|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * RTC subsystem, interface functions | 
|  | * | 
|  | * Copyright (C) 2005 Tower Technologies | 
|  | * Author: Alessandro Zummo <a.zummo@towertech.it> | 
|  | * | 
|  | * based on arch/arm/common/rtctime.c | 
|  | */ | 
|  |  | 
|  | #include <linux/rtc.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/workqueue.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/rtc.h> | 
|  |  | 
|  | static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); | 
|  | static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); | 
|  |  | 
|  | static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) | 
|  | { | 
|  | time64_t secs; | 
|  |  | 
|  | if (!rtc->offset_secs) | 
|  | return; | 
|  |  | 
|  | secs = rtc_tm_to_time64(tm); | 
|  |  | 
|  | /* | 
|  | * Since the reading time values from RTC device are always in the RTC | 
|  | * original valid range, but we need to skip the overlapped region | 
|  | * between expanded range and original range, which is no need to add | 
|  | * the offset. | 
|  | */ | 
|  | if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || | 
|  | (rtc->start_secs < rtc->range_min && | 
|  | secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) | 
|  | return; | 
|  |  | 
|  | rtc_time64_to_tm(secs + rtc->offset_secs, tm); | 
|  | } | 
|  |  | 
|  | static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) | 
|  | { | 
|  | time64_t secs; | 
|  |  | 
|  | if (!rtc->offset_secs) | 
|  | return; | 
|  |  | 
|  | secs = rtc_tm_to_time64(tm); | 
|  |  | 
|  | /* | 
|  | * If the setting time values are in the valid range of RTC hardware | 
|  | * device, then no need to subtract the offset when setting time to RTC | 
|  | * device. Otherwise we need to subtract the offset to make the time | 
|  | * values are valid for RTC hardware device. | 
|  | */ | 
|  | if (secs >= rtc->range_min && secs <= rtc->range_max) | 
|  | return; | 
|  |  | 
|  | rtc_time64_to_tm(secs - rtc->offset_secs, tm); | 
|  | } | 
|  |  | 
|  | static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) | 
|  | { | 
|  | if (rtc->range_min != rtc->range_max) { | 
|  | time64_t time = rtc_tm_to_time64(tm); | 
|  | time64_t range_min = rtc->set_start_time ? rtc->start_secs : | 
|  | rtc->range_min; | 
|  | timeu64_t range_max = rtc->set_start_time ? | 
|  | (rtc->start_secs + rtc->range_max - rtc->range_min) : | 
|  | rtc->range_max; | 
|  |  | 
|  | if (time < range_min || time > range_max) | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!rtc->ops) { | 
|  | err = -ENODEV; | 
|  | } else if (!rtc->ops->read_time) { | 
|  | err = -EINVAL; | 
|  | } else { | 
|  | memset(tm, 0, sizeof(struct rtc_time)); | 
|  | err = rtc->ops->read_time(rtc->dev.parent, tm); | 
|  | if (err < 0) { | 
|  | dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", | 
|  | err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | rtc_add_offset(rtc, tm); | 
|  |  | 
|  | err = rtc_valid_tm(tm); | 
|  | if (err < 0) | 
|  | dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = mutex_lock_interruptible(&rtc->ops_lock); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = __rtc_read_time(rtc, tm); | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  |  | 
|  | trace_rtc_read_time(rtc_tm_to_time64(tm), err); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_read_time); | 
|  |  | 
|  | int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) | 
|  | { | 
|  | int err, uie; | 
|  |  | 
|  | err = rtc_valid_tm(tm); | 
|  | if (err != 0) | 
|  | return err; | 
|  |  | 
|  | err = rtc_valid_range(rtc, tm); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | rtc_subtract_offset(rtc, tm); | 
|  |  | 
|  | #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL | 
|  | uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active; | 
|  | #else | 
|  | uie = rtc->uie_rtctimer.enabled; | 
|  | #endif | 
|  | if (uie) { | 
|  | err = rtc_update_irq_enable(rtc, 0); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = mutex_lock_interruptible(&rtc->ops_lock); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!rtc->ops) | 
