| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Hardware Feedback Interface Driver |
| * |
| * Copyright (c) 2021, Intel Corporation. |
| * |
| * Authors: Aubrey Li <aubrey.li@linux.intel.com> |
| * Ricardo Neri <ricardo.neri-calderon@linux.intel.com> |
| * |
| * |
| * The Hardware Feedback Interface provides a performance and energy efficiency |
| * capability information for each CPU in the system. Depending on the processor |
| * model, hardware may periodically update these capabilities as a result of |
| * changes in the operating conditions (e.g., power limits or thermal |
| * constraints). On other processor models, there is a single HFI update |
| * at boot. |
| * |
| * This file provides functionality to process HFI updates and relay these |
| * updates to userspace. |
| */ |
| |
| #define pr_fmt(fmt) "intel-hfi: " fmt |
| |
| #include <linux/bitops.h> |
| #include <linux/cpufeature.h> |
| #include <linux/cpumask.h> |
| #include <linux/gfp.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/math.h> |
| #include <linux/mutex.h> |
| #include <linux/percpu-defs.h> |
| #include <linux/printk.h> |
| #include <linux/processor.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/topology.h> |
| #include <linux/workqueue.h> |
| |
| #include <asm/msr.h> |
| |
| #include "../thermal_core.h" |
| #include "intel_hfi.h" |
| #include "thermal_interrupt.h" |
| |
| /* Hardware Feedback Interface MSR configuration bits */ |
| #define HW_FEEDBACK_PTR_VALID_BIT BIT(0) |
| #define HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT BIT(0) |
| |
| /* CPUID detection and enumeration definitions for HFI */ |
| |
| #define CPUID_HFI_LEAF 6 |
| |
| union hfi_capabilities { |
| struct { |
| u8 performance:1; |
| u8 energy_efficiency:1; |
| u8 __reserved:6; |
| } split; |
| u8 bits; |
| }; |
| |
| union cpuid6_edx { |
| struct { |
| union hfi_capabilities capabilities; |
| u32 table_pages:4; |
| u32 __reserved:4; |
| s32 index:16; |
| } split; |
| u32 full; |
| }; |
| |
| /** |
| * struct hfi_cpu_data - HFI capabilities per CPU |
| * @perf_cap: Performance capability |
| * @ee_cap: Energy efficiency capability |
| * |
| * Capabilities of a logical processor in the HFI table. These capabilities are |
| * unitless. |
| */ |
| struct hfi_cpu_data { |
| u8 perf_cap; |
| u8 ee_cap; |
| } __packed; |
| |
| /** |
| * struct hfi_hdr - Header of the HFI table |
| * @perf_updated: Hardware updated performance capabilities |
| * @ee_updated: Hardware updated energy efficiency capabilities |
| * |
| * Properties of the data in an HFI table. |
| */ |
| struct hfi_hdr { |
| u8 perf_updated; |
| u8 ee_updated; |
| } __packed; |
| |
| /** |
| * struct hfi_instance - Representation of an HFI instance (i.e., a table) |
| * @local_table: Base of the local copy of the HFI table |
| * @timestamp: Timestamp of the last update of the local table. |
| * Located at the base of the local table. |
| * @hdr: Base address of the header of the local table |
| * @data: Base address of the data of the local table |
| * @cpus: CPUs represented in this HFI table instance |
| * @hw_table: Pointer to the HFI table of this instance |
| * @update_work: Delayed work to process HFI updates |
| * @table_lock: Lock to protect acceses to the table of this instance |
| * @event_lock: Lock to process HFI interrupts |
| * |
| * A set of parameters to parse and navigate a specific HFI table. |
| */ |
| struct hfi_instance { |
| union { |
