blob: cdc79de0c794af4e46176c6924b14fd127426f54 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* BPF JIT compiler for ARM64
*
* Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
*/
#define pr_fmt(fmt) "bpf_jit: " fmt
#include <linux/bpf.h>
#include <linux/filter.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <asm/cacheflush.h>
#include <asm/debug-monitors.h>
#include <asm/set_memory.h>
#include "bpf_jit.h"
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
#define TCALL_CNT (MAX_BPF_JIT_REG + 2)
#define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
/* Map BPF registers to A64 registers */
static const int bpf2a64[] = {
/* return value from in-kernel function, and exit value from eBPF */
[BPF_REG_0] = A64_R(7),
/* arguments from eBPF program to in-kernel function */
[BPF_REG_1] = A64_R(0),
[BPF_REG_2] = A64_R(1),
[BPF_REG_3] = A64_R(2),
[BPF_REG_4] = A64_R(3),
[BPF_REG_5] = A64_R(4),
/* callee saved registers that in-kernel function will preserve */
[BPF_REG_6] = A64_R(19),
[BPF_REG_7] = A64_R(20),
[BPF_REG_8] = A64_R(21),
[BPF_REG_9] = A64_R(22),
/* read-only frame pointer to access stack */
[BPF_REG_FP] = A64_R(25),
/* temporary registers for internal BPF JIT */
[TMP_REG_1] = A64_R(10),
[TMP_REG_2] = A64_R(11),
[TMP_REG_3] = A64_R(12),
/* tail_call_cnt */
[TCALL_CNT] = A64_R(26),
/* temporary register for blinding constants */
[BPF_REG_AX] = A64_R(9),
};
struct jit_ctx {
const struct bpf_prog *prog;
int idx;
int epilogue_offset;
int *offset;
__le32 *image;
u32 stack_size;
};
static inline void emit(const u32 insn, struct jit_ctx *ctx)
{
if (ctx->image != NULL)
ctx->image[ctx->idx] = cpu_to_le32(insn);
ctx->idx++;
}
static inline void emit_a64_mov_i(const int is64, const int reg,
const s32 val, struct jit_ctx *ctx)
{
u16 hi = val >> 16;
u16 lo = val & 0xffff;
if (hi & 0x8000) {
if (hi == 0xffff) {
emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
} else {
emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
if (lo != 0xffff)
emit(A64_MOVK(is64, reg, lo, 0), ctx);
}
} else {
emit(A64_MOVZ(is64, reg, lo, 0), ctx);
if (hi)
emit(A64_MOVK(is64, reg, hi, 16), ctx);
}
}
static int i64_i16_blocks(const u64 val, bool inverse)
{
return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
(((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
(((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
(((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
}
static inline void emit_a64_mov_i64(const int reg, const u64 val,
struct jit_ctx *ctx)
{
u64 nrm_tmp = val, rev_tmp = ~val;
bool inverse;
int shift;
if (!(nrm_tmp >> 32))
return emit_a64_mov_i(0, reg, (u32)val, ctx);
inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
(fls64(nrm_tmp) - 1)), 16), 0);
if (inverse)
emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
else
emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
shift -= 16;
while (shift >= 0) {
if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
shift -= 16;
}
}
/*
* Kernel addresses in the vmalloc space use at most 48 bits, and the
* remaining bits are guaranteed to be 0x1. So we can compose the address
* with a fixed length movn/movk/movk sequence.