|  | err = -ENODEV; | 
|  | else if (rtc->ops->set_time) | 
|  | err = rtc->ops->set_time(rtc->dev.parent, tm); | 
|  | else | 
|  | err = -EINVAL; | 
|  |  | 
|  | pm_stay_awake(rtc->dev.parent); | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  | /* A timer might have just expired */ | 
|  | schedule_work(&rtc->irqwork); | 
|  |  | 
|  | if (uie) { | 
|  | err = rtc_update_irq_enable(rtc, 1); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | trace_rtc_set_time(rtc_tm_to_time64(tm), err); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_set_time); | 
|  |  | 
|  | static int rtc_read_alarm_internal(struct rtc_device *rtc, | 
|  | struct rtc_wkalrm *alarm) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = mutex_lock_interruptible(&rtc->ops_lock); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!rtc->ops) { | 
|  | err = -ENODEV; | 
|  | } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) { | 
|  | err = -EINVAL; | 
|  | } else { | 
|  | alarm->enabled = 0; | 
|  | alarm->pending = 0; | 
|  | alarm->time.tm_sec = -1; | 
|  | alarm->time.tm_min = -1; | 
|  | alarm->time.tm_hour = -1; | 
|  | alarm->time.tm_mday = -1; | 
|  | alarm->time.tm_mon = -1; | 
|  | alarm->time.tm_year = -1; | 
|  | alarm->time.tm_wday = -1; | 
|  | alarm->time.tm_yday = -1; | 
|  | alarm->time.tm_isdst = -1; | 
|  | err = rtc->ops->read_alarm(rtc->dev.parent, alarm); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  |  | 
|  | trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | 
|  | { | 
|  | int err; | 
|  | struct rtc_time before, now; | 
|  | int first_time = 1; | 
|  | time64_t t_now, t_alm; | 
|  | enum { none, day, month, year } missing = none; | 
|  | unsigned int days; | 
|  |  | 
|  | /* The lower level RTC driver may return -1 in some fields, | 
|  | * creating invalid alarm->time values, for reasons like: | 
|  | * | 
|  | *   - The hardware may not be capable of filling them in; | 
|  | *     many alarms match only on time-of-day fields, not | 
|  | *     day/month/year calendar data. | 
|  | * | 
|  | *   - Some hardware uses illegal values as "wildcard" match | 
|  | *     values, which non-Linux firmware (like a BIOS) may try | 
|  | *     to set up as e.g. "alarm 15 minutes after each hour". | 
|  | *     Linux uses only oneshot alarms. | 
|  | * | 
|  | * When we see that here, we deal with it by using values from | 
|  | * a current RTC timestamp for any missing (-1) values.  The | 
|  | * RTC driver prevents "periodic alarm" modes. | 
|  | * | 
|  | * But this can be racey, because some fields of the RTC timestamp | 
|  | * may have wrapped in the interval since we read the RTC alarm, | 
|  | * which would lead to us inserting inconsistent values in place | 
|  | * of the -1 fields. | 
|  | * | 
|  | * Reading the alarm and timestamp in the reverse sequence | 
|  | * would have the same race condition, and not solve the issue. | 
|  | * | 
|  | * So, we must first read the RTC timestamp, | 
|  | * then read the RTC alarm value, | 
|  | * and then read a second RTC timestamp. | 
|  | * | 
|  | * If any fields of the second timestamp have changed | 
|  | * when compared with the first timestamp, then we know | 
|  | * our timestamp may be inconsistent with that used by | 
|  | * the low-level rtc_read_alarm_internal() function. | 
|  | * | 
|  | * So, when the two timestamps disagree, we just loop and do | 
|  | * the process again to get a fully consistent set of values. | 
|  | * | 
|  | * This could all instead be done in the lower level driver, | 
|  | * but since more than one lower level RTC implementation needs it, | 
|  | * then it's probably best to do it here instead of there.. | 
|  | */ | 
|  |  | 
|  | /* Get the "before" timestamp */ | 
|  | err = rtc_read_time(rtc, &before); | 
|  | if (err < 0) | 
|  | return err; | 
|  | do { | 
|  | if (!first_time) | 
|  | memcpy(&before, &now, sizeof(struct rtc_time)); | 
|  | first_time = 0; | 
|  |  | 
