blob: da4b07c0ed4c078213d6e062d5144667d0690f6d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the Renesas R-Car I2C unit
*
* Copyright (C) 2014-19 Wolfram Sang <wsa@sang-engineering.com>
* Copyright (C) 2011-2019 Renesas Electronics Corporation
*
* Copyright (C) 2012-14 Renesas Solutions Corp.
* Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
*
* This file is based on the drivers/i2c/busses/i2c-sh7760.c
* (c) 2005-2008 MSC Vertriebsges.m.b.H, Manuel Lauss <mlau@msc-ge.com>
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/i2c.h>
#include <linux/i2c-smbus.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/slab.h>
/* register offsets */
#define ICSCR 0x00 /* slave ctrl */
#define ICMCR 0x04 /* master ctrl */
#define ICSSR 0x08 /* slave status */
#define ICMSR 0x0C /* master status */
#define ICSIER 0x10 /* slave irq enable */
#define ICMIER 0x14 /* master irq enable */
#define ICCCR 0x18 /* clock dividers */
#define ICSAR 0x1C /* slave address */
#define ICMAR 0x20 /* master address */
#define ICRXTX 0x24 /* data port */
#define ICCCR2 0x28 /* Clock control 2 */
#define ICMPR 0x2C /* SCL mask control */
#define ICHPR 0x30 /* SCL HIGH control */
#define ICLPR 0x34 /* SCL LOW control */
#define ICFBSCR 0x38 /* first bit setup cycle (Gen3) */
#define ICDMAER 0x3c /* DMA enable (Gen3) */
/* ICSCR */
#define SDBS BIT(3) /* slave data buffer select */
#define SIE BIT(2) /* slave interface enable */
#define GCAE BIT(1) /* general call address enable */
#define FNA BIT(0) /* forced non acknowledgment */
/* ICMCR */
#define MDBS BIT(7) /* non-fifo mode switch */
#define FSCL BIT(6) /* override SCL pin */
#define FSDA BIT(5) /* override SDA pin */
#define OBPC BIT(4) /* override pins */
#define MIE BIT(3) /* master if enable */
#define TSBE BIT(2)
#define FSB BIT(1) /* force stop bit */
#define ESG BIT(0) /* enable start bit gen */
/* ICSSR (also for ICSIER) */
#define GCAR BIT(6) /* general call received */
#define STM BIT(5) /* slave transmit mode */
#define SSR BIT(4) /* stop received */
#define SDE BIT(3) /* slave data empty */
#define SDT BIT(2) /* slave data transmitted */
#define SDR BIT(1) /* slave data received */
#define SAR BIT(0) /* slave addr received */
/* ICMSR (also for ICMIE) */
#define MNR BIT(6) /* nack received */
#define MAL BIT(5) /* arbitration lost */
#define MST BIT(4) /* sent a stop */
#define MDE BIT(3)
#define MDT BIT(2)
#define MDR BIT(1)
#define MAT BIT(0) /* slave addr xfer done */
/* ICDMAER */
#define RSDMAE BIT(3) /* DMA Slave Received Enable */
#define TSDMAE BIT(2) /* DMA Slave Transmitted Enable */
#define RMDMAE BIT(1) /* DMA Master Received Enable */
#define TMDMAE BIT(0) /* DMA Master Transmitted Enable */
/* ICCCR2 */
#define FMPE BIT(7) /* Fast Mode Plus Enable */
#define CDFD BIT(2) /* CDF Disable */
#define HLSE BIT(1) /* HIGH/LOW Separate Control Enable */
#define SME BIT(0) /* SCL Mask Enable */
/* ICFBSCR */
#define TCYC17 0x0f /* 17*Tcyc delay 1st bit between SDA and SCL */
#define RCAR_MIN_DMA_LEN 8
/* SCL low/high ratio 5:4 to meet all I2C timing specs (incl safety margin) */
#define RCAR_SCLD_RATIO 5
#define RCAR_SCHD_RATIO 4
/*
* SMD should be smaller than SCLD/SCHD and is always around 20 in the docs.
* Thus, we simply use 20 which works for low and high speeds.
