnt = |
| sg_entry_cnt - 1; |
| } |
| sg_entry_cnt = 0; |
| } |
| next_qp = AscReadLramByte(iop_base, |
| (ushort)(q_addr + |
| ASC_SCSIQ_B_FWD)); |
| scsi_sg_q.q_no = next_qp; |
| q_addr = ASC_QNO_TO_QADDR(next_qp); |
| AscMemWordCopyPtrToLram(iop_base, |
| q_addr + ASC_SCSIQ_SGHD_CPY_BEG, |
| (uchar *)&scsi_sg_q, |
| sizeof(ASC_SG_LIST_Q) >> 1); |
| AscMemDWordCopyPtrToLram(iop_base, |
| q_addr + ASC_SGQ_LIST_BEG, |
| (uchar *)&sg_head-> |
| sg_list[sg_index], |
| sg_list_dwords); |
| sg_index += ASC_SG_LIST_PER_Q; |
| scsiq->next_sg_index = sg_index; |
| } |
| } else { |
| scsiq->q1.cntl &= ~QC_SG_HEAD; |
| } |
| sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); |
| scsiq->q1.data_addr = saved_data_addr; |
| scsiq->q1.data_cnt = saved_data_cnt; |
| return (sta); |
| } |
| |
| static int |
| AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) |
| { |
| PortAddr iop_base; |
| uchar free_q_head; |
| uchar next_qp; |
| uchar tid_no; |
| uchar target_ix; |
| int sta; |
| |
| iop_base = asc_dvc->iop_base; |
| target_ix = scsiq->q2.target_ix; |
| tid_no = ASC_TIX_TO_TID(target_ix); |
| sta = 0; |
| free_q_head = (uchar)AscGetVarFreeQHead(iop_base); |
| if (n_q_required > 1) { |
| next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, |
| (uchar)n_q_required); |
| if (next_qp != ASC_QLINK_END) { |
| asc_dvc->last_q_shortage = 0; |
| scsiq->sg_head->queue_cnt = n_q_required - 1; |
| scsiq->q1.q_no = free_q_head; |
| sta = AscPutReadySgListQueue(asc_dvc, scsiq, |
| free_q_head); |
| } |
| } else if (n_q_required == 1) { |
| next_qp = AscAllocFreeQueue(iop_base, free_q_head); |
| if (next_qp != ASC_QLINK_END) { |
| scsiq->q1.q_no = free_q_head; |
| sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); |
| } |
| } |
| if (sta == 1) { |
| AscPutVarFreeQHead(iop_base, next_qp); |
| asc_dvc->cur_total_qng += n_q_required; |
| asc_dvc->cur_dvc_qng[tid_no]++; |
| } |
| return sta; |
| } |
| |
| #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 |
| static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { |
| INQUIRY, |
| REQUEST_SENSE, |
| READ_CAPACITY, |
| READ_TOC, |
| MODE_SELECT, |
| MODE_SENSE, |
| MODE_SELECT_10, |
| MODE_SENSE_10, |
| 0xFF, |
| 0xFF, |
| 0xFF, |
| 0xFF, |
| 0xFF, |
| 0xFF, |
| 0xFF, |
| 0xFF |
| }; |
| |
| static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) |
| { |
| PortAddr iop_base; |
| int sta; |
| int n_q_required; |
| bool disable_syn_offset_one_fix; |
| int i; |
| u32 addr; |
| ushort sg_entry_cnt = 0; |
| ushort sg_entry_cnt_minus_one = 0; |
| uchar target_ix; |
| uchar tid_no; |
| uchar sdtr_data; |
| uchar extra_bytes; |
| uchar scsi_cmd; |
| uchar disable_cmd; |
| ASC_SG_HEAD *sg_head; |
| unsigned long data_cnt; |
| |
| iop_base = asc_dvc->iop_base; |
| sg_head = scsiq->sg_head; |
| if (asc_dvc->err_code != 0) |
| return ASC_ERROR; |
| scsiq->q1.q_no = 0; |
| if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { |
| scsiq->q1.extra_bytes = 0; |
| } |
| sta = 0; |
| target_ix = scsiq->q2.target_ix; |
| tid_no = ASC_TIX_TO_TID(target_ix); |
| n_q_required = 1; |
| if (scsiq->cdbptr[0] == REQUEST_SENSE) { |
| if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { |
| asc_dvc->sdtr_done &= ~scsiq->q1.target_id; |
| sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); |
| AscMsgOutSDTR(asc_dvc, |
| asc_dvc-> |
| sdtr_period_tbl[(sdtr_data >> 4) & |
| (uchar)(asc_dvc-> |
| max_sdtr_index - |
| 1)], |
| (uchar)(sdtr_data & (uchar) |
| ASC_SYN_MAX_OFFSET)); |
| scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); |
| } |
| } |
| if (asc_dvc->in_critical_cnt != 0) { |
| AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); |
| return ASC_ERROR; |
| } |
| asc_dvc->in_critical_cnt++; |
| if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { |
| if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { |
| asc_dvc->in_critical_cnt--; |
| return ASC_ERROR; |
| } |
| if (sg_entry_cnt > ASC_MAX_SG_LIST) { |
| asc_dvc->in_critical_cnt--; |
| return ASC_ERROR; |
| } |
| if (sg_entry_cnt == 1) { |
| scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); |
| scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); |
| scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); |
| } |
| sg_entry_cnt_minus_one = sg_entry_cnt - 1; |
| } |
| scsi_cmd = scsiq->cdbptr[0]; |
| disable_syn_offset_one_fix = false; |
| if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && |
| !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { |
| if (scsiq->q1.cntl & QC_SG_HEAD) { |
| data_cnt = 0; |
| for (i = 0; i < sg_entry_cnt; i++) { |
| data_cnt += le32_to_cpu(sg_head->sg_list[i]. |
| bytes); |
| } |
| } else { |
| data_cnt = le32_to_cpu(scsiq->q1.data_cnt); |
| } |
| if (data_cnt != 0UL) { |
| if (data_cnt < 512UL) { |
| disable_syn_offset_one_fix = true; |
| } else { |
| for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; |
| i++) { |
| disable_cmd = |
| _syn_offset_one_disable_cmd[i]; |
| if (disable_cmd == 0xFF) { |
| break; |
| } |
| if (scsi_cmd == disable_cmd) { |
| disable_syn_offset_one_fix = |
| true; |
| break; |
| } |
| } |
| } |
| } |
| } |
| if (disable_syn_offset_one_fix) { |
| scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; |
| scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | |
| ASC_TAG_FLAG_DISABLE_DISCONNECT); |
| } else { |
| scsiq->q2.tag_code &= 0x27; |
| } |
| if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { |
| if (asc_dvc->bug_fix_cntl) { |
| if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { |
| if ((scsi_cmd == READ_6) || |
| (scsi_cmd == READ_10)) { |
| addr = le32_to_cpu(sg_head-> |
| sg_list |
| [sg_entry_cnt_minus_one]. |
| addr) + |
| le32_to_cpu(sg_head-> |
| sg_list |
| [sg_entry_cnt_minus_one]. |
| bytes); |
| extra_bytes = |
| (uchar)((ushort)addr & 0x0003); |
| if ((extra_bytes != 0) |
| && |
| ((scsiq->q2. |
| tag_code & |
| ASC_TAG_FLAG_EXTRA_BYTES) |
| == 0)) { |
| scsiq->q2.tag_code |= |
| ASC_TAG_FLAG_EXTRA_BYTES; |
| scsiq->q1.extra_bytes = |
| extra_bytes; |
| data_cnt = |
| le32_to_cpu(sg_head-> |
| sg_list |
| [sg_entry_cnt_minus_one]. |
| bytes); |
| data_cnt -= extra_bytes; |
| sg_head-> |
| sg_list |
| [sg_entry_cnt_minus_one]. |
| bytes = |
| cpu_to_le32(data_cnt); |
| } |
| } |
| } |
| } |
| sg_head->entry_to_copy = sg_head->entry_cnt; |
| n_q_required = AscSgListToQueue(sg_entry_cnt); |
| if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= |
| (uint) n_q_required) |
| || ((scsiq->q1.cntl & QC_URGENT) != 0)) { |
| if ((sta = |
| AscSendScsiQueue(asc_dvc, scsiq, |
| n_q_required)) == 1) { |
| asc_dvc->in_critical_cnt--; |
| return (sta); |
| } |
| } |
| } else { |
| if (asc_dvc->bug_fix_cntl) { |
| if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { |
| if ((scsi_cmd == READ_6) || |
| (scsi_cmd == READ_10)) { |
| addr = |
| le32_to_cpu(scsiq->q1.data_addr) + |
| le32_to_cpu(scsiq->q1.data_cnt); |
| extra_bytes = |
| (uchar)((ushort)addr & 0x0003); |
| if ((extra_bytes != 0) |
| && |
| ((scsiq->q2. |
| tag_code & |
| ASC_TAG_FLAG_EXTRA_BYTES) |
| == 0)) { |
| data_cnt = |
| le32_to_cpu(scsiq->q1. |
| data_cnt); |
| if (((ushort)data_cnt & 0x01FF) |
| == 0) { |
| scsiq->q2.tag_code |= |
| ASC_TAG_FLAG_EXTRA_BYTES; |
| data_cnt -= extra_bytes; |
| scsiq->q1.data_cnt = |
| cpu_to_le32 |
| (data_cnt); |
| scsiq->q1.extra_bytes = |
| extra_bytes; |
| } |
| } |
| } |
| } |
| } |
| n_q_required = 1; |
| if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || |
| ((scsiq->q1.cntl & QC_URGENT) != 0)) { |
| if ((sta = AscSendScsiQueue(asc_dvc, scsiq, |
| n_q_required)) == 1) { |
| asc_dvc->in_critical_cnt--; |
| return (sta); |
| } |
| } |
| } |
| asc_dvc->in_critical_cnt--; |
| return (sta); |
| } |
| |
| /* |
| * AdvExeScsiQueue() - Send a request to the RISC microcode program. |
| * |
| * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, |
| * add the carrier to the ICQ (Initiator Command Queue), and tickle the |
| * RISC to notify it a new command is ready to be executed. |
| * |
| * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be |
| * set to SCSI_MAX_RETRY. |
| * |
| * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode |
| * for DMA addresses or math operations are byte swapped to little-endian |
| * order. |
| * |
| * Return: |
| * ADV_SUCCESS(1) - The request was successfully queued. |
| * ADV_BUSY(0) - Resource unavailable; Retry again after pending |
| * request completes. |
| * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure |
| * host IC error. |
| */ |
| static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp) |
| { |
| AdvPortAddr iop_base; |
| ADV_CARR_T *new_carrp; |
| ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q; |
| |
| /* |
| * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. |
| */ |
| if (scsiq->target_id > ADV_MAX_TID) { |
| scsiq->host_status = QHSTA_M_INVALID_DEVICE; |
| scsiq->done_status = QD_WITH_ERROR; |
| return ADV_ERROR; |
| } |
| |
| iop_base = asc_dvc->iop_base; |
| |
| /* |
| * Allocate a carrier ensuring at least one carrier always |
| * remains on the freelist and initialize fields. |
| */ |
| new_carrp = adv_get_next_carrier(asc_dvc); |
| if (!new_carrp) { |
| ASC_DBG(1, "No free carriers\n"); |
| return ADV_BUSY; |
| } |
| |
| asc_dvc->carr_pending_cnt++; |
| |
| /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ |
| scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag); |
| scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr); |
| |
| scsiq->carr_va = asc_dvc->icq_sp->carr_va; |
| scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; |
| |
| /* |
| * Use the current stopper to send the ADV_SCSI_REQ_Q command to |
| * the microcode. The newly allocated stopper will become the new |
| * stopper. |
| */ |
| asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr; |
| |
| /* |
| * Set the 'next_vpa' pointer for the old stopper to be the |
| * physical address of the new stopper. The RISC can only |
| * follow physical addresses. |
| */ |
| asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; |
| |
| /* |
| * Set the host adapter stopper pointer to point to the new carrier. |
| */ |
| asc_dvc->icq_sp = new_carrp; |
| |
| if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || |
| asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { |
| /* |
| * Tickle the RISC to tell it to read its Command Queue Head pointer. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); |
| if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { |
| /* |
| * Clear the tickle value. In the ASC-3550 the RISC flag |
| * command 'clr_tickle_a' does not work unless the host |
| * value is cleared. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_TICKLE, |
| ADV_TICKLE_NOP); |
| } |
| } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { |
| /* |
| * Notify the RISC a carrier is ready by writing the physical |
| * address of the new carrier stopper to the COMMA register. |
| */ |
| AdvWriteDWordRegister(iop_base, IOPDW_COMMA, |
| le32_to_cpu(new_carrp->carr_pa)); |
| } |
| |
| return ADV_SUCCESS; |
| } |
| |
| /* |
| * Execute a single 'struct scsi_cmnd'. |
| */ |
| static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) |
| { |
| int ret, err_code; |
| struct asc_board *boardp = shost_priv(scp->device->host); |
| |
| ASC_DBG(1, "scp 0x%p\n", scp); |
| |
| if (ASC_NARROW_BOARD(boardp)) { |
| ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; |
| struct asc_scsi_q asc_scsi_q; |
| |
| ret = asc_build_req(boardp, scp, &asc_scsi_q); |
| if (ret != ASC_NOERROR) { |
| ASC_STATS(scp->device->host, build_error); |
| return ret; |
| } |
| |
| ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); |
| kfree(asc_scsi_q.sg_head); |
| err_code = asc_dvc->err_code; |
| } else { |
| ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; |
| adv_req_t *adv_reqp; |
| |
| switch (adv_build_req(boardp, scp, &adv_reqp)) { |
| case ASC_NOERROR: |
| ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); |
| break; |
| case ASC_BUSY: |
| ASC_DBG(1, "adv_build_req ASC_BUSY\n"); |
| /* |
| * The asc_stats fields 'adv_build_noreq' and |
| * 'adv_build_nosg' count wide board busy conditions. |
| * They are updated in adv_build_req and |
| * adv_get_sglist, respectively. |
| */ |
| return ASC_BUSY; |
| case ASC_ERROR: |
| default: |
| ASC_DBG(1, "adv_build_req ASC_ERROR\n"); |
| ASC_STATS(scp->device->host, build_error); |
| return ASC_ERROR; |
| } |
| |
| ret = AdvExeScsiQueue(adv_dvc, adv_reqp); |
| err_code = adv_dvc->err_code; |
| } |
| |
| switch (ret) { |
| case ASC_NOERROR: |
| ASC_STATS(scp->device->host, exe_noerror); |
| /* |
| * Increment monotonically increasing per device |
| * successful request counter. Wrapping doesn't matter. |
| */ |
| boardp->reqcnt[scp->device->id]++; |
| ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); |
| break; |
| case ASC_BUSY: |
| ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n"); |
| ASC_STATS(scp->device->host, exe_busy); |
| break; |
| case ASC_ERROR: |
| scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " |
| "err_code 0x%x\n", err_code); |
| ASC_STATS(scp->device->host, exe_error); |
| scp->result = HOST_BYTE(DID_ERROR); |
| break; |
| default: |
| scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " |
| "err_code 0x%x\n", err_code); |
| ASC_STATS(scp->device->host, exe_unknown); |
| scp->result = HOST_BYTE(DID_ERROR); |
| break; |
| } |
| |
| ASC_DBG(1, "end\n"); |
| return ret; |
| } |
| |
| /* |
| * advansys_queuecommand() - interrupt-driven I/O entrypoint. |
| * |
| * This function always returns 0. Command return status is saved |
| * in the 'scp' result field. |
| */ |
| static int |
| advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *)) |
| { |
| struct Scsi_Host *shost = scp->device->host; |
| int asc_res, result = 0; |
| |
| ASC_STATS(shost, queuecommand); |
| scp->scsi_done = done; |
| |
| asc_res = asc_execute_scsi_cmnd(scp); |
| |
| switch (asc_res) { |
| case ASC_NOERROR: |
| break; |
| case ASC_BUSY: |
| result = SCSI_MLQUEUE_HOST_BUSY; |
| break; |
| case ASC_ERROR: |
| default: |
| asc_scsi_done(scp); |
| break; |
| } |
| |
| return result; |
| } |
| |
| static DEF_SCSI_QCMD(advansys_queuecommand) |
| |