|  | /* get the RTC alarm values, which may be incomplete */ | 
|  | err = rtc_read_alarm_internal(rtc, alarm); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* full-function RTCs won't have such missing fields */ | 
|  | if (rtc_valid_tm(&alarm->time) == 0) { | 
|  | rtc_add_offset(rtc, &alarm->time); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* get the "after" timestamp, to detect wrapped fields */ | 
|  | err = rtc_read_time(rtc, &now); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | /* note that tm_sec is a "don't care" value here: */ | 
|  | } while (before.tm_min  != now.tm_min || | 
|  | before.tm_hour != now.tm_hour || | 
|  | before.tm_mon  != now.tm_mon || | 
|  | before.tm_year != now.tm_year); | 
|  |  | 
|  | /* Fill in the missing alarm fields using the timestamp; we | 
|  | * know there's at least one since alarm->time is invalid. | 
|  | */ | 
|  | if (alarm->time.tm_sec == -1) | 
|  | alarm->time.tm_sec = now.tm_sec; | 
|  | if (alarm->time.tm_min == -1) | 
|  | alarm->time.tm_min = now.tm_min; | 
|  | if (alarm->time.tm_hour == -1) | 
|  | alarm->time.tm_hour = now.tm_hour; | 
|  |  | 
|  | /* For simplicity, only support date rollover for now */ | 
|  | if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { | 
|  | alarm->time.tm_mday = now.tm_mday; | 
|  | missing = day; | 
|  | } | 
|  | if ((unsigned int)alarm->time.tm_mon >= 12) { | 
|  | alarm->time.tm_mon = now.tm_mon; | 
|  | if (missing == none) | 
|  | missing = month; | 
|  | } | 
|  | if (alarm->time.tm_year == -1) { | 
|  | alarm->time.tm_year = now.tm_year; | 
|  | if (missing == none) | 
|  | missing = year; | 
|  | } | 
|  |  | 
|  | /* Can't proceed if alarm is still invalid after replacing | 
|  | * missing fields. | 
|  | */ | 
|  | err = rtc_valid_tm(&alarm->time); | 
|  | if (err) | 
|  | goto done; | 
|  |  | 
|  | /* with luck, no rollover is needed */ | 
|  | t_now = rtc_tm_to_time64(&now); | 
|  | t_alm = rtc_tm_to_time64(&alarm->time); | 
|  | if (t_now < t_alm) | 
|  | goto done; | 
|  |  | 
|  | switch (missing) { | 
|  | /* 24 hour rollover ... if it's now 10am Monday, an alarm that | 
|  | * that will trigger at 5am will do so at 5am Tuesday, which | 
|  | * could also be in the next month or year.  This is a common | 
|  | * case, especially for PCs. | 
|  | */ | 
|  | case day: | 
|  | dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); | 
|  | t_alm += 24 * 60 * 60; | 
|  | rtc_time64_to_tm(t_alm, &alarm->time); | 
|  | break; | 
|  |  | 
|  | /* Month rollover ... if it's the 31th, an alarm on the 3rd will | 
|  | * be next month.  An alarm matching on the 30th, 29th, or 28th | 
|  | * may end up in the month after that!  Many newer PCs support | 
|  | * this type of alarm. | 
|  | */ | 
|  | case month: | 
|  | dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); | 
|  | do { | 
|  | if (alarm->time.tm_mon < 11) { | 
|  | alarm->time.tm_mon++; | 
|  | } else { | 
|  | alarm->time.tm_mon = 0; | 
|  | alarm->time.tm_year++; | 
|  | } | 
|  | days = rtc_month_days(alarm->time.tm_mon, | 
|  | alarm->time.tm_year); | 
|  | } while (days < alarm->time.tm_mday); | 
|  | break; | 
|  |  | 
|  | /* Year rollover ... easy except for leap years! */ | 
|  | case year: | 
|  | dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); | 
|  | do { | 
|  | alarm->time.tm_year++; | 
|  | } while (!is_leap_year(alarm->time.tm_year + 1900) && | 
|  | rtc_valid_tm(&alarm->time) != 0); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_warn(&rtc->dev, "alarm rollover not handled\n"); | 
|  | } | 
|  |  | 
|  | err = rtc_valid_tm(&alarm->time); | 
|  |  | 
|  | done: | 
|  | if (err) | 
|  | dev_warn(&rtc->dev, "invalid alarm value: %ptR\n", | 
|  | &alarm->time); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = mutex_lock_interruptible(&rtc->ops_lock); | 
|  | if (err) | 
|  | return err; | 
|  | if (!rtc->ops) { | 
|  | err = -ENODEV; | 
|  | } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) { | 
|  | err = -EINVAL; | 
|  | } else { | 
|  | memset(alarm, 0, sizeof(struct rtc_wkalrm)); | 
|  | alarm->enabled = rtc->aie_timer.enabled; | 
|  | alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); | 
|  | } | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  |  | 
|  | trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_read_alarm); | 
|  |  | 
|  | static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | 
|  | { | 
|  | struct rtc_time tm; | 
|  | time64_t now, scheduled; | 
|  | int err; | 
|  |  | 
|  | err = rtc_valid_tm(&alarm->time); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | scheduled = rtc_tm_to_time64(&alarm->time); | 
|  |  | 
|  | /* Make sure we're not setting alarms in the past */ | 
|  | err = __rtc_read_time(rtc, &tm); | 
|  | if (err) | 
|  | return err; | 
|  | now = rtc_tm_to_time64(&tm); | 
|  |  | 
|  | if (scheduled <= now) | 
|  | return -ETIME; | 
|  | /* | 
|  | * XXX - We just checked to make sure the alarm time is not | 
|  | * in the past, but there is still a race window where if | 
|  | * the is alarm set for the next second and the second ticks | 
|  | * over right here, before we set the alarm. | 
|  | */ | 
|  |  | 
|  | rtc_subtract_offset(rtc, &alarm->time); | 
|  |  | 
|  | if (!rtc->ops) | 
|  | err = -ENODEV; | 
|  | else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) | 
|  | err = -EINVAL; | 
|  | else | 
|  | err = rtc->ops->set_alarm(rtc->dev.parent, alarm); | 
|  |  | 
|  | trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | 
|  | { | 
|  | ktime_t alarm_time; | 
|  | int err; | 
|  |  | 
|  | if (!rtc->ops) | 
|  | return -ENODEV; | 
|  | else if (!test_bit(RTC_FEATURE_ALARM, rtc->features)) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = rtc_valid_tm(&alarm->time); | 
|  | if (err != 0) | 
|  | return err; | 
|  |  | 
|  | err = rtc_valid_range(rtc, &alarm->time); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = mutex_lock_interruptible(&rtc->ops_lock); | 
|  | if (err) | 
|  | return err; | 
|  | if (rtc->aie_timer.enabled) | 
|  | rtc_timer_remove(rtc, &rtc->aie_timer); | 
|  |  | 
|  | alarm_time = rtc_tm_to_ktime(alarm->time); | 
|  | /* | 
|  | * Round down so we never miss a deadline, checking for past deadline is | 
|  | * done in __rtc_set_alarm | 
|  | */ | 
|  | if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features)) | 
|  | alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC); | 
|  |  | 
|  | rtc->aie_timer.node.expires = alarm_time; | 
|  | rtc->aie_timer.period = 0; | 
|  | if (alarm->enabled) | 
|  | err = rtc_timer_enqueue(rtc, &rtc->aie_timer); | 
|  |  | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_set_alarm); | 
|  |  | 
|  | /* Called once per device from rtc_device_register */ | 
|  | int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) | 
|  | { | 
|  | int err; | 
|  | struct rtc_time now; | 
|  |  | 
|  | err = rtc_valid_tm(&alarm->time); | 
|  | if (err != 0) | 
|  | return err; | 
|  |  | 
|  | err = rtc_read_time(rtc, &now); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = mutex_lock_interruptible(&rtc->ops_lock); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); | 
|  | rtc->aie_timer.period = 0; | 
|  |  | 
|  | /* Alarm has to be enabled & in the future for us to enqueue it */ | 
|  | if (alarm->enabled && (rtc_tm_to_ktime(now) < | 
|  | rtc->aie_timer.node.expires)) { | 
|  | rtc->aie_timer.enabled = 1; | 
|  | timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); | 
|  | trace_rtc_timer_enqueue(&rtc->aie_timer); | 
|  | } | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_initialize_alarm); | 
|  |  | 
|  | int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = mutex_lock_interruptible(&rtc->ops_lock); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (rtc->aie_timer.enabled != enabled) { | 
|  | if (enabled) | 
|  | err = rtc_timer_enqueue(rtc, &rtc->aie_timer); | 
|  | else | 
|  | rtc_timer_remove(rtc, &rtc->aie_timer); | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | /* nothing */; | 
|  | else if (!rtc->ops) | 
|  | err = -ENODEV; | 