*/
#define RCAR_DEFAULT_SMD 20
#define RCAR_BUS_PHASE_START (MDBS | MIE | ESG)
#define RCAR_BUS_PHASE_DATA (MDBS | MIE)
#define RCAR_BUS_PHASE_STOP (MDBS | MIE | FSB)
#define RCAR_IRQ_SEND (MNR | MAL | MST | MAT | MDE)
#define RCAR_IRQ_RECV (MNR | MAL | MST | MAT | MDR)
#define RCAR_IRQ_STOP (MST)
#define ID_LAST_MSG BIT(0)
#define ID_REP_AFTER_RD BIT(1)
#define ID_DONE BIT(2)
#define ID_ARBLOST BIT(3)
#define ID_NACK BIT(4)
#define ID_EPROTO BIT(5)
/* persistent flags */
#define ID_P_FMPLUS BIT(27)
#define ID_P_NOT_ATOMIC BIT(28)
#define ID_P_HOST_NOTIFY BIT(29)
#define ID_P_NO_RXDMA BIT(30) /* HW forbids RXDMA sometimes */
#define ID_P_PM_BLOCKED BIT(31)
#define ID_P_MASK GENMASK(31, 27)
enum rcar_i2c_type {
I2C_RCAR_GEN1,
I2C_RCAR_GEN2,
I2C_RCAR_GEN3,
I2C_RCAR_GEN4,
};
struct rcar_i2c_priv {
u32 flags;
void __iomem *io;
struct i2c_adapter adap;
struct i2c_msg *msg;
int msgs_left;
struct clk *clk;
wait_queue_head_t wait;
int pos;
u32 icccr;
u16 schd;
u16 scld;
u8 smd;
u8 recovery_icmcr; /* protected by adapter lock */
enum rcar_i2c_type devtype;
struct i2c_client *slave;
struct resource *res;
struct dma_chan *dma_tx;
struct dma_chan *dma_rx;
struct scatterlist sg;
enum dma_data_direction dma_direction;
struct reset_control *rstc;
int irq;
struct i2c_client *host_notify_client;
};
#define rcar_i2c_priv_to_dev(p) ((p)->adap.dev.parent)
#define rcar_i2c_is_recv(p) ((p)->msg->flags & I2C_M_RD)
static void rcar_i2c_write(struct rcar_i2c_priv *priv, int reg, u32 val)
{
writel(val, priv->io + reg);
}
static u32 rcar_i2c_read(struct rcar_i2c_priv *priv, int reg)
{
return readl(priv->io + reg);
}
static void rcar_i2c_clear_irq(struct rcar_i2c_priv *priv, u32 val)
{
writel(~val & 0x7f, priv->io + ICMSR);
}
static int rcar_i2c_get_scl(struct i2c_adapter *adap)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
return !!(rcar_i2c_read(priv, ICMCR) & FSCL);
}
static void rcar_i2c_set_scl(struct i2c_adapter *adap, int val)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
if (val)
priv->recovery_icmcr |= FSCL;
else
priv->recovery_icmcr &= ~FSCL;
rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
}
static void rcar_i2c_set_sda(struct i2c_adapter *adap, int val)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
if (val)
priv->recovery_icmcr |= FSDA;
else
priv->recovery_icmcr &= ~FSDA;
rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
}
static int rcar_i2c_get_bus_free(struct i2c_adapter *adap)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
return !(rcar_i2c_read(priv, ICMCR) & FSDA);
}
static struct i2c_bus_recovery_info rcar_i2c_bri = {
.get_scl = rcar_i2c_get_scl,
.set_scl = rcar_i2c_set_scl,
.set_sda = rcar_i2c_set_sda,
.get_bus_free = rcar_i2c_get_bus_free,
.recover_bus = i2c_generic_scl_recovery,
};
static void rcar_i2c_init(struct rcar_i2c_priv *priv)
{
/* reset master mode */
rcar_i2c_write(priv, ICMIER, 0);
rcar_i2c_write(priv, ICMCR, MDBS);
rcar_i2c_write(priv, ICMSR, 0);
/* start clock */
if (priv->devtype < I2C_RCAR_GEN3) {
rcar_i2c_write(priv, ICCCR, priv->icccr);
} else {
u32 icccr2 = CDFD | HLSE | SME;
if (priv->flags & ID_P_FMPLUS)
icccr2 |= FMPE;
rcar_i2c_write(priv, ICCCR2, icccr2);
rcar_i2c_write(priv, ICCCR, priv->icccr);
rcar_i2c_write(priv, ICMPR, priv->smd);
rcar_i2c_write(priv, ICHPR, priv->schd);
rcar_i2c_write(priv, ICLPR, priv->scld);
rcar_i2c_write(priv, ICFBSCR, TCYC17);
}
}
static void rcar_i2c_reset_slave(struct rcar_i2c_priv *priv)
{
rcar_i2c_write(priv, ICSIER, 0);
rcar_i2c_write(priv, ICSSR, 0);
rcar_i2c_write(priv, ICSCR, SDBS);
rcar_i2c_write(priv, ICSAR, 0); /* Gen2: must be 0 if not using slave */
}
static int rcar_i2c_bus_barrier(struct rcar_i2c_priv *priv)
{
int ret;
u32 val;
ret = readl_poll_timeout(priv->io + ICMCR, val, !(val & FSDA), 10,
priv->adap.timeout);
if (ret) {
/* Waiting did not help, try to recover */
priv->recovery_icmcr = MDBS | OBPC | FSDA | FSCL;
ret = i2c_recover_bus(&priv->adap);
}
return ret;
}
static int rcar_i2c_clock_calculate(struct rcar_i2c_priv *priv)
{
u32 cdf, round, ick, sum, scl, cdf_width;
unsigned long rate;
struct device *dev = rcar_i2c_priv_to_dev(priv);
struct i2c_timings t = {
.bus_freq_hz = I2C_MAX_STANDARD_MODE_FREQ,
.scl_fall_ns = 35,
.scl_rise_ns = 200,
.scl_int_delay_ns = 50,
};
/* Fall back to previously used values if not supplied */
i2c_parse_fw_timings(dev, &t, false);
priv->smd = RCAR_DEFAULT_SMD;
/*
* calculate SCL clock
* see
* ICCCR (and ICCCR2 for Gen3+)
*
* ick = clkp / (1 + CDF)
* SCL = ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
*
* for Gen3+:
* SCL = clkp / (8 + SMD * 2 + SCLD + SCHD +F[(ticf + tr + intd) * clkp])
*
* ick : I2C internal clock < 20 MHz
* ticf : I2C SCL falling time
* tr : I2C SCL rising time
* intd : LSI internal delay
* clkp : peripheral_clk
* F[] : integer up-valuation
*/
rate = clk_get_rate(priv->clk);
cdf = rate / 20000000;
cdf_width = (priv->devtype == I2C_RCAR_GEN1) ? 2 : 3;
if (cdf >= 1U << cdf_width)
goto err_no_val;
if (t.bus_freq_hz > I2C_MAX_FAST_MODE_FREQ && priv->devtype >= I2C_RCAR_GEN4)
priv->flags |= ID_P_FMPLUS;
else
priv->flags &= ~ID_P_FMPLUS;
/* On Gen3+, we use cdf only for the filters, not as a SCL divider */
ick = rate / (priv->devtype < I2C_RCAR_GEN3 ? (cdf + 1) : 1);
/*
* It is impossible to calculate a large scale number on u32. Separate it.