*/
static inline void emit_addr_mov_i64(const int reg, const u64 val,
struct jit_ctx *ctx)
{
u64 tmp = val;
int shift = 0;
emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
while (shift < 32) {
tmp >>= 16;
shift += 16;
emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
}
}
static inline int bpf2a64_offset(int bpf_to, int bpf_from,
const struct jit_ctx *ctx)
{
int to = ctx->offset[bpf_to];
/* -1 to account for the Branch instruction */
int from = ctx->offset[bpf_from] - 1;
return to - from;
}
static void jit_fill_hole(void *area, unsigned int size)
{
__le32 *ptr;
/* We are guaranteed to have aligned memory. */
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
}
static inline int epilogue_offset(const struct jit_ctx *ctx)
{
int to = ctx->epilogue_offset;
int from = ctx->idx;
return to - from;
}
/* Stack must be multiples of 16B */
#define STACK_ALIGN(sz) (((sz) + 15) & ~15)
/* Tail call offset to jump into */
#define PROLOGUE_OFFSET 7
static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
{
const struct bpf_prog *prog = ctx->prog;
const u8 r6 = bpf2a64[BPF_REG_6];
const u8 r7 = bpf2a64[BPF_REG_7];
const u8 r8 = bpf2a64[BPF_REG_8];
const u8 r9 = bpf2a64[BPF_REG_9];
const u8 fp = bpf2a64[BPF_REG_FP];
const u8 tcc = bpf2a64[TCALL_CNT];
const int idx0 = ctx->idx;
int cur_offset;
/*
* BPF prog stack layout
*
* high
* original A64_SP => 0:+-----+ BPF prologue
* |FP/LR|
* current A64_FP => -16:+-----+
* | ... | callee saved registers
* BPF fp register => -64:+-----+ <= (BPF_FP)
* | |
* | ... | BPF prog stack
* | |
* +-----+ <= (BPF_FP - prog->aux->stack_depth)
* |RSVD | padding
* current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size)
* | |
* | ... | Function call stack
* | |
* +-----+
* low
*
*/
/* Save FP and LR registers to stay align with ARM64 AAPCS */
emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
/* Save callee-saved registers */
emit(A64_PUSH(r6, r7, A64_SP), ctx);
emit(A64_PUSH(r8, r9, A64_SP), ctx);
emit(A64_PUSH(fp, tcc, A64_SP), ctx);
/* Set up BPF prog stack base register */
emit(A64_MOV(1, fp, A64_SP), ctx);
if (!ebpf_from_cbpf) {
/* Initialize tail_call_cnt */
emit(A64_MOVZ(1, tcc, 0, 0), ctx);
cur_offset = ctx->idx - idx0;
if (cur_offset != PROLOGUE_OFFSET) {
pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
cur_offset, PROLOGUE_OFFSET);
return -1;
}
}
ctx->stack_size = STACK_ALIGN(prog->aux->stack_depth);
/* Set up function call stack */
emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
return 0;
}
static int out_offset = -1; /* initialized on the first pass of build_body() */
static int emit_bpf_tail_call(struct jit_ctx *ctx)
{
/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
const u8 r2 = bpf2a64[BPF_REG_2];
const u8 r3 = bpf2a64[BPF_REG_3];
const u8 tmp = bpf2a64[TMP_REG_1];
const u8 prg = bpf2a64[TMP_REG_2];
const u8 tcc = bpf2a64[TCALL_CNT];
const int idx0 = ctx->idx;
#define cur_offset (ctx->idx - idx0)
#define jmp_offset (out_offset - (cur_offset))
size_t off;
/* if (index >= array->map.max_entries)
* goto out;
*/
off = offsetof(struct bpf_array, map.max_entries);
emit_a64_mov_i64(tmp, off, ctx);
emit(A64_LDR32(tmp, r2, tmp), ctx);
emit(A64_MOV(0, r3, r3), ctx);
emit(A64_CMP(0, r3, tmp), ctx);
emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
* goto out;
* tail_call_cnt++;
*/
emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
emit(A64_CMP(1, tcc, tmp), ctx);
emit(A64_B_(A64_COND_HI, jmp_offset), ctx);
emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
/* prog = array->ptrs[index];
* if (prog == NULL)
* goto out;
*/
off = offsetof(struct bpf_array, ptrs);
emit_a64_mov_i64(tmp, off, ctx);
emit(A64_ADD(1, tmp, r2, tmp), ctx);
emit(A64_LSL(1, prg, r3, 3), ctx);
emit(A64_LDR64(prg, tmp, prg), ctx);
emit(A64_CBZ(1, prg, jmp_offset), ctx);
/* goto *(prog->bpf_func + prologue_offset); */
off = offsetof(struct bpf_prog, bpf_func);
emit_a64_mov_i64(tmp, off, ctx);
emit(A64_LDR64(tmp, prg, tmp), ctx);
emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
emit(A64_BR(tmp), ctx);
/* out: */
if (out_offset == -1)
out_offset = cur_offset;
if (cur_offset != out_offset) {
pr_err_once("tail_call out_offset = %d, expected %d!\n",
cur_offset, out_offset);
return -1;
}
return 0;
#undef cur_offset
#undef jmp_offset
}
static void build_epilogue(struct jit_ctx *ctx)
{
const u8 r0 = bpf2a64[BPF_REG_0];
const u8 r6 = bpf2a64[BPF_REG_6];
const u8 r7 = bpf2a64[BPF_REG_7];
const u8 r8 = bpf2a64[BPF_REG_8];
const u8 r9 = bpf2a64[BPF_REG_9];
const u8 fp = bpf2a64[BPF_REG_FP];
/* We're done with BPF stack */
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
/* Restore fs (x25) and x26 */
emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
/* Restore callee-saved register */
emit(A64_POP(r8, r9, A64_SP), ctx);
emit(A64_POP(r6, r7, A64_SP), ctx);
/* Restore FP/LR registers */
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
/* Set return value */
emit(A64_MOV(1, A64_R(0), r0), ctx);
emit(A64_RET(A64_LR), ctx);
}
/* JITs an eBPF instruction.