|  | else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) | 
|  | err = -EINVAL; | 
|  | else | 
|  | err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); | 
|  |  | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  |  | 
|  | trace_rtc_alarm_irq_enable(enabled, err); | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); | 
|  |  | 
|  | int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = mutex_lock_interruptible(&rtc->ops_lock); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL | 
|  | if (enabled == 0 && rtc->uie_irq_active) { | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  | return rtc_dev_update_irq_enable_emul(rtc, 0); | 
|  | } | 
|  | #endif | 
|  | /* make sure we're changing state */ | 
|  | if (rtc->uie_rtctimer.enabled == enabled) | 
|  | goto out; | 
|  |  | 
|  | if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) || | 
|  | !test_bit(RTC_FEATURE_ALARM, rtc->features)) { | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  | #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL | 
|  | return rtc_dev_update_irq_enable_emul(rtc, enabled); | 
|  | #else | 
|  | return -EINVAL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (enabled) { | 
|  | struct rtc_time tm; | 
|  | ktime_t now, onesec; | 
|  |  | 
|  | err = __rtc_read_time(rtc, &tm); | 
|  | if (err) | 
|  | goto out; | 
|  | onesec = ktime_set(1, 0); | 
|  | now = rtc_tm_to_ktime(tm); | 
|  | rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); | 
|  | rtc->uie_rtctimer.period = ktime_set(1, 0); | 
|  | err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); | 
|  | } else { | 
|  | rtc_timer_remove(rtc, &rtc->uie_rtctimer); | 
|  | } | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_update_irq_enable); | 
|  |  | 
|  | /** | 
|  | * rtc_handle_legacy_irq - AIE, UIE and PIE event hook | 
|  | * @rtc: pointer to the rtc device | 
|  | * @num: number of occurence of the event | 
|  | * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF | 
|  | * | 
|  | * This function is called when an AIE, UIE or PIE mode interrupt | 
|  | * has occurred (or been emulated). | 
|  | * | 
|  | */ | 
|  | void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* mark one irq of the appropriate mode */ | 
|  | spin_lock_irqsave(&rtc->irq_lock, flags); | 
|  | rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode); | 
|  | spin_unlock_irqrestore(&rtc->irq_lock, flags); | 
|  |  | 
|  | wake_up_interruptible(&rtc->irq_queue); | 
|  | kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_aie_update_irq - AIE mode rtctimer hook | 
|  | * @rtc: pointer to the rtc_device | 
|  | * | 
|  | * This functions is called when the aie_timer expires. | 
|  | */ | 
|  | void rtc_aie_update_irq(struct rtc_device *rtc) | 
|  | { | 
|  | rtc_handle_legacy_irq(rtc, 1, RTC_AF); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_uie_update_irq - UIE mode rtctimer hook | 
|  | * @rtc: pointer to the rtc_device | 
|  | * | 
|  | * This functions is called when the uie_timer expires. | 
|  | */ | 
|  | void rtc_uie_update_irq(struct rtc_device *rtc) | 
|  | { | 
|  | rtc_handle_legacy_irq(rtc, 1,  RTC_UF); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_pie_update_irq - PIE mode hrtimer hook | 
|  | * @timer: pointer to the pie mode hrtimer | 
|  | * | 
|  | * This function is used to emulate PIE mode interrupts | 
|  | * using an hrtimer. This function is called when the periodic | 
|  | * hrtimer expires. | 
|  | */ | 
|  | enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) | 
|  | { | 
|  | struct rtc_device *rtc; | 
|  | ktime_t period; | 
|  | u64 count; | 
|  |  | 
|  | rtc = container_of(timer, struct rtc_device, pie_timer); | 
|  |  | 
|  | period = NSEC_PER_SEC / rtc->irq_freq; | 
|  | count = hrtimer_forward_now(timer, period); | 
|  |  | 
|  | rtc_handle_legacy_irq(rtc, count, RTC_PF); | 
|  |  | 
|  | return HRTIMER_RESTART; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_update_irq - Triggered when a RTC interrupt occurs. | 
|  | * @rtc: the rtc device | 
|  | * @num: how many irqs are being reported (usually one) | 