*
* F[(ticf + tr + intd) * ick] with sum = (ticf + tr + intd)
* = F[sum * ick / 1000000000]
* = F[(ick / 1000000) * sum / 1000]
*/
sum = t.scl_fall_ns + t.scl_rise_ns + t.scl_int_delay_ns;
round = DIV_ROUND_CLOSEST(ick, 1000000);
round = DIV_ROUND_CLOSEST(round * sum, 1000);
if (priv->devtype < I2C_RCAR_GEN3) {
u32 scgd;
/*
* SCL = ick / (20 + 8 * SCGD + F[(ticf + tr + intd) * ick])
* 20 + 8 * SCGD + F[...] = ick / SCL
* SCGD = ((ick / SCL) - 20 - F[...]) / 8
* Result (= SCL) should be less than bus_speed for hardware safety
*/
scgd = DIV_ROUND_UP(ick, t.bus_freq_hz ?: 1);
scgd = DIV_ROUND_UP(scgd - 20 - round, 8);
scl = ick / (20 + 8 * scgd + round);
if (scgd > 0x3f)
goto err_no_val;
dev_dbg(dev, "clk %u/%u(%lu), round %u, CDF: %u, SCGD: %u\n",
scl, t.bus_freq_hz, rate, round, cdf, scgd);
priv->icccr = scgd << cdf_width | cdf;
} else {
u32 x, sum_ratio = RCAR_SCHD_RATIO + RCAR_SCLD_RATIO;
/*
* SCLD/SCHD ratio and SMD default value are explained above
* where they are defined. With these definitions, we can compute
* x as a base value for the SCLD/SCHD ratio:
*
* SCL = clkp / (8 + 2 * SMD + SCLD + SCHD + F[(ticf + tr + intd) * clkp])
* SCL = clkp / (8 + 2 * SMD + RCAR_SCLD_RATIO * x
* + RCAR_SCHD_RATIO * x + F[...])
*
* with: sum_ratio = RCAR_SCLD_RATIO + RCAR_SCHD_RATIO
*
* SCL = clkp / (8 + 2 * smd + sum_ratio * x + F[...])
* 8 + 2 * smd + sum_ratio * x + F[...] = clkp / SCL
* x = ((clkp / SCL) - 8 - 2 * smd - F[...]) / sum_ratio
*/
x = DIV_ROUND_UP(rate, t.bus_freq_hz ?: 1);
x = DIV_ROUND_UP(x - 8 - 2 * priv->smd - round, sum_ratio);
scl = rate / (8 + 2 * priv->smd + sum_ratio * x + round);
if (x == 0 || x * RCAR_SCLD_RATIO > 0xffff)
goto err_no_val;
priv->icccr = cdf;
priv->schd = RCAR_SCHD_RATIO * x;
priv->scld = RCAR_SCLD_RATIO * x;
if (priv->smd >= priv->schd)
priv->smd = priv->schd - 1;
dev_dbg(dev, "clk %u/%u(%lu), round %u, CDF: %u SCHD %u SCLD %u SMD %u\n",
scl, t.bus_freq_hz, rate, round, cdf, priv->schd, priv->scld, priv->smd);
}
return 0;
err_no_val:
dev_err(dev, "it is impossible to calculate best SCL\n");
return -EINVAL;
}
/*
* We don't have a test case but the HW engineers say that the write order of
* ICMSR and ICMCR depends on whether we issue START or REP_START. So, ICMSR
* handling is outside of this function. First messages clear ICMSR before this
* function, interrupt handlers clear the relevant bits after this function.
