blob: 17739906c966c455cf387d9aa6866f2c00a95fdf [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/* Copyright 2017-2019 NXP */
#include "enetc.h"
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/of_mdio.h>
#include <linux/vmalloc.h>
/* ENETC overhead: optional extension BD + 1 BD gap */
#define ENETC_TXBDS_NEEDED(val) ((val) + 2)
/* max # of chained Tx BDs is 15, including head and extension BD */
#define ENETC_MAX_SKB_FRAGS 13
#define ENETC_TXBDS_MAX_NEEDED ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
int active_offloads);
netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_bdr *tx_ring;
int count;
tx_ring = priv->tx_ring[skb->queue_mapping];
if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
if (unlikely(skb_linearize(skb)))
goto drop_packet_err;
count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
netif_stop_subqueue(ndev, tx_ring->index);
return NETDEV_TX_BUSY;
}
count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
if (unlikely(!count))
goto drop_packet_err;
if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
netif_stop_subqueue(ndev, tx_ring->index);
return NETDEV_TX_OK;
drop_packet_err:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static bool enetc_tx_csum(struct sk_buff *skb, union enetc_tx_bd *txbd)
{
int l3_start, l3_hsize;
u16 l3_flags, l4_flags;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return false;
switch (skb->csum_offset) {
case offsetof(struct tcphdr, check):
l4_flags = ENETC_TXBD_L4_TCP;
break;
case offsetof(struct udphdr, check):
l4_flags = ENETC_TXBD_L4_UDP;
break;
default:
skb_checksum_help(skb);
return false;
}
l3_start = skb_network_offset(skb);
l3_hsize = skb_network_header_len(skb);
l3_flags = 0;
if (skb->protocol == htons(ETH_P_IPV6))
l3_flags = ENETC_TXBD_L3_IPV6;
/* write BD fields */
txbd->l3_csoff = enetc_txbd_l3_csoff(l3_start, l3_hsize, l3_flags);
txbd->l4_csoff = l4_flags;
return true;
}
static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
struct enetc_tx_swbd *tx_swbd)
{
if (tx_swbd->is_dma_page)
dma_unmap_page(tx_ring->dev, tx_swbd->dma,
tx_swbd->len, DMA_TO_DEVICE);
else
dma_unmap_single(tx_ring->dev, tx_swbd->dma,
tx_swbd->len, DMA_TO_DEVICE);
tx_swbd->dma = 0;
}
static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
struct enetc_tx_swbd *tx_swbd)
{
if (tx_swbd->dma)
enetc_unmap_tx_buff(tx_ring, tx_swbd);
if (tx_swbd->skb) {
dev_kfree_skb_any(tx_swbd->skb);
tx_swbd->skb = NULL;
}
}
static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
int active_offloads)
{
struct enetc_tx_swbd *tx_swbd;
skb_frag_t *frag;
int len = skb_headlen(skb);
union enetc_tx_bd temp_bd;
union enetc_tx_bd *txbd;
bool do_vlan, do_tstamp;
int i, count = 0;
unsigned int f;
dma_addr_t dma;
u8 flags = 0;
i = tx_ring->next_to_use;
txbd = ENETC_TXBD(*tx_ring, i);
prefetchw(txbd);
dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
goto dma_err;
temp_bd.addr = cpu_to_le64(dma);
temp_bd.buf_len = cpu_to_le16(len);
temp_bd.lstatus = 0;
tx_swbd = &tx_ring->tx_swbd[i];
tx_swbd->dma = dma;
tx_swbd->len = len;
tx_swbd->is_dma_page = 0;
count++;
do_vlan = skb_vlan_tag_present(skb);
do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
tx_swbd->do_tstamp = do_tstamp;
tx_swbd->check_wb = tx_swbd->do_tstamp;
if (do_vlan || do_tstamp)
flags |= ENETC_TXBD_FLAGS_EX;
if (enetc_tx_csum(skb, &temp_bd))
flags |= ENETC_TXBD_FLAGS_CSUM | ENETC_TXBD_FLAGS_L4CS;
/* first BD needs frm_len and offload flags set */
temp_bd.frm_len = cpu_to_le16(skb->len);
temp_bd.flags = flags;
if (flags & ENETC_TXBD_FLAGS_EX) {
u8 e_flags = 0;
*txbd = temp_bd;
enetc_clear_tx_bd(&temp_bd);
/* add extension BD for VLAN and/or timestamping */
flags = 0;
tx_swbd++;
txbd++;
i++;
if (unlikely(i == tx_ring->bd_count)) {
i = 0;
tx_swbd = tx_ring->tx_swbd;
