| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * This contains functions for filename crypto management |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * Copyright (C) 2015, Motorola Mobility |
| * |
| * Written by Uday Savagaonkar, 2014. |
| * Modified by Jaegeuk Kim, 2015. |
| * |
| * This has not yet undergone a rigorous security audit. |
| */ |
| |
| #include <linux/scatterlist.h> |
| #include <crypto/skcipher.h> |
| #include "fscrypt_private.h" |
| |
| static inline bool fscrypt_is_dot_dotdot(const struct qstr *str) |
| { |
| if (str->len == 1 && str->name[0] == '.') |
| return true; |
| |
| if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * fname_encrypt() - encrypt a filename |
| * |
| * The output buffer must be at least as large as the input buffer. |
| * Any extra space is filled with NUL padding before encryption. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fname_encrypt(struct inode *inode, const struct qstr *iname, |
| u8 *out, unsigned int olen) |
| { |
| struct skcipher_request *req = NULL; |
| DECLARE_CRYPTO_WAIT(wait); |
| struct fscrypt_info *ci = inode->i_crypt_info; |
| struct crypto_skcipher *tfm = ci->ci_ctfm; |
| union fscrypt_iv iv; |
| struct scatterlist sg; |
| int res; |
| |
| /* |
| * Copy the filename to the output buffer for encrypting in-place and |
| * pad it with the needed number of NUL bytes. |
| */ |
| if (WARN_ON(olen < iname->len)) |
| return -ENOBUFS; |
| memcpy(out, iname->name, iname->len); |
| memset(out + iname->len, 0, olen - iname->len); |
| |
| /* Initialize the IV */ |
| fscrypt_generate_iv(&iv, 0, ci); |
| |
| /* Set up the encryption request */ |
| req = skcipher_request_alloc(tfm, GFP_NOFS); |
| if (!req) |
| return -ENOMEM; |
| skcipher_request_set_callback(req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| sg_init_one(&sg, out, olen); |
| skcipher_request_set_crypt(req, &sg, &sg, olen, &iv); |
| |
| /* Do the encryption */ |
| res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); |
| skcipher_request_free(req); |
| if (res < 0) { |
| fscrypt_err(inode, "Filename encryption failed: %d", res); |
| return res; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * fname_decrypt() - decrypt a filename |
| * |
| * The caller must have allocated sufficient memory for the @oname string. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int fname_decrypt(struct inode *inode, |
| const struct fscrypt_str *iname, |
| struct fscrypt_str *oname) |
| { |
| struct skcipher_request *req = NULL; |
| DECLARE_CRYPTO_WAIT(wait); |
| struct scatterlist src_sg, dst_sg; |
| struct fscrypt_info *ci = inode->i_crypt_info; |
| struct crypto_skcipher *tfm = ci->ci_ctfm; |
| union fscrypt_iv iv; |
| int res; |
| |
| /* Allocate request */ |
| req = skcipher_request_alloc(tfm, GFP_NOFS); |
| if (!req) |
| return -ENOMEM; |
| skcipher_request_set_callback(req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| |
| /* Initialize IV */ |
| fscrypt_generate_iv(&iv, 0, ci); |
| |
| /* Create decryption request */ |
| sg_init_one(&src_sg, iname->name, iname->len); |
| sg_init_one(&dst_sg, oname->name, oname->len); |
| skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv); |
| res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); |
| skcipher_request_free(req); |
| if (res < 0) { |
| fscrypt_err(inode, "Filename decryption failed: %d", res); |
| return res; |
| } |
| |
| oname->len = strnlen(oname->name, iname->len); |
| return 0; |
| } |
| |
| static const char lookup_table[65] = |
| "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,"; |
| |
| #define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3) |
| |
| /** |
| * base64_encode() - |
| * |
| * Encodes the input string using characters from the set [A-Za-z0-9+,]. |
| * The encoded string is roughly 4/3 times the size of the input string. |
| * |
| * Return: length of the encoded string |
| */ |
| static int base64_encode(const u8 *src, int len, char *dst) |