*/
static void rcar_i2c_prepare_msg(struct rcar_i2c_priv *priv)
{
int read = !!rcar_i2c_is_recv(priv);
bool rep_start = !(priv->flags & ID_REP_AFTER_RD);
priv->pos = 0;
priv->flags &= ID_P_MASK;
if (priv->msgs_left == 1)
priv->flags |= ID_LAST_MSG;
rcar_i2c_write(priv, ICMAR, i2c_8bit_addr_from_msg(priv->msg));
if (priv->flags & ID_P_NOT_ATOMIC)
rcar_i2c_write(priv, ICMIER, read ? RCAR_IRQ_RECV : RCAR_IRQ_SEND);
if (rep_start)
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
}
static void rcar_i2c_first_msg(struct rcar_i2c_priv *priv,
struct i2c_msg *msgs, int num)
{
priv->msg = msgs;
priv->msgs_left = num;
rcar_i2c_write(priv, ICMSR, 0); /* must be before preparing msg */
rcar_i2c_prepare_msg(priv);
}
static void rcar_i2c_next_msg(struct rcar_i2c_priv *priv)
{
priv->msg++;
priv->msgs_left--;
rcar_i2c_prepare_msg(priv);
/* ICMSR handling must come afterwards in the irq handler */
}
static void rcar_i2c_cleanup_dma(struct rcar_i2c_priv *priv, bool terminate)
{
struct dma_chan *chan = priv->dma_direction == DMA_FROM_DEVICE
? priv->dma_rx : priv->dma_tx;
/* only allowed from thread context! */
if (terminate)
dmaengine_terminate_sync(chan);
dma_unmap_single(chan->device->dev, sg_dma_address(&priv->sg),
sg_dma_len(&priv->sg), priv->dma_direction);
/* Gen3+ can only do one RXDMA per transfer and we just completed it */
if (priv->devtype >= I2C_RCAR_GEN3 &&
priv->dma_direction == DMA_FROM_DEVICE)
priv->flags |= ID_P_NO_RXDMA;
priv->dma_direction = DMA_NONE;
/* Disable DMA Master Received/Transmitted, must be last! */
rcar_i2c_write(priv, ICDMAER, 0);
}
static void rcar_i2c_dma_callback(void *data)
{
struct rcar_i2c_priv *priv = data;
priv->pos += sg_dma_len(&priv->sg);
rcar_i2c_cleanup_dma(priv, false);
}
static bool rcar_i2c_dma(struct rcar_i2c_priv *priv)
{
struct device *dev = rcar_i2c_priv_to_dev(priv);
struct i2c_msg *msg = priv->msg;
bool read = msg->flags & I2C_M_RD;
enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
struct dma_chan *chan = read ? priv->dma_rx : priv->dma_tx;
struct dma_async_tx_descriptor *txdesc;
dma_addr_t dma_addr;
dma_cookie_t cookie;
unsigned char *buf;
int len;
/* Do various checks to see if DMA is feasible at all */
if (!(priv->flags & ID_P_NOT_ATOMIC) || IS_ERR(chan) || msg->len < RCAR_MIN_DMA_LEN ||
!(msg->flags & I2C_M_DMA_SAFE) || (read && priv->flags & ID_P_NO_RXDMA))
return false;
if (read) {
/*
* The last two bytes needs to be fetched using PIO in
* order for the STOP phase to work.
*/
buf = priv->msg->buf;
len = priv->msg->len - 2;
} else {
/*
* First byte in message was sent using PIO.
*/
buf = priv->msg->buf + 1;
len = priv->msg->len - 1;
}
dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
if (dma_mapping_error(chan->device->dev, dma_addr)) {
dev_dbg(dev, "dma map failed, using PIO\n");
return false;
}
sg_dma_len(&priv->sg) = len;
sg_dma_address(&priv->sg) = dma_addr;
priv->dma_direction = dir;
txdesc = dmaengine_prep_slave_sg(chan, &priv->sg, 1,
read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc) {
dev_dbg(dev, "dma prep slave sg failed, using PIO\n");
rcar_i2c_cleanup_dma(priv, false);
return false;
}
txdesc->callback = rcar_i2c_dma_callback;
txdesc->callback_param = priv;
cookie = dmaengine_submit(txdesc);
if (dma_submit_error(cookie)) {
dev_dbg(dev, "submitting dma failed, using PIO\n");
rcar_i2c_cleanup_dma(priv, false);
return false;
}
/* Enable DMA Master Received/Transmitted */
if (read)
rcar_i2c_write(priv, ICDMAER, RMDMAE);
else
rcar_i2c_write(priv, ICDMAER, TMDMAE);
dma_async_issue_pending(chan);
return true;
}
static void rcar_i2c_irq_send(struct rcar_i2c_priv *priv, u32 msr)
{
struct i2c_msg *msg = priv->msg;
u32 irqs_to_clear = MDE;
/* FIXME: sometimes, unknown interrupt happened. Do nothing */
if (WARN(!(msr & MDE), "spurious irq"))
return;
if (msr & MAT)
irqs_to_clear |= MAT;
/* Check if DMA can be enabled and take over */
if (priv->pos == 1 && rcar_i2c_dma(priv))
return;
if (priv->pos < msg->len) {
/*
* Prepare next data to ICRXTX register.
* This data will go to _SHIFT_ register.
*
* *
* [ICRXTX] -> [SHIFT] -> [I2C bus]
*/
rcar_i2c_write(priv, ICRXTX, msg->buf[priv->pos]);
priv->pos++;
} else {
/*
* The last data was pushed to ICRXTX on _PREV_ empty irq.
* It is on _SHIFT_ register, and will sent to I2C bus.
*
* *
* [ICRXTX] -> [SHIFT] -> [I2C bus]
*/
if (priv->flags & ID_LAST_MSG)
/*
* If current msg is the _LAST_ msg,
* prepare stop condition here.
* ID_DONE will be set on STOP irq.
*/
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
else
rcar_i2c_next_msg(priv);
}
rcar_i2c_clear_irq(priv, irqs_to_clear);
}
static void rcar_i2c_irq_recv(struct rcar_i2c_priv *priv, u32 msr)
{
struct i2c_msg *msg = priv->msg;
bool recv_len_init = priv->pos == 0 && msg->flags & I2C_M_RECV_LEN;
u32 irqs_to_clear = MDR;
/* FIXME: sometimes, unknown interrupt happened. Do nothing */
if (!(msr & MDR))
return;
if (msr & MAT) {
irqs_to_clear |= MAT;
/*
* Address transfer phase finished, but no data at this point.