| static ushort AscGetEisaChipCfg(PortAddr iop_base) |
| { |
| PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | |
| (PortAddr) (ASC_EISA_CFG_IOP_MASK); |
| return inpw(eisa_cfg_iop); |
| } |
| |
| /* |
| * Return the BIOS address of the adapter at the specified |
| * I/O port and with the specified bus type. |
| */ |
| static unsigned short AscGetChipBiosAddress(PortAddr iop_base, |
| unsigned short bus_type) |
| { |
| unsigned short cfg_lsw; |
| unsigned short bios_addr; |
| |
| /* |
| * The PCI BIOS is re-located by the motherboard BIOS. Because |
| * of this the driver can not determine where a PCI BIOS is |
| * loaded and executes. |
| */ |
| if (bus_type & ASC_IS_PCI) |
| return 0; |
| |
| if ((bus_type & ASC_IS_EISA) != 0) { |
| cfg_lsw = AscGetEisaChipCfg(iop_base); |
| cfg_lsw &= 0x000F; |
| bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; |
| return bios_addr; |
| } |
| |
| cfg_lsw = AscGetChipCfgLsw(iop_base); |
| |
| /* |
| * ISA PnP uses the top bit as the 32K BIOS flag |
| */ |
| if (bus_type == ASC_IS_ISAPNP) |
| cfg_lsw &= 0x7FFF; |
| bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; |
| return bios_addr; |
| } |
| |
| static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) |
| { |
| ushort cfg_lsw; |
| |
| if (AscGetChipScsiID(iop_base) == new_host_id) { |
| return (new_host_id); |
| } |
| cfg_lsw = AscGetChipCfgLsw(iop_base); |
| cfg_lsw &= 0xF8FF; |
| cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); |
| AscSetChipCfgLsw(iop_base, cfg_lsw); |
| return (AscGetChipScsiID(iop_base)); |
| } |
| |
| static unsigned char AscGetChipScsiCtrl(PortAddr iop_base) |
| { |
| unsigned char sc; |
| |
| AscSetBank(iop_base, 1); |
| sc = inp(iop_base + IOP_REG_SC); |
| AscSetBank(iop_base, 0); |
| return sc; |
| } |
| |
| static unsigned char AscGetChipVersion(PortAddr iop_base, |
| unsigned short bus_type) |
| { |
| if (bus_type & ASC_IS_EISA) { |
| PortAddr eisa_iop; |
| unsigned char revision; |
| eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | |
| (PortAddr) ASC_EISA_REV_IOP_MASK; |
| revision = inp(eisa_iop); |
| return ASC_CHIP_MIN_VER_EISA - 1 + revision; |
| } |
| return AscGetChipVerNo(iop_base); |
| } |
| |
| #ifdef CONFIG_ISA |
| static void AscEnableIsaDma(uchar dma_channel) |
| { |
| if (dma_channel < 4) { |
| outp(0x000B, (ushort)(0xC0 | dma_channel)); |
| outp(0x000A, dma_channel); |
| } else if (dma_channel < 8) { |
| outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4))); |
| outp(0x00D4, (ushort)(dma_channel - 4)); |
| } |
| } |
| #endif /* CONFIG_ISA */ |
| |
| static int AscStopQueueExe(PortAddr iop_base) |
| { |
| int count = 0; |
| |
| if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { |
| AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, |
| ASC_STOP_REQ_RISC_STOP); |
| do { |
| if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & |
| ASC_STOP_ACK_RISC_STOP) { |
| return (1); |
| } |
| mdelay(100); |
| } while (count++ < 20); |
| } |
| return (0); |
| } |
| |
| static unsigned int AscGetMaxDmaCount(ushort bus_type) |
| { |
| if (bus_type & ASC_IS_ISA) |
| return ASC_MAX_ISA_DMA_COUNT; |
| else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) |
| return ASC_MAX_VL_DMA_COUNT; |
| return ASC_MAX_PCI_DMA_COUNT; |
| } |
| |
| #ifdef CONFIG_ISA |
| static ushort AscGetIsaDmaChannel(PortAddr iop_base) |
| { |
| ushort channel; |
| |
| channel = AscGetChipCfgLsw(iop_base) & 0x0003; |
| if (channel == 0x03) |
| return (0); |
| else if (channel == 0x00) |
| return (7); |
| return (channel + 4); |
| } |
| |
| static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel) |
| { |
| ushort cfg_lsw; |
| uchar value; |
| |
| if ((dma_channel >= 5) && (dma_channel <= 7)) { |
| if (dma_channel == 7) |
| value = 0x00; |
| else |
| value = dma_channel - 4; |
| cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC; |
| cfg_lsw |= value; |
| AscSetChipCfgLsw(iop_base, cfg_lsw); |
| return (AscGetIsaDmaChannel(iop_base)); |
| } |
| return 0; |
| } |
| |
| static uchar AscGetIsaDmaSpeed(PortAddr iop_base) |
| { |
| uchar speed_value; |
| |
| AscSetBank(iop_base, 1); |
| speed_value = AscReadChipDmaSpeed(iop_base); |
| speed_value &= 0x07; |
| AscSetBank(iop_base, 0); |
| return speed_value; |
| } |
| |
| static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value) |
| { |
| speed_value &= 0x07; |
| AscSetBank(iop_base, 1); |
| AscWriteChipDmaSpeed(iop_base, speed_value); |
| AscSetBank(iop_base, 0); |
| return AscGetIsaDmaSpeed(iop_base); |
| } |
| #endif /* CONFIG_ISA */ |
| |
| static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) |
| { |
| int i; |
| PortAddr iop_base; |
| uchar chip_version; |
| |
| iop_base = asc_dvc->iop_base; |
| asc_dvc->err_code = 0; |
| if ((asc_dvc->bus_type & |
| (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { |
| asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; |
| } |
| AscSetChipControl(iop_base, CC_HALT); |
| AscSetChipStatus(iop_base, 0); |
| asc_dvc->bug_fix_cntl = 0; |
| asc_dvc->pci_fix_asyn_xfer = 0; |
| asc_dvc->pci_fix_asyn_xfer_always = 0; |
| /* asc_dvc->init_state initialized in AscInitGetConfig(). */ |
| asc_dvc->sdtr_done = 0; |
| asc_dvc->cur_total_qng = 0; |
| asc_dvc->is_in_int = false; |
| asc_dvc->in_critical_cnt = 0; |
| asc_dvc->last_q_shortage = 0; |
| asc_dvc->use_tagged_qng = 0; |
| asc_dvc->no_scam = 0; |
| asc_dvc->unit_not_ready = 0; |
| asc_dvc->queue_full_or_busy = 0; |
| asc_dvc->redo_scam = 0; |
| asc_dvc->res2 = 0; |
| asc_dvc->min_sdtr_index = 0; |
| asc_dvc->cfg->can_tagged_qng = 0; |
| asc_dvc->cfg->cmd_qng_enabled = 0; |
| asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; |
| asc_dvc->init_sdtr = 0; |
| asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; |
| asc_dvc->scsi_reset_wait = 3; |
| asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; |
| asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); |
| asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; |
| asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; |
| asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; |
| chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); |
| asc_dvc->cfg->chip_version = chip_version; |
| asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; |
| asc_dvc->max_sdtr_index = 7; |
| if ((asc_dvc->bus_type & ASC_IS_PCI) && |
| (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { |
| asc_dvc->bus_type = ASC_IS_PCI_ULTRA; |
| asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; |
| asc_dvc->max_sdtr_index = 15; |
| if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { |
| AscSetExtraControl(iop_base, |
| (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); |
| } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { |
| AscSetExtraControl(iop_base, |
| (SEC_ACTIVE_NEGATE | |
| SEC_ENABLE_FILTER)); |
| } |
| } |
| if (asc_dvc->bus_type == ASC_IS_PCI) { |
| AscSetExtraControl(iop_base, |
| (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); |
| } |
| |
| asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; |
| #ifdef CONFIG_ISA |
| if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) { |
| if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) { |
| AscSetChipIFC(iop_base, IFC_INIT_DEFAULT); |
| asc_dvc->bus_type = ASC_IS_ISAPNP; |
| } |
| asc_dvc->cfg->isa_dma_channel = |
| (uchar)AscGetIsaDmaChannel(iop_base); |
| } |
| #endif /* CONFIG_ISA */ |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| asc_dvc->cur_dvc_qng[i] = 0; |
| asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; |
| asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; |
| asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; |
| asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; |
| } |
| } |
| |
| static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) |
| { |
| int retry; |
| |
| for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { |
| unsigned char read_back; |
| AscSetChipEEPCmd(iop_base, cmd_reg); |
| mdelay(1); |
| read_back = AscGetChipEEPCmd(iop_base); |
| if (read_back == cmd_reg) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void AscWaitEEPRead(void) |
| { |
| mdelay(1); |
| } |
| |
| static ushort AscReadEEPWord(PortAddr iop_base, uchar addr) |
| { |
| ushort read_wval; |
| uchar cmd_reg; |
| |
| AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); |
| AscWaitEEPRead(); |
| cmd_reg = addr | ASC_EEP_CMD_READ; |
| AscWriteEEPCmdReg(iop_base, cmd_reg); |
| AscWaitEEPRead(); |
| read_wval = AscGetChipEEPData(iop_base); |
| AscWaitEEPRead(); |
| return read_wval; |
| } |
| |
| static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, |
| ushort bus_type) |
| { |
| ushort wval; |
| ushort sum; |
| ushort *wbuf; |
| int cfg_beg; |
| int cfg_end; |
| int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; |
| int s_addr; |
| |
| wbuf = (ushort *)cfg_buf; |
| sum = 0; |
| /* Read two config words; Byte-swapping done by AscReadEEPWord(). */ |
| for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { |
| *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); |
| sum += *wbuf; |
| } |
| if (bus_type & ASC_IS_VL) { |
| cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; |
| cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; |
| } else { |
| cfg_beg = ASC_EEP_DVC_CFG_BEG; |
| cfg_end = ASC_EEP_MAX_DVC_ADDR; |
| } |
| for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { |
| wval = AscReadEEPWord(iop_base, (uchar)s_addr); |
| if (s_addr <= uchar_end_in_config) { |
| /* |
| * Swap all char fields - must unswap bytes already swapped |
| * by AscReadEEPWord(). |
| */ |
| *wbuf = le16_to_cpu(wval); |
| } else { |
| /* Don't swap word field at the end - cntl field. */ |
| *wbuf = wval; |
| } |
| sum += wval; /* Checksum treats all EEPROM data as words. */ |
| } |
| /* |
| * Read the checksum word which will be compared against 'sum' |
| * by the caller. Word field already swapped. |
| */ |
| *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); |
| return sum; |
| } |
| |
| static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc) |
| { |
| PortAddr iop_base; |
| ushort q_addr; |
| ushort saved_word; |
| int sta; |
| |
| iop_base = asc_dvc->iop_base; |
| sta = 0; |
| q_addr = ASC_QNO_TO_QADDR(241); |
| saved_word = AscReadLramWord(iop_base, q_addr); |
| AscSetChipLramAddr(iop_base, q_addr); |
| AscSetChipLramData(iop_base, 0x55AA); |
| mdelay(10); |
| AscSetChipLramAddr(iop_base, q_addr); |
| if (AscGetChipLramData(iop_base) == 0x55AA) { |
| sta = 1; |
| AscWriteLramWord(iop_base, q_addr, saved_word); |
| } |
| return (sta); |
| } |
| |
| static void AscWaitEEPWrite(void) |
| { |
| mdelay(20); |
| } |
| |
| static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) |
| { |
| ushort read_back; |
| int retry; |
| |
| retry = 0; |
| while (true) { |
| AscSetChipEEPData(iop_base, data_reg); |
| mdelay(1); |
| read_back = AscGetChipEEPData(iop_base); |
| if (read_back == data_reg) { |
| return (1); |
| } |
| if (retry++ > ASC_EEP_MAX_RETRY) { |
| return (0); |
| } |
| } |
| } |
| |
| static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) |
| { |
| ushort read_wval; |
| |
| read_wval = AscReadEEPWord(iop_base, addr); |
| if (read_wval != word_val) { |
| AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); |
| AscWaitEEPRead(); |
| AscWriteEEPDataReg(iop_base, word_val); |
| AscWaitEEPRead(); |
| AscWriteEEPCmdReg(iop_base, |
| (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); |
| AscWaitEEPWrite(); |
| AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); |
| AscWaitEEPRead(); |
| return (AscReadEEPWord(iop_base, addr)); |
| } |
| return (read_wval); |
| } |
| |
| static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, |
| ushort bus_type) |
| { |
| int n_error; |
| ushort *wbuf; |
| ushort word; |
| ushort sum; |
| int s_addr; |
| int cfg_beg; |
| int cfg_end; |
| int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; |
| |
| wbuf = (ushort *)cfg_buf; |
| n_error = 0; |
| sum = 0; |
| /* Write two config words; AscWriteEEPWord() will swap bytes. */ |
| for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { |
| sum += *wbuf; |
| if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { |
| n_error++; |
| } |
| } |
| if (bus_type & ASC_IS_VL) { |
| cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; |
| cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; |
| } else { |
| cfg_beg = ASC_EEP_DVC_CFG_BEG; |
| cfg_end = ASC_EEP_MAX_DVC_ADDR; |
| } |
| for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { |
| if (s_addr <= uchar_end_in_config) { |
| /* |
| * This is a char field. Swap char fields before they are |
| * swapped again by AscWriteEEPWord(). |
| */ |
| word = cpu_to_le16(*wbuf); |
| if (word != |
| AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { |
| n_error++; |
| } |
| } else { |
| /* Don't swap word field at the end - cntl field. */ |
| if (*wbuf != |
| AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { |
| n_error++; |
| } |
| } |
| sum += *wbuf; /* Checksum calculated from word values. */ |
| } |
| /* Write checksum word. It will be swapped by AscWriteEEPWord(). */ |
| *wbuf = sum; |
| if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { |
| n_error++; |
| } |
| |
| /* Read EEPROM back again. */ |
| wbuf = (ushort *)cfg_buf; |
| /* |
| * Read two config words; Byte-swapping done by AscReadEEPWord(). |
| */ |
| for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { |
| if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { |
| n_error++; |
| } |
| } |
| if (bus_type & ASC_IS_VL) { |
| cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; |
| cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; |
| } else { |
| cfg_beg = ASC_EEP_DVC_CFG_BEG; |
| cfg_end = ASC_EEP_MAX_DVC_ADDR; |
| } |
| for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { |
| if (s_addr <= uchar_end_in_config) { |
| /* |
| * Swap all char fields. Must unswap bytes already swapped |
| * by AscReadEEPWord(). |
| */ |
| word = |
| le16_to_cpu(AscReadEEPWord |
| (iop_base, (uchar)s_addr)); |
| } else { |
| /* Don't swap word field at the end - cntl field. */ |
| word = AscReadEEPWord(iop_base, (uchar)s_addr); |
| } |
| if (*wbuf != word) { |