|  | * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF | 
|  | * Context: any | 
|  | */ | 
|  | void rtc_update_irq(struct rtc_device *rtc, | 
|  | unsigned long num, unsigned long events) | 
|  | { | 
|  | if (IS_ERR_OR_NULL(rtc)) | 
|  | return; | 
|  |  | 
|  | pm_stay_awake(rtc->dev.parent); | 
|  | schedule_work(&rtc->irqwork); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_update_irq); | 
|  |  | 
|  | struct rtc_device *rtc_class_open(const char *name) | 
|  | { | 
|  | struct device *dev; | 
|  | struct rtc_device *rtc = NULL; | 
|  |  | 
|  | dev = class_find_device_by_name(rtc_class, name); | 
|  | if (dev) | 
|  | rtc = to_rtc_device(dev); | 
|  |  | 
|  | if (rtc) { | 
|  | if (!try_module_get(rtc->owner)) { | 
|  | put_device(dev); | 
|  | rtc = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rtc; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_class_open); | 
|  |  | 
|  | void rtc_class_close(struct rtc_device *rtc) | 
|  | { | 
|  | module_put(rtc->owner); | 
|  | put_device(&rtc->dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rtc_class_close); | 
|  |  | 
|  | static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) | 
|  | { | 
|  | /* | 
|  | * We always cancel the timer here first, because otherwise | 
|  | * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); | 
|  | * when we manage to start the timer before the callback | 
|  | * returns HRTIMER_RESTART. | 
|  | * | 
|  | * We cannot use hrtimer_cancel() here as a running callback | 
|  | * could be blocked on rtc->irq_task_lock and hrtimer_cancel() | 
|  | * would spin forever. | 
|  | */ | 
|  | if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) | 
|  | return -1; | 
|  |  | 
|  | if (enabled) { | 
|  | ktime_t period = NSEC_PER_SEC / rtc->irq_freq; | 
|  |  | 
|  | hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs | 
|  | * @rtc: the rtc device | 
|  | * @enabled: true to enable periodic IRQs | 
|  | * Context: any | 
|  | * | 
|  | * Note that rtc_irq_set_freq() should previously have been used to | 
|  | * specify the desired frequency of periodic IRQ. | 
|  | */ | 
|  | int rtc_irq_set_state(struct rtc_device *rtc, int enabled) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | while (rtc_update_hrtimer(rtc, enabled) < 0) | 
|  | cpu_relax(); | 
|  |  | 
|  | rtc->pie_enabled = enabled; | 
|  |  | 
|  | trace_rtc_irq_set_state(enabled, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ | 
|  | * @rtc: the rtc device | 
|  | * @freq: positive frequency | 
|  | * Context: any | 
|  | * | 
|  | * Note that rtc_irq_set_state() is used to enable or disable the | 
|  | * periodic IRQs. | 
|  | */ | 
|  | int rtc_irq_set_freq(struct rtc_device *rtc, int freq) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (freq <= 0 || freq > RTC_MAX_FREQ) | 
|  | return -EINVAL; | 
|  |  | 
|  | rtc->irq_freq = freq; | 
|  | while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) | 
|  | cpu_relax(); | 
|  |  | 
|  | trace_rtc_irq_set_freq(freq, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue | 
|  | * @rtc: rtc device | 
|  | * @timer: timer being added. | 
|  | * | 
|  | * Enqueues a timer onto the rtc devices timerqueue and sets | 
|  | * the next alarm event appropriately. | 
|  | * | 
|  | * Sets the enabled bit on the added timer. | 
|  | * | 
|  | * Must hold ops_lock for proper serialization of timerqueue | 
|  | */ | 
|  | static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) | 
|  | { | 
|  | struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); | 
|  | struct rtc_time tm; | 
|  | ktime_t now; | 
|  | int err; | 
|  |  | 
|  | err = __rtc_read_time(rtc, &tm); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | timer->enabled = 1; | 
|  | now = rtc_tm_to_ktime(tm); | 
|  |  | 
|  | /* Skip over expired timers */ | 
|  | while (next) { | 
|  | if (next->expires >= now) | 
|  | break; | 
|  | next = timerqueue_iterate_next(next); | 
|  | } | 
|  |  | 
|  | timerqueue_add(&rtc->timerqueue, &timer->node); | 