| void *local_table; |
| u64 *timestamp; |
| }; |
| void *hdr; |
| void *data; |
| cpumask_var_t cpus; |
| void *hw_table; |
| struct delayed_work update_work; |
| raw_spinlock_t table_lock; |
| raw_spinlock_t event_lock; |
| }; |
| |
| /** |
| * struct hfi_features - Supported HFI features |
| * @nr_table_pages: Size of the HFI table in 4KB pages |
| * @cpu_stride: Stride size to locate the capability data of a logical |
| * processor within the table (i.e., row stride) |
| * @hdr_size: Size of the table header |
| * |
| * Parameters and supported features that are common to all HFI instances |
| */ |
| struct hfi_features { |
| size_t nr_table_pages; |
| unsigned int cpu_stride; |
| unsigned int hdr_size; |
| }; |
| |
| /** |
| * struct hfi_cpu_info - Per-CPU attributes to consume HFI data |
| * @index: Row of this CPU in its HFI table |
| * @hfi_instance: Attributes of the HFI table to which this CPU belongs |
| * |
| * Parameters to link a logical processor to an HFI table and a row within it. |
| */ |
| struct hfi_cpu_info { |
| s16 index; |
| struct hfi_instance *hfi_instance; |
| }; |
| |
| static DEFINE_PER_CPU(struct hfi_cpu_info, hfi_cpu_info) = { .index = -1 }; |
| |
| static int max_hfi_instances; |
| static struct hfi_instance *hfi_instances; |
| |
| static struct hfi_features hfi_features; |
| static DEFINE_MUTEX(hfi_instance_lock); |
| |
| static struct workqueue_struct *hfi_updates_wq; |
| #define HFI_UPDATE_INTERVAL HZ |
| #define HFI_MAX_THERM_NOTIFY_COUNT 16 |
| |
| static void get_hfi_caps(struct hfi_instance *hfi_instance, |
| struct thermal_genl_cpu_caps *cpu_caps) |
| { |
| int cpu, i = 0; |
| |
| raw_spin_lock_irq(&hfi_instance->table_lock); |
| for_each_cpu(cpu, hfi_instance->cpus) { |
| struct hfi_cpu_data *caps; |
| s16 index; |
| |
| index = per_cpu(hfi_cpu_info, cpu).index; |
| caps = hfi_instance->data + index * hfi_features.cpu_stride; |
| cpu_caps[i].cpu = cpu; |
| |
| /* |
| * Scale performance and energy efficiency to |
| * the [0, 1023] interval that thermal netlink uses. |
| */ |
| cpu_caps[i].performance = caps->perf_cap << 2; |
| cpu_caps[i].efficiency = caps->ee_cap << 2; |
| |
| ++i; |
| } |
| raw_spin_unlock_irq(&hfi_instance->table_lock); |
| } |
| |
| /* |
| * Call update_capabilities() when there are changes in the HFI table. |
| */ |
| static void update_capabilities(struct hfi_instance *hfi_instance) |
| { |
| struct thermal_genl_cpu_caps *cpu_caps; |
| int i = 0, cpu_count; |
| |
| /* CPUs may come online/offline while processing an HFI update. */ |
| mutex_lock(&hfi_instance_lock); |
| |
| cpu_count = cpumask_weight(hfi_instance->cpus); |
| |
| /* No CPUs to report in this hfi_instance. */ |
| if (!cpu_count) |
| goto out; |
| |
| cpu_caps = kcalloc(cpu_count, sizeof(*cpu_caps), GFP_KERNEL); |
| if (!cpu_caps) |
| goto out; |
| |
| get_hfi_caps(hfi_instance, cpu_caps); |
| |
| if (cpu_count < HFI_MAX_THERM_NOTIFY_COUNT) |
| goto last_cmd; |
| |
| /* Process complete chunks of HFI_MAX_THERM_NOTIFY_COUNT capabilities. */ |
| for (i = 0; |
| (i + HFI_MAX_THERM_NOTIFY_COUNT) <= cpu_count; |
| i += HFI_MAX_THERM_NOTIFY_COUNT) |
| thermal_genl_cpu_capability_event(HFI_MAX_THERM_NOTIFY_COUNT, |
| &cpu_caps[i]); |
| |
| cpu_count = cpu_count - i; |
| |
| last_cmd: |
| /* Process the remaining capabilities if any. */ |
| if (cpu_count) |
| thermal_genl_cpu_capability_event(cpu_count, &cpu_caps[i]); |
| |
| kfree(cpu_caps); |
| out: |
| mutex_unlock(&hfi_instance_lock); |