* Try to use DMA to receive data.
*/
rcar_i2c_dma(priv);
} else if (priv->pos < msg->len) {
/* get received data */
u8 data = rcar_i2c_read(priv, ICRXTX);
msg->buf[priv->pos] = data;
if (recv_len_init) {
if (data == 0 || data > I2C_SMBUS_BLOCK_MAX) {
priv->flags |= ID_DONE | ID_EPROTO;
return;
}
msg->len += msg->buf[0];
/* Enough data for DMA? */
if (rcar_i2c_dma(priv))
return;
/* new length after RECV_LEN now properly initialized */
recv_len_init = false;
}
priv->pos++;
}
/*
* If next received data is the _LAST_ and we are not waiting for a new
* length because of RECV_LEN, then go to a new phase.
*/
if (priv->pos + 1 == msg->len && !recv_len_init) {
if (priv->flags & ID_LAST_MSG) {
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
} else {
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
priv->flags |= ID_REP_AFTER_RD;
}
}
if (priv->pos == msg->len && !(priv->flags & ID_LAST_MSG))
rcar_i2c_next_msg(priv);
rcar_i2c_clear_irq(priv, irqs_to_clear);
}
static bool rcar_i2c_slave_irq(struct rcar_i2c_priv *priv)
{
u32 ssr_raw, ssr_filtered;
u8 value;
ssr_raw = rcar_i2c_read(priv, ICSSR) & 0xff;
ssr_filtered = ssr_raw & rcar_i2c_read(priv, ICSIER);
if (!ssr_filtered)
return false;
/* address detected */
if (ssr_filtered & SAR) {
/* read or write request */
if (ssr_raw & STM) {
i2c_slave_event(priv->slave, I2C_SLAVE_READ_REQUESTED, &value);
rcar_i2c_write(priv, ICRXTX, value);
rcar_i2c_write(priv, ICSIER, SDE | SSR | SAR);
} else {
i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_REQUESTED, &value);
rcar_i2c_read(priv, ICRXTX); /* dummy read */
rcar_i2c_write(priv, ICSIER, SDR | SSR | SAR);
}
/* Clear SSR, too, because of old STOPs to other clients than us */
rcar_i2c_write(priv, ICSSR, ~(SAR | SSR) & 0xff);
}
/* master sent stop */
if (ssr_filtered & SSR) {
i2c_slave_event(priv->slave, I2C_SLAVE_STOP, &value);
rcar_i2c_write(priv, ICSCR, SIE | SDBS); /* clear our NACK */
rcar_i2c_write(priv, ICSIER, SAR);
rcar_i2c_write(priv, ICSSR, ~SSR & 0xff);
}
/* master wants to write to us */
if (ssr_filtered & SDR) {
int ret;
value = rcar_i2c_read(priv, ICRXTX);
ret = i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_RECEIVED, &value);
/* Send NACK in case of error */
rcar_i2c_write(priv, ICSCR, SIE | SDBS | (ret < 0 ? FNA : 0));
rcar_i2c_write(priv, ICSSR, ~SDR & 0xff);
}
/* master wants to read from us */
if (ssr_filtered & SDE) {
i2c_slave_event(priv->slave, I2C_SLAVE_READ_PROCESSED, &value);
rcar_i2c_write(priv, ICRXTX, value);
rcar_i2c_write(priv, ICSSR, ~SDE & 0xff);
}
return true;
}
/*
* This driver has a lock-free design because there are IP cores (at least
* R-Car Gen2) which have an inherent race condition in their hardware design.
* There, we need to switch to RCAR_BUS_PHASE_DATA as soon as possible after
* the interrupt was generated, otherwise an unwanted repeated message gets
* generated. It turned out that taking a spinlock at the beginning of the ISR
* was already causing repeated messages. Thus, this driver was converted to
* the now lockless behaviour. Please keep this in mind when hacking the driver.
* R-Car Gen3 seems to have this fixed but earlier versions than R-Car Gen2 are
* likely affected. Therefore, we have different interrupt handler entries.
*/
static irqreturn_t rcar_i2c_irq(int irq, struct rcar_i2c_priv *priv, u32 msr)
{
if (!msr) {
if (rcar_i2c_slave_irq(priv))
return IRQ_HANDLED;
return IRQ_NONE;
}
/* Arbitration lost */
if (msr & MAL) {
priv->flags |= ID_DONE | ID_ARBLOST;
goto out;
}
/* Nack */
if (msr & MNR) {
/* HW automatically sends STOP after received NACK */
if (priv->flags & ID_P_NOT_ATOMIC)
rcar_i2c_write(priv, ICMIER, RCAR_IRQ_STOP);
priv->flags |= ID_NACK;
goto out;
}
/* Stop */
if (msr & MST) {
priv->msgs_left--; /* The last message also made it */
priv->flags |= ID_DONE;
goto out;
}
if (rcar_i2c_is_recv(priv))
rcar_i2c_irq_recv(priv, msr);
else
rcar_i2c_irq_send(priv, msr);
out:
if (priv->flags & ID_DONE) {
rcar_i2c_write(priv, ICMIER, 0);
rcar_i2c_write(priv, ICMSR, 0);
if (priv->flags & ID_P_NOT_ATOMIC)
wake_up(&priv->wait);
}
return IRQ_HANDLED;
}
static irqreturn_t rcar_i2c_gen2_irq(int irq, void *ptr)
{
struct rcar_i2c_priv *priv = ptr;
u32 msr;
/* Clear START or STOP immediately, except for REPSTART after read */
if (likely(!(priv->flags & ID_REP_AFTER_RD)))
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_DATA);
/* Only handle interrupts that are currently enabled */
msr = rcar_i2c_read(priv, ICMSR);
if (priv->flags & ID_P_NOT_ATOMIC)
msr &= rcar_i2c_read(priv, ICMIER);
return rcar_i2c_irq(irq, priv, msr);
}
static irqreturn_t rcar_i2c_gen3_irq(int irq, void *ptr)
{
struct rcar_i2c_priv *priv = ptr;
u32 msr;
/* Only handle interrupts that are currently enabled */
msr = rcar_i2c_read(priv, ICMSR);
if (priv->flags & ID_P_NOT_ATOMIC)
msr &= rcar_i2c_read(priv, ICMIER);
/*
* Clear START or STOP immediately, except for REPSTART after read or
* if a spurious interrupt was detected.