txbd = ENETC_TXBD(*tx_ring, 0);
}
prefetchw(txbd);
if (do_vlan) {
temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
temp_bd.ext.tpid = 0; /* < C-TAG */
e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
}
if (do_tstamp) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
}
temp_bd.ext.e_flags = e_flags;
count++;
}
frag = &skb_shinfo(skb)->frags[0];
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
len = skb_frag_size(frag);
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_err;
*txbd = temp_bd;
enetc_clear_tx_bd(&temp_bd);
flags = 0;
tx_swbd++;
txbd++;
i++;
if (unlikely(i == tx_ring->bd_count)) {
i = 0;
tx_swbd = tx_ring->tx_swbd;
txbd = ENETC_TXBD(*tx_ring, 0);
}
prefetchw(txbd);
temp_bd.addr = cpu_to_le64(dma);
temp_bd.buf_len = cpu_to_le16(len);
tx_swbd->dma = dma;
tx_swbd->len = len;
tx_swbd->is_dma_page = 1;
count++;
}
/* last BD needs 'F' bit set */
flags |= ENETC_TXBD_FLAGS_F;
temp_bd.flags = flags;
*txbd = temp_bd;
tx_ring->tx_swbd[i].skb = skb;
enetc_bdr_idx_inc(tx_ring, &i);
tx_ring->next_to_use = i;
/* let H/W know BD ring has been updated */
enetc_wr_reg(tx_ring->tpir, i); /* includes wmb() */
return count;
dma_err:
dev_err(tx_ring->dev, "DMA map error");
do {
tx_swbd = &tx_ring->tx_swbd[i];
enetc_free_tx_skb(tx_ring, tx_swbd);
if (i == 0)
i = tx_ring->bd_count;
i--;
} while (count--);
return 0;
}
static irqreturn_t enetc_msix(int irq, void *data)
{
struct enetc_int_vector *v = data;
int i;
/* disable interrupts */
enetc_wr_reg(v->rbier, 0);
for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i), 0);
napi_schedule_irqoff(&v->napi);
return IRQ_HANDLED;
}
static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget);
static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
struct napi_struct *napi, int work_limit);
static int enetc_poll(struct napi_struct *napi, int budget)
{
struct enetc_int_vector
*v = container_of(napi, struct enetc_int_vector, napi);
bool complete = true;
int work_done;
int i;
for (i = 0; i < v->count_tx_rings; i++)
if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
complete = false;
work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
if (work_done == budget)
complete = false;
if (!complete)
return budget;
napi_complete_done(napi, work_done);
/* enable interrupts */
enetc_wr_reg(v->rbier, ENETC_RBIER_RXTIE);
for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i),
ENETC_TBIER_TXTIE);
return work_done;
}
static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
{
int pi = enetc_rd_reg(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
}
static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
u64 *tstamp)
{
u32 lo, hi, tstamp_lo;
lo = enetc_rd(hw, ENETC_SICTR0);
hi = enetc_rd(hw, ENETC_SICTR1);
tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
if (lo <= tstamp_lo)
hi -= 1;
*tstamp = (u64)hi << 32 | tstamp_lo;
}
static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
{
struct skb_shared_hwtstamps shhwtstamps;
if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
skb_tstamp_tx(skb, &shhwtstamps);
}
}
static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
{
struct net_device *ndev = tx_ring->ndev;
int tx_frm_cnt = 0, tx_byte_cnt = 0;
struct enetc_tx_swbd *tx_swbd;
int i, bds_to_clean;
bool do_tstamp;
u64 tstamp = 0;
i = tx_ring->next_to_clean;
tx_swbd = &tx_ring->tx_swbd[i];
bds_to_clean = enetc_bd_ready_count(tx_ring, i);
do_tstamp = false;
while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
bool is_eof = !!tx_swbd->skb;
if (unlikely(tx_swbd->check_wb)) {
struct enetc_ndev_priv *priv = netdev_priv(ndev);
union enetc_tx_bd *txbd;
txbd = ENETC_TXBD(*tx_ring, i);
if (txbd->flags & ENETC_TXBD_FLAGS_W &&
tx_swbd->do_tstamp) {
enetc_get_tx_tstamp(&priv->si->hw, txbd,
&tstamp);
do_tstamp = true;
}
}
if (likely(tx_swbd->dma))