* Returns:
* 0 - successfully JITed an 8-byte eBPF instruction.
* >0 - successfully JITed a 16-byte eBPF instruction.
* <0 - failed to JIT.
*/
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
bool extra_pass)
{
const u8 code = insn->code;
const u8 dst = bpf2a64[insn->dst_reg];
const u8 src = bpf2a64[insn->src_reg];
const u8 tmp = bpf2a64[TMP_REG_1];
const u8 tmp2 = bpf2a64[TMP_REG_2];
const u8 tmp3 = bpf2a64[TMP_REG_3];
const s16 off = insn->off;
const s32 imm = insn->imm;
const int i = insn - ctx->prog->insnsi;
const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
BPF_CLASS(code) == BPF_JMP;
const bool isdw = BPF_SIZE(code) == BPF_DW;
u8 jmp_cond, reg;
s32 jmp_offset;
#define check_imm(bits, imm) do { \
if ((((imm) > 0) && ((imm) >> (bits))) || \
(((imm) < 0) && (~(imm) >> (bits)))) { \
pr_info("[%2d] imm=%d(0x%x) out of range\n", \
i, imm, imm); \
return -EINVAL; \
} \
} while (0)
#define check_imm19(imm) check_imm(19, imm)
#define check_imm26(imm) check_imm(26, imm)
switch (code) {
/* dst = src */
case BPF_ALU | BPF_MOV | BPF_X:
case BPF_ALU64 | BPF_MOV | BPF_X:
emit(A64_MOV(is64, dst, src), ctx);
break;
/* dst = dst OP src */
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_X:
emit(A64_ADD(is64, dst, dst, src), ctx);
break;
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_X:
emit(A64_SUB(is64, dst, dst, src), ctx);
break;
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_AND | BPF_X:
emit(A64_AND(is64, dst, dst, src), ctx);
break;
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_X:
emit(A64_ORR(is64, dst, dst, src), ctx);
break;
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_X:
emit(A64_EOR(is64, dst, dst, src), ctx);
break;
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_X:
emit(A64_MUL(is64, dst, dst, src), ctx);
break;
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_DIV | BPF_X:
case BPF_ALU | BPF_MOD | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_X:
switch (BPF_OP(code)) {
case BPF_DIV:
emit(A64_UDIV(is64, dst, dst, src), ctx);
break;
case BPF_MOD:
emit(A64_UDIV(is64, tmp, dst, src), ctx);
emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
break;
}
break;
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU64 | BPF_LSH | BPF_X:
emit(A64_LSLV(is64, dst, dst, src), ctx);
break;
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU64 | BPF_RSH | BPF_X:
emit(A64_LSRV(is64, dst, dst, src), ctx);
break;
case BPF_ALU | BPF_ARSH | BPF_X:
case BPF_ALU64 | BPF_ARSH | BPF_X:
emit(A64_ASRV(is64, dst, dst, src), ctx);
break;
/* dst = -dst */
case BPF_ALU | BPF_NEG:
case BPF_ALU64 | BPF_NEG:
emit(A64_NEG(is64, dst, dst), ctx);
break;
/* dst = BSWAP##imm(dst) */
case BPF_ALU | BPF_END | BPF_FROM_LE:
case BPF_ALU | BPF_END | BPF_FROM_BE:
#ifdef CONFIG_CPU_BIG_ENDIAN
if (BPF_SRC(code) == BPF_FROM_BE)
goto emit_bswap_uxt;
#else /* !CONFIG_CPU_BIG_ENDIAN */
if (BPF_SRC(code) == BPF_FROM_LE)
goto emit_bswap_uxt;
#endif
switch (imm) {
case 16:
emit(A64_REV16(is64, dst, dst), ctx);
/* zero-extend 16 bits into 64 bits */
emit(A64_UXTH(is64, dst, dst), ctx);
break;
case 32:
emit(A64_REV32(is64, dst, dst), ctx);
/* upper 32 bits already cleared */
break;
case 64:
emit(A64_REV64(dst, dst), ctx);
break;
}
break;
emit_bswap_uxt:
switch (imm) {
case 16:
/* zero-extend 16 bits into 64 bits */
emit(A64_UXTH(is64, dst, dst), ctx);
break;
case 32:
/* zero-extend 32 bits into 64 bits */
emit(A64_UXTW(is64, dst, dst), ctx);
break;
case 64:
/* nop */
break;
}
break;
/* dst = imm */
case BPF_ALU | BPF_MOV | BPF_K:
case BPF_ALU64 | BPF_MOV | BPF_K:
emit_a64_mov_i(is64, dst, imm, ctx);
break;
/* dst = dst OP imm */