|  | trace_rtc_timer_enqueue(timer); | 
|  | if (!next || ktime_before(timer->node.expires, next->expires)) { | 
|  | struct rtc_wkalrm alarm; | 
|  |  | 
|  | alarm.time = rtc_ktime_to_tm(timer->node.expires); | 
|  | alarm.enabled = 1; | 
|  | err = __rtc_set_alarm(rtc, &alarm); | 
|  | if (err == -ETIME) { | 
|  | pm_stay_awake(rtc->dev.parent); | 
|  | schedule_work(&rtc->irqwork); | 
|  | } else if (err) { | 
|  | timerqueue_del(&rtc->timerqueue, &timer->node); | 
|  | trace_rtc_timer_dequeue(timer); | 
|  | timer->enabled = 0; | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rtc_alarm_disable(struct rtc_device *rtc) | 
|  | { | 
|  | if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable) | 
|  | return; | 
|  |  | 
|  | rtc->ops->alarm_irq_enable(rtc->dev.parent, false); | 
|  | trace_rtc_alarm_irq_enable(0, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue | 
|  | * @rtc: rtc device | 
|  | * @timer: timer being removed. | 
|  | * | 
|  | * Removes a timer onto the rtc devices timerqueue and sets | 
|  | * the next alarm event appropriately. | 
|  | * | 
|  | * Clears the enabled bit on the removed timer. | 
|  | * | 
|  | * Must hold ops_lock for proper serialization of timerqueue | 
|  | */ | 
|  | static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) | 
|  | { | 
|  | struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); | 
|  |  | 
|  | timerqueue_del(&rtc->timerqueue, &timer->node); | 
|  | trace_rtc_timer_dequeue(timer); | 
|  | timer->enabled = 0; | 
|  | if (next == &timer->node) { | 
|  | struct rtc_wkalrm alarm; | 
|  | int err; | 
|  |  | 
|  | next = timerqueue_getnext(&rtc->timerqueue); | 
|  | if (!next) { | 
|  | rtc_alarm_disable(rtc); | 
|  | return; | 
|  | } | 
|  | alarm.time = rtc_ktime_to_tm(next->expires); | 
|  | alarm.enabled = 1; | 
|  | err = __rtc_set_alarm(rtc, &alarm); | 
|  | if (err == -ETIME) { | 
|  | pm_stay_awake(rtc->dev.parent); | 
|  | schedule_work(&rtc->irqwork); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_timer_do_work - Expires rtc timers | 
|  | * @work: work item | 
|  | * | 
|  | * Expires rtc timers. Reprograms next alarm event if needed. | 
|  | * Called via worktask. | 
|  | * | 
|  | * Serializes access to timerqueue via ops_lock mutex | 
|  | */ | 
|  | void rtc_timer_do_work(struct work_struct *work) | 
|  | { | 
|  | struct rtc_timer *timer; | 
|  | struct timerqueue_node *next; | 
|  | ktime_t now; | 
|  | struct rtc_time tm; | 
|  |  | 
|  | struct rtc_device *rtc = | 
|  | container_of(work, struct rtc_device, irqwork); | 
|  |  | 
|  | mutex_lock(&rtc->ops_lock); | 
|  | again: | 
|  | __rtc_read_time(rtc, &tm); | 
|  | now = rtc_tm_to_ktime(tm); | 
|  | while ((next = timerqueue_getnext(&rtc->timerqueue))) { | 
|  | if (next->expires > now) | 
|  | break; | 
|  |  | 
|  | /* expire timer */ | 
|  | timer = container_of(next, struct rtc_timer, node); | 
|  | timerqueue_del(&rtc->timerqueue, &timer->node); | 
|  | trace_rtc_timer_dequeue(timer); | 
|  | timer->enabled = 0; | 
|  | if (timer->func) | 
|  | timer->func(timer->rtc); | 
|  |  | 
|  | trace_rtc_timer_fired(timer); | 
|  | /* Re-add/fwd periodic timers */ | 
|  | if (ktime_to_ns(timer->period)) { | 
|  | timer->node.expires = ktime_add(timer->node.expires, | 
|  | timer->period); | 
|  | timer->enabled = 1; | 
|  | timerqueue_add(&rtc->timerqueue, &timer->node); | 
|  | trace_rtc_timer_enqueue(timer); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set next alarm */ | 
|  | if (next) { | 
|  | struct rtc_wkalrm alarm; | 
|  | int err; | 
|  | int retry = 3; | 
|  |  | 
|  | alarm.time = rtc_ktime_to_tm(next->expires); | 
|  | alarm.enabled = 1; | 
|  | reprogram: | 
|  | err = __rtc_set_alarm(rtc, &alarm); | 
|  | if (err == -ETIME) { | 
|  | goto again; | 
|  | } else if (err) { | 
|  | if (retry-- > 0) | 
|  | goto reprogram; | 
|  |  | 
|  | timer = container_of(next, struct rtc_timer, node); | 
|  | timerqueue_del(&rtc->timerqueue, &timer->node); | 
|  | trace_rtc_timer_dequeue(timer); | 
|  | timer->enabled = 0; | 