| n_error++; |
| } |
| } |
| /* Read checksum; Byte swapping not needed. */ |
| if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { |
| n_error++; |
| } |
| return n_error; |
| } |
| |
| static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, |
| ushort bus_type) |
| { |
| int retry; |
| int n_error; |
| |
| retry = 0; |
| while (true) { |
| if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, |
| bus_type)) == 0) { |
| break; |
| } |
| if (++retry > ASC_EEP_MAX_RETRY) { |
| break; |
| } |
| } |
| return n_error; |
| } |
| |
| static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc) |
| { |
| ASCEEP_CONFIG eep_config_buf; |
| ASCEEP_CONFIG *eep_config; |
| PortAddr iop_base; |
| ushort chksum; |
| ushort warn_code; |
| ushort cfg_msw, cfg_lsw; |
| int i; |
| int write_eep = 0; |
| |
| iop_base = asc_dvc->iop_base; |
| warn_code = 0; |
| AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); |
| AscStopQueueExe(iop_base); |
| if ((AscStopChip(iop_base)) || |
| (AscGetChipScsiCtrl(iop_base) != 0)) { |
| asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; |
| AscResetChipAndScsiBus(asc_dvc); |
| mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ |
| } |
| if (!AscIsChipHalted(iop_base)) { |
| asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; |
| return (warn_code); |
| } |
| AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); |
| if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { |
| asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; |
| return (warn_code); |
| } |
| eep_config = (ASCEEP_CONFIG *)&eep_config_buf; |
| cfg_msw = AscGetChipCfgMsw(iop_base); |
| cfg_lsw = AscGetChipCfgLsw(iop_base); |
| if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { |
| cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; |
| warn_code |= ASC_WARN_CFG_MSW_RECOVER; |
| AscSetChipCfgMsw(iop_base, cfg_msw); |
| } |
| chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); |
| ASC_DBG(1, "chksum 0x%x\n", chksum); |
| if (chksum == 0) { |
| chksum = 0xaa55; |
| } |
| if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { |
| warn_code |= ASC_WARN_AUTO_CONFIG; |
| if (asc_dvc->cfg->chip_version == 3) { |
| if (eep_config->cfg_lsw != cfg_lsw) { |
| warn_code |= ASC_WARN_EEPROM_RECOVER; |
| eep_config->cfg_lsw = |
| AscGetChipCfgLsw(iop_base); |
| } |
| if (eep_config->cfg_msw != cfg_msw) { |
| warn_code |= ASC_WARN_EEPROM_RECOVER; |
| eep_config->cfg_msw = |
| AscGetChipCfgMsw(iop_base); |
| } |
| } |
| } |
| eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; |
| eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; |
| ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); |
| if (chksum != eep_config->chksum) { |
| if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == |
| ASC_CHIP_VER_PCI_ULTRA_3050) { |
| ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); |
| eep_config->init_sdtr = 0xFF; |
| eep_config->disc_enable = 0xFF; |
| eep_config->start_motor = 0xFF; |
| eep_config->use_cmd_qng = 0; |
| eep_config->max_total_qng = 0xF0; |
| eep_config->max_tag_qng = 0x20; |
| eep_config->cntl = 0xBFFF; |
| ASC_EEP_SET_CHIP_ID(eep_config, 7); |
| eep_config->no_scam = 0; |
| eep_config->adapter_info[0] = 0; |
| eep_config->adapter_info[1] = 0; |
| eep_config->adapter_info[2] = 0; |
| eep_config->adapter_info[3] = 0; |
| eep_config->adapter_info[4] = 0; |
| /* Indicate EEPROM-less board. */ |
| eep_config->adapter_info[5] = 0xBB; |
| } else { |
| ASC_PRINT |
| ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); |
| write_eep = 1; |
| warn_code |= ASC_WARN_EEPROM_CHKSUM; |
| } |
| } |
| asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; |
| asc_dvc->cfg->disc_enable = eep_config->disc_enable; |
| asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; |
| asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config); |
| asc_dvc->start_motor = eep_config->start_motor; |
| asc_dvc->dvc_cntl = eep_config->cntl; |
| asc_dvc->no_scam = eep_config->no_scam; |
| asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; |
| asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; |
| asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; |
| asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; |
| asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; |
| asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; |
| if (!AscTestExternalLram(asc_dvc)) { |
| if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == |
| ASC_IS_PCI_ULTRA)) { |
| eep_config->max_total_qng = |
| ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; |
| eep_config->max_tag_qng = |
| ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; |
| } else { |
| eep_config->cfg_msw |= 0x0800; |
| cfg_msw |= 0x0800; |
| AscSetChipCfgMsw(iop_base, cfg_msw); |
| eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; |
| eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; |
| } |
| } else { |
| } |
| if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { |
| eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; |
| } |
| if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { |
| eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; |
| } |
| if (eep_config->max_tag_qng > eep_config->max_total_qng) { |
| eep_config->max_tag_qng = eep_config->max_total_qng; |
| } |
| if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { |
| eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; |
| } |
| asc_dvc->max_total_qng = eep_config->max_total_qng; |
| if ((eep_config->use_cmd_qng & eep_config->disc_enable) != |
| eep_config->use_cmd_qng) { |
| eep_config->disc_enable = eep_config->use_cmd_qng; |
| warn_code |= ASC_WARN_CMD_QNG_CONFLICT; |
| } |
| ASC_EEP_SET_CHIP_ID(eep_config, |
| ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); |
| asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); |
| if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && |
| !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { |
| asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; |
| } |
| |
| for (i = 0; i <= ASC_MAX_TID; i++) { |
| asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; |
| asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; |
| asc_dvc->cfg->sdtr_period_offset[i] = |
| (uchar)(ASC_DEF_SDTR_OFFSET | |
| (asc_dvc->min_sdtr_index << 4)); |
| } |
| eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); |
| if (write_eep) { |
| if ((i = AscSetEEPConfig(iop_base, eep_config, |
| asc_dvc->bus_type)) != 0) { |
| ASC_PRINT1 |
| ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", |
| i); |
| } else { |
| ASC_PRINT |
| ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); |
| } |
| } |
| return (warn_code); |
| } |
| |
| static int AscInitGetConfig(struct Scsi_Host *shost) |
| { |
| struct asc_board *board = shost_priv(shost); |
| ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; |
| unsigned short warn_code = 0; |
| |
| asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; |
| if (asc_dvc->err_code != 0) |
| return asc_dvc->err_code; |
| |
| if (AscFindSignature(asc_dvc->iop_base)) { |
| AscInitAscDvcVar(asc_dvc); |
| warn_code = AscInitFromEEP(asc_dvc); |
| asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; |
| if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) |
| asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; |
| } else { |
| asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; |
| } |
| |
| switch (warn_code) { |
| case 0: /* No error */ |
| break; |
| case ASC_WARN_IO_PORT_ROTATE: |
| shost_printk(KERN_WARNING, shost, "I/O port address " |
| "modified\n"); |
| break; |
| case ASC_WARN_AUTO_CONFIG: |
| shost_printk(KERN_WARNING, shost, "I/O port increment switch " |
| "enabled\n"); |
| break; |
| case ASC_WARN_EEPROM_CHKSUM: |
| shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); |
| break; |
| case ASC_WARN_IRQ_MODIFIED: |
| shost_printk(KERN_WARNING, shost, "IRQ modified\n"); |
| break; |
| case ASC_WARN_CMD_QNG_CONFLICT: |
| shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " |
| "disconnects\n"); |
| break; |
| default: |
| shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", |
| warn_code); |
| break; |
| } |
| |
| if (asc_dvc->err_code != 0) |
| shost_printk(KERN_ERR, shost, "error 0x%x at init_state " |
| "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); |
| |
| return asc_dvc->err_code; |
| } |
| |
| static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) |
| { |
| struct asc_board *board = shost_priv(shost); |
| ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; |
| PortAddr iop_base = asc_dvc->iop_base; |
| unsigned short cfg_msw; |
| unsigned short warn_code = 0; |
| |
| asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; |
| if (asc_dvc->err_code != 0) |
| return asc_dvc->err_code; |
| if (!AscFindSignature(asc_dvc->iop_base)) { |
| asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; |
| return asc_dvc->err_code; |
| } |
| |
| cfg_msw = AscGetChipCfgMsw(iop_base); |
| if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { |
| cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; |
| warn_code |= ASC_WARN_CFG_MSW_RECOVER; |
| AscSetChipCfgMsw(iop_base, cfg_msw); |
| } |
| if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != |
| asc_dvc->cfg->cmd_qng_enabled) { |
| asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; |
| warn_code |= ASC_WARN_CMD_QNG_CONFLICT; |
| } |
| if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { |
| warn_code |= ASC_WARN_AUTO_CONFIG; |
| } |
| #ifdef CONFIG_PCI |
| if (asc_dvc->bus_type & ASC_IS_PCI) { |
| cfg_msw &= 0xFFC0; |
| AscSetChipCfgMsw(iop_base, cfg_msw); |
| if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { |
| } else { |
| if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || |
| (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { |
| asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; |
| asc_dvc->bug_fix_cntl |= |
| ASC_BUG_FIX_ASYN_USE_SYN; |
| } |
| } |
| } else |
| #endif /* CONFIG_PCI */ |
| if (asc_dvc->bus_type == ASC_IS_ISAPNP) { |
| if (AscGetChipVersion(iop_base, asc_dvc->bus_type) |
| == ASC_CHIP_VER_ASYN_BUG) { |
| asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; |
| } |
| } |
| if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != |
| asc_dvc->cfg->chip_scsi_id) { |
| asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; |
| } |
| #ifdef CONFIG_ISA |
| if (asc_dvc->bus_type & ASC_IS_ISA) { |
| AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel); |
| AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed); |
| } |
| #endif /* CONFIG_ISA */ |
| |
| asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; |
| |
| switch (warn_code) { |
| case 0: /* No error. */ |
| break; |
| case ASC_WARN_IO_PORT_ROTATE: |
| shost_printk(KERN_WARNING, shost, "I/O port address " |
| "modified\n"); |
| break; |
| case ASC_WARN_AUTO_CONFIG: |
| shost_printk(KERN_WARNING, shost, "I/O port increment switch " |
| "enabled\n"); |
| break; |
| case ASC_WARN_EEPROM_CHKSUM: |
| shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); |
| break; |
| case ASC_WARN_IRQ_MODIFIED: |
| shost_printk(KERN_WARNING, shost, "IRQ modified\n"); |
| break; |
| case ASC_WARN_CMD_QNG_CONFLICT: |
| shost_printk(KERN_WARNING, shost, "tag queuing w/o " |
| "disconnects\n"); |
| break; |
| default: |
| shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", |
| warn_code); |
| break; |
| } |
| |
| if (asc_dvc->err_code != 0) |
| shost_printk(KERN_ERR, shost, "error 0x%x at init_state " |
| "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); |
| |
| return asc_dvc->err_code; |
| } |
| |
| /* |
| * EEPROM Configuration. |
| * |
| * All drivers should use this structure to set the default EEPROM |
| * configuration. The BIOS now uses this structure when it is built. |
| * Additional structure information can be found in a_condor.h where |
| * the structure is defined. |
| * |
| * The *_Field_IsChar structs are needed to correct for endianness. |
| * These values are read from the board 16 bits at a time directly |
| * into the structs. Because some fields are char, the values will be |
| * in the wrong order. The *_Field_IsChar tells when to flip the |
| * bytes. Data read and written to PCI memory is automatically swapped |
| * on big-endian platforms so char fields read as words are actually being |
| * unswapped on big-endian platforms. |
| */ |
| #ifdef CONFIG_PCI |
| static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = { |
| ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */ |
| 0x0000, /* cfg_msw */ |
| 0xFFFF, /* disc_enable */ |
| 0xFFFF, /* wdtr_able */ |
| 0xFFFF, /* sdtr_able */ |
| 0xFFFF, /* start_motor */ |
| 0xFFFF, /* tagqng_able */ |
| 0xFFFF, /* bios_scan */ |
| 0, /* scam_tolerant */ |
| 7, /* adapter_scsi_id */ |
| 0, /* bios_boot_delay */ |
| 3, /* scsi_reset_delay */ |
| 0, /* bios_id_lun */ |
| 0, /* termination */ |
| 0, /* reserved1 */ |
| 0xFFE7, /* bios_ctrl */ |
| 0xFFFF, /* ultra_able */ |
| 0, /* reserved2 */ |
| ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ |
| ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ |
| 0, /* dvc_cntl */ |
| 0, /* bug_fix */ |
| 0, /* serial_number_word1 */ |
| 0, /* serial_number_word2 */ |
| 0, /* serial_number_word3 */ |
| 0, /* check_sum */ |
| {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} |
| , /* oem_name[16] */ |
| 0, /* dvc_err_code */ |
| 0, /* adv_err_code */ |
| 0, /* adv_err_addr */ |
| 0, /* saved_dvc_err_code */ |
| 0, /* saved_adv_err_code */ |
| 0, /* saved_adv_err_addr */ |
| 0 /* num_of_err */ |
| }; |
| |
| static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = { |
| 0, /* cfg_lsw */ |
| 0, /* cfg_msw */ |
| 0, /* -disc_enable */ |
| 0, /* wdtr_able */ |
| 0, /* sdtr_able */ |
| 0, /* start_motor */ |
| 0, /* tagqng_able */ |
| 0, /* bios_scan */ |
| 0, /* scam_tolerant */ |
| 1, /* adapter_scsi_id */ |
| 1, /* bios_boot_delay */ |
| 1, /* scsi_reset_delay */ |
| 1, /* bios_id_lun */ |
| 1, /* termination */ |
| 1, /* reserved1 */ |
| 0, /* bios_ctrl */ |
| 0, /* ultra_able */ |
| 0, /* reserved2 */ |
| 1, /* max_host_qng */ |
| 1, /* max_dvc_qng */ |
| 0, /* dvc_cntl */ |
| 0, /* bug_fix */ |
| 0, /* serial_number_word1 */ |
| 0, /* serial_number_word2 */ |
| 0, /* serial_number_word3 */ |
| 0, /* check_sum */ |
| {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} |
| , /* oem_name[16] */ |
| 0, /* dvc_err_code */ |
| 0, /* adv_err_code */ |
| 0, /* adv_err_addr */ |
| 0, /* saved_dvc_err_code */ |
| 0, /* saved_adv_err_code */ |
| 0, /* saved_adv_err_addr */ |
| 0 /* num_of_err */ |
| }; |
| |
| static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = { |
| ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ |
| 0x0000, /* 01 cfg_msw */ |
| 0xFFFF, /* 02 disc_enable */ |
| 0xFFFF, /* 03 wdtr_able */ |
| 0x4444, /* 04 sdtr_speed1 */ |
| 0xFFFF, /* 05 start_motor */ |
| 0xFFFF, /* 06 tagqng_able */ |
| 0xFFFF, /* 07 bios_scan */ |
| 0, /* 08 scam_tolerant */ |
| 7, /* 09 adapter_scsi_id */ |
| 0, /* bios_boot_delay */ |
| 3, /* 10 scsi_reset_delay */ |
| 0, /* bios_id_lun */ |
| 0, /* 11 termination_se */ |
| 0, /* termination_lvd */ |
| 0xFFE7, /* 12 bios_ctrl */ |
| 0x4444, /* 13 sdtr_speed2 */ |
| 0x4444, /* 14 sdtr_speed3 */ |
| ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ |
| ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ |
| 0, /* 16 dvc_cntl */ |
| 0x4444, /* 17 sdtr_speed4 */ |
| 0, /* 18 serial_number_word1 */ |
| 0, /* 19 serial_number_word2 */ |
| 0, /* 20 serial_number_word3 */ |
| 0, /* 21 check_sum */ |
| {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} |
| , /* 22-29 oem_name[16] */ |
| 0, /* 30 dvc_err_code */ |
| 0, /* 31 adv_err_code */ |
| 0, /* 32 adv_err_addr */ |
| 0, /* 33 saved_dvc_err_code */ |
| 0, /* 34 saved_adv_err_code */ |
| 0, /* 35 saved_adv_err_addr */ |
| 0, /* 36 reserved */ |
| 0, /* 37 reserved */ |
| 0, /* 38 reserved */ |
| 0, /* 39 reserved */ |
| 0, /* 40 reserved */ |
| 0, /* 41 reserved */ |
| 0, /* 42 reserved */ |
| 0, /* 43 reserved */ |
| 0, /* 44 reserved */ |
| 0, /* 45 reserved */ |
| 0, /* 46 reserved */ |
| 0, /* 47 reserved */ |
| 0, /* 48 reserved */ |
| 0, /* 49 reserved */ |
| 0, /* 50 reserved */ |
| 0, /* 51 reserved */ |
| 0, /* 52 reserved */ |
| 0, /* 53 reserved */ |
| 0, /* 54 reserved */ |
| 0, /* 55 reserved */ |
| 0, /* 56 cisptr_lsw */ |
| 0, /* 57 cisprt_msw */ |
| PCI_VENDOR_ID_ASP, /* 58 subsysvid */ |
| PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */ |
| 0, /* 60 reserved */ |
| 0, /* 61 reserved */ |
| 0, /* 62 reserved */ |
| 0 /* 63 reserved */ |
| }; |
| |
| static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = { |
| 0, /* 00 cfg_lsw */ |
| 0, /* 01 cfg_msw */ |
| 0, /* 02 disc_enable */ |
| 0, /* 03 wdtr_able */ |
| 0, /* 04 sdtr_speed1 */ |
| 0, /* 05 start_motor */ |
| 0, /* 06 tagqng_able */ |
| 0, /* 07 bios_scan */ |
| 0, /* 08 scam_tolerant */ |
| 1, /* 09 adapter_scsi_id */ |
| 1, /* bios_boot_delay */ |
| 1, /* 10 scsi_reset_delay */ |
| 1, /* bios_id_lun */ |
| 1, /* 11 termination_se */ |
| 1, /* termination_lvd */ |
| 0, /* 12 bios_ctrl */ |
| 0, /* 13 sdtr_speed2 */ |
| 0, /* 14 sdtr_speed3 */ |
| 1, /* 15 max_host_qng */ |
| 1, /* max_dvc_qng */ |
| 0, /* 16 dvc_cntl */ |
| 0, /* 17 sdtr_speed4 */ |
| 0, /* 18 serial_number_word1 */ |
| 0, /* 19 serial_number_word2 */ |
| 0, /* 20 serial_number_word3 */ |
| 0, /* 21 check_sum */ |
| {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} |
| , /* 22-29 oem_name[16] */ |
| 0, /* 30 dvc_err_code */ |
| 0, /* 31 adv_err_code */ |
| 0, /* 32 adv_err_addr */ |
| 0, /* 33 saved_dvc_err_code */ |
| 0, /* 34 saved_adv_err_code */ |
| 0, /* 35 saved_adv_err_addr */ |
| 0, /* 36 reserved */ |
| 0, /* 37 reserved */ |
| 0, /* 38 reserved */ |
| 0, /* 39 reserved */ |
| 0, /* 40 reserved */ |
| 0, /* 41 reserved */ |
| 0, /* 42 reserved */ |
| 0, /* 43 reserved */ |
| 0, /* 44 reserved */ |
| 0, /* 45 reserved */ |
| 0, /* 46 reserved */ |
| 0, /* 47 reserved */ |
| 0, /* 48 reserved */ |
| 0, /* 49 reserved */ |
| 0, /* 50 reserved */ |
| 0, /* 51 reserved */ |
| 0, /* 52 reserved */ |
| 0, /* 53 reserved */ |
| 0, /* 54 reserved */ |
| 0, /* 55 reserved */ |
| 0, /* 56 cisptr_lsw */ |
| 0, /* 57 cisprt_msw */ |
| 0, /* 58 subsysvid */ |
| 0, /* 59 subsysid */ |
| 0, /* 60 reserved */ |
| 0, /* 61 reserved */ |
| 0, /* 62 reserved */ |
| 0 /* 63 reserved */ |
| }; |
| |
| static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = { |
| ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ |
| 0x0000, /* 01 cfg_msw */ |
| 0xFFFF, /* 02 disc_enable */ |
| 0xFFFF, /* 03 wdtr_able */ |
| 0x5555, /* 04 sdtr_speed1 */ |
| 0xFFFF, /* 05 start_motor */ |
| 0xFFFF, /* 06 tagqng_able */ |
| 0xFFFF, /* 07 bios_scan */ |
| 0, /* 08 scam_tolerant */ |
| 7, /* 09 adapter_scsi_id */ |
| 0, /* bios_boot_delay */ |
| 3, /* 10 scsi_reset_delay */ |
| 0, /* bios_id_lun */ |
| 0, /* 11 termination_se */ |
| 0, /* termination_lvd */ |
| 0xFFE7, /* 12 bios_ctrl */ |
| 0x5555, /* 13 sdtr_speed2 */ |
| 0x5555, /* 14 sdtr_speed3 */ |
| ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ |
| ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ |
| 0, /* 16 dvc_cntl */ |
| 0x5555, /* 17 sdtr_speed4 */ |
| 0, /* 18 serial_number_word1 */ |
| 0, /* 19 serial_number_word2 */ |
| 0, /* 20 serial_number_word3 */ |
| 0, /* 21 check_sum */ |
| {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} |
| , /* 22-29 oem_name[16] */ |
| 0, /* 30 dvc_err_code */ |
| 0, /* 31 adv_err_code */ |
| 0, /* 32 adv_err_addr */ |
| 0, /* 33 saved_dvc_err_code */ |
| 0, /* 34 saved_adv_err_code */ |
| 0, /* 35 saved_adv_err_addr */ |
| 0, /* 36 reserved */ |
| 0, /* 37 reserved */ |
| 0, /* 38 reserved */ |
| 0, /* 39 reserved */ |
| 0, /* 40 reserved */ |
| 0, /* 41 reserved */ |
| 0, /* 42 reserved */ |
| 0, /* 43 reserved */ |
| 0, /* 44 reserved */ |
| 0, /* 45 reserved */ |
| 0, /* 46 reserved */ |
| 0, /* 47 reserved */ |
| 0, /* 48 reserved */ |
| 0, /* 49 reserved */ |
| 0, /* 50 reserved */ |
| 0, /* 51 reserved */ |
| 0, /* 52 reserved */ |
| 0, /* 53 reserved */ |
| 0, /* 54 reserved */ |
| 0, /* 55 reserved */ |
| 0, /* 56 cisptr_lsw */ |
| 0, /* 57 cisprt_msw */ |
| PCI_VENDOR_ID_ASP, /* 58 subsysvid */ |
| PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */ |
| 0, /* 60 reserved */ |
| 0, /* 61 reserved */ |
| 0, /* 62 reserved */ |
| 0 /* 63 reserved */ |
| }; |
| |
| static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = { |
| 0, /* 00 cfg_lsw */ |
| 0, /* 01 cfg_msw */ |
| 0, /* 02 disc_enable */ |
| 0, /* 03 wdtr_able */ |
| 0, /* 04 sdtr_speed1 */ |
| 0, /* 05 start_motor */ |
| 0, /* 06 tagqng_able */ |
| 0, /* 07 bios_scan */ |
| 0, /* 08 scam_tolerant */ |
| 1, /* 09 adapter_scsi_id */ |
| 1, /* bios_boot_delay */ |
| 1, /* 10 scsi_reset_delay */ |
| 1, /* bios_id_lun */ |
| 1, /* 11 termination_se */ |
| 1, /* termination_lvd */ |
| 0, /* 12 bios_ctrl */ |
| 0, /* 13 sdtr_speed2 */ |
| 0, /* 14 sdtr_speed3 */ |
| 1, /* 15 max_host_qng */ |
| 1, /* max_dvc_qng */ |
| 0, /* 16 dvc_cntl */ |
| 0, /* 17 sdtr_speed4 */ |
| 0, /* 18 serial_number_word1 */ |
| 0, /* 19 serial_number_word2 */ |
| 0, /* 20 serial_number_word3 */ |
| 0, /* 21 check_sum */ |
| {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} |
| , /* 22-29 oem_name[16] */ |
| 0, /* 30 dvc_err_code */ |
| 0, /* 31 adv_err_code */ |
| 0, /* 32 adv_err_addr */ |
| 0, /* 33 saved_dvc_err_code */ |
| 0, /* 34 saved_adv_err_code */ |
| 0, /* 35 saved_adv_err_addr */ |
| 0, /* 36 reserved */ |
| 0, /* 37 reserved */ |
| 0, /* 38 reserved */ |
| 0, /* 39 reserved */ |
| 0, /* 40 reserved */ |
| 0, /* 41 reserved */ |
| 0, /* 42 reserved */ |
| 0, /* 43 reserved */ |
| 0, /* 44 reserved */ |
| 0, /* 45 reserved */ |
| 0, /* 46 reserved */ |
| 0, /* 47 reserved */ |
| 0, /* 48 reserved */ |
| 0, /* 49 reserved */ |
| 0, /* 50 reserved */ |
| 0, /* 51 reserved */ |
| 0, /* 52 reserved */ |
| 0, /* 53 reserved */ |
| 0, /* 54 reserved */ |
| 0, /* 55 reserved */ |
| 0, /* 56 cisptr_lsw */ |
| 0, /* 57 cisprt_msw */ |
| 0, /* 58 subsysvid */ |
| 0, /* 59 subsysid */ |
| 0, /* 60 reserved */ |
| 0, /* 61 reserved */ |
| 0, /* 62 reserved */ |
| 0 /* 63 reserved */ |
| }; |
| |
| /* |
| * Wait for EEPROM command to complete |
| */ |
| static void AdvWaitEEPCmd(AdvPortAddr iop_base) |
| { |
| int eep_delay_ms; |
| |
| for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { |
| if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & |
| ASC_EEP_CMD_DONE) { |
| break; |
| } |
| mdelay(1); |
| } |
| if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == |
| 0) |
| BUG(); |
| } |
| |
| /* |
| * Read the EEPROM from specified location |
| */ |
| static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) |
| { |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, |
| ASC_EEP_CMD_READ | eep_word_addr); |
| AdvWaitEEPCmd(iop_base); |
| return AdvReadWordRegister(iop_base, IOPW_EE_DATA); |
| } |
| |
| /* |
| * Write the EEPROM from 'cfg_buf'. |
| */ |
| static void AdvSet3550EEPConfig(AdvPortAddr iop_base, |
| ADVEEP_3550_CONFIG *cfg_buf) |
| { |
| ushort *wbuf; |
| ushort addr, chksum; |
| ushort *charfields; |
| |
| wbuf = (ushort *)cfg_buf; |
| charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; |
| chksum = 0; |
| |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); |
| AdvWaitEEPCmd(iop_base); |
| |
| /* |
| * Write EEPROM from word 0 to word 20. |
| */ |
| for (addr = ADV_EEP_DVC_CFG_BEGIN; |
| addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { |
| ushort word; |
| |
| if (*charfields++) { |
| word = cpu_to_le16(*wbuf); |
| } else { |
| word = *wbuf; |
| } |
| chksum += *wbuf; /* Checksum is calculated from word values. */ |
| AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, |
| ASC_EEP_CMD_WRITE | addr); |
| AdvWaitEEPCmd(iop_base); |
| mdelay(ADV_EEP_DELAY_MS); |
| } |
| |
| /* |
| * Write EEPROM checksum at word 21. |
| */ |
| AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); |
| AdvWaitEEPCmd(iop_base); |
| wbuf++; |
| charfields++; |
| |
| /* |
| * Write EEPROM OEM name at words 22 to 29. |
| */ |
| for (addr = ADV_EEP_DVC_CTL_BEGIN; |
| addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { |
| ushort word; |
| |
| if (*charfields++) { |
| word = cpu_to_le16(*wbuf); |
| } else { |
| word = *wbuf; |
| } |
| AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, |
| ASC_EEP_CMD_WRITE | addr); |
| AdvWaitEEPCmd(iop_base); |
| } |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); |
| AdvWaitEEPCmd(iop_base); |
| } |
| |
| /* |
| * Write the EEPROM from 'cfg_buf'. |
| */ |
| static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base, |
| ADVEEP_38C0800_CONFIG *cfg_buf) |
| { |
| ushort *wbuf; |
| ushort *charfields; |
| ushort addr, chksum; |
| |
| wbuf = (ushort *)cfg_buf; |
| charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; |
| chksum = 0; |
| |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); |
| AdvWaitEEPCmd(iop_base); |
| |
| /* |
| * Write EEPROM from word 0 to word 20. |
| */ |
| for (addr = ADV_EEP_DVC_CFG_BEGIN; |
| addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { |
| ushort word; |
| |
| if (*charfields++) { |
| word = cpu_to_le16(*wbuf); |
| } else { |
| word = *wbuf; |
| } |
| chksum += *wbuf; /* Checksum is calculated from word values. */ |
| AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, |
| ASC_EEP_CMD_WRITE | addr); |
| AdvWaitEEPCmd(iop_base); |
| mdelay(ADV_EEP_DELAY_MS); |
| } |
| |
| /* |
| * Write EEPROM checksum at word 21. |
| */ |
| AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); |
| AdvWaitEEPCmd(iop_base); |
| wbuf++; |
| charfields++; |
| |
| /* |
| * Write EEPROM OEM name at words 22 to 29. |
| */ |
| for (addr = ADV_EEP_DVC_CTL_BEGIN; |
| addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { |
| ushort word; |
| |
| if (*charfields++) { |
| word = cpu_to_le16(*wbuf); |
| } else { |
| word = *wbuf; |
| } |
| AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, |
| ASC_EEP_CMD_WRITE | addr); |
| AdvWaitEEPCmd(iop_base); |
| } |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); |
| AdvWaitEEPCmd(iop_base); |
| } |
| |
| /* |
| * Write the EEPROM from 'cfg_buf'. |
| */ |
| static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base, |
| ADVEEP_38C1600_CONFIG *cfg_buf) |
| { |
| ushort *wbuf; |
| ushort *charfields; |
| ushort addr, chksum; |
| |
| wbuf = (ushort *)cfg_buf; |
| charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; |
| chksum = 0; |
| |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); |
| AdvWaitEEPCmd(iop_base); |
| |
| /* |
| * Write EEPROM from word 0 to word 20. |
| */ |
| for (addr = ADV_EEP_DVC_CFG_BEGIN; |
| addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { |
| ushort word; |
| |
| if (*charfields++) { |
| word = cpu_to_le16(*wbuf); |
| } else { |
| word = *wbuf; |
| } |
| chksum += *wbuf; /* Checksum is calculated from word values. */ |
| AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, |
| ASC_EEP_CMD_WRITE | addr); |
| AdvWaitEEPCmd(iop_base); |
| mdelay(ADV_EEP_DELAY_MS); |
| } |
| |
| /* |
| * Write EEPROM checksum at word 21. |
| */ |
| AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); |
| AdvWaitEEPCmd(iop_base); |
| wbuf++; |
| charfields++; |
| |
| /* |
| * Write EEPROM OEM name at words 22 to 29. |
| */ |
| for (addr = ADV_EEP_DVC_CTL_BEGIN; |
| addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { |
| ushort word; |
| |
| if (*charfields++) { |
| word = cpu_to_le16(*wbuf); |
| } else { |
| word = *wbuf; |
| } |
| AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, |
| ASC_EEP_CMD_WRITE | addr); |
| AdvWaitEEPCmd(iop_base); |
| } |
| AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); |
| AdvWaitEEPCmd(iop_base); |
| } |
| |
| /* |
| * Read EEPROM configuration into the specified buffer. |
| * |
| * Return a checksum based on the EEPROM configuration read. |
| */ |
| static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base, |
| ADVEEP_3550_CONFIG *cfg_buf) |
| { |
| ushort wval, chksum; |
| ushort *wbuf; |
| int eep_addr; |
| ushort *charfields; |
| |
| charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; |
| wbuf = (ushort *)cfg_buf; |
| chksum = 0; |
| |
| for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; |
| eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { |
| wval = AdvReadEEPWord(iop_base, eep_addr); |
| chksum += wval; /* Checksum is calculated from word values. */ |
| if (*charfields++) { |
| *wbuf = le16_to_cpu(wval); |
| } else { |
| *wbuf = wval; |
| } |
| } |
| /* Read checksum word. */ |
| *wbuf = AdvReadEEPWord(iop_base, eep_addr); |
| wbuf++; |
| charfields++; |
| |
| /* Read rest of EEPROM not covered by the checksum. */ |
| for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; |
| eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { |
| *wbuf = AdvReadEEPWord(iop_base, eep_addr); |
| if (*charfields++) { |
| *wbuf = le16_to_cpu(*wbuf); |
| } |
| } |
| return chksum; |
| } |
| |
| /* |
| * Read EEPROM configuration into the specified buffer. |
| * |
| * Return a checksum based on the EEPROM configuration read. |
| */ |
| static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base, |
| ADVEEP_38C0800_CONFIG *cfg_buf) |
| { |
| ushort wval, chksum; |
| ushort *wbuf; |
| int eep_addr; |
| ushort *charfields; |
| |
| charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; |
| wbuf = (ushort *)cfg_buf; |
| chksum = 0; |
| |
| for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; |
| eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { |
| wval = AdvReadEEPWord(iop_base, eep_addr); |
| chksum += wval; /* Checksum is calculated from word values. */ |
| if (*charfields++) { |
| *wbuf = le16_to_cpu(wval); |
| } else { |
| *wbuf = wval; |
| } |
| } |
| /* Read checksum word. */ |
| *wbuf = AdvReadEEPWord(iop_base, eep_addr); |
| wbuf++; |
| charfields++; |
| |
| /* Read rest of EEPROM not covered by the checksum. */ |
| for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; |
| eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { |
| *wbuf = AdvReadEEPWord(iop_base, eep_addr); |
| if (*charfields++) { |
| *wbuf = le16_to_cpu(*wbuf); |
| } |
| } |
| return chksum; |
| } |
| |
| /* |
| * Read EEPROM configuration into the specified buffer. |
| * |
| * Return a checksum based on the EEPROM configuration read. |
| */ |
| static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base, |
| ADVEEP_38C1600_CONFIG *cfg_buf) |
| { |
| ushort wval, chksum; |
| ushort *wbuf; |
| int eep_addr; |
| ushort *charfields; |
| |
| charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; |
| wbuf = (ushort *)cfg_buf; |
| chksum = 0; |
| |
| for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; |
| eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { |
| wval = AdvReadEEPWord(iop_base, eep_addr); |
| chksum += wval; /* Checksum is calculated from word values. */ |
| if (*charfields++) { |
| *wbuf = le16_to_cpu(wval); |
| } else { |
| *wbuf = wval; |
| } |
| } |
| /* Read checksum word. */ |
| *wbuf = AdvReadEEPWord(iop_base, eep_addr); |
| wbuf++; |
| charfields++; |
| |
| /* Read rest of EEPROM not covered by the checksum. */ |
| for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; |
| eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { |
| *wbuf = AdvReadEEPWord(iop_base, eep_addr); |
| if (*charfields++) { |
| *wbuf = le16_to_cpu(*wbuf); |
| } |
| } |
| return chksum; |
| } |
| |
| /* |
| * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and |
| * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while |
| * all of this is done. |
| * |
| * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. |
| * |
| * For a non-fatal error return a warning code. If there are no warnings |
| * then 0 is returned. |
| * |
| * Note: Chip is stopped on entry. |
| */ |
| static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) |
| { |
| AdvPortAddr iop_base; |
| ushort warn_code; |
| ADVEEP_3550_CONFIG eep_config; |
| |
| iop_base = asc_dvc->iop_base; |
| |
| warn_code = 0; |
| |
| /* |
| * Read the board's EEPROM configuration. |
| * |
| * Set default values if a bad checksum is found. |
| */ |
| if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { |
| warn_code |= ASC_WARN_EEPROM_CHKSUM; |
| |
| /* |
| * Set EEPROM default values. |
| */ |
| memcpy(&eep_config, &Default_3550_EEPROM_Config, |
| sizeof(ADVEEP_3550_CONFIG)); |
| |
| /* |
| * Assume the 6 byte board serial number that was read from |
| * EEPROM is correct even if the EEPROM checksum failed. |
| */ |
| eep_config.serial_number_word3 = |
| AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); |
| |
| eep_config.serial_number_word2 = |
| AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); |
| |
| eep_config.serial_number_word1 = |
| AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); |
| |
| AdvSet3550EEPConfig(iop_base, &eep_config); |
| } |
| /* |
| * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the |
| * EEPROM configuration that was read. |
| * |
| * This is the mapping of EEPROM fields to Adv Library fields. |
| */ |
| asc_dvc->wdtr_able = eep_config.wdtr_able; |
| asc_dvc->sdtr_able = eep_config.sdtr_able; |
| asc_dvc->ultra_able = eep_config.ultra_able; |
| asc_dvc->tagqng_able = eep_config.tagqng_able; |
| asc_dvc->cfg->disc_enable = eep_config.disc_enable; |
| asc_dvc->max_host_qng = eep_config.max_host_qng; |
| asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; |
| asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); |
| asc_dvc->start_motor = eep_config.start_motor; |
| asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; |
| asc_dvc->bios_ctrl = eep_config.bios_ctrl; |
| asc_dvc->no_scam = eep_config.scam_tolerant; |
| asc_dvc->cfg->serial1 = eep_config.serial_number_word1; |
| asc_dvc->cfg->serial2 = eep_config.serial_number_word2; |
| asc_dvc->cfg->serial3 = eep_config.serial_number_word3; |
| |
| /* |
| * Set the host maximum queuing (max. 253, min. 16) and the per device |
| * maximum queuing (max. 63, min. 4). |
| */ |
| if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { |
| eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; |
| } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { |
| /* If the value is zero, assume it is uninitialized. */ |
| if (eep_config.max_host_qng == 0) { |
| eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; |
| } else { |
| eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; |
| } |
| } |
| |
| if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { |
| eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; |
| } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { |
| /* If the value is zero, assume it is uninitialized. */ |
| if (eep_config.max_dvc_qng == 0) { |
| eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; |
| } else { |
| eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; |
| } |
| } |
| |
| /* |
| * If 'max_dvc_qng' is greater than 'max_host_qng', then |
| * set 'max_dvc_qng' to 'max_host_qng'. |
| */ |
| if (eep_config.max_dvc_qng > eep_config.max_host_qng) { |
| eep_config.max_dvc_qng = eep_config.max_host_qng; |
| } |
| |
| /* |
| * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' |
| * values based on possibly adjusted EEPROM values. |
| */ |
| asc_dvc->max_host_qng = eep_config.max_host_qng; |
| asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; |
| |
| /* |
| * If the EEPROM 'termination' field is set to automatic (0), then set |
| * the ADV_DVC_CFG 'termination' field to automatic also. |
| * |
| * If the termination is specified with a non-zero 'termination' |
| * value check that a legal value is set and set the ADV_DVC_CFG |
| * 'termination' field appropriately. |
| */ |
| if (eep_config.termination == 0) { |
| asc_dvc->cfg->termination = 0; /* auto termination */ |
| } else { |
| /* Enable manual control with low off / high off. */ |
| if (eep_config.termination == 1) { |
| asc_dvc->cfg->termination = TERM_CTL_SEL; |
| |
| /* Enable manual control with low off / high on. */ |
| } else if (eep_config.termination == 2) { |
| asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; |
| |
| /* Enable manual control with low on / high on. */ |
| } else if (eep_config.termination == 3) { |
| asc_dvc->cfg->termination = |
| TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; |
| } else { |
| /* |
| * The EEPROM 'termination' field contains a bad value. Use |
| * automatic termination instead. |
| */ |
| asc_dvc->cfg->termination = 0; |
| warn_code |= ASC_WARN_EEPROM_TERMINATION; |
| } |
| } |
| |
| return warn_code; |
| } |
| |
| /* |
| * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and |
| * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while |
| * all of this is done. |
| * |
| * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. |
| * |
| * For a non-fatal error return a warning code. If there are no warnings |
| * then 0 is returned. |
| * |
| * Note: Chip is stopped on entry. |
| */ |
| static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) |
| { |
| AdvPortAddr iop_base; |
| ushort warn_code; |
| ADVEEP_38C0800_CONFIG eep_config; |
| uchar tid, termination; |
| ushort sdtr_speed = 0; |
| |
| iop_base = asc_dvc->iop_base; |
| |
| warn_code = 0; |
| |
| /* |
| * Read the board's EEPROM configuration. |
| * |
| * Set default values if a bad checksum is found. |
| */ |
| if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != |
| eep_config.check_sum) { |
| warn_code |= ASC_WARN_EEPROM_CHKSUM; |
| |
| /* |
| * Set EEPROM default values. |
| */ |
| memcpy(&eep_config, &Default_38C0800_EEPROM_Config, |
| sizeof(ADVEEP_38C0800_CONFIG)); |
| |
| /* |
| * Assume the 6 byte board serial number that was read from |
| * EEPROM is correct even if the EEPROM checksum failed. |
| */ |
| eep_config.serial_number_word3 = |
| AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); |
| |
| eep_config.serial_number_word2 = |
| AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); |
| |
| eep_config.serial_number_word1 = |
| AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); |
| |
| AdvSet38C0800EEPConfig(iop_base, &eep_config); |
| } |
| /* |
| * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the |
| * EEPROM configuration that was read. |
| * |
| * This is the mapping of EEPROM fields to Adv Library fields. |
| */ |
| asc_dvc->wdtr_able = eep_config.wdtr_able; |
| asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; |
| asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; |
| asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; |
| asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; |
| asc_dvc->tagqng_able = eep_config.tagqng_able; |
| asc_dvc->cfg->disc_enable = eep_config.disc_enable; |
| asc_dvc->max_host_qng = eep_config.max_host_qng; |
| asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; |
| asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); |
| asc_dvc->start_motor = eep_config.start_motor; |
| asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; |
| asc_dvc->bios_ctrl = eep_config.bios_ctrl; |
| asc_dvc->no_scam = eep_config.scam_tolerant; |
| asc_dvc->cfg->serial1 = eep_config.serial_number_word1; |
| asc_dvc->cfg->serial2 = eep_config.serial_number_word2; |
| asc_dvc->cfg->serial3 = eep_config.serial_number_word3; |
| |
| /* |
| * For every Target ID if any of its 'sdtr_speed[1234]' bits |
| * are set, then set an 'sdtr_able' bit for it. |
| */ |
| asc_dvc->sdtr_able = 0; |
| for (tid = 0; tid <= ADV_MAX_TID; tid++) { |
| if (tid == 0) { |
| sdtr_speed = asc_dvc->sdtr_speed1; |
| } else if (tid == 4) { |
| sdtr_speed = asc_dvc->sdtr_speed2; |
| } else if (tid == 8) { |
| sdtr_speed = asc_dvc->sdtr_speed3; |
| } else if (tid == 12) { |
| sdtr_speed = asc_dvc->sdtr_speed4; |
| } |
| if (sdtr_speed & ADV_MAX_TID) { |
| asc_dvc->sdtr_able |= (1 << tid); |
| } |
| sdtr_speed >>= 4; |
| } |
| |
| /* |
| * Set the host maximum queuing (max. 253, min. 16) and the per device |
| * maximum queuing (max. 63, min. 4). |
| */ |
| if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { |
| eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; |
| } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { |
| /* If the value is zero, assume it is uninitialized. */ |
| if (eep_config.max_host_qng == 0) { |
| eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; |
| } else { |
| eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; |
| } |
| } |
| |
| if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { |
| eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; |
| } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { |
| /* If the value is zero, assume it is uninitialized. */ |
| if (eep_config.max_dvc_qng == 0) { |
| eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; |
| } else { |
| eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; |
| } |
| } |
| |
| /* |
| * If 'max_dvc_qng' is greater than 'max_host_qng', then |
| * set 'max_dvc_qng' to 'max_host_qng'. |
| */ |
| if (eep_config.max_dvc_qng > eep_config.max_host_qng) { |
| eep_config.max_dvc_qng = eep_config.max_host_qng; |
| } |
| |
| /* |
| * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' |
| * values based on possibly adjusted EEPROM values. |
| */ |
| asc_dvc->max_host_qng = eep_config.max_host_qng; |
| asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; |
| |
| /* |
| * If the EEPROM 'termination' field is set to automatic (0), then set |
| * the ADV_DVC_CFG 'termination' field to automatic also. |
| * |
| * If the termination is specified with a non-zero 'termination' |
| * value check that a legal value is set and set the ADV_DVC_CFG |
| * 'termination' field appropriately. |
| */ |
| if (eep_config.termination_se == 0) { |
| termination = 0; /* auto termination for SE */ |
| } else { |
| /* Enable manual control with low off / high off. */ |
| if (eep_config.termination_se == 1) { |
| termination = 0; |
| |
| /* Enable manual control with low off / high on. */ |
| } else if (eep_config.termination_se == 2) { |
| termination = TERM_SE_HI; |
| |
| /* Enable manual control with low on / high on. */ |
| } else if (eep_config.termination_se == 3) { |
| termination = TERM_SE; |
| } else { |
| /* |
| * The EEPROM 'termination_se' field contains a bad value. |
| * Use automatic termination instead. |
| */ |
| termination = 0; |
| warn_code |= ASC_WARN_EEPROM_TERMINATION; |
| } |
| } |
| |
| if (eep_config.termination_lvd == 0) { |
| asc_dvc->cfg->termination = termination; /* auto termination for LVD */ |
| } else { |
| /* Enable manual control with low off / high off. */ |
| if (eep_config.termination_lvd == 1) { |
| asc_dvc->cfg->termination = termination; |
| |
| /* Enable manual control with low off / high on. */ |
| } else if (eep_config.termination_lvd == 2) { |
| asc_dvc->cfg->termination = termination | TERM_LVD_HI; |
| |
| /* Enable manual control with low on / high on. */ |
| } else if (eep_config.termination_lvd == 3) { |
| asc_dvc->cfg->termination = termination | TERM_LVD; |
| } else { |
| /* |
| * The EEPROM 'termination_lvd' field contains a bad value. |
| * Use automatic termination instead. |
| */ |
| asc_dvc->cfg->termination = termination; |
| warn_code |= ASC_WARN_EEPROM_TERMINATION; |
| } |
| } |
| |
| return warn_code; |
| } |
| |
| /* |
| * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and |
| * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while |
| * all of this is done. |
| * |
| * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. |
| * |
| * For a non-fatal error return a warning code. If there are no warnings |
| * then 0 is returned. |
| * |
| * Note: Chip is stopped on entry. |
| */ |
| static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) |
| { |
| AdvPortAddr iop_base; |
| ushort warn_code; |
| ADVEEP_38C1600_CONFIG eep_config; |
| uchar tid, termination; |
| ushort sdtr_speed = 0; |
| |
| iop_base = asc_dvc->iop_base; |
| |
| warn_code = 0; |
| |
| /* |
| * Read the board's EEPROM configuration. |
| * |
| * Set default values if a bad checksum is found. |
| */ |
| if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != |
| eep_config.check_sum) { |
| struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); |
| warn_code |= ASC_WARN_EEPROM_CHKSUM; |
| |
| /* |
| * Set EEPROM default values. |
| */ |
| memcpy(&eep_config, &Default_38C1600_EEPROM_Config, |
| sizeof(ADVEEP_38C1600_CONFIG)); |
| |
| if (PCI_FUNC(pdev->devfn) != 0) { |
| u8 ints; |
| /* |
| * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 |
| * and old Mac system booting problem. The Expansion |
| * ROM must be disabled in Function 1 for these systems |
| */ |
| eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; |
| /* |
| * Clear the INTAB (bit 11) if the GPIO 0 input |
| * indicates the Function 1 interrupt line is wired |
| * to INTB. |
| * |
| * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: |
| * 1 - Function 1 interrupt line wired to INT A. |
| * 0 - Function 1 interrupt line wired to INT B. |
| * |
| * Note: Function 0 is always wired to INTA. |
| * Put all 5 GPIO bits in input mode and then read |
| * their input values. |
| */ |
| AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); |
| ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); |
| if ((ints & 0x01) == 0) |
| eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; |
| } |
| |
| /* |
| * Assume the 6 byte board serial number that was read from |
| * EEPROM is correct even if the EEPROM checksum failed. |
| */ |
| eep_config.serial_number_word3 = |
| AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); |
| eep_config.serial_number_word2 = |
| AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); |
| eep_config.serial_number_word1 = |
| AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); |
| |
| AdvSet38C1600EEPConfig(iop_base, &eep_config); |
| } |
| |
| /* |
| * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the |
| * EEPROM configuration that was read. |
| * |
| * This is the mapping of EEPROM fields to Adv Library fields. |
| */ |
| asc_dvc->wdtr_able = eep_config.wdtr_able; |
| asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; |
| asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; |
| asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; |
| asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; |
| asc_dvc->ppr_able = 0; |
| asc_dvc->tagqng_able = eep_config.tagqng_able; |
| asc_dvc->cfg->disc_enable = eep_config.disc_enable; |
| asc_dvc->max_host_qng = eep_config.max_host_qng; |
| asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; |
| asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); |
| asc_dvc->start_motor = eep_config.start_motor; |
| asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; |
| asc_dvc->bios_ctrl = eep_config.bios_ctrl; |
| asc_dvc->no_scam = eep_config.scam_tolerant; |
| |
| /* |
| * For every Target ID if any of its 'sdtr_speed[1234]' bits |
| * are set, then set an 'sdtr_able' bit for it. |
| */ |
| asc_dvc->sdtr_able = 0; |
| for (tid = 0; tid <= ASC_MAX_TID; tid++) { |
| if (tid == 0) { |
| sdtr_speed = asc_dvc->sdtr_speed1; |
| } else if (tid == 4) { |
| sdtr_speed = asc_dvc->sdtr_speed2; |
| } else if (tid == 8) { |
| sdtr_speed = asc_dvc->sdtr_speed3; |
| } else if (tid == 12) { |
| sdtr_speed = asc_dvc->sdtr_speed4; |
| } |
| if (sdtr_speed & ASC_MAX_TID) { |
| asc_dvc->sdtr_able |= (1 << tid); |
| } |
| sdtr_speed >>= 4; |
| } |
| |
| /* |
| * Set the host maximum queuing (max. 253, min. 16) and the per device |
| * maximum queuing (max. 63, min. 4). |
| */ |
| if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { |
| eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; |
| } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { |
| /* If the value is zero, assume it is uninitialized. */ |
| if (eep_config.max_host_qng == 0) { |
| eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; |
| } else { |
| eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; |
| } |
| } |
| |
| if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { |
| eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; |
| } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { |
| /* If the value is zero, assume it is uninitialized. */ |
| if (eep_config.max_dvc_qng == 0) { |
| eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; |
| } else { |
| eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; |
| } |
| } |
| |
| /* |
| * If 'max_dvc_qng' is greater than 'max_host_qng', then |
| * set 'max_dvc_qng' to 'max_host_qng'. |
| */ |
| if (eep_config.max_dvc_qng > eep_config.max_host_qng) { |
| eep_config.max_dvc_qng = eep_config.max_host_qng; |
| } |
| |
| /* |
| * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' |
| * values based on possibly adjusted EEPROM values. |
| */ |
| asc_dvc->max_host_qng = eep_config.max_host_qng; |
| asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; |
| |
| /* |
| * If the EEPROM 'termination' field is set to automatic (0), then set |
| * the ASC_DVC_CFG 'termination' field to automatic also. |
| * |
| * If the termination is specified with a non-zero 'termination' |
| * value check that a legal value is set and set the ASC_DVC_CFG |
| * 'termination' field appropriately. |
| */ |
| if (eep_config.termination_se == 0) { |
| termination = 0; /* auto termination for SE */ |
| } else { |
| /* Enable manual control with low off / high off. */ |
| if (eep_config.termination_se == 1) { |
| termination = 0; |
| |
| /* Enable manual control with low off / high on. */ |
| } else if (eep_config.termination_se == 2) { |
| termination = TERM_SE_HI; |
| |
| /* Enable manual control with low on / high on. */ |
| } else if (eep_config.termination_se == 3) { |
| termination = TERM_SE; |
| } else { |
| /* |
| * The EEPROM 'termination_se' field contains a bad value. |
| * Use automatic termination instead. |
| */ |
| termination = 0; |
| warn_code |= ASC_WARN_EEPROM_TERMINATION; |
| } |
| } |
| |
| if (eep_config.termination_lvd == 0) { |
| asc_dvc->cfg->termination = termination; /* auto termination for LVD */ |
| } else { |
| /* Enable manual control with low off / high off. */ |
| if (eep_config.termination_lvd == 1) { |
| asc_dvc->cfg->termination = termination; |
| |
| /* Enable manual control with low off / high on. */ |
| } else if (eep_config.termination_lvd == 2) { |
| asc_dvc->cfg->termination = termination | TERM_LVD_HI; |
| |
| /* Enable manual control with low on / high on. */ |
| } else if (eep_config.termination_lvd == 3) { |
| asc_dvc->cfg->termination = termination | TERM_LVD; |
| } else { |
| /* |
| * The EEPROM 'termination_lvd' field contains a bad value. |
| * Use automatic termination instead. |
| */ |
| asc_dvc->cfg->termination = termination; |
| warn_code |= ASC_WARN_EEPROM_TERMINATION; |
| } |
| } |
| |
| return warn_code; |
| } |
| |
| /* |
| * Initialize the ADV_DVC_VAR structure. |
| * |
| * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. |
| * |
| * For a non-fatal error return a warning code. If there are no warnings |
| * then 0 is returned. |
| */ |
| static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) |
| { |
| struct asc_board *board = shost_priv(shost); |
| ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; |
| unsigned short warn_code = 0; |
| AdvPortAddr iop_base = asc_dvc->iop_base; |
| u16 cmd; |
| int status; |
| |
| asc_dvc->err_code = 0; |
| |
| /* |
| * Save the state of the PCI Configuration Command Register |
| * "Parity Error Response Control" Bit. If the bit is clear (0), |
| * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore |
| * DMA parity errors. |
| */ |
| asc_dvc->cfg->control_flag = 0; |
| pci_read_config_word(pdev, PCI_COMMAND, &cmd); |
| if ((cmd & PCI_COMMAND_PARITY) == 0) |
| asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; |
| |
| asc_dvc->cfg->chip_version = |
| AdvGetChipVersion(iop_base, asc_dvc->bus_type); |
| |
| ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", |
| (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), |
| (ushort)ADV_CHIP_ID_BYTE); |
| |
| ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", |
| (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), |
| (ushort)ADV_CHIP_ID_WORD); |
| |
| /* |
| * Reset the chip to start and allow register writes. |
| */ |
| if (AdvFindSignature(iop_base) == 0) { |
| asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; |
| return ADV_ERROR; |
| } else { |
| /* |
| * The caller must set 'chip_type' to a valid setting. |
| */ |
| if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && |
| asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && |
| asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { |
| asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; |
| return ADV_ERROR; |
| } |
| |
| /* |
| * Reset Chip. |
| */ |
| AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, |
| ADV_CTRL_REG_CMD_RESET); |
| mdelay(100); |
| AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, |
| ADV_CTRL_REG_CMD_WR_IO_REG); |
| |
| if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { |
| status = AdvInitFrom38C1600EEP(asc_dvc); |
| } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { |
| status = AdvInitFrom38C0800EEP(asc_dvc); |
| } else { |
| status = AdvInitFrom3550EEP(asc_dvc); |
| } |
| warn_code |= status; |
| } |
| |
| if (warn_code != 0) |
| shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); |
| |
| if (asc_dvc->err_code) |
| shost_printk(KERN_ERR, shost, "error code 0x%x\n", |
| asc_dvc->err_code); |
| |
| return asc_dvc->err_code; |
| } |
| #endif |
| |
| static struct scsi_host_template advansys_template = { |
| .proc_name = DRV_NAME, |
| #ifdef CONFIG_PROC_FS |
| .show_info = advansys_show_info, |
| #endif |
| .name = DRV_NAME, |
| .info = advansys_info, |
| .queuecommand = advansys_queuecommand, |
| .eh_host_reset_handler = advansys_reset, |
| .bios_param = advansys_biosparam, |
| .slave_configure = advansys_slave_configure, |
| /* |
| * Because the driver may control an ISA adapter 'unchecked_isa_dma' |
| * must be set. The flag will be cleared in advansys_board_found |
| * for non-ISA adapters. |
| */ |
| .unchecked_isa_dma = true, |
| /* |
| * All adapters controlled by this driver are capable of large |
| * scatter-gather lists. According to the mid-level SCSI documentation |
| * this obviates any performance gain provided by setting |
| * 'use_clustering'. But empirically while CPU utilization is increased |
| * by enabling clustering, I/O throughput increases as well. |
| */ |
| .use_clustering = ENABLE_CLUSTERING, |
| }; |
| |
| static int advansys_wide_init_chip(struct Scsi_Host *shost) |
| { |
| struct asc_board *board = shost_priv(shost); |
| struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; |
| size_t sgblk_pool_size; |
| int warn_code, err_code; |
| |
| /* |
| * Allocate buffer carrier structures. The total size |
| * is about 8 KB, so allocate all at once. |
| */ |
| adv_dvc->carrier = dma_alloc_coherent(board->dev, |
| ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL); |
| ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier); |
| |
| if (!adv_dvc->carrier) |
| goto kmalloc_failed; |
| |
| /* |
| * Allocate up to 'max_host_qng' request structures for the Wide |
| * board. The total size is about 16 KB, so allocate all at once. |
| * If the allocation fails decrement and try again. |
| */ |
| board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t); |
| if (board->adv_reqp_size & 0x1f) { |
| ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t)); |
| board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size); |
| } |
| board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size, |
| &board->adv_reqp_addr, GFP_KERNEL); |
| |
| if (!board->adv_reqp) |
| goto kmalloc_failed; |
| |
| ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp, |
| adv_dvc->max_host_qng, board->adv_reqp_size); |
| |
| /* |
| * Allocate up to ADV_TOT_SG_BLOCK request structures for |
| * the Wide board. Each structure is about 136 bytes. |
| */ |
| sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK; |
| board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev, |
| sgblk_pool_size, 32, 0); |
| |
| ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK, |
| sizeof(adv_sgblk_t), sgblk_pool_size); |
| |
| if (!board->adv_sgblk_pool) |
| goto kmalloc_failed; |
| |
| if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { |
| ASC_DBG(2, "AdvInitAsc3550Driver()\n"); |
| warn_code = AdvInitAsc3550Driver(adv_dvc); |
| } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { |
| ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); |
| warn_code = AdvInitAsc38C0800Driver(adv_dvc); |
| } else { |
| ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); |
| warn_code = AdvInitAsc38C1600Driver(adv_dvc); |
| } |
| err_code = adv_dvc->err_code; |
| |
| if (warn_code || err_code) { |
| shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " |
| "0x%x\n", warn_code, err_code); |
| } |
| |
| goto exit; |
| |
| kmalloc_failed: |
| shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); |
| err_code = ADV_ERROR; |
| exit: |
| return err_code; |
| } |
| |
| static void advansys_wide_free_mem(struct asc_board *board) |
| { |
| struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; |
| |
| if (adv_dvc->carrier) { |
| dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE, |
| adv_dvc->carrier, adv_dvc->carrier_addr); |
| adv_dvc->carrier = NULL; |
| } |
| if (board->adv_reqp) { |
| dma_free_coherent(board->dev, board->adv_reqp_size, |
| board->adv_reqp, board->adv_reqp_addr); |
| board->adv_reqp = NULL; |
| } |
| if (board->adv_sgblk_pool) { |
| dma_pool_destroy(board->adv_sgblk_pool); |
| board->adv_sgblk_pool = NULL; |
| } |
| } |
| |
| static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop, |
| int bus_type) |
| { |
| struct pci_dev *pdev; |
| struct asc_board *boardp = shost_priv(shost); |
| ASC_DVC_VAR *asc_dvc_varp = NULL; |
| ADV_DVC_VAR *adv_dvc_varp = NULL; |
| int share_irq, warn_code, ret; |
| |
| pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; |
| |
| if (ASC_NARROW_BOARD(boardp)) { |
| ASC_DBG(1, "narrow board\n"); |
| asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; |
| asc_dvc_varp->bus_type = bus_type; |
| asc_dvc_varp->drv_ptr = boardp; |
| asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; |
| asc_dvc_varp->iop_base = iop; |
| } else { |
| #ifdef CONFIG_PCI |
| adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; |
| adv_dvc_varp->drv_ptr = boardp; |
| adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; |
| if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { |
| ASC_DBG(1, "wide board ASC-3550\n"); |
| adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; |
| } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { |
| ASC_DBG(1, "wide board ASC-38C0800\n"); |
| adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; |
| } else { |
| ASC_DBG(1, "wide board ASC-38C1600\n"); |
| adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; |
| } |
| |
| boardp->asc_n_io_port = pci_resource_len(pdev, 1); |
| boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); |
| if (!boardp->ioremap_addr) { |
| shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " |
| "returned NULL\n", |
| (long)pci_resource_start(pdev, 1), |
| boardp->asc_n_io_port); |
| ret = -ENODEV; |
| goto err_shost; |
| } |
| adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; |
| ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); |
| |
| /* |
| * Even though it isn't used to access wide boards, other |
| * than for the debug line below, save I/O Port address so |
| * that it can be reported. |
| */ |
| boardp->ioport = iop; |
| |
| ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", |
| (ushort)inp(iop + 1), (ushort)inpw(iop)); |
| #endif /* CONFIG_PCI */ |
| } |
| |
| if (ASC_NARROW_BOARD(boardp)) { |
| /* |
| * Set the board bus type and PCI IRQ before |
| * calling AscInitGetConfig(). |
| */ |
| switch (asc_dvc_varp->bus_type) { |
| #ifdef CONFIG_ISA |
| case ASC_IS_ISA: |
| shost->unchecked_isa_dma = true; |
| share_irq = 0; |
| break; |
| case ASC_IS_VL: |
| shost->unchecked_isa_dma = false; |
| share_irq = 0; |
| break; |
| case ASC_IS_EISA: |
| shost->unchecked_isa_dma = false; |
| share_irq = IRQF_SHARED; |
| break; |
| #endif /* CONFIG_ISA */ |
| #ifdef CONFIG_PCI |
| case ASC_IS_PCI: |
| shost->unchecked_isa_dma = false; |
| share_irq = IRQF_SHARED; |
| break; |
| #endif /* CONFIG_PCI */ |
| default: |
| shost_printk(KERN_ERR, shost, "unknown adapter type: " |
| "%d\n", asc_dvc_varp->bus_type); |
| shost->unchecked_isa_dma = false; |
| share_irq = 0; |
| break; |
| } |
| |
| /* |
| * NOTE: AscInitGetConfig() may change the board's |
| * bus_type value. The bus_type value should no |
| * longer be used. If the bus_type field must be |
| * referenced only use the bit-wise AND operator "&". |
| */ |
| ASC_DBG(2, "AscInitGetConfig()\n"); |
| ret = AscInitGetConfig(shost) ? -ENODEV : 0; |
| } else { |
| #ifdef CONFIG_PCI |
| /* |
| * For Wide boards set PCI information before calling |
| * AdvInitGetConfig(). |
| */ |
| shost->unchecked_isa_dma = false; |
| share_irq = IRQF_SHARED; |
| ASC_DBG(2, "AdvInitGetConfig()\n"); |
| |
| ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; |
| #else |
| share_irq = 0; |
| ret = -ENODEV; |
| #endif /* CONFIG_PCI */ |
| } |
| |
| if (ret) |
| goto err_unmap; |
| |
| /* |
| * Save the EEPROM configuration so that it can be displayed |
| * from /proc/scsi/advansys/[0...]. |
| */ |
| if (ASC_NARROW_BOARD(boardp)) { |
| |
| ASCEEP_CONFIG *ep; |
| |
| /* |
| * Set the adapter's target id bit in the 'init_tidmask' field. |
| */ |
| boardp->init_tidmask |= |
| ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); |
| |
| /* |
| * Save EEPROM settings for the board. |
| */ |
| ep = &boardp->eep_config.asc_eep; |
| |
| ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; |
| ep->disc_enable = asc_dvc_varp->cfg->disc_enable; |
| ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; |
| ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed); |
| ep->start_motor = asc_dvc_varp->start_motor; |
| ep->cntl = asc_dvc_varp->dvc_cntl; |
| ep->no_scam = asc_dvc_varp->no_scam; |
| ep->max_total_qng = asc_dvc_varp->max_total_qng; |
| ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); |
| /* 'max_tag_qng' is set to the same value for every device. */ |
| ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; |
| ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; |
| ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; |
| ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; |
| ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; |
| ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; |
| ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; |
| |
| /* |
| * Modify board configuration. |
| */ |
| ASC_DBG(2, "AscInitSetConfig()\n"); |
| ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; |
| if (ret) |
| goto err_unmap; |
| } else { |
| ADVEEP_3550_CONFIG *ep_3550; |
| ADVEEP_38C0800_CONFIG *ep_38C0800; |
| ADVEEP_38C1600_CONFIG *ep_38C1600; |
| |
| /* |
| * Save Wide EEP Configuration Information. |
| */ |
| if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { |
| ep_3550 = &boardp->eep_config.adv_3550_eep; |
| |
| ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; |
| ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; |
| ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; |
| ep_3550->termination = adv_dvc_varp->cfg->termination; |
| ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; |
| ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; |
| ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; |
| ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; |
| ep_3550->ultra_able = adv_dvc_varp->ultra_able; |
| ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; |
| ep_3550->start_motor = adv_dvc_varp->start_motor; |
| ep_3550->scsi_reset_delay = |
| adv_dvc_varp->scsi_reset_wait; |
| ep_3550->serial_number_word1 = |
| adv_dvc_varp->cfg->serial1; |
| ep_3550->serial_number_word2 = |
| adv_dvc_varp->cfg->serial2; |
| ep_3550->serial_number_word3 = |
| adv_dvc_varp->cfg->serial3; |
| } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { |
| ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; |
| |
| ep_38C0800->adapter_scsi_id = |
| adv_dvc_varp->chip_scsi_id; |
| ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; |
| ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; |
| ep_38C0800->termination_lvd = |
| adv_dvc_varp->cfg->termination; |
| ep_38C0800->disc_enable = |
| adv_dvc_varp->cfg->disc_enable; |
| ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; |
| ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; |
| ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; |
| ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; |
| ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; |
| ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; |
| ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; |
| ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; |
| ep_38C0800->start_motor = adv_dvc_varp->start_motor; |
| ep_38C0800->scsi_reset_delay = |
| adv_dvc_varp->scsi_reset_wait; |
| ep_38C0800->serial_number_word1 = |
| adv_dvc_varp->cfg->serial1; |
| ep_38C0800->serial_number_word2 = |
| adv_dvc_varp->cfg->serial2; |
| ep_38C0800->serial_number_word3 = |
| adv_dvc_varp->cfg->serial3; |
| } else { |
| ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; |
| |
| ep_38C1600->adapter_scsi_id = |
| adv_dvc_varp->chip_scsi_id; |
| ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; |
| ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; |
| ep_38C1600->termination_lvd = |
| adv_dvc_varp->cfg->termination; |
| ep_38C1600->disc_enable = |
| adv_dvc_varp->cfg->disc_enable; |
| ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; |
| ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; |
| ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; |
| ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; |
| ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; |
| ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; |
| ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; |
| ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; |
| ep_38C1600->start_motor = adv_dvc_varp->start_motor; |
| ep_38C1600->scsi_reset_delay = |
| adv_dvc_varp->scsi_reset_wait; |
| ep_38C1600->serial_number_word1 = |
| adv_dvc_varp->cfg->serial1; |
| ep_38C1600->serial_number_word2 = |
| adv_dvc_varp->cfg->serial2; |
| ep_38C1600->serial_number_word3 = |
| adv_dvc_varp->cfg->serial3; |
| } |
| |
| /* |
| * Set the adapter's target id bit in the 'init_tidmask' field. |
| */ |
| boardp->init_tidmask |= |
| ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); |
| } |
| |
| /* |
| * Channels are numbered beginning with 0. For AdvanSys one host |
| * structure supports one channel. Multi-channel boards have a |
| * separate host structure for each channel. |
| */ |
| shost->max_channel = 0; |
| if (ASC_NARROW_BOARD(boardp)) { |
| shost->max_id = ASC_MAX_TID + 1; |
| shost->max_lun = ASC_MAX_LUN + 1; |
| shost->max_cmd_len = ASC_MAX_CDB_LEN; |
| |
| shost->io_port = asc_dvc_varp->iop_base; |
| boardp->asc_n_io_port = ASC_IOADR_GAP; |
| shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; |
| |
| /* Set maximum number of queues the adapter can handle. */ |
| shost->can_queue = asc_dvc_varp->max_total_qng; |
| } else { |
| shost->max_id = ADV_MAX_TID + 1; |
| shost->max_lun = ADV_MAX_LUN + 1; |
| shost->max_cmd_len = ADV_MAX_CDB_LEN; |
| |
| /* |
| * Save the I/O Port address and length even though |
| * I/O ports are not used to access Wide boards. |
| * Instead the Wide boards are accessed with |
| * PCI Memory Mapped I/O. |
| */ |
| shost->io_port = iop; |
| |
| shost->this_id = adv_dvc_varp->chip_scsi_id; |
| |
| /* Set maximum number of queues the adapter can handle. */ |
| shost->can_queue = adv_dvc_varp->max_host_qng; |
| } |
| |
| /* |
| * Set the maximum number of scatter-gather elements the |
| * adapter can handle. |
| */ |
| if (ASC_NARROW_BOARD(boardp)) { |
| /* |
| * Allow two commands with 'sg_tablesize' scatter-gather |
| * elements to be executed simultaneously. This value is |
| * the theoretical hardware limit. It may be decreased |
| * below. |
| */ |
| shost->sg_tablesize = |
| (((asc_dvc_varp->max_total_qng - 2) / 2) * |
| ASC_SG_LIST_PER_Q) + 1; |
| } else { |
| shost->sg_tablesize = ADV_MAX_SG_LIST; |
| } |
| |
| /* |
| * The value of 'sg_tablesize' can not exceed the SCSI |
| * mid-level driver definition of SG_ALL. SG_ALL also |
| * must not be exceeded, because it is used to define the |
| * size of the scatter-gather table in 'struct asc_sg_head'. |
| */ |
| if (shost->sg_tablesize > SG_ALL) { |
| shost->sg_tablesize = SG_ALL; |
| } |
| |
| ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); |
| |
| /* BIOS start address. */ |
| if (ASC_NARROW_BOARD(boardp)) { |
| shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, |
| asc_dvc_varp->bus_type); |
| } else { |
| /* |
| * Fill-in BIOS board variables. The Wide BIOS saves |
| * information in LRAM that is used by the driver. |
| */ |
| AdvReadWordLram(adv_dvc_varp->iop_base, |
| BIOS_SIGNATURE, boardp->bios_signature); |
| AdvReadWordLram(adv_dvc_varp->iop_base, |
| BIOS_VERSION, boardp->bios_version); |
| AdvReadWordLram(adv_dvc_varp->iop_base, |
| BIOS_CODESEG, boardp->bios_codeseg); |
| AdvReadWordLram(adv_dvc_varp->iop_base, |
| BIOS_CODELEN, boardp->bios_codelen); |
| |
| ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", |
| boardp->bios_signature, boardp->bios_version); |
| |
| ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", |
| boardp->bios_codeseg, boardp->bios_codelen); |
| |
| /* |
| * If the BIOS saved a valid signature, then fill in |
| * the BIOS code segment base address. |
| */ |
| if (boardp->bios_signature == 0x55AA) { |
| /* |
| * Convert x86 realmode code segment to a linear |
| * address by shifting left 4. |
| */ |
| shost->base = ((ulong)boardp->bios_codeseg << 4); |
| } else { |
| shost->base = 0; |
| } |
| } |
| |
| /* |
| * Register Board Resources - I/O Port, DMA, IRQ |
| */ |
| |
| /* Register DMA Channel for Narrow boards. */ |
| shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ |
| #ifdef CONFIG_ISA |
| if (ASC_NARROW_BOARD(boardp)) { |
| /* Register DMA channel for ISA bus. */ |
| if (asc_dvc_varp->bus_type & ASC_IS_ISA) { |
| shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel; |
| ret = request_dma(shost->dma_channel, DRV_NAME); |
| if (ret) { |
| shost_printk(KERN_ERR, shost, "request_dma() " |
| "%d failed %d\n", |
| shost->dma_channel, ret); |
| goto err_unmap; |
| } |