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_ADD | BPF_K:
emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_ADD(is64, dst, dst, tmp), ctx);
break;
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:
emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_SUB(is64, dst, dst, tmp), ctx);
break;
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_K:
emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_AND(is64, dst, dst, tmp), ctx);
break;
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_K:
emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_ORR(is64, dst, dst, tmp), ctx);
break;
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_EOR(is64, dst, dst, tmp), ctx);
break;
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU64 | BPF_MUL | BPF_K:
emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_MUL(is64, dst, dst, tmp), ctx);
break;
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_DIV | BPF_K:
emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_UDIV(is64, dst, dst, tmp), ctx);
break;
case BPF_ALU | BPF_MOD | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_K:
emit_a64_mov_i(is64, tmp2, imm, ctx);
emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
break;
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU64 | BPF_LSH | BPF_K:
emit(A64_LSL(is64, dst, dst, imm), ctx);
break;
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU64 | BPF_RSH | BPF_K:
emit(A64_LSR(is64, dst, dst, imm), ctx);
break;
case BPF_ALU | BPF_ARSH | BPF_K:
case BPF_ALU64 | BPF_ARSH | BPF_K:
emit(A64_ASR(is64, dst, dst, imm), ctx);
break;
/* JUMP off */
case BPF_JMP | BPF_JA:
jmp_offset = bpf2a64_offset(i + off, i, ctx);
check_imm26(jmp_offset);
emit(A64_B(jmp_offset), ctx);
break;
/* IF (dst COND src) JUMP off */
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_X:
emit(A64_CMP(is64, dst, src), ctx);
emit_cond_jmp:
jmp_offset = bpf2a64_offset(i + off, i, ctx);
check_imm19(jmp_offset);
switch (BPF_OP(code)) {
case BPF_JEQ:
jmp_cond = A64_COND_EQ;
break;
case BPF_JGT:
jmp_cond = A64_COND_HI;
break;
case BPF_JLT:
jmp_cond = A64_COND_CC;
break;
case BPF_JGE:
jmp_cond = A64_COND_CS;
break;
case BPF_JLE:
jmp_cond = A64_COND_LS;
break;
case BPF_JSET:
case BPF_JNE:
jmp_cond = A64_COND_NE;
break;
case BPF_JSGT:
jmp_cond = A64_COND_GT;
break;
case BPF_JSLT:
jmp_cond = A64_COND_LT;
break;
case BPF_JSGE:
jmp_cond = A64_COND_GE;
break;
case BPF_JSLE:
jmp_cond = A64_COND_LE;
break;
default:
return -EFAULT;
}
emit(A64_B_(jmp_cond, jmp_offset), ctx);
break;
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_X:
emit(A64_TST(is64, dst, src), ctx);
goto emit_cond_jmp;
/* IF (dst COND imm) JUMP off */
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_K:
emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_CMP(is64, dst, tmp), ctx);
goto emit_cond_jmp;
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_K:
emit_a64_mov_i(is64, tmp, imm, ctx);
emit(A64_TST(is64, dst, tmp), ctx);
goto emit_cond_jmp;
/* function call */
case BPF_JMP | BPF_CALL:
{
const u8 r0 = bpf2a64[BPF_REG_0];
bool func_addr_fixed;
u64 func_addr;
int ret;
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
&func_addr, &func_addr_fixed);
if (ret < 0)
return ret;
emit_addr_mov_i64(tmp, func_addr, ctx);
emit(A64_BLR(tmp), ctx);
emit(A64_MOV(1, r0, A64_R(0)), ctx);
break;
}
/* tail call */
case BPF_JMP | BPF_TAIL_CALL:
if (emit_bpf_tail_call(ctx))
return -EFAULT;
break;
/* function return */
case BPF_JMP | BPF_EXIT:
/* Optimization: when last instruction is EXIT,
simply fallthrough to epilogue. */
if (i == ctx->prog->len - 1)
break;
jmp_offset = epilogue_offset(ctx);
check_imm26(jmp_offset);
emit(A64_B(jmp_offset), ctx);
break;
/* dst = imm64 */
case BPF_LD | BPF_IMM | BPF_DW:
{
const struct bpf_insn insn1 = insn[1];
u64 imm64;
imm64 = (u64)insn1.imm << 32 | (u32)imm;
emit_a64_mov_i64(dst, imm64, ctx);
return 1;
}
/* LDX: dst = *(size *)(src + off) */
case BPF_LDX | BPF_MEM | BPF_W:
case BPF_LDX | BPF_MEM | BPF_H:
case BPF_LDX | BPF_MEM | BPF_B:
case BPF_LDX | BPF_MEM | BPF_DW:
emit_a64_mov_i(1, tmp, off, ctx);
switch (BPF_SIZE(code)) {
case BPF_W:
emit(A64_LDR32(dst, src, tmp), ctx);
break;
case BPF_H:
emit(A64_LDRH(dst, src, tmp), ctx);
break;
case BPF_B:
emit(A64_LDRB(dst, src, tmp), ctx);
break;
case BPF_DW:
emit(A64_LDR64(dst, src, tmp), ctx);
break;
}
break;
/* ST: *(size *)(dst + off) = imm */
case BPF_ST | BPF_MEM | BPF_W:
case BPF_ST | BPF_MEM | BPF_H:
case BPF_ST | BPF_MEM | BPF_B:
case BPF_ST | BPF_MEM | BPF_DW:
/* Load imm to a register then store it */
emit_a64_mov_i(1, tmp2, off, ctx);
emit_a64_mov_i(1, tmp, imm, ctx);
switch (BPF_SIZE(code)) {
case BPF_W:
emit(A64_STR32(tmp, dst, tmp2), ctx);
break;
case BPF_H:
emit(A64_STRH(tmp, dst, tmp2), ctx);
break;
case BPF_B:
emit(A64_STRB(tmp, dst, tmp2), ctx);
break;
case BPF_DW:
emit(A64_STR64(tmp, dst, tmp2), ctx);
break;
}
break;
/* STX: *(size *)(dst + off) = src */
case BPF_STX | BPF_MEM | BPF_W:
case BPF_STX | BPF_MEM | BPF_H:
case BPF_STX | BPF_MEM | BPF_B:
case BPF_STX | BPF_MEM | BPF_DW:
emit_a64_mov_i(1, tmp, off, ctx);
switch (BPF_SIZE(code)) {
case BPF_W:
emit(A64_STR32(src, dst, tmp), ctx);
break;
case BPF_H:
emit(A64_STRH(src, dst, tmp), ctx);
break;
case BPF_B:
emit(A64_STRB(src, dst, tmp), ctx);
break;
case BPF_DW:
emit(A64_STR64(src, dst, tmp), ctx);
break;
}
break;
/* STX XADD: lock *(u32 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_W:
/* STX XADD: lock *(u64 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_DW:
if (!off) {
reg = dst;
} else {
emit_a64_mov_i(1, tmp, off, ctx);
emit(A64_ADD(1, tmp, tmp, dst), ctx);
reg = tmp;
}
if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) {
emit(A64_STADD(isdw, reg, src), ctx);
} else {
emit(A64_LDXR(isdw, tmp2, reg), ctx);
emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
jmp_offset = -3;
check_imm19(jmp_offset);
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
}
break;
default:
pr_err_once("unknown opcode %02x\n", code);
return -EINVAL;
}
return 0;
}
static int build_body(struct jit_ctx *ctx, bool extra_pass)
{
const struct bpf_prog *prog = ctx->prog;
int i;
for (i = 0; i < prog->len; i++) {
const struct bpf_insn *insn = &prog->insnsi[i];
int ret;
ret = build_insn(insn, ctx, extra_pass);
if (ret > 0) {
i++;
if (ctx->image == NULL)
ctx->offset[i] = ctx->idx;
continue;
}
if (ctx->image == NULL)
ctx->offset[i] = ctx->idx;
if (ret)
return ret;
}
return 0;
}
static int validate_code(struct jit_ctx *ctx)
{
int i;
for (i = 0; i < ctx->idx; i++) {
u32 a64_insn = le32_to_cpu(ctx->image[i]);
if (a64_insn == AARCH64_BREAK_FAULT)
return -1;
}
return 0;
}
static inline void bpf_flush_icache(void *start, void *end)
{
flush_icache_range((unsigned long)start, (unsigned long)end);
}
struct arm64_jit_data {
struct bpf_binary_header *header;
u8 *image;
struct jit_ctx ctx;
};
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
struct bpf_prog *tmp, *orig_prog = prog;
struct bpf_binary_header *header;
struct arm64_jit_data *jit_data;
bool was_classic = bpf_prog_was_classic(prog);
bool tmp_blinded = false;
bool extra_pass = false;
struct jit_ctx ctx;
int image_size;
u8 *image_ptr;
if (!prog->jit_requested)
return orig_prog;
tmp = bpf_jit_blind_constants(prog);
/* If blinding was requested and we failed during blinding,
* we must fall back to the interpreter.
*/
if (IS_ERR(tmp))
return orig_prog;
if (tmp != prog) {
tmp_blinded = true;
prog = tmp;
}
jit_data = prog->aux->jit_data;
if (!jit_data) {
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
if (!jit_data) {
prog = orig_prog;
goto out;
}
prog->aux->jit_data = jit_data;
}
if (jit_data->ctx.offset) {
ctx = jit_data->ctx;
image_ptr = jit_data->image;
header = jit_data->header;
extra_pass = true;
image_size = sizeof(u32) * ctx.idx;
goto skip_init_ctx;
}
memset(&ctx, 0, sizeof(ctx));
ctx.prog = prog;
ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
if (ctx.offset == NULL) {
prog = orig_prog;
goto out_off;
}
/* 1. Initial fake pass to compute ctx->idx. */
/* Fake pass to fill in ctx->offset. */
if (build_body(&ctx, extra_pass)) {
prog = orig_prog;
goto out_off;
}
if (build_prologue(&ctx, was_classic)) {
prog = orig_prog;
goto out_off;
}
ctx.epilogue_offset = ctx.idx;
build_epilogue(&ctx);
/* Now we know the actual image size. */
image_size = sizeof(u32) * ctx.idx;
header = bpf_jit_binary_alloc(image_size, &image_ptr,
sizeof(u32), jit_fill_hole);
if (header == NULL) {
prog = orig_prog;
goto out_off;
}
/* 2. Now, the actual pass. */
ctx.image = (__le32 *)image_ptr;
skip_init_ctx:
ctx.idx = 0;
build_prologue(&ctx, was_classic);
if (build_body(&ctx, extra_pass)) {
bpf_jit_binary_free(header);
prog = orig_prog;
goto out_off;
}
build_epilogue(&ctx);
/* 3. Extra pass to validate JITed code. */
if (validate_code(&ctx)) {
bpf_jit_binary_free(header);
prog = orig_prog;
goto out_off;
}
/* And we're done. */
if (bpf_jit_enable > 1)
bpf_jit_dump(prog->len, image_size, 2, ctx.image);
bpf_flush_icache(header, ctx.image + ctx.idx);
if (!prog->is_func || extra_pass) {
if (extra_pass && ctx.idx != jit_data->ctx.idx) {
pr_err_once("multi-func JIT bug %d != %d\n",
ctx.idx, jit_data->ctx.idx);
bpf_jit_binary_free(header);
prog->bpf_func = NULL;
prog->jited = 0;
goto out_off;
}
bpf_jit_binary_lock_ro(header);
} else {
jit_data->ctx = ctx;
jit_data->image = image_ptr;
jit_data->header = header;
}
prog->bpf_func = (void *)ctx.image;
prog->jited = 1;
prog->jited_len = image_size;
if (!prog->is_func || extra_pass) {
bpf_prog_fill_jited_linfo(prog, ctx.offset);
out_off:
kfree(ctx.offset);
kfree(jit_data);
prog->aux->jit_data = NULL;
}
out:
if (tmp_blinded)
bpf_jit_prog_release_other(prog, prog == orig_prog ?
tmp : orig_prog);
return prog;
}
void *bpf_jit_alloc_exec(unsigned long size)
{
return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START,
BPF_JIT_REGION_END, GFP_KERNEL,
PAGE_KERNEL, 0, NUMA_NO_NODE,
__builtin_return_address(0));
}
void bpf_jit_free_exec(void *addr)
{
return vfree(addr);
}