enetc_unmap_tx_buff(tx_ring, tx_swbd);
if (is_eof) {
if (unlikely(do_tstamp)) {
enetc_tstamp_tx(tx_swbd->skb, tstamp);
do_tstamp = false;
}
napi_consume_skb(tx_swbd->skb, napi_budget);
tx_swbd->skb = NULL;
}
tx_byte_cnt += tx_swbd->len;
bds_to_clean--;
tx_swbd++;
i++;
if (unlikely(i == tx_ring->bd_count)) {
i = 0;
tx_swbd = tx_ring->tx_swbd;
}
/* BD iteration loop end */
if (is_eof) {
tx_frm_cnt++;
/* re-arm interrupt source */
enetc_wr_reg(tx_ring->idr, BIT(tx_ring->index) |
BIT(16 + tx_ring->index));
}
if (unlikely(!bds_to_clean))
bds_to_clean = enetc_bd_ready_count(tx_ring, i);
}
tx_ring->next_to_clean = i;
tx_ring->stats.packets += tx_frm_cnt;
tx_ring->stats.bytes += tx_byte_cnt;
if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
__netif_subqueue_stopped(ndev, tx_ring->index) &&
(enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
netif_wake_subqueue(ndev, tx_ring->index);
}
return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
}
static bool enetc_new_page(struct enetc_bdr *rx_ring,
struct enetc_rx_swbd *rx_swbd)
{
struct page *page;
dma_addr_t addr;
page = dev_alloc_page();
if (unlikely(!page))
return false;
addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
__free_page(page);
return false;
}
rx_swbd->dma = addr;
rx_swbd->page = page;
rx_swbd->page_offset = ENETC_RXB_PAD;
return true;
}
static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
{
struct enetc_rx_swbd *rx_swbd;
union enetc_rx_bd *rxbd;
int i, j;
i = rx_ring->next_to_use;
rx_swbd = &rx_ring->rx_swbd[i];
rxbd = ENETC_RXBD(*rx_ring, i);
for (j = 0; j < buff_cnt; j++) {
/* try reuse page */
if (unlikely(!rx_swbd->page)) {
if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
rx_ring->stats.rx_alloc_errs++;
break;
}
}
/* update RxBD */
rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
rx_swbd->page_offset);
/* clear 'R" as well */
rxbd->r.lstatus = 0;
rx_swbd++;
rxbd++;
i++;
if (unlikely(i == rx_ring->bd_count)) {
i = 0;
rx_swbd = rx_ring->rx_swbd;
rxbd = ENETC_RXBD(*rx_ring, 0);
}
}
if (likely(j)) {
rx_ring->next_to_alloc = i; /* keep track from page reuse */
rx_ring->next_to_use = i;
/* update ENETC's consumer index */
enetc_wr_reg(rx_ring->rcir, i);
}
return j;
}
#ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
static void enetc_get_rx_tstamp(struct net_device *ndev,
union enetc_rx_bd *rxbd,
struct sk_buff *skb)
{
struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_hw *hw = &priv->si->hw;
u32 lo, hi, tstamp_lo;
u64 tstamp;
if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
lo = enetc_rd(hw, ENETC_SICTR0);
hi = enetc_rd(hw, ENETC_SICTR1);
tstamp_lo = le32_to_cpu(rxbd->r.tstamp);
if (lo <= tstamp_lo)
hi -= 1;
tstamp = (u64)hi << 32 | tstamp_lo;
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
}
}
#endif
static void enetc_get_offloads(struct enetc_bdr *rx_ring,
union enetc_rx_bd *rxbd, struct sk_buff *skb)
{
#ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
#endif
/* TODO: hashing */
if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
skb->ip_summed = CHECKSUM_COMPLETE;
}
/* copy VLAN to skb, if one is extracted, for now we assume it's a
* standard TPID, but HW also supports custom values
*/
if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
le16_to_cpu(rxbd->r.vlan_opt));
#ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
if (priv->active_offloads & ENETC_F_RX_TSTAMP)
enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
#endif
}
static void enetc_process_skb(struct enetc_bdr *rx_ring,
struct sk_buff *skb)
{
skb_record_rx_queue(skb, rx_ring->index);
skb->protocol = eth_type_trans(skb, rx_ring->ndev);
}
static bool enetc_page_reusable(struct page *page)
{
return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
}
static void enetc_reuse_page(struct enetc_bdr *rx_ring,