*/
if (likely(!(priv->flags & ID_REP_AFTER_RD) && msr))
rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_DATA);
return rcar_i2c_irq(irq, priv, msr);
}
static struct dma_chan *rcar_i2c_request_dma_chan(struct device *dev,
enum dma_transfer_direction dir,
dma_addr_t port_addr)
{
struct dma_chan *chan;
struct dma_slave_config cfg;
char *chan_name = dir == DMA_MEM_TO_DEV ? "tx" : "rx";
int ret;
chan = dma_request_chan(dev, chan_name);
if (IS_ERR(chan)) {
dev_dbg(dev, "request_channel failed for %s (%ld)\n",
chan_name, PTR_ERR(chan));
return chan;
}
memset(&cfg, 0, sizeof(cfg));
cfg.direction = dir;
if (dir == DMA_MEM_TO_DEV) {
cfg.dst_addr = port_addr;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
} else {
cfg.src_addr = port_addr;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
}
ret = dmaengine_slave_config(chan, &cfg);
if (ret) {
dev_dbg(dev, "slave_config failed for %s (%d)\n",
chan_name, ret);
dma_release_channel(chan);
return ERR_PTR(ret);
}
dev_dbg(dev, "got DMA channel for %s\n", chan_name);
return chan;
}
static void rcar_i2c_request_dma(struct rcar_i2c_priv *priv,
struct i2c_msg *msg)
{
struct device *dev = rcar_i2c_priv_to_dev(priv);
bool read;
struct dma_chan *chan;
enum dma_transfer_direction dir;
read = msg->flags & I2C_M_RD;
chan = read ? priv->dma_rx : priv->dma_tx;
if (PTR_ERR(chan) != -EPROBE_DEFER)
return;
dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
chan = rcar_i2c_request_dma_chan(dev, dir, priv->res->start + ICRXTX);
if (read)
priv->dma_rx = chan;
else
priv->dma_tx = chan;
}
static void rcar_i2c_release_dma(struct rcar_i2c_priv *priv)
{
if (!IS_ERR(priv->dma_tx)) {
dma_release_channel(priv->dma_tx);
priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
}
if (!IS_ERR(priv->dma_rx)) {
dma_release_channel(priv->dma_rx);
priv->dma_rx = ERR_PTR(-EPROBE_DEFER);
}
}
/* I2C is a special case, we need to poll the status of a reset */
static int rcar_i2c_do_reset(struct rcar_i2c_priv *priv)
{
int ret;
/* Don't reset if a slave instance is currently running */
if (priv->slave)
return -EISCONN;
ret = reset_control_reset(priv->rstc);
if (ret)
return ret;
return read_poll_timeout_atomic(reset_control_status, ret, ret == 0, 1,
100, false, priv->rstc);
}
static int rcar_i2c_master_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs,
int num)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
struct device *dev = rcar_i2c_priv_to_dev(priv);
int i, ret;
long time_left;
priv->flags |= ID_P_NOT_ATOMIC;
pm_runtime_get_sync(dev);
/* Check bus state before init otherwise bus busy info will be lost */
ret = rcar_i2c_bus_barrier(priv);
if (ret < 0)
goto out;
/* Gen3+ needs a reset. That also allows RXDMA once */
if (priv->devtype >= I2C_RCAR_GEN3) {
ret = rcar_i2c_do_reset(priv);
if (ret)
goto out;
priv->flags &= ~ID_P_NO_RXDMA;
}
rcar_i2c_init(priv);
for (i = 0; i < num; i++)
rcar_i2c_request_dma(priv, msgs + i);
rcar_i2c_first_msg(priv, msgs, num);
time_left = wait_event_timeout(priv->wait, priv->flags & ID_DONE,
num * adap->timeout);
/* cleanup DMA if it couldn't complete properly due to an error */
if (priv->dma_direction != DMA_NONE)
rcar_i2c_cleanup_dma(priv, true);
if (!time_left) {
rcar_i2c_init(priv);
ret = -ETIMEDOUT;
} else if (priv->flags & ID_NACK) {
ret = -ENXIO;
} else if (priv->flags & ID_ARBLOST) {
ret = -EAGAIN;
} else if (priv->flags & ID_EPROTO) {
ret = -EPROTO;
} else {
ret = num - priv->msgs_left; /* The number of transfer */
}
out:
pm_runtime_put(dev);
if (ret < 0 && ret != -ENXIO)
dev_err(dev, "error %d : %x\n", ret, priv->flags);
return ret;
}
static int rcar_i2c_master_xfer_atomic(struct i2c_adapter *adap,
struct i2c_msg *msgs,
int num)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
struct device *dev = rcar_i2c_priv_to_dev(priv);
unsigned long j;
bool time_left;
int ret;
priv->flags &= ~ID_P_NOT_ATOMIC;
pm_runtime_get_sync(dev);
/* Check bus state before init otherwise bus busy info will be lost */
ret = rcar_i2c_bus_barrier(priv);
if (ret < 0)
goto out;
rcar_i2c_init(priv);
rcar_i2c_first_msg(priv, msgs, num);
j = jiffies + num * adap->timeout;
do {
u32 msr = rcar_i2c_read(priv, ICMSR);
msr &= (rcar_i2c_is_recv(priv) ? RCAR_IRQ_RECV : RCAR_IRQ_SEND) | RCAR_IRQ_STOP;
if (msr) {
if (priv->devtype < I2C_RCAR_GEN3)
rcar_i2c_gen2_irq(0, priv);
else
rcar_i2c_gen3_irq(0, priv);
}
time_left = time_before_eq(jiffies, j);
} while (!(priv->flags & ID_DONE) && time_left);
if (!time_left) {
rcar_i2c_init(priv);
ret = -ETIMEDOUT;
} else if (priv->flags & ID_NACK) {
ret = -ENXIO;
} else if (priv->flags & ID_ARBLOST) {
ret = -EAGAIN;
} else if (priv->flags & ID_EPROTO) {
ret = -EPROTO;
} else {
ret = num - priv->msgs_left; /* The number of transfer */
}
out:
pm_runtime_put(dev);
if (ret < 0 && ret != -ENXIO)
dev_err(dev, "error %d : %x\n", ret, priv->flags);
return ret;
}
static int rcar_reg_slave(struct i2c_client *slave)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
if (priv->slave)
return -EBUSY;
if (slave->flags & I2C_CLIENT_TEN)
return -EAFNOSUPPORT;
/* Keep device active for slave address detection logic */
pm_runtime_get_sync(rcar_i2c_priv_to_dev(priv));
priv->slave = slave;
rcar_i2c_write(priv, ICSAR, slave->addr);
rcar_i2c_write(priv, ICSSR, 0);
rcar_i2c_write(priv, ICSIER, SAR);
rcar_i2c_write(priv, ICSCR, SIE | SDBS);
return 0;
}
static int rcar_unreg_slave(struct i2c_client *slave)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
WARN_ON(!priv->slave);
/* ensure no irq is running before clearing ptr */
disable_irq(priv->irq);
rcar_i2c_reset_slave(priv);
enable_irq(priv->irq);
priv->slave = NULL;
pm_runtime_put(rcar_i2c_priv_to_dev(priv));
return 0;
}
static u32 rcar_i2c_func(struct i2c_adapter *adap)
{
struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
/*
* This HW can't do:
* I2C_SMBUS_QUICK (setting FSB during START didn't work)
* I2C_M_NOSTART (automatically sends address after START)
* I2C_M_IGNORE_NAK (automatically sends STOP after NAK)
*/
u32 func = I2C_FUNC_I2C | I2C_FUNC_SLAVE |
(I2C_FUNC_SMBUS_EMUL_ALL & ~I2C_FUNC_SMBUS_QUICK);
if (priv->flags & ID_P_HOST_NOTIFY)
func |= I2C_FUNC_SMBUS_HOST_NOTIFY;
return func;
}
static const struct i2c_algorithm rcar_i2c_algo = {
.master_xfer = rcar_i2c_master_xfer,
.master_xfer_atomic = rcar_i2c_master_xfer_atomic,
.functionality = rcar_i2c_func,
.reg_slave = rcar_reg_slave,
.unreg_slave = rcar_unreg_slave,
};
static const struct i2c_adapter_quirks rcar_i2c_quirks = {
.flags = I2C_AQ_NO_ZERO_LEN,
};
static const struct of_device_id rcar_i2c_dt_ids[] = {
{ .compatible = "renesas,i2c-r8a7778", .data = (void *)I2C_RCAR_GEN1 },
{ .compatible = "renesas,i2c-r8a7779", .data = (void *)I2C_RCAR_GEN1 },
{ .compatible = "renesas,i2c-r8a7790", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7791", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7792", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7793", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7794", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,i2c-r8a7795", .data = (void *)I2C_RCAR_GEN3 },
{ .compatible = "renesas,i2c-r8a7796", .data = (void *)I2C_RCAR_GEN3 },
/* S4 has no FM+ bit */
{ .compatible = "renesas,i2c-r8a779f0", .data = (void *)I2C_RCAR_GEN3 },
{ .compatible = "renesas,rcar-gen1-i2c", .data = (void *)I2C_RCAR_GEN1 },
{ .compatible = "renesas,rcar-gen2-i2c", .data = (void *)I2C_RCAR_GEN2 },
{ .compatible = "renesas,rcar-gen3-i2c", .data = (void *)I2C_RCAR_GEN3 },
{ .compatible = "renesas,rcar-gen4-i2c", .data = (void *)I2C_RCAR_GEN4 },
{},
};
MODULE_DEVICE_TABLE(of, rcar_i2c_dt_ids);
static int rcar_i2c_probe(struct platform_device *pdev)
{
struct rcar_i2c_priv *priv;
struct i2c_adapter *adap;
struct device *dev = &pdev->dev;
unsigned long irqflags = 0;
irqreturn_t (*irqhandler)(int irq, void *ptr) = rcar_i2c_gen3_irq;
int ret;
/* Otherwise logic will break because some bytes must always use PIO */
BUILD_BUG_ON_MSG(RCAR_MIN_DMA_LEN < 3, "Invalid min DMA length");
priv = devm_kzalloc(dev, sizeof(struct rcar_i2c_priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->clk = devm_clk_get(dev, NULL);
if (IS_ERR(priv->clk)) {
dev_err(dev, "cannot get clock\n");
return PTR_ERR(priv->clk);
}
priv->io = devm_platform_get_and_ioremap_resource(pdev, 0, &priv->res);
if (IS_ERR(priv->io))
return PTR_ERR(priv->io);
priv->devtype = (enum rcar_i2c_type)of_device_get_match_data(dev);
init_waitqueue_head(&priv->wait);
adap = &priv->adap;
adap->nr = pdev->id;
adap->algo = &rcar_i2c_algo;
adap->class = I2C_CLASS_DEPRECATED;
adap->retries = 3;
adap->dev.parent = dev;
adap->dev.of_node = dev->of_node;
adap->bus_recovery_info = &rcar_i2c_bri;
adap->quirks = &rcar_i2c_quirks;
i2c_set_adapdata(adap, priv);
strscpy(adap->name, pdev->name, sizeof(adap->name));
/* Init DMA */
sg_init_table(&priv->sg, 1);
priv->dma_direction = DMA_NONE;
priv->dma_rx = priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
/* Activate device for clock calculation */
pm_runtime_enable(dev);
pm_runtime_get_sync(dev);
ret = rcar_i2c_clock_calculate(priv);
if (ret < 0) {
pm_runtime_put(dev);
goto out_pm_disable;
}
/* Bring hardware to known state */
rcar_i2c_init(priv);
rcar_i2c_reset_slave(priv);
if (priv->devtype < I2C_RCAR_GEN3) {
irqflags |= IRQF_NO_THREAD;
irqhandler = rcar_i2c_gen2_irq;
}
/* Stay always active when multi-master to keep arbitration working */
if (of_property_read_bool(dev->of_node, "multi-master"))
priv->flags |= ID_P_PM_BLOCKED;
else
pm_runtime_put(dev);
if (of_property_read_bool(dev->of_node, "smbus"))
priv->flags |= ID_P_HOST_NOTIFY;
/* R-Car Gen3+ needs a reset before every transfer */
if (priv->devtype >= I2C_RCAR_GEN3) {
priv->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(priv->rstc)) {
ret = PTR_ERR(priv->rstc);
goto out_pm_put;
}
ret = reset_control_status(priv->rstc);
if (ret < 0)
goto out_pm_put;
/* hard reset disturbs HostNotify local target, so disable it */
priv->flags &= ~ID_P_HOST_NOTIFY;
}
ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto out_pm_put;
priv->irq = ret;
ret = devm_request_irq(dev, priv->irq, irqhandler, irqflags, dev_name(dev), priv);
if (ret < 0) {
dev_err(dev, "cannot get irq %d\n", priv->irq);
goto out_pm_put;
}
platform_set_drvdata(pdev, priv);
ret = i2c_add_numbered_adapter(adap);
if (ret < 0)
goto out_pm_put;
if (priv->flags & ID_P_HOST_NOTIFY) {
priv->host_notify_client = i2c_new_slave_host_notify_device(adap);
if (IS_ERR(priv->host_notify_client)) {
ret = PTR_ERR(priv->host_notify_client);
goto out_del_device;
}
}
dev_info(dev, "probed\n");
return 0;
out_del_device:
i2c_del_adapter(&priv->adap);
out_pm_put:
if (priv->flags & ID_P_PM_BLOCKED)
pm_runtime_put(dev);
out_pm_disable:
pm_runtime_disable(dev);
return ret;
}
static void rcar_i2c_remove(struct platform_device *pdev)
{
struct rcar_i2c_priv *priv = platform_get_drvdata(pdev);
struct device *dev = &pdev->dev;
if (priv->host_notify_client)
i2c_free_slave_host_notify_device(priv->host_notify_client);
i2c_del_adapter(&priv->adap);
rcar_i2c_release_dma(priv);
if (priv->flags & ID_P_PM_BLOCKED)
pm_runtime_put(dev);
pm_runtime_disable(dev);
}
static int rcar_i2c_suspend(struct device *dev)
{
struct rcar_i2c_priv *priv = dev_get_drvdata(dev);
i2c_mark_adapter_suspended(&priv->adap);
return 0;
}
static int rcar_i2c_resume(struct device *dev)
{
struct rcar_i2c_priv *priv = dev_get_drvdata(dev);
i2c_mark_adapter_resumed(&priv->adap);
return 0;
}
static const struct dev_pm_ops rcar_i2c_pm_ops = {
NOIRQ_SYSTEM_SLEEP_PM_OPS(rcar_i2c_suspend, rcar_i2c_resume)
};
static struct platform_driver rcar_i2c_driver = {
.driver = {
.name = "i2c-rcar",
.of_match_table = rcar_i2c_dt_ids,
.pm = pm_sleep_ptr(&rcar_i2c_pm_ops),
},
.probe = rcar_i2c_probe,
.remove_new = rcar_i2c_remove,
};
module_platform_driver(rcar_i2c_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Renesas R-Car I2C bus driver");
MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>");