| AscEnableIsaDma(shost->dma_channel); |
| } |
| } |
| #endif /* CONFIG_ISA */ |
| |
| /* Register IRQ Number. */ |
| ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); |
| |
| ret = request_irq(boardp->irq, advansys_interrupt, share_irq, |
| DRV_NAME, shost); |
| |
| if (ret) { |
| if (ret == -EBUSY) { |
| shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " |
| "already in use\n", boardp->irq); |
| } else if (ret == -EINVAL) { |
| shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " |
| "not valid\n", boardp->irq); |
| } else { |
| shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " |
| "failed with %d\n", boardp->irq, ret); |
| } |
| goto err_free_dma; |
| } |
| |
| /* |
| * Initialize board RISC chip and enable interrupts. |
| */ |
| if (ASC_NARROW_BOARD(boardp)) { |
| ASC_DBG(2, "AscInitAsc1000Driver()\n"); |
| |
| asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); |
| if (!asc_dvc_varp->overrun_buf) { |
| ret = -ENOMEM; |
| goto err_free_irq; |
| } |
| warn_code = AscInitAsc1000Driver(asc_dvc_varp); |
| |
| if (warn_code || asc_dvc_varp->err_code) { |
| shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " |
| "warn 0x%x, error 0x%x\n", |
| asc_dvc_varp->init_state, warn_code, |
| asc_dvc_varp->err_code); |
| if (!asc_dvc_varp->overrun_dma) { |
| ret = -ENODEV; |
| goto err_free_mem; |
| } |
| } |
| } else { |
| if (advansys_wide_init_chip(shost)) { |
| ret = -ENODEV; |
| goto err_free_mem; |
| } |
| } |
| |
| ASC_DBG_PRT_SCSI_HOST(2, shost); |
| |
| ret = scsi_add_host(shost, boardp->dev); |
| if (ret) |
| goto err_free_mem; |
| |
| scsi_scan_host(shost); |
| return 0; |
| |
| err_free_mem: |
| if (ASC_NARROW_BOARD(boardp)) { |
| if (asc_dvc_varp->overrun_dma) |
| dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, |
| ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); |
| kfree(asc_dvc_varp->overrun_buf); |
| } else |
| advansys_wide_free_mem(boardp); |
| err_free_irq: |
| free_irq(boardp->irq, shost); |
| err_free_dma: |
| #ifdef CONFIG_ISA |
| if (shost->dma_channel != NO_ISA_DMA) |
| free_dma(shost->dma_channel); |
| #endif |
| err_unmap: |
| if (boardp->ioremap_addr) |
| iounmap(boardp->ioremap_addr); |
| #ifdef CONFIG_PCI |
| err_shost: |
| #endif |
| return ret; |
| } |
| |
| /* |
| * advansys_release() |
| * |
| * Release resources allocated for a single AdvanSys adapter. |
| */ |
| static int advansys_release(struct Scsi_Host *shost) |
| { |
| struct asc_board *board = shost_priv(shost); |
| ASC_DBG(1, "begin\n"); |
| scsi_remove_host(shost); |
| free_irq(board->irq, shost); |
| #ifdef CONFIG_ISA |
| if (shost->dma_channel != NO_ISA_DMA) { |
| ASC_DBG(1, "free_dma()\n"); |
| free_dma(shost->dma_channel); |
| } |
| #endif |
| if (ASC_NARROW_BOARD(board)) { |
| dma_unmap_single(board->dev, |
| board->dvc_var.asc_dvc_var.overrun_dma, |
| ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); |
| kfree(board->dvc_var.asc_dvc_var.overrun_buf); |
| } else { |
| iounmap(board->ioremap_addr); |
| advansys_wide_free_mem(board); |
| } |
| scsi_host_put(shost); |
| ASC_DBG(1, "end\n"); |
| return 0; |
| } |
| |
| #define ASC_IOADR_TABLE_MAX_IX 11 |
| |
| static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { |
| 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, |
| 0x0210, 0x0230, 0x0250, 0x0330 |
| }; |
| |
| /* |
| * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as: |
| * 00: 10 |
| * 01: 11 |
| * 10: 12 |
| * 11: 15 |
| */ |
| static unsigned int advansys_isa_irq_no(PortAddr iop_base) |
| { |
| unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); |
| unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10; |
| if (chip_irq == 13) |
| chip_irq = 15; |
| return chip_irq; |
| } |
| |
| static int advansys_isa_probe(struct device *dev, unsigned int id) |
| { |
| int err = -ENODEV; |
| PortAddr iop_base = _asc_def_iop_base[id]; |
| struct Scsi_Host *shost; |
| struct asc_board *board; |
| |
| if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { |
| ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); |
| return -ENODEV; |
| } |
| ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); |
| if (!AscFindSignature(iop_base)) |
| goto release_region; |
| if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT)) |
| goto release_region; |
| |
| err = -ENOMEM; |
| shost = scsi_host_alloc(&advansys_template, sizeof(*board)); |
| if (!shost) |
| goto release_region; |
| |
| board = shost_priv(shost); |
| board->irq = advansys_isa_irq_no(iop_base); |
| board->dev = dev; |
| board->shost = shost; |
| |
| err = advansys_board_found(shost, iop_base, ASC_IS_ISA); |
| if (err) |
| goto free_host; |
| |
| dev_set_drvdata(dev, shost); |
| return 0; |
| |
| free_host: |
| scsi_host_put(shost); |
| release_region: |
| release_region(iop_base, ASC_IOADR_GAP); |
| return err; |
| } |
| |
| static int advansys_isa_remove(struct device *dev, unsigned int id) |
| { |
| int ioport = _asc_def_iop_base[id]; |
| advansys_release(dev_get_drvdata(dev)); |
| release_region(ioport, ASC_IOADR_GAP); |
| return 0; |
| } |
| |
| static struct isa_driver advansys_isa_driver = { |
| .probe = advansys_isa_probe, |
| .remove = advansys_isa_remove, |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = DRV_NAME, |
| }, |
| }; |
| |
| /* |
| * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as: |
| * 000: invalid |
| * 001: 10 |
| * 010: 11 |
| * 011: 12 |
| * 100: invalid |
| * 101: 14 |
| * 110: 15 |
| * 111: invalid |
| */ |
| static unsigned int advansys_vlb_irq_no(PortAddr iop_base) |
| { |
| unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); |
| unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; |
| if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) |
| return 0; |
| return chip_irq; |
| } |
| |
| static int advansys_vlb_probe(struct device *dev, unsigned int id) |
| { |
| int err = -ENODEV; |
| PortAddr iop_base = _asc_def_iop_base[id]; |
| struct Scsi_Host *shost; |
| struct asc_board *board; |
| |
| if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { |
| ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); |
| return -ENODEV; |
| } |
| ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); |
| if (!AscFindSignature(iop_base)) |
| goto release_region; |
| /* |
| * I don't think this condition can actually happen, but the old |
| * driver did it, and the chances of finding a VLB setup in 2007 |
| * to do testing with is slight to none. |
| */ |
| if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) |
| goto release_region; |
| |
| err = -ENOMEM; |
| shost = scsi_host_alloc(&advansys_template, sizeof(*board)); |
| if (!shost) |
| goto release_region; |
| |
| board = shost_priv(shost); |
| board->irq = advansys_vlb_irq_no(iop_base); |
| board->dev = dev; |
| board->shost = shost; |
| |
| err = advansys_board_found(shost, iop_base, ASC_IS_VL); |
| if (err) |
| goto free_host; |
| |
| dev_set_drvdata(dev, shost); |
| return 0; |
| |
| free_host: |
| scsi_host_put(shost); |
| release_region: |
| release_region(iop_base, ASC_IOADR_GAP); |
| return -ENODEV; |
| } |
| |
| static struct isa_driver advansys_vlb_driver = { |
| .probe = advansys_vlb_probe, |
| .remove = advansys_isa_remove, |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = "advansys_vlb", |
| }, |
| }; |
| |
| static struct eisa_device_id advansys_eisa_table[] = { |
| { "ABP7401" }, |
| { "ABP7501" }, |
| { "" } |
| }; |
| |
| MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); |
| |
| /* |
| * EISA is a little more tricky than PCI; each EISA device may have two |
| * channels, and this driver is written to make each channel its own Scsi_Host |
| */ |
| struct eisa_scsi_data { |
| struct Scsi_Host *host[2]; |
| }; |
| |
| /* |
| * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as: |
| * 000: 10 |
| * 001: 11 |
| * 010: 12 |
| * 011: invalid |
| * 100: 14 |
| * 101: 15 |
| * 110: invalid |
| * 111: invalid |
| */ |
| static unsigned int advansys_eisa_irq_no(struct eisa_device *edev) |
| { |
| unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); |
| unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; |
| if ((chip_irq == 13) || (chip_irq > 15)) |
| return 0; |
| return chip_irq; |
| } |
| |
| static int advansys_eisa_probe(struct device *dev) |
| { |
| int i, ioport, irq = 0; |
| int err; |
| struct eisa_device *edev = to_eisa_device(dev); |
| struct eisa_scsi_data *data; |
| |
| err = -ENOMEM; |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| goto fail; |
| ioport = edev->base_addr + 0xc30; |
| |
| err = -ENODEV; |
| for (i = 0; i < 2; i++, ioport += 0x20) { |
| struct asc_board *board; |
| struct Scsi_Host *shost; |
| if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { |
| printk(KERN_WARNING "Region %x-%x busy\n", ioport, |
| ioport + ASC_IOADR_GAP - 1); |
| continue; |
| } |
| if (!AscFindSignature(ioport)) { |
| release_region(ioport, ASC_IOADR_GAP); |
| continue; |
| } |
| |
| /* |
| * I don't know why we need to do this for EISA chips, but |
| * not for any others. It looks to be equivalent to |
| * AscGetChipCfgMsw, but I may have overlooked something, |
| * so I'm not converting it until I get an EISA board to |
| * test with. |
| */ |
| inw(ioport + 4); |
| |
| if (!irq) |
| irq = advansys_eisa_irq_no(edev); |
| |
| err = -ENOMEM; |
| shost = scsi_host_alloc(&advansys_template, sizeof(*board)); |
| if (!shost) |
| goto release_region; |
| |
| board = shost_priv(shost); |
| board->irq = irq; |
| board->dev = dev; |
| board->shost = shost; |
| |
| err = advansys_board_found(shost, ioport, ASC_IS_EISA); |
| if (!err) { |
| data->host[i] = shost; |
| continue; |
| } |
| |
| scsi_host_put(shost); |
| release_region: |
| release_region(ioport, ASC_IOADR_GAP); |
| break; |
| } |
| |
| if (err) |
| goto free_data; |
| dev_set_drvdata(dev, data); |
| return 0; |
| |
| free_data: |
| kfree(data->host[0]); |
| kfree(data->host[1]); |
| kfree(data); |
| fail: |
| return err; |
| } |
| |
| static int advansys_eisa_remove(struct device *dev) |
| { |
| int i; |
| struct eisa_scsi_data *data = dev_get_drvdata(dev); |
| |
| for (i = 0; i < 2; i++) { |
| int ioport; |
| struct Scsi_Host *shost = data->host[i]; |
| if (!shost) |
| continue; |
| ioport = shost->io_port; |
| advansys_release(shost); |
| release_region(ioport, ASC_IOADR_GAP); |
| } |
| |
| kfree(data); |
| return 0; |
| } |
| |
| static struct eisa_driver advansys_eisa_driver = { |
| .id_table = advansys_eisa_table, |
| .driver = { |
| .name = DRV_NAME, |
| .probe = advansys_eisa_probe, |
| .remove = advansys_eisa_remove, |
| } |
| }; |
| |
| /* PCI Devices supported by this driver */ |
| static struct pci_device_id advansys_pci_tbl[] = { |
| {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| {} |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); |
| |
| static void advansys_set_latency(struct pci_dev *pdev) |
| { |
| if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || |
| (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { |
| pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); |
| } else { |
| u8 latency; |
| pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); |
| if (latency < 0x20) |
| pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); |
| } |
| } |
| |
| static int advansys_pci_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| int err, ioport; |
| struct Scsi_Host *shost; |
| struct asc_board *board; |
| |
| err = pci_enable_device(pdev); |
| if (err) |
| goto fail; |
| err = pci_request_regions(pdev, DRV_NAME); |
| if (err) |
| goto disable_device; |
| pci_set_master(pdev); |
| advansys_set_latency(pdev); |
| |
| err = -ENODEV; |
| if (pci_resource_len(pdev, 0) == 0) |
| goto release_region; |
| |
| ioport = pci_resource_start(pdev, 0); |
| |
| err = -ENOMEM; |
| shost = scsi_host_alloc(&advansys_template, sizeof(*board)); |
| if (!shost) |
| goto release_region; |
| |
| board = shost_priv(shost); |
| board->irq = pdev->irq; |
| board->dev = &pdev->dev; |
| board->shost = shost; |
| |
| if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || |
| pdev->device == PCI_DEVICE_ID_38C0800_REV1 || |
| pdev->device == PCI_DEVICE_ID_38C1600_REV1) { |
| board->flags |= ASC_IS_WIDE_BOARD; |
| } |
| |
| err = advansys_board_found(shost, ioport, ASC_IS_PCI); |
| if (err) |
| goto free_host; |
| |
| pci_set_drvdata(pdev, shost); |
| return 0; |
| |
| free_host: |
| scsi_host_put(shost); |
| release_region: |
| pci_release_regions(pdev); |
| disable_device: |
| pci_disable_device(pdev); |
| fail: |
| return err; |
| } |
| |
| static void advansys_pci_remove(struct pci_dev *pdev) |
| { |
| advansys_release(pci_get_drvdata(pdev)); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| } |
| |
| static struct pci_driver advansys_pci_driver = { |
| .name = DRV_NAME, |
| .id_table = advansys_pci_tbl, |
| .probe = advansys_pci_probe, |
| .remove = advansys_pci_remove, |
| }; |
| |
| static int __init advansys_init(void) |
| { |
| int error; |
| |
| error = isa_register_driver(&advansys_isa_driver, |
| ASC_IOADR_TABLE_MAX_IX); |
| if (error) |
| goto fail; |
| |
| error = isa_register_driver(&advansys_vlb_driver, |
| ASC_IOADR_TABLE_MAX_IX); |
| if (error) |
| goto unregister_isa; |
| |
| error = eisa_driver_register(&advansys_eisa_driver); |
| if (error) |
| goto unregister_vlb; |
| |
| error = pci_register_driver(&advansys_pci_driver); |
| if (error) |
| goto unregister_eisa; |
| |
| return 0; |
| |
| unregister_eisa: |
| eisa_driver_unregister(&advansys_eisa_driver); |
| unregister_vlb: |
| isa_unregister_driver(&advansys_vlb_driver); |
| unregister_isa: |
| isa_unregister_driver(&advansys_isa_driver); |
| fail: |
| return error; |
| } |
| |
| static void __exit advansys_exit(void) |
| { |
| pci_unregister_driver(&advansys_pci_driver); |
| eisa_driver_unregister(&advansys_eisa_driver); |
| isa_unregister_driver(&advansys_vlb_driver); |
| isa_unregister_driver(&advansys_isa_driver); |
| } |
| |
| module_init(advansys_init); |
| module_exit(advansys_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_FIRMWARE("advansys/mcode.bin"); |
| MODULE_FIRMWARE("advansys/3550.bin"); |
| MODULE_FIRMWARE("advansys/38C0800.bin"); |
| MODULE_FIRMWARE("advansys/38C1600.bin"); |