|  | dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); | 
|  | goto again; | 
|  | } | 
|  | } else { | 
|  | rtc_alarm_disable(rtc); | 
|  | } | 
|  |  | 
|  | pm_relax(rtc->dev.parent); | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  | } | 
|  |  | 
|  | /* rtc_timer_init - Initializes an rtc_timer | 
|  | * @timer: timer to be intiialized | 
|  | * @f: function pointer to be called when timer fires | 
|  | * @rtc: pointer to the rtc_device | 
|  | * | 
|  | * Kernel interface to initializing an rtc_timer. | 
|  | */ | 
|  | void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r), | 
|  | struct rtc_device *rtc) | 
|  | { | 
|  | timerqueue_init(&timer->node); | 
|  | timer->enabled = 0; | 
|  | timer->func = f; | 
|  | timer->rtc = rtc; | 
|  | } | 
|  |  | 
|  | /* rtc_timer_start - Sets an rtc_timer to fire in the future | 
|  | * @ rtc: rtc device to be used | 
|  | * @ timer: timer being set | 
|  | * @ expires: time at which to expire the timer | 
|  | * @ period: period that the timer will recur | 
|  | * | 
|  | * Kernel interface to set an rtc_timer | 
|  | */ | 
|  | int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, | 
|  | ktime_t expires, ktime_t period) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&rtc->ops_lock); | 
|  | if (timer->enabled) | 
|  | rtc_timer_remove(rtc, timer); | 
|  |  | 
|  | timer->node.expires = expires; | 
|  | timer->period = period; | 
|  |  | 
|  | ret = rtc_timer_enqueue(rtc, timer); | 
|  |  | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* rtc_timer_cancel - Stops an rtc_timer | 
|  | * @ rtc: rtc device to be used | 
|  | * @ timer: timer being set | 
|  | * | 
|  | * Kernel interface to cancel an rtc_timer | 
|  | */ | 
|  | void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) | 
|  | { | 
|  | mutex_lock(&rtc->ops_lock); | 
|  | if (timer->enabled) | 
|  | rtc_timer_remove(rtc, timer); | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_read_offset - Read the amount of rtc offset in parts per billion | 
|  | * @rtc: rtc device to be used | 
|  | * @offset: the offset in parts per billion | 
|  | * | 
|  | * see below for details. | 
|  | * | 
|  | * Kernel interface to read rtc clock offset | 
|  | * Returns 0 on success, or a negative number on error. | 
|  | * If read_offset() is not implemented for the rtc, return -EINVAL | 
|  | */ | 
|  | int rtc_read_offset(struct rtc_device *rtc, long *offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!rtc->ops) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!rtc->ops->read_offset) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&rtc->ops_lock); | 
|  | ret = rtc->ops->read_offset(rtc->dev.parent, offset); | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  |  | 
|  | trace_rtc_read_offset(*offset, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rtc_set_offset - Adjusts the duration of the average second | 
|  | * @rtc: rtc device to be used | 
|  | * @offset: the offset in parts per billion | 
|  | * | 
|  | * Some rtc's allow an adjustment to the average duration of a second | 
|  | * to compensate for differences in the actual clock rate due to temperature, | 
|  | * the crystal, capacitor, etc. | 
|  | * | 
|  | * The adjustment applied is as follows: | 
|  | *   t = t0 * (1 + offset * 1e-9) | 
|  | * where t0 is the measured length of 1 RTC second with offset = 0 | 
|  | * | 
|  | * Kernel interface to adjust an rtc clock offset. | 
|  | * Return 0 on success, or a negative number on error. | 
|  | * If the rtc offset is not setable (or not implemented), return -EINVAL | 
|  | */ | 
|  | int rtc_set_offset(struct rtc_device *rtc, long offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!rtc->ops) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!rtc->ops->set_offset) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&rtc->ops_lock); | 
|  | ret = rtc->ops->set_offset(rtc->dev.parent, offset); | 
|  | mutex_unlock(&rtc->ops_lock); | 
|  |  | 
|  | trace_rtc_set_offset(offset, ret); | 
|  | return ret; | 
|  | } |