| { |
| int i, bits = 0, ac = 0; |
| char *cp = dst; |
| |
| for (i = 0; i < len; i++) { |
| ac += src[i] << bits; |
| bits += 8; |
| do { |
| *cp++ = lookup_table[ac & 0x3f]; |
| ac >>= 6; |
| bits -= 6; |
| } while (bits >= 6); |
| } |
| if (bits) |
| *cp++ = lookup_table[ac & 0x3f]; |
| return cp - dst; |
| } |
| |
| static int base64_decode(const char *src, int len, u8 *dst) |
| { |
| int i, bits = 0, ac = 0; |
| const char *p; |
| u8 *cp = dst; |
| |
| for (i = 0; i < len; i++) { |
| p = strchr(lookup_table, src[i]); |
| if (p == NULL || src[i] == 0) |
| return -2; |
| ac += (p - lookup_table) << bits; |
| bits += 6; |
| if (bits >= 8) { |
| *cp++ = ac & 0xff; |
| ac >>= 8; |
| bits -= 8; |
| } |
| } |
| if (ac) |
| return -1; |
| return cp - dst; |
| } |
| |
| bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len, |
| u32 max_len, u32 *encrypted_len_ret) |
| { |
| const struct fscrypt_info *ci = inode->i_crypt_info; |
| int padding = 4 << (fscrypt_policy_flags(&ci->ci_policy) & |
| FSCRYPT_POLICY_FLAGS_PAD_MASK); |
| u32 encrypted_len; |
| |
| if (orig_len > max_len) |
| return false; |
| encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE); |
| encrypted_len = round_up(encrypted_len, padding); |
| *encrypted_len_ret = min(encrypted_len, max_len); |
| return true; |
| } |
| |
| /** |
| * fscrypt_fname_alloc_buffer - allocate a buffer for presented filenames |
| * |
| * Allocate a buffer that is large enough to hold any decrypted or encoded |
| * filename (null-terminated), for the given maximum encrypted filename length. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_fname_alloc_buffer(const struct inode *inode, |
| u32 max_encrypted_len, |
| struct fscrypt_str *crypto_str) |
| { |
| const u32 max_encoded_len = |
| max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE), |
| 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name))); |
| u32 max_presented_len; |
| |
| max_presented_len = max(max_encoded_len, max_encrypted_len); |
| |
| crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS); |
| if (!crypto_str->name) |
| return -ENOMEM; |
| crypto_str->len = max_presented_len; |
| return 0; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_alloc_buffer); |
| |
| /** |
| * fscrypt_fname_free_buffer - free the buffer for presented filenames |
| * |
| * Free the buffer allocated by fscrypt_fname_alloc_buffer(). |
| */ |
| void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) |
| { |
| if (!crypto_str) |
| return; |
| kfree(crypto_str->name); |
| crypto_str->name = NULL; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_free_buffer); |
| |
| /** |
| * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user |
| * space |
| * |
| * The caller must have allocated sufficient memory for the @oname string. |
| * |
| * If the key is available, we'll decrypt the disk name; otherwise, we'll encode |
| * it for presentation. Short names are directly base64-encoded, while long |
| * names are encoded in fscrypt_digested_name format. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_fname_disk_to_usr(struct inode *inode, |
| u32 hash, u32 minor_hash, |
| const struct fscrypt_str *iname, |
| struct fscrypt_str *oname) |
| { |
| const struct qstr qname = FSTR_TO_QSTR(iname); |
| struct fscrypt_digested_name digested_name; |
| |
| if (fscrypt_is_dot_dotdot(&qname)) { |
| oname->name[0] = '.'; |
| oname->name[iname->len - 1] = '.'; |
| oname->len = iname->len; |
| return 0; |
| } |
| |
| if (iname->len < FS_CRYPTO_BLOCK_SIZE) |
| return -EUCLEAN; |
| |
| if (fscrypt_has_encryption_key(inode)) |
| return fname_decrypt(inode, iname, oname); |
| |
| if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) { |
| oname->len = base64_encode(iname->name, iname->len, |
| oname->name); |
| return 0; |
| } |
| if (hash) { |
| digested_name.hash = hash; |
| digested_name.minor_hash = minor_hash; |
| } else { |
| digested_name.hash = 0; |
| digested_name.minor_hash = 0; |
| } |
| memcpy(digested_name.digest, |
| FSCRYPT_FNAME_DIGEST(iname->name, iname->len), |
| FSCRYPT_FNAME_DIGEST_SIZE); |
| oname->name[0] = '_'; |
| oname->len = 1 + base64_encode((const u8 *)&digested_name, |
| sizeof(digested_name), oname->name + 1); |
| return 0; |
| } |
| EXPORT_SYMBOL(fscrypt_fname_disk_to_usr); |
| |
| /** |
| * fscrypt_setup_filename() - prepare to search a possibly encrypted directory |
| * @dir: the directory that will be searched |
| * @iname: the user-provided filename being searched for |
| * @lookup: 1 if we're allowed to proceed without the key because it's |
| * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot |
| * proceed without the key because we're going to create the dir_entry. |
| * @fname: the filename information to be filled in |
| * |
| * Given a user-provided filename @iname, this function sets @fname->disk_name |
| * to the name that would be stored in the on-disk directory entry, if possible. |
| * If the directory is unencrypted this is simply @iname. Else, if we have the |
| * directory's encryption key, then @iname is the plaintext, so we encrypt it to |
| * get the disk_name. |
| * |
| * Else, for keyless @lookup operations, @iname is the presented ciphertext, so |
| * we decode it to get either the ciphertext disk_name (for short names) or the |
| * fscrypt_digested_name (for long names). Non-@lookup operations will be |
| * impossible in this case, so we fail them with ENOKEY. |
| * |
| * If successful, fscrypt_free_filename() must be called later to clean up. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname, |
| int lookup, struct fscrypt_name *fname) |
| { |
| int ret; |
| int digested; |
| |
| memset(fname, 0, sizeof(struct fscrypt_name)); |
| fname->usr_fname = iname; |
| |
| if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) { |
| fname->disk_name.name = (unsigned char *)iname->name; |
| fname->disk_name.len = iname->len; |
| return 0; |
| } |
| ret = fscrypt_get_encryption_info(dir); |
| if (ret) |
| return ret; |
| |
| if (fscrypt_has_encryption_key(dir)) { |
| if (!fscrypt_fname_encrypted_size(dir, iname->len, |
| dir->i_sb->s_cop->max_namelen, |
| &fname->crypto_buf.len)) |
| return -ENAMETOOLONG; |
| fname->crypto_buf.name = kmalloc(fname->crypto_buf.len, |
| GFP_NOFS); |
| if (!fname->crypto_buf.name) |
| return -ENOMEM; |
| |
| ret = fname_encrypt(dir, iname, fname->crypto_buf.name, |
| fname->crypto_buf.len); |
| if (ret) |
| goto errout; |
| fname->disk_name.name = fname->crypto_buf.name; |
| fname->disk_name.len = fname->crypto_buf.len; |
| return 0; |
| } |
| if (!lookup) |
| return -ENOKEY; |
| fname->is_ciphertext_name = true; |
| |
| /* |
| * We don't have the key and we are doing a lookup; decode the |
| * user-supplied name |
| */ |
| if (iname->name[0] == '_') { |
| if (iname->len != |
| 1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name))) |
| return -ENOENT; |
| digested = 1; |
| } else { |
| if (iname->len > |
| BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE)) |
| return -ENOENT; |
| digested = 0; |
| } |
| |
| fname->crypto_buf.name = |
| kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE, |
| sizeof(struct fscrypt_digested_name)), |
| GFP_KERNEL); |
| if (fname->crypto_buf.name == NULL) |
| return -ENOMEM; |
| |
| ret = base64_decode(iname->name + digested, iname->len - digested, |
| fname->crypto_buf.name); |
| if (ret < 0) { |
| ret = -ENOENT; |
| goto errout; |
| } |
| fname->crypto_buf.len = ret; |
| if (digested) { |
| const struct fscrypt_digested_name *n = |
| (const void *)fname->crypto_buf.name; |
| fname->hash = n->hash; |
| fname->minor_hash = n->minor_hash; |
| } else { |
| fname->disk_name.name = fname->crypto_buf.name; |
| fname->disk_name.len = fname->crypto_buf.len; |
| } |
| return 0; |
| |
| errout: |
| kfree(fname->crypto_buf.name); |
| return ret; |
| } |
| EXPORT_SYMBOL(fscrypt_setup_filename); |