| } |
| |
| static void hfi_update_work_fn(struct work_struct *work) |
| { |
| struct hfi_instance *hfi_instance; |
| |
| hfi_instance = container_of(to_delayed_work(work), struct hfi_instance, |
| update_work); |
| |
| update_capabilities(hfi_instance); |
| } |
| |
| void intel_hfi_process_event(__u64 pkg_therm_status_msr_val) |
| { |
| struct hfi_instance *hfi_instance; |
| int cpu = smp_processor_id(); |
| struct hfi_cpu_info *info; |
| u64 new_timestamp, msr, hfi; |
| |
| if (!pkg_therm_status_msr_val) |
| return; |
| |
| info = &per_cpu(hfi_cpu_info, cpu); |
| if (!info) |
| return; |
| |
| /* |
| * A CPU is linked to its HFI instance before the thermal vector in the |
| * local APIC is unmasked. Hence, info->hfi_instance cannot be NULL |
| * when receiving an HFI event. |
| */ |
| hfi_instance = info->hfi_instance; |
| if (unlikely(!hfi_instance)) { |
| pr_debug("Received event on CPU %d but instance was null", cpu); |
| return; |
| } |
| |
| /* |
| * On most systems, all CPUs in the package receive a package-level |
| * thermal interrupt when there is an HFI update. It is sufficient to |
| * let a single CPU to acknowledge the update and queue work to |
| * process it. The remaining CPUs can resume their work. |
| */ |
| if (!raw_spin_trylock(&hfi_instance->event_lock)) |
| return; |
| |
| rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr); |
| hfi = msr & PACKAGE_THERM_STATUS_HFI_UPDATED; |
| if (!hfi) { |
| raw_spin_unlock(&hfi_instance->event_lock); |
| return; |
| } |
| |
| /* |
| * Ack duplicate update. Since there is an active HFI |
| * status from HW, it must be a new event, not a case |
| * where a lagging CPU entered the locked region. |
| */ |
| new_timestamp = *(u64 *)hfi_instance->hw_table; |
| if (*hfi_instance->timestamp == new_timestamp) { |
| thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED); |
| raw_spin_unlock(&hfi_instance->event_lock); |
| return; |
| } |
| |
| raw_spin_lock(&hfi_instance->table_lock); |
| |
| /* |
| * Copy the updated table into our local copy. This includes the new |
| * timestamp. |
| */ |
| memcpy(hfi_instance->local_table, hfi_instance->hw_table, |
| hfi_features.nr_table_pages << PAGE_SHIFT); |
| |
| /* |
| * Let hardware know that we are done reading the HFI table and it is |
| * free to update it again. |
| */ |
| thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED); |
| |
| raw_spin_unlock(&hfi_instance->table_lock); |
| raw_spin_unlock(&hfi_instance->event_lock); |
| |
| queue_delayed_work(hfi_updates_wq, &hfi_instance->update_work, |
| HFI_UPDATE_INTERVAL); |
| } |
| |
| static void init_hfi_cpu_index(struct hfi_cpu_info *info) |
| { |
| union cpuid6_edx edx; |
| |
| /* Do not re-read @cpu's index if it has already been initialized. */ |
| if (info->index > -1) |
| return; |
| |
| edx.full = cpuid_edx(CPUID_HFI_LEAF); |
| info->index = edx.split.index; |
| } |
| |
| /* |
| * The format of the HFI table depends on the number of capabilities that the |
| * hardware supports. Keep a data structure to navigate the table. |
| */ |
| static void init_hfi_instance(struct hfi_instance *hfi_instance) |
| { |
| /* The HFI header is below the time-stamp. */ |
| hfi_instance->hdr = hfi_instance->local_table + |
| sizeof(*hfi_instance->timestamp); |
| |
| /* The HFI data starts below the header. */ |
| hfi_instance->data = hfi_instance->hdr + hfi_features.hdr_size; |
| } |
| |
| /** |
| * intel_hfi_online() - Enable HFI on @cpu |