struct enetc_rx_swbd *old)
{
struct enetc_rx_swbd *new;
new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
/* next buf that may reuse a page */
enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
/* copy page reference */
*new = *old;
}
static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
int i, u16 size)
{
struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
rx_swbd->page_offset,
size, DMA_FROM_DEVICE);
return rx_swbd;
}
static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
struct enetc_rx_swbd *rx_swbd)
{
if (likely(enetc_page_reusable(rx_swbd->page))) {
rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
page_ref_inc(rx_swbd->page);
enetc_reuse_page(rx_ring, rx_swbd);
/* sync for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
rx_swbd->page_offset,
ENETC_RXB_DMA_SIZE,
DMA_FROM_DEVICE);
} else {
dma_unmap_page(rx_ring->dev, rx_swbd->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
}
rx_swbd->page = NULL;
}
static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
int i, u16 size)
{
struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
struct sk_buff *skb;
void *ba;
ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
if (unlikely(!skb)) {
rx_ring->stats.rx_alloc_errs++;
return NULL;
}
skb_reserve(skb, ENETC_RXB_PAD);
__skb_put(skb, size);
enetc_put_rx_buff(rx_ring, rx_swbd);
return skb;
}
static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
u16 size, struct sk_buff *skb)
{
struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
enetc_put_rx_buff(rx_ring, rx_swbd);
}
#define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
struct napi_struct *napi, int work_limit)
{
int rx_frm_cnt = 0, rx_byte_cnt = 0;
int cleaned_cnt, i;
cleaned_cnt = enetc_bd_unused(rx_ring);
/* next descriptor to process */
i = rx_ring->next_to_clean;
while (likely(rx_frm_cnt < work_limit)) {
union enetc_rx_bd *rxbd;
struct sk_buff *skb;
u32 bd_status;
u16 size;
if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
cleaned_cnt -= count;
}
rxbd = ENETC_RXBD(*rx_ring, i);
bd_status = le32_to_cpu(rxbd->r.lstatus);
if (!bd_status)
break;
enetc_wr_reg(rx_ring->idr, BIT(rx_ring->index));
dma_rmb(); /* for reading other rxbd fields */
size = le16_to_cpu(rxbd->r.buf_len);
skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
if (!skb)
break;
enetc_get_offloads(rx_ring, rxbd, skb);
cleaned_cnt++;
rxbd++;
i++;
if (unlikely(i == rx_ring->bd_count)) {
i = 0;
rxbd = ENETC_RXBD(*rx_ring, 0);
}
if (unlikely(bd_status &
ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
dev_kfree_skb(skb);
while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
dma_rmb();
bd_status = le32_to_cpu(rxbd->r.lstatus);
rxbd++;
i++;
if (unlikely(i == rx_ring->bd_count)) {
i = 0;
rxbd = ENETC_RXBD(*rx_ring, 0);
}
}
rx_ring->ndev->stats.rx_dropped++;
rx_ring->ndev->stats.rx_errors++;
break;
}
/* not last BD in frame? */
while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
bd_status = le32_to_cpu(rxbd->r.lstatus);
size = ENETC_RXB_DMA_SIZE;
if (bd_status & ENETC_RXBD_LSTATUS_F) {
dma_rmb();
size = le16_to_cpu(rxbd->r.buf_len);
}
enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
cleaned_cnt++;
rxbd++;
i++;
if (unlikely(i == rx_ring->bd_count)) {
i = 0;
rxbd = ENETC_RXBD(*rx_ring, 0);
}
}
rx_byte_cnt += skb->len;
enetc_process_skb(rx_ring, skb);
napi_gro_receive(napi, skb);
rx_frm_cnt++;
}
rx_ring->next_to_clean = i;
rx_ring->stats.packets += rx_frm_cnt;
rx_ring->stats.bytes += rx_byte_cnt;
return rx_frm_cnt;
}
/* Probing and Init */
#define ENETC_MAX_RFS_SIZE 64
void enetc_get_si_caps(struct enetc_si *si)
{
struct enetc_hw *hw = &si->hw;
u32 val;
/* find out how many of various resources we have to work with */
val = enetc_rd(hw, ENETC_SICAPR0);
si->num_rx_rings = (val >> 16) