| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/arch/arm/mm/mmu.c |
| * |
| * Copyright (C) 1995-2005 Russell King |
| */ |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/mman.h> |
| #include <linux/nodemask.h> |
| #include <linux/memblock.h> |
| #include <linux/fs.h> |
| #include <linux/vmalloc.h> |
| #include <linux/sizes.h> |
| |
| #include <asm/cp15.h> |
| #include <asm/cputype.h> |
| #include <asm/cachetype.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/smp_plat.h> |
| #include <asm/tlb.h> |
| #include <asm/highmem.h> |
| #include <asm/system_info.h> |
| #include <asm/traps.h> |
| #include <asm/procinfo.h> |
| #include <asm/memory.h> |
| #include <asm/pgalloc.h> |
| #include <asm/kasan_def.h> |
| |
| #include <asm/mach/arch.h> |
| #include <asm/mach/map.h> |
| #include <asm/mach/pci.h> |
| #include <asm/fixmap.h> |
| |
| #include "fault.h" |
| #include "mm.h" |
| #include "tcm.h" |
| |
| extern unsigned long __atags_pointer; |
| |
| /* |
| * empty_zero_page is a special page that is used for |
| * zero-initialized data and COW. |
| */ |
| struct page *empty_zero_page; |
| EXPORT_SYMBOL(empty_zero_page); |
| |
| /* |
| * The pmd table for the upper-most set of pages. |
| */ |
| pmd_t *top_pmd; |
| |
| pmdval_t user_pmd_table = _PAGE_USER_TABLE; |
| |
| #define CPOLICY_UNCACHED 0 |
| #define CPOLICY_BUFFERED 1 |
| #define CPOLICY_WRITETHROUGH 2 |
| #define CPOLICY_WRITEBACK 3 |
| #define CPOLICY_WRITEALLOC 4 |
| |
| static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; |
| static unsigned int ecc_mask __initdata = 0; |
| pgprot_t pgprot_user; |
| pgprot_t pgprot_kernel; |
| |
| EXPORT_SYMBOL(pgprot_user); |
| EXPORT_SYMBOL(pgprot_kernel); |
| |
| struct cachepolicy { |
| const char policy[16]; |
| unsigned int cr_mask; |
| pmdval_t pmd; |
| pteval_t pte; |
| }; |
| |
| static struct cachepolicy cache_policies[] __initdata = { |
| { |
| .policy = "uncached", |
| .cr_mask = CR_W|CR_C, |
| .pmd = PMD_SECT_UNCACHED, |
| .pte = L_PTE_MT_UNCACHED, |
| }, { |
| .policy = "buffered", |
| .cr_mask = CR_C, |
| .pmd = PMD_SECT_BUFFERED, |
| .pte = L_PTE_MT_BUFFERABLE, |
| }, { |
| .policy = "writethrough", |
| .cr_mask = 0, |
| .pmd = PMD_SECT_WT, |
| .pte = L_PTE_MT_WRITETHROUGH, |
| }, { |
| .policy = "writeback", |
| .cr_mask = 0, |
| .pmd = PMD_SECT_WB, |
| .pte = L_PTE_MT_WRITEBACK, |
| }, { |
| .policy = "writealloc", |
| .cr_mask = 0, |
| .pmd = PMD_SECT_WBWA, |
| .pte = L_PTE_MT_WRITEALLOC, |
| } |
| }; |
| |
| #ifdef CONFIG_CPU_CP15 |
| static unsigned long initial_pmd_value __initdata = 0; |
| |
| /* |
| * Initialise the cache_policy variable with the initial state specified |
| * via the "pmd" value. This is used to ensure that on ARMv6 and later, |
| * the C code sets the page tables up with the same policy as the head |
| * assembly code, which avoids an illegal state where the TLBs can get |
| * confused. See comments in early_cachepolicy() for more information. |
| */ |
| void __init init_default_cache_policy(unsigned long pmd) |
| { |
| int i; |
| |
| initial_pmd_value = pmd; |
| |
| pmd &= PMD_SECT_CACHE_MASK; |
| |
| for (i = 0; i < ARRAY_SIZE(cache_policies); i++) |
| if (cache_policies[i].pmd == pmd) { |
| cachepolicy = i; |
| break; |
| } |
| |
| if (i == ARRAY_SIZE(cache_policies)) |
| pr_err("ERROR: could not find cache policy\n"); |
| } |
| |
| /* |
| * These are useful for identifying cache coherency problems by allowing |
| * the cache or the cache and writebuffer to be turned off. (Note: the |
| * write buffer should not be on and the cache off). |
| */ |
| static int __init early_cachepolicy(char *p) |
| { |
| int i, selected = -1; |
| |
| for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { |
| int len = strlen(cache_policies[i].policy); |
| |
| if (memcmp(p, cache_policies[i].policy, len) == 0) { |
| selected = i; |
| break; |
| } |
| } |
| |
| if (selected == -1) |
| pr_err("ERROR: unknown or unsupported cache policy\n"); |
| |
| /* |
| * This restriction is partly to do with the way we boot; it is |
| * unpredictable to have memory mapped using two different sets of |
| * memory attributes (shared, type, and cache attribs). We can not |
| * change these attributes once the initial assembly has setup the |
| * page tables. |
| */ |
| if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { |
| pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", |
| cache_policies[cachepolicy].policy); |
| return 0; |
| } |
| |
| if (selected != cachepolicy) { |
| unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); |
| cachepolicy = selected; |
| flush_cache_all(); |
| set_cr(cr); |
| } |
| return 0; |
| } |
| early_param("cachepolicy", early_cachepolicy); |
| |
| static int __init early_nocache(char *__unused) |
| { |
| char *p = "buffered"; |
| pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); |
| early_cachepolicy(p); |
| return 0; |
| } |
| early_param("nocache", early_nocache); |
| |
| static int __init early_nowrite(char *__unused) |
| { |
| char *p = "uncached"; |
| pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); |
| early_cachepolicy(p); |
| return 0; |
| } |
| early_param("nowb", early_nowrite); |
| |
| #ifndef CONFIG_ARM_LPAE |
| static int __init early_ecc(char *p) |
| { |
| if (memcmp(p, "on", 2) == 0) |
| ecc_mask = PMD_PROTECTION; |
| else if (memcmp(p, "off", 3) == 0) |
| ecc_mask = 0; |
| return 0; |
| } |
| early_param("ecc", early_ecc); |
| #endif |
| |
| #else /* ifdef CONFIG_CPU_CP15 */ |
| |
| static int __init early_cachepolicy(char *p) |
| { |
| pr_warn("cachepolicy kernel parameter not supported without cp15\n"); |
| } |
| early_param("cachepolicy", early_cachepolicy); |
| |
| static int __init noalign_setup(char *__unused) |
| { |
| pr_warn("noalign kernel parameter not supported without cp15\n"); |
| } |
| __setup("noalign", noalign_setup); |
| |
| #endif /* ifdef CONFIG_CPU_CP15 / else */ |
| |
| #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN |
| #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE |
| #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE |
| |
| static struct mem_type mem_types[] __ro_after_init = { |
| [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */ |
| .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | |
| L_PTE_SHARED, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ |
| .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PROT_SECT_DEVICE, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_DEVICE_CACHED] = { /* ioremap_cache */ |
| .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_DEVICE_WC] = { /* ioremap_wc */ |
| .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PROT_SECT_DEVICE, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_UNCACHED] = { |
| .prot_pte = PROT_PTE_DEVICE, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, |
| .domain = DOMAIN_IO, |
| }, |
| [MT_CACHECLEAN] = { |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, |
| .domain = DOMAIN_KERNEL, |
| }, |
| #ifndef CONFIG_ARM_LPAE |
| [MT_MINICLEAN] = { |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| #endif |
| [MT_LOW_VECTORS] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_RDONLY, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .domain = DOMAIN_VECTORS, |
| }, |
| [MT_HIGH_VECTORS] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_USER | L_PTE_RDONLY, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .domain = DOMAIN_VECTORS, |
| }, |
| [MT_MEMORY_RWX] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_MEMORY_RW] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_XN, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_ROM] = { |
| .prot_sect = PMD_TYPE_SECT, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_MEMORY_RWX_NONCACHED] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_MT_BUFFERABLE, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_MEMORY_RW_DTCM] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_XN, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_MEMORY_RWX_ITCM] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_MEMORY_RW_SO] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_MT_UNCACHED | L_PTE_XN, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | |
| PMD_SECT_UNCACHED | PMD_SECT_XN, |
| .domain = DOMAIN_KERNEL, |
| }, |
| [MT_MEMORY_DMA_READY] = { |
| .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| L_PTE_XN, |
| .prot_l1 = PMD_TYPE_TABLE, |
| .domain = DOMAIN_KERNEL, |
| }, |
| }; |
| |
| const struct mem_type *get_mem_type(unsigned int type) |
| { |
| return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; |
| } |
| EXPORT_SYMBOL(get_mem_type); |
| |
| static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); |
| |
| static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] |
| __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; |
| |
| static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) |
| { |
| return &bm_pte[pte_index(addr)]; |
| } |
| |
| static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) |
| { |
| return pte_offset_kernel(dir, addr); |
| } |
| |
| static inline pmd_t * __init fixmap_pmd(unsigned long addr) |
| { |
| return pmd_off_k(addr); |
| } |
| |
| void __init early_fixmap_init(void) |
| { |
| pmd_t *pmd; |
| |
| /* |
| * The early fixmap range spans multiple pmds, for which |
| * we are not prepared: |
| */ |
| BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) |
| != FIXADDR_TOP >> PMD_SHIFT); |
| |
| pmd = fixmap_pmd(FIXADDR_TOP); |
| pmd_populate_kernel(&init_mm, pmd, bm_pte); |
| |
| pte_offset_fixmap = pte_offset_early_fixmap; |
| } |
| |
| /* |
| * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). |
| * As a result, this can only be called with preemption disabled, as under |
| * stop_machine(). |
| */ |
| void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) |
| { |
| unsigned long vaddr = __fix_to_virt(idx); |
| pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); |
| |
| /* Make sure fixmap region does not exceed available allocation. */ |
| BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) > |
| FIXADDR_END); |
| BUG_ON(idx >= __end_of_fixed_addresses); |
| |
| /* we only support device mappings until pgprot_kernel has been set */ |
| if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && |
| pgprot_val(pgprot_kernel) == 0)) |
| return; |
| |
| if (pgprot_val(prot)) |
| set_pte_at(NULL, vaddr, pte, |
| pfn_pte(phys >> PAGE_SHIFT, prot)); |
| else |
| pte_clear(NULL, vaddr, pte); |
| local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); |
| } |
| |
| /* |
| * Adjust the PMD section entries according to the CPU in use. |
| */ |
| static void __init build_mem_type_table(void) |
| { |
| struct cachepolicy *cp; |
| unsigned int cr = get_cr(); |
| pteval_t user_pgprot, kern_pgprot, vecs_pgprot; |
| int cpu_arch = cpu_architecture(); |
| int i; |
| |
| if (cpu_arch < CPU_ARCH_ARMv6) { |
| #if defined(CONFIG_CPU_DCACHE_DISABLE) |
| if (cachepolicy > CPOLICY_BUFFERED) |
| cachepolicy = CPOLICY_BUFFERED; |
| #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) |
| if (cachepolicy > CPOLICY_WRITETHROUGH) |
| cachepolicy = CPOLICY_WRITETHROUGH; |
| #endif |
| } |
| if (cpu_arch < CPU_ARCH_ARMv5) { |
| if (cachepolicy >= CPOLICY_WRITEALLOC) |
| cachepolicy = CPOLICY_WRITEBACK; |
| ecc_mask = 0; |
| } |
| |
| if (is_smp()) { |
| if (cachepolicy != CPOLICY_WRITEALLOC) { |
| pr_warn("Forcing write-allocate cache policy for SMP\n"); |
| cachepolicy = CPOLICY_WRITEALLOC; |
| } |
| if (!(initial_pmd_value & PMD_SECT_S)) { |
| pr_warn("Forcing shared mappings for SMP\n"); |
| initial_pmd_value |= PMD_SECT_S; |
| } |
| } |
| |
| /* |
| * Strip out features not present on earlier architectures. |
| * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those |
| * without extended page tables don't have the 'Shared' bit. |
| */ |
| if (cpu_arch < CPU_ARCH_ARMv5) |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) |
| mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); |
| if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) |
| mem_types[i].prot_sect &= ~PMD_SECT_S; |
| |
| /* |
| * ARMv5 and lower, bit 4 must be set for page tables (was: cache |
| * "update-able on write" bit on ARM610). However, Xscale and |
| * Xscale3 require this bit to be cleared. |
| */ |
| if (cpu_is_xscale_family()) { |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| mem_types[i].prot_sect &= ~PMD_BIT4; |
| mem_types[i].prot_l1 &= ~PMD_BIT4; |
| } |
| } else if (cpu_arch < CPU_ARCH_ARMv6) { |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| if (mem_types[i].prot_l1) |
| mem_types[i].prot_l1 |= PMD_BIT4; |
| if (mem_types[i].prot_sect) |
| mem_types[i].prot_sect |= PMD_BIT4; |
| } |
| } |
| |
| /* |
| * Mark the device areas according to the CPU/architecture. |
| */ |
| if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { |
| if (!cpu_is_xsc3()) { |
| /* |
| * Mark device regions on ARMv6+ as execute-never |
| * to prevent speculative instruction fetches. |
| */ |
| mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; |
| mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; |
| mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; |
| |
| /* Also setup NX memory mapping */ |
| mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; |
| } |
| if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { |
| /* |
| * For ARMv7 with TEX remapping, |
| * - shared device is SXCB=1100 |
| * - nonshared device is SXCB=0100 |
| * - write combine device mem is SXCB=0001 |
| * (Uncached Normal memory) |
| */ |
| mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); |
| mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; |
| } else if (cpu_is_xsc3()) { |
| /* |
| * For Xscale3, |
| * - shared device is TEXCB=00101 |
| * - nonshared device is TEXCB=01000 |
| * - write combine device mem is TEXCB=00100 |
| * (Inner/Outer Uncacheable in xsc3 parlance) |
| */ |
| mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; |
| mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); |
| } else { |
| /* |
| * For ARMv6 and ARMv7 without TEX remapping, |
| * - shared device is TEXCB=00001 |
| * - nonshared device is TEXCB=01000 |
| * - write combine device mem is TEXCB=00100 |
| * (Uncached Normal in ARMv6 parlance). |
| */ |
| mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; |
| mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); |
| } |
| } else { |
| /* |
| * On others, write combining is "Uncached/Buffered" |
| */ |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; |
| } |
| |
| /* |
| * Now deal with the memory-type mappings |
| */ |
| cp = &cache_policies[cachepolicy]; |
| vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; |
| |
| #ifndef CONFIG_ARM_LPAE |
| /* |
| * We don't use domains on ARMv6 (since this causes problems with |
| * v6/v7 kernels), so we must use a separate memory type for user |
| * r/o, kernel r/w to map the vectors page. |
| */ |
| if (cpu_arch == CPU_ARCH_ARMv6) |
| vecs_pgprot |= L_PTE_MT_VECTORS; |
| |
| /* |
| * Check is it with support for the PXN bit |
| * in the Short-descriptor translation table format descriptors. |
| */ |
| if (cpu_arch == CPU_ARCH_ARMv7 && |
| (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { |
| user_pmd_table |= PMD_PXNTABLE; |
| } |
| #endif |
| |
| /* |
| * ARMv6 and above have extended page tables. |
| */ |
| if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { |
| #ifndef CONFIG_ARM_LPAE |
| /* |
| * Mark cache clean areas and XIP ROM read only |
| * from SVC mode and no access from userspace. |
| */ |
| mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| #endif |
| |
| /* |
| * If the initial page tables were created with the S bit |
| * set, then we need to do the same here for the same |
| * reasons given in early_cachepolicy(). |
| */ |
| if (initial_pmd_value & PMD_SECT_S) { |
| user_pgprot |= L_PTE_SHARED; |
| kern_pgprot |= L_PTE_SHARED; |
| vecs_pgprot |= L_PTE_SHARED; |
| mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; |
| mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; |
| mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; |
| mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; |
| mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; |
| mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; |
| mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; |
| mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; |
| mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; |
| mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; |
| mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; |
| } |
| } |
| |
| /* |
| * Non-cacheable Normal - intended for memory areas that must |
| * not cause dirty cache line writebacks when used |
| */ |
| if (cpu_arch >= CPU_ARCH_ARMv6) { |
| if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { |
| /* Non-cacheable Normal is XCB = 001 */ |
| mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= |
| PMD_SECT_BUFFERED; |
| } else { |
| /* For both ARMv6 and non-TEX-remapping ARMv7 */ |
| mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= |
| PMD_SECT_TEX(1); |
| } |
| } else { |
| mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; |
| } |
| |
| #ifdef CONFIG_ARM_LPAE |
| /* |
| * Do not generate access flag faults for the kernel mappings. |
| */ |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| mem_types[i].prot_pte |= PTE_EXT_AF; |
| if (mem_types[i].prot_sect) |
| mem_types[i].prot_sect |= PMD_SECT_AF; |
| } |
| kern_pgprot |= PTE_EXT_AF; |
| vecs_pgprot |= PTE_EXT_AF; |
| |
| /* |
| * Set PXN for user mappings |
| */ |
| user_pgprot |= PTE_EXT_PXN; |
| #endif |
| |
| for (i = 0; i < 16; i++) { |
| pteval_t v = pgprot_val(protection_map[i]); |
| protection_map[i] = __pgprot(v | user_pgprot); |
| } |
| |
| mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; |
| mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; |
| |
| pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); |
| pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | |
| L_PTE_DIRTY | kern_pgprot); |
| |
| mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; |
| mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; |
| mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; |
| mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; |
| mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; |
| mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; |
| mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; |
| mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; |
| mem_types[MT_ROM].prot_sect |= cp->pmd; |
| |
| switch (cp->pmd) { |
| case PMD_SECT_WT: |
| mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; |
| break; |
| case PMD_SECT_WB: |
| case PMD_SECT_WBWA: |
| mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; |
| break; |
| } |
| pr_info("Memory policy: %sData cache %s\n", |
| ecc_mask ? "ECC enabled, " : "", cp->policy); |
| |
| for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| struct mem_type *t = &mem_types[i]; |
| if (t->prot_l1) |
| t->prot_l1 |= PMD_DOMAIN(t->domain); |
| if (t->prot_sect) |
| t->prot_sect |= PMD_DOMAIN(t->domain); |
| } |
| } |
| |
| #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE |
| pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot) |
| { |
| if (!pfn_valid(pfn)) |
| return pgprot_noncached(vma_prot); |
| else if (file->f_flags & O_SYNC) |
| return pgprot_writecombine(vma_prot); |
| return vma_prot; |
| } |
| EXPORT_SYMBOL(phys_mem_access_prot); |
| #endif |
| |
| #define vectors_base() (vectors_high() ? 0xffff0000 : 0) |
| |
| static void __init *early_alloc(unsigned long sz) |
| { |
| void *ptr = memblock_alloc(sz, sz); |
| |
| if (!ptr) |
| panic("%s: Failed to allocate %lu bytes align=0x%lx\n", |
| __func__, sz, sz); |
| |
| return ptr; |
| } |
| |
| static void *__init late_alloc(unsigned long sz) |
| { |
| void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz)); |
| |
| if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr))) |
| BUG(); |
| return ptr; |
| } |
| |
| static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, |
| unsigned long prot, |
| void *(*alloc)(unsigned long sz)) |
| { |
| if (pmd_none(*pmd)) { |
| pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); |
| __pmd_populate(pmd, __pa(pte), prot); |
| } |
| BUG_ON(pmd_bad(*pmd)); |
| return pte_offset_kernel(pmd, addr); |
| } |
| |
| static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, |
| unsigned long prot) |
| { |
| return arm_pte_alloc(pmd, addr, prot, early_alloc); |
| } |
| |
| static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, |
| unsigned long end, unsigned long pfn, |
| const struct mem_type *type, |
| void *(*alloc)(unsigned long sz), |
| bool ng) |
| { |
| pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); |
| do { |
| set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), |
| ng ? PTE_EXT_NG : 0); |
| pfn++; |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| } |
| |
| static void __init __map_init_section(pmd_t *pmd, unsigned long addr, |
| unsigned long end, phys_addr_t phys, |
| const struct mem_type *type, bool ng) |
| { |
| pmd_t *p = pmd; |
| |
| #ifndef CONFIG_ARM_LPAE |
| /* |
| * In classic MMU format, puds and pmds are folded in to |
| * the pgds. pmd_offset gives the PGD entry. PGDs refer to a |
| * group of L1 entries making up one logical pointer to |
| * an L2 table (2MB), where as PMDs refer to the individual |
| * L1 entries (1MB). Hence increment to get the correct |
| * offset for odd 1MB sections. |
| * (See arch/arm/include/asm/pgtable-2level.h) |
| */ |
| if (addr & SECTION_SIZE) |
| pmd++; |
| #endif |
| do { |
| *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); |
| phys += SECTION_SIZE; |
| } while (pmd++, addr += SECTION_SIZE, addr != end); |
| |
| flush_pmd_entry(p); |
| } |
| |
| static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, |
| unsigned long end, phys_addr_t phys, |
| const struct mem_type *type, |
| void *(*alloc)(unsigned long sz), bool ng) |
| { |
| pmd_t *pmd = pmd_offset(pud, addr); |
| unsigned long next; |
| |
| do { |
| /* |
| * With LPAE, we must loop over to map |
| * all the pmds for the given range. |
| */ |
| next = pmd_addr_end(addr, end); |
| |
| /* |
| * Try a section mapping - addr, next and phys must all be |
| * aligned to a section boundary. |
| */ |
| if (type->prot_sect && |
| ((addr | next | phys) & ~SECTION_MASK) == 0) { |
| __map_init_section(pmd, addr, next, phys, type, ng); |
| } else { |
| alloc_init_pte(pmd, addr, next, |
| __phys_to_pfn(phys), type, alloc, ng); |
| } |
| |
| phys += next - addr; |
| |
| } while (pmd++, addr = next, addr != end); |
| } |
| |
| static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr, |
| unsigned long end, phys_addr_t phys, |
| const struct mem_type *type, |
| void *(*alloc)(unsigned long sz), bool ng) |
| { |
| pud_t *pud = pud_offset(p4d, addr); |
| unsigned long next; |
| |
| do { |
| next = pud_addr_end(addr, end); |
| alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); |
| phys += next - addr; |
| } while (pud++, addr = next, addr != end); |
| } |
| |
| static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr, |
| unsigned long end, phys_addr_t phys, |
| const struct mem_type *type, |
| void *(*alloc)(unsigned long sz), bool ng) |
| { |
| p4d_t *p4d = p4d_offset(pgd, addr); |
| unsigned long next; |
| |
| do { |
| next = p4d_addr_end(addr, end); |
| alloc_init_pud(p4d, addr, next, phys, type, alloc, ng); |
| phys += next - addr; |
| } while (p4d++, addr = next, addr != end); |
| } |
| |
| #ifndef CONFIG_ARM_LPAE |
| static void __init create_36bit_mapping(struct mm_struct *mm, |
| struct map_desc *md, |
| const struct mem_type *type, |
| bool ng) |
| { |
| unsigned long addr, length, end; |
| phys_addr_t phys; |
| pgd_t *pgd; |
| |
| addr = md->virtual; |
| phys = __pfn_to_phys(md->pfn); |
| length = PAGE_ALIGN(md->length); |
| |
| if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { |
| pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", |
| (long long)__pfn_to_phys((u64)md->pfn), addr); |
| return; |
| } |
| |
| /* N.B. ARMv6 supersections are only defined to work with domain 0. |
| * Since domain assignments can in fact be arbitrary, the |
| * 'domain == 0' check below is required to insure that ARMv6 |
| * supersections are only allocated for domain 0 regardless |
| * of the actual domain assignments in use. |
| */ |
| if (type->domain) { |
| pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", |
| (long long)__pfn_to_phys((u64)md->pfn), addr); |
| return; |
| } |
| |
| if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { |
| pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", |
| (long long)__pfn_to_phys((u64)md->pfn), addr); |
| return; |
| } |
| |
| /* |
| * Shift bits [35:32] of address into bits [23:20] of PMD |
| * (See ARMv6 spec). |
| */ |
| phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); |
| |
| pgd = pgd_offset(mm, addr); |
| end = addr + length; |
| do { |
| p4d_t *p4d = p4d_offset(pgd, addr); |
| pud_t *pud = pud_offset(p4d, addr); |
| pmd_t *pmd = pmd_offset(pud, addr); |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | |
| (ng ? PMD_SECT_nG : 0)); |
| |
| addr += SUPERSECTION_SIZE; |
| phys += SUPERSECTION_SIZE; |
| pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; |
| } while (addr != end); |
| } |
| #endif /* !CONFIG_ARM_LPAE */ |
| |
| static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, |
| void *(*alloc)(unsigned long sz), |
| bool ng) |
| { |
| unsigned long addr, length, end; |
| phys_addr_t phys; |
| const struct mem_type *type; |
| pgd_t *pgd; |
| |
| type = &mem_types[md->type]; |
| |
| #ifndef CONFIG_ARM_LPAE |
| /* |
| * Catch 36-bit addresses |
| */ |
| if (md->pfn >= 0x100000) { |
| create_36bit_mapping(mm, md, type, ng); |
| return; |
| } |
| #endif |
| |
| addr = md->virtual & PAGE_MASK; |
| phys = __pfn_to_phys(md->pfn); |
| length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); |
| |
| if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { |
| pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", |
| (long long)__pfn_to_phys(md->pfn), addr); |
| return; |
| } |
| |
| pgd = pgd_offset(mm, addr); |
| end = addr + length; |
| do { |
| unsigned long next = pgd_addr_end(addr, end); |
| |
| alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng); |
| |
| phys += next - addr; |
| addr = next; |
| } while (pgd++, addr != end); |
| } |
| |
| /* |
| * Create the page directory entries and any necessary |
| * page tables for the mapping specified by `md'. We |
| * are able to cope here with varying sizes and address |
| * offsets, and we take full advantage of sections and |
| * supersections. |
| */ |
| static void __init create_mapping(struct map_desc *md) |
| { |
| if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { |
| pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", |
| (long long)__pfn_to_phys((u64)md->pfn), md->virtual); |
| return; |
| } |
| |
| if (md->type == MT_DEVICE && |
| md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && |
| (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { |
| pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", |
| (long long)__pfn_to_phys((u64)md->pfn), md->virtual); |
| } |
| |
| __create_mapping(&init_mm, md, early_alloc, false); |
| } |
| |
| void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, |
| bool ng) |
| { |
| #ifdef CONFIG_ARM_LPAE |
| p4d_t *p4d; |
| pud_t *pud; |
| |
| p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); |
| if (WARN_ON(!p4d)) |
| return; |
| pud = pud_alloc(mm, p4d, md->virtual); |
| if (WARN_ON(!pud)) |
| return; |
| pmd_alloc(mm, pud, 0); |
| #endif |
| __create_mapping(mm, md, late_alloc, ng); |
| } |
| |
| /* |
| * Create the architecture specific mappings |
| */ |
| void __init iotable_init(struct map_desc *io_desc, int nr) |
| { |
| struct map_desc *md; |
| struct vm_struct *vm; |
| struct static_vm *svm; |
| |
| if (!nr) |
| return; |
| |
| svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm)); |
| if (!svm) |
| panic("%s: Failed to allocate %zu bytes align=0x%zx\n", |
| __func__, sizeof(*svm) * nr, __alignof__(*svm)); |
| |
| for (md = io_desc; nr; md++, nr--) { |
| create_mapping(md); |
| |
| vm = &svm->vm; |
| vm->addr = (void *)(md->virtual & PAGE_MASK); |
| vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); |
| vm->phys_addr = __pfn_to_phys(md->pfn); |
| vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; |
| vm->flags |= VM_ARM_MTYPE(md->type); |
| vm->caller = iotable_init; |
| add_static_vm_early(svm++); |
| } |
| } |
| |
| void __init vm_reserve_area_early(unsigned long addr, unsigned long size, |
| void *caller) |
| { |
| struct vm_struct *vm; |
| struct static_vm *svm; |
| |
| svm = memblock_alloc(sizeof(*svm), __alignof__(*svm)); |
| if (!svm) |
| panic("%s: Failed to allocate %zu bytes align=0x%zx\n", |
| __func__, sizeof(*svm), __alignof__(*svm)); |
| |
| vm = &svm->vm; |
| vm->addr = (void *)addr; |
| vm->size = size; |
| vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; |
| vm->caller = caller; |
| add_static_vm_early(svm); |
| } |
| |
| #ifndef CONFIG_ARM_LPAE |
| |
| /* |
| * The Linux PMD is made of two consecutive section entries covering 2MB |
| * (see definition in include/asm/pgtable-2level.h). However a call to |
| * create_mapping() may optimize static mappings by using individual |
| * 1MB section mappings. This leaves the actual PMD potentially half |
| * initialized if the top or bottom section entry isn't used, leaving it |
| * open to problems if a subsequent ioremap() or vmalloc() tries to use |
| * the virtual space left free by that unused section entry. |
| * |
| * Let's avoid the issue by inserting dummy vm entries covering the unused |
| * PMD halves once the static mappings are in place. |
| */ |
| |
| static void __init pmd_empty_section_gap(unsigned long addr) |
| { |
| vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); |
| } |
| |
| static void __init fill_pmd_gaps(void) |
| { |
| struct static_vm *svm; |
| struct vm_struct *vm; |
| unsigned long addr, next = 0; |
| pmd_t *pmd; |
| |
| list_for_each_entry(svm, &static_vmlist, list) { |
| vm = &svm->vm; |
| addr = (unsigned long)vm->addr; |
| if (addr < next) |
| continue; |
| |
| /* |
| * Check if this vm starts on an odd section boundary. |
| * If so and the first section entry for this PMD is free |
| * then we block the corresponding virtual address. |
| */ |
| if ((addr & ~PMD_MASK) == SECTION_SIZE) { |
| pmd = pmd_off_k(addr); |
| if (pmd_none(*pmd)) |
| pmd_empty_section_gap(addr & PMD_MASK); |
| } |
| |
| /* |
| * Then check if this vm ends on an odd section boundary. |
| * If so and the second section entry for this PMD is empty |
| * then we block the corresponding virtual address. |
| */ |
| addr += vm->size; |
| if ((addr & ~PMD_MASK) == SECTION_SIZE) { |
| pmd = pmd_off_k(addr) + 1; |
| if (pmd_none(*pmd)) |
| pmd_empty_section_gap(addr); |
| } |
| |
| /* no need to look at any vm entry until we hit the next PMD */ |
| next = (addr + PMD_SIZE - 1) & PMD_MASK; |
| } |
| } |
| |
| #else |
| #define fill_pmd_gaps() do { } while (0) |
| #endif |
| |
| #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) |
| static void __init pci_reserve_io(void) |
| { |
| struct static_vm *svm; |
| |
| svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); |
| if (svm) |
| return; |
| |
| vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); |
| } |
| #else |
| #define pci_reserve_io() do { } while (0) |
| #endif |
| |
| #ifdef CONFIG_DEBUG_LL |
| void __init debug_ll_io_init(void) |
| { |
| struct map_desc map; |
| |
| debug_ll_addr(&map.pfn, &map.virtual); |
| if (!map.pfn || !map.virtual) |
| return; |
| map.pfn = __phys_to_pfn(map.pfn); |
| map.virtual &= PAGE_MASK; |
| map.length = PAGE_SIZE; |
| map.type = MT_DEVICE; |
| iotable_init(&map, 1); |
| } |
| #endif |
| |
| static void * __initdata vmalloc_min = |
| (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); |
| |
| /* |
| * vmalloc=size forces the vmalloc area to be exactly 'size' |
| * bytes. This can be used to increase (or decrease) the vmalloc |
| * area - the default is 240m. |
| */ |
| static int __init early_vmalloc(char *arg) |
| { |
| unsigned long vmalloc_reserve = memparse(arg, NULL); |
| |
| if (vmalloc_reserve < SZ_16M) { |
| vmalloc_reserve = SZ_16M; |
| pr_warn("vmalloc area too small, limiting to %luMB\n", |
| vmalloc_reserve >> 20); |
| } |
| |
| if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { |
| vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); |
| pr_warn("vmalloc area is too big, limiting to %luMB\n", |
| vmalloc_reserve >> 20); |
| } |
| |
| vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); |
| return 0; |
| } |
| early_param("vmalloc", early_vmalloc); |
| |
| phys_addr_t arm_lowmem_limit __initdata = 0; |
| |
| void __init adjust_lowmem_bounds(void) |
| { |
| phys_addr_t block_start, block_end, memblock_limit = 0; |
| u64 vmalloc_limit, i; |
| phys_addr_t lowmem_limit = 0; |
| |
| /* |
| * Let's use our own (unoptimized) equivalent of __pa() that is |
| * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. |
| * The result is used as the upper bound on physical memory address |
| * and may itself be outside the valid range for which phys_addr_t |
| * and therefore __pa() is defined. |
| */ |
| vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET; |
| |
| /* |
| * The first usable region must be PMD aligned. Mark its start |
| * as MEMBLOCK_NOMAP if it isn't |
| */ |
| for_each_mem_range(i, &block_start, &block_end) { |
| if (!IS_ALIGNED(block_start, PMD_SIZE)) { |
| phys_addr_t len; |
| |
| len = round_up(block_start, PMD_SIZE) - block_start; |
| memblock_mark_nomap(block_start, len); |
| } |
| break; |
| } |
| |
| for_each_mem_range(i, &block_start, &block_end) { |
| if (block_start < vmalloc_limit) { |
| if (block_end > lowmem_limit) |
| /* |
| * Compare as u64 to ensure vmalloc_limit does |
| * not get truncated. block_end should always |
| * fit in phys_addr_t so there should be no |
| * issue with assignment. |
| */ |
| lowmem_limit = min_t(u64, |
| vmalloc_limit, |
| block_end); |
| |
| /* |
| * Find the first non-pmd-aligned page, and point |
| * memblock_limit at it. This relies on rounding the |
| * limit down to be pmd-aligned, which happens at the |
| * end of this function. |
| * |
| * With this algorithm, the start or end of almost any |
| * bank can be non-pmd-aligned. The only exception is |
| * that the start of the bank 0 must be section- |
| * aligned, since otherwise memory would need to be |
| * allocated when mapping the start of bank 0, which |
| * occurs before any free memory is mapped. |
| */ |
| if (!memblock_limit) { |
| if (!IS_ALIGNED(block_start, PMD_SIZE)) |
| memblock_limit = block_start; |
| else if (!IS_ALIGNED(block_end, PMD_SIZE)) |
| memblock_limit = lowmem_limit; |
| } |
| |
| } |
| } |
| |
| arm_lowmem_limit = lowmem_limit; |
| |
| high_memory = __va(arm_lowmem_limit - 1) + 1; |
| |
| if (!memblock_limit) |
| memblock_limit = arm_lowmem_limit; |
| |
| /* |
| * Round the memblock limit down to a pmd size. This |
| * helps to ensure that we will allocate memory from the |
| * last full pmd, which should be mapped. |
| */ |
| memblock_limit = round_down(memblock_limit, PMD_SIZE); |
| |
| if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { |
| if (memblock_end_of_DRAM() > arm_lowmem_limit) { |
| phys_addr_t end = memblock_end_of_DRAM(); |
| |
| pr_notice("Ignoring RAM at %pa-%pa\n", |
| &memblock_limit, &end); |
| pr_notice("Consider using a HIGHMEM enabled kernel.\n"); |
| |
| memblock_remove(memblock_limit, end - memblock_limit); |
| } |
| } |
| |
| memblock_set_current_limit(memblock_limit); |
| } |
| |
| static inline void prepare_page_table(void) |
| { |
| unsigned long addr; |
| phys_addr_t end; |
| |
| /* |
| * Clear out all the mappings below the kernel image. |
| */ |
| #ifdef CONFIG_KASAN |
| /* |
| * KASan's shadow memory inserts itself between the TASK_SIZE |
| * and MODULES_VADDR. Do not clear the KASan shadow memory mappings. |
| */ |
| for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| /* |
| * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes |
| * equal to MODULES_VADDR and then we exit the pmd clearing. If we |
| * are using a thumb-compiled kernel, there there will be 8MB more |
| * to clear as KASan always offset to 16 MB below MODULES_VADDR. |
| */ |
| for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| #else |
| for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| #endif |
| |
| #ifdef CONFIG_XIP_KERNEL |
| /* The XIP kernel is mapped in the module area -- skip over it */ |
| addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; |
| #endif |
| for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| |
| /* |
| * Find the end of the first block of lowmem. |
| */ |
| end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; |
| if (end >= arm_lowmem_limit) |
| end = arm_lowmem_limit; |
| |
| /* |
| * Clear out all the kernel space mappings, except for the first |
| * memory bank, up to the vmalloc region. |
| */ |
| for (addr = __phys_to_virt(end); |
| addr < VMALLOC_START; addr += PMD_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| } |
| |
| #ifdef CONFIG_ARM_LPAE |
| /* the first page is reserved for pgd */ |
| #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \ |
| PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) |
| #else |
| #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t)) |
| #endif |
| |
| /* |
| * Reserve the special regions of memory |
| */ |
| void __init arm_mm_memblock_reserve(void) |
| { |
| /* |
| * Reserve the page tables. These are already in use, |
| * and can only be in node 0. |
| */ |
| memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); |
| |
| #ifdef CONFIG_SA1111 |
| /* |
| * Because of the SA1111 DMA bug, we want to preserve our |
| * precious DMA-able memory... |
| */ |
| memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); |
| #endif |
| } |
| |
| /* |
| * Set up the device mappings. Since we clear out the page tables for all |
| * mappings above VMALLOC_START, except early fixmap, we might remove debug |
| * device mappings. This means earlycon can be used to debug this function |
| * Any other function or debugging method which may touch any device _will_ |
| * crash the kernel. |
| */ |
| static void __init devicemaps_init(const struct machine_desc *mdesc) |
| { |
| struct map_desc map; |
| unsigned long addr; |
| void *vectors; |
| |
| /* |
| * Allocate the vector page early. |
| */ |
| vectors = early_alloc(PAGE_SIZE * 2); |
| |
| early_trap_init(vectors); |
| |
| /* |
| * Clear page table except top pmd used by early fixmaps |
| */ |
| for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) |
| pmd_clear(pmd_off_k(addr)); |
| |
| if (__atags_pointer) { |
| /* create a read-only mapping of the device tree */ |
| map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK); |
| map.virtual = FDT_FIXED_BASE; |
| map.length = FDT_FIXED_SIZE; |
| map.type = MT_ROM; |
| create_mapping(&map); |
| } |
| |
| /* |
| * Map the kernel if it is XIP. |
| * It is always first in the modulearea. |
| */ |
| #ifdef CONFIG_XIP_KERNEL |
| map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); |
| map.virtual = MODULES_VADDR; |
| map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; |
| map.type = MT_ROM; |
| create_mapping(&map); |
| #endif |
| |
| /* |
| * Map the cache flushing regions. |
| */ |
| #ifdef FLUSH_BASE |
| map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); |
| map.virtual = FLUSH_BASE; |
| map.length = SZ_1M; |
| map.type = MT_CACHECLEAN; |
| create_mapping(&map); |
| #endif |
| #ifdef FLUSH_BASE_MINICACHE |
| map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); |
| map.virtual = FLUSH_BASE_MINICACHE; |
| map.length = SZ_1M; |
| map.type = MT_MINICLEAN; |
| create_mapping(&map); |
| #endif |
| |
| /* |
| * Create a mapping for the machine vectors at the high-vectors |
| * location (0xffff0000). If we aren't using high-vectors, also |
| * create a mapping at the low-vectors virtual address. |
| */ |
| map.pfn = __phys_to_pfn(virt_to_phys(vectors)); |
| map.virtual = 0xffff0000; |
| map.length = PAGE_SIZE; |
| #ifdef CONFIG_KUSER_HELPERS |
| map.type = MT_HIGH_VECTORS; |
| #else |
| map.type = MT_LOW_VECTORS; |
| #endif |
| create_mapping(&map); |
| |
| if (!vectors_high()) { |
| map.virtual = 0; |
| map.length = PAGE_SIZE * 2; |
| map.type = MT_LOW_VECTORS; |
| create_mapping(&map); |
| } |
| |
| /* Now create a kernel read-only mapping */ |
| map.pfn += 1; |
| map.virtual = 0xffff0000 + PAGE_SIZE; |
| map.length = PAGE_SIZE; |
| map.type = MT_LOW_VECTORS; |
| create_mapping(&map); |
| |
| /* |
| * Ask the machine support to map in the statically mapped devices. |
| */ |
| if (mdesc->map_io) |
| mdesc->map_io(); |
| else |
| debug_ll_io_init(); |
| fill_pmd_gaps(); |
| |
| /* Reserve fixed i/o space in VMALLOC region */ |
| pci_reserve_io(); |
| |
| /* |
| * Finally flush the caches and tlb to ensure that we're in a |
| * consistent state wrt the writebuffer. This also ensures that |
| * any write-allocated cache lines in the vector page are written |
| * back. After this point, we can start to touch devices again. |
| */ |
| local_flush_tlb_all(); |
| flush_cache_all(); |
| |
| /* Enable asynchronous aborts */ |
| early_abt_enable(); |
| } |
| |
| static void __init kmap_init(void) |
| { |
| #ifdef CONFIG_HIGHMEM |
| pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), |
| PKMAP_BASE, _PAGE_KERNEL_TABLE); |
| #endif |
| |
| early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, |
| _PAGE_KERNEL_TABLE); |
| } |
| |
| static void __init map_lowmem(void) |
| { |
| phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE); |
| phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); |
| phys_addr_t start, end; |
| u64 i; |
| |
| /* Map all the lowmem memory banks. */ |
| for_each_mem_range(i, &start, &end) { |
| struct map_desc map; |
| |
| if (end > arm_lowmem_limit) |
| end = arm_lowmem_limit; |
| if (start >= end) |
| break; |
| |
| if (end < kernel_x_start) { |
| map.pfn = __phys_to_pfn(start); |
| map.virtual = __phys_to_virt(start); |
| map.length = end - start; |
| map.type = MT_MEMORY_RWX; |
| |
| create_mapping(&map); |
| } else if (start >= kernel_x_end) { |
| map.pfn = __phys_to_pfn(start); |
| map.virtual = __phys_to_virt(start); |
| map.length = end - start; |
| map.type = MT_MEMORY_RW; |
| |
| create_mapping(&map); |
| } else { |
| /* This better cover the entire kernel */ |
| if (start < kernel_x_start) { |
| map.pfn = __phys_to_pfn(start); |
| map.virtual = __phys_to_virt(start); |
| map.length = kernel_x_start - start; |
| map.type = MT_MEMORY_RW; |
| |
| create_mapping(&map); |
| } |
| |
| map.pfn = __phys_to_pfn(kernel_x_start); |
| map.virtual = __phys_to_virt(kernel_x_start); |
| map.length = kernel_x_end - kernel_x_start; |
| map.type = MT_MEMORY_RWX; |
| |
| create_mapping(&map); |
| |
| if (kernel_x_end < end) { |
| map.pfn = __phys_to_pfn(kernel_x_end); |
| map.virtual = __phys_to_virt(kernel_x_end); |
| map.length = end - kernel_x_end; |
| map.type = MT_MEMORY_RW; |
| |
| create_mapping(&map); |
| } |
| } |
| } |
| } |
| |
| #ifdef CONFIG_ARM_PV_FIXUP |
| typedef void pgtables_remap(long long offset, unsigned long pgd); |
| pgtables_remap lpae_pgtables_remap_asm; |
| |
| /* |
| * early_paging_init() recreates boot time page table setup, allowing machines |
| * to switch over to a high (>4G) address space on LPAE systems |
| */ |
| static void __init early_paging_init(const struct machine_desc *mdesc) |
| { |
| pgtables_remap *lpae_pgtables_remap; |
| unsigned long pa_pgd; |
| unsigned int cr, ttbcr; |
| long long offset; |
| |
| if (!mdesc->pv_fixup) |
| return; |
| |
| offset = mdesc->pv_fixup(); |
| if (offset == 0) |
| return; |
| |
| /* |
| * Get the address of the remap function in the 1:1 identity |
| * mapping setup by the early page table assembly code. We |
| * must get this prior to the pv update. The following barrier |
| * ensures that this is complete before we fixup any P:V offsets. |
| */ |
| lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); |
| pa_pgd = __pa(swapper_pg_dir); |
| barrier(); |
| |
| pr_info("Switching physical address space to 0x%08llx\n", |
| (u64)PHYS_OFFSET + offset); |
| |
| /* Re-set the phys pfn offset, and the pv offset */ |
| __pv_offset += offset; |
| __pv_phys_pfn_offset += PFN_DOWN(offset); |
| |
| /* Run the patch stub to update the constants */ |
| fixup_pv_table(&__pv_table_begin, |
| (&__pv_table_end - &__pv_table_begin) << 2); |
| |
| /* |
| * We changing not only the virtual to physical mapping, but also |
| * the physical addresses used to access memory. We need to flush |
| * all levels of cache in the system with caching disabled to |
| * ensure that all data is written back, and nothing is prefetched |
| * into the caches. We also need to prevent the TLB walkers |
| * allocating into the caches too. Note that this is ARMv7 LPAE |
| * specific. |
| */ |
| cr = get_cr(); |
| set_cr(cr & ~(CR_I | CR_C)); |
| asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); |
| asm volatile("mcr p15, 0, %0, c2, c0, 2" |
| : : "r" (ttbcr & ~(3 << 8 | 3 << 10))); |
| flush_cache_all(); |
| |
| /* |
| * Fixup the page tables - this must be in the idmap region as |
| * we need to disable the MMU to do this safely, and hence it |
| * needs to be assembly. It's fairly simple, as we're using the |
| * temporary tables setup by the initial assembly code. |
| */ |
| lpae_pgtables_remap(offset, pa_pgd); |
| |
| /* Re-enable the caches and cacheable TLB walks */ |
| asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); |
| set_cr(cr); |
| } |
| |
| #else |
| |
| static void __init early_paging_init(const struct machine_desc *mdesc) |
| { |
| long long offset; |
| |
| if (!mdesc->pv_fixup) |
| return; |
| |
| offset = mdesc->pv_fixup(); |
| if (offset == 0) |
| return; |
| |
| pr_crit("Physical address space modification is only to support Keystone2.\n"); |
| pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); |
| pr_crit("feature. Your kernel may crash now, have a good day.\n"); |
| add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); |
| } |
| |
| #endif |
| |
| static void __init early_fixmap_shutdown(void) |
| { |
| int i; |
| unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); |
| |
| pte_offset_fixmap = pte_offset_late_fixmap; |
| pmd_clear(fixmap_pmd(va)); |
| local_flush_tlb_kernel_page(va); |
| |
| for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { |
| pte_t *pte; |
| struct map_desc map; |
| |
| map.virtual = fix_to_virt(i); |
| pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); |
| |
| /* Only i/o device mappings are supported ATM */ |
| if (pte_none(*pte) || |
| (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) |
| continue; |
| |
| map.pfn = pte_pfn(*pte); |
| map.type = MT_DEVICE; |
| map.length = PAGE_SIZE; |
| |
| create_mapping(&map); |
| } |
| } |
| |
| /* |
| * paging_init() sets up the page tables, initialises the zone memory |
| * maps, and sets up the zero page, bad page and bad page tables. |
| */ |
| void __init paging_init(const struct machine_desc *mdesc) |
| { |
| void *zero_page; |
| |
| prepare_page_table(); |
| map_lowmem(); |
| memblock_set_current_limit(arm_lowmem_limit); |
| dma_contiguous_remap(); |
| early_fixmap_shutdown(); |
| devicemaps_init(mdesc); |
| kmap_init(); |
| tcm_init(); |
| |
| top_pmd = pmd_off_k(0xffff0000); |
| |
| /* allocate the zero page. */ |
| zero_page = early_alloc(PAGE_SIZE); |
| |
| bootmem_init(); |
| |
| empty_zero_page = virt_to_page(zero_page); |
| __flush_dcache_page(NULL, empty_zero_page); |
| } |
| |
| void __init early_mm_init(const struct machine_desc *mdesc) |
| { |
| build_mem_type_table(); |
| early_paging_init(mdesc); |
| } |
| |
| void set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pteval) |
| { |
| unsigned long ext = 0; |
| |
| if (addr < TASK_SIZE && pte_valid_user(pteval)) { |
| if (!pte_special(pteval)) |
| __sync_icache_dcache(pteval); |
| ext |= PTE_EXT_NG; |
| } |
| |
| set_pte_ext(ptep, pteval, ext); |
| } |