| * @cpu: CPU in which the HFI will be enabled |
| * |
| * Enable the HFI to be used in @cpu. The HFI is enabled at the die/package |
| * level. The first CPU in the die/package to come online does the full HFI |
| * initialization. Subsequent CPUs will just link themselves to the HFI |
| * instance of their die/package. |
| * |
| * This function is called before enabling the thermal vector in the local APIC |
| * in order to ensure that @cpu has an associated HFI instance when it receives |
| * an HFI event. |
| */ |
| void intel_hfi_online(unsigned int cpu) |
| { |
| struct hfi_instance *hfi_instance; |
| struct hfi_cpu_info *info; |
| phys_addr_t hw_table_pa; |
| u64 msr_val; |
| u16 die_id; |
| |
| /* Nothing to do if hfi_instances are missing. */ |
| if (!hfi_instances) |
| return; |
| |
| /* |
| * Link @cpu to the HFI instance of its package/die. It does not |
| * matter whether the instance has been initialized. |
| */ |
| info = &per_cpu(hfi_cpu_info, cpu); |
| die_id = topology_logical_die_id(cpu); |
| hfi_instance = info->hfi_instance; |
| if (!hfi_instance) { |
| if (die_id >= max_hfi_instances) |
| return; |
| |
| hfi_instance = &hfi_instances[die_id]; |
| info->hfi_instance = hfi_instance; |
| } |
| |
| init_hfi_cpu_index(info); |
| |
| /* |
| * Now check if the HFI instance of the package/die of @cpu has been |
| * initialized (by checking its header). In such case, all we have to |
| * do is to add @cpu to this instance's cpumask. |
| */ |
| mutex_lock(&hfi_instance_lock); |
| if (hfi_instance->hdr) { |
| cpumask_set_cpu(cpu, hfi_instance->cpus); |
| goto unlock; |
| } |
| |
| /* |
| * Hardware is programmed with the physical address of the first page |
| * frame of the table. Hence, the allocated memory must be page-aligned. |
| */ |
| hfi_instance->hw_table = alloc_pages_exact(hfi_features.nr_table_pages, |
| GFP_KERNEL | __GFP_ZERO); |
| if (!hfi_instance->hw_table) |
| goto unlock; |
| |
| hw_table_pa = virt_to_phys(hfi_instance->hw_table); |
| |
| /* |
| * Allocate memory to keep a local copy of the table that |
| * hardware generates. |
| */ |
| hfi_instance->local_table = kzalloc(hfi_features.nr_table_pages << PAGE_SHIFT, |
| GFP_KERNEL); |
| if (!hfi_instance->local_table) |
| goto free_hw_table; |
| |
| /* |
| * Program the address of the feedback table of this die/package. On |
| * some processors, hardware remembers the old address of the HFI table |
| * even after having been reprogrammed and re-enabled. Thus, do not free |
| * the pages allocated for the table or reprogram the hardware with a |
| * new base address. Namely, program the hardware only once. |
| */ |
| msr_val = hw_table_pa | HW_FEEDBACK_PTR_VALID_BIT; |
| wrmsrl(MSR_IA32_HW_FEEDBACK_PTR, msr_val); |
| |
| init_hfi_instance(hfi_instance); |
| |
| INIT_DELAYED_WORK(&hfi_instance->update_work, hfi_update_work_fn); |
| raw_spin_lock_init(&hfi_instance->table_lock); |
| raw_spin_lock_init(&hfi_instance->event_lock); |
| |
| cpumask_set_cpu(cpu, hfi_instance->cpus); |
| |
| /* |
| * Enable the hardware feedback interface and never disable it. See |
| * comment on programming the address of the table. |
| */ |
| rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val); |
| msr_val |= HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT; |
| wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val); |
| |
| unlock: |
| mutex_unlock(&hfi_instance_lock); |
| return; |
| |
| free_hw_table: |
| free_pages_exact(hfi_instance->hw_table, hfi_features.nr_table_pages); |
| goto unlock; |
| } |
| |
| /** |
| * intel_hfi_offline() - Disable HFI on @cpu |
| * @cpu: CPU in which the HFI will be disabled |
| * |
| * Remove @cpu from those covered by its HFI instance. |
| * |
| * On some processors, hardware remembers previous programming settings even |
| * after being reprogrammed. Thus, keep HFI enabled even if all CPUs in the |
| * die/package of @cpu are offline. See note in intel_hfi_online(). |
| */ |
| void intel_hfi_offline(unsigned int cpu) |
| { |
| struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, cpu); |
| struct hfi_instance *hfi_instance; |
| |
| /* |
| * Check if @cpu as an associated, initialized (i.e., with a non-NULL |
| * header). Also, HFI instances are only initialized if X86_FEATURE_HFI |
| * is present. |
| */ |
| hfi_instance = info->hfi_instance; |
| if (!hfi_instance) |
| return; |
| |
| if (!hfi_instance->hdr) |
| return; |
| |
| mutex_lock(&hfi_instance_lock); |
| cpumask_clear_cpu(cpu, hfi_instance->cpus); |
| mutex_unlock(&hfi_instance_lock); |
| } |
| |
| static __init int hfi_parse_features(void) |
| { |
| unsigned int nr_capabilities; |
| union cpuid6_edx edx; |
| |
| if (!boot_cpu_has(X86_FEATURE_HFI)) |
| return -ENODEV; |
| |
| /* |
| * If we are here we know that CPUID_HFI_LEAF exists. Parse the |
| * supported capabilities and the size of the HFI table. |
| */ |
| edx.full = cpuid_edx(CPUID_HFI_LEAF); |
| |
| if (!edx.split.capabilities.split.performance) { |
| pr_debug("Performance reporting not supported! Not using HFI\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * The number of supported capabilities determines the number of |
| * columns in the HFI table. Exclude the reserved bits. |
| */ |
| edx.split.capabilities.split.__reserved = 0; |
| nr_capabilities = hweight8(edx.split.capabilities.bits); |
| |
| /* The number of 4KB pages required by the table */ |
| hfi_features.nr_table_pages = edx.split.table_pages + 1; |
| |
| /* |
| * The header contains change indications for each supported feature. |
| * The size of the table header is rounded up to be a multiple of 8 |
| * bytes. |
| */ |
| hfi_features.hdr_size = DIV_ROUND_UP(nr_capabilities, 8) * 8; |
| |
| /* |
| * Data of each logical processor is also rounded up to be a multiple |
| * of 8 bytes. |
| */ |
| hfi_features.cpu_stride = DIV_ROUND_UP(nr_capabilities, 8) * 8; |
| |
| return 0; |
| } |
| |
| void __init intel_hfi_init(void) |
| { |
| struct hfi_instance *hfi_instance; |
| int i, j; |
| |
| if (hfi_parse_features()) |
| return; |
| |
| /* There is one HFI instance per die/package. */ |
| max_hfi_instances = topology_max_packages() * |
| topology_max_die_per_package(); |
| |
| /* |
| * This allocation may fail. CPU hotplug callbacks must check |
| * for a null pointer. |
| */ |
| hfi_instances = kcalloc(max_hfi_instances, sizeof(*hfi_instances), |
| GFP_KERNEL); |
| if (!hfi_instances) |
| return; |
| |
| for (i = 0; i < max_hfi_instances; i++) { |
| hfi_instance = &hfi_instances[i]; |
| if (!zalloc_cpumask_var(&hfi_instance->cpus, GFP_KERNEL)) |
| goto err_nomem; |
| } |
| |
| hfi_updates_wq = create_singlethread_workqueue("hfi-updates"); |
| if (!hfi_updates_wq) |
| goto err_nomem; |
| |
| return; |
| |
| err_nomem: |
| for (j = 0; j < i; ++j) { |
| hfi_instance = &hfi_instances[j]; |
| free_cpumask_var(hfi_instance->cpus); |
| } |
| |
| kfree(hfi_instances); |
| hfi_instances = NULL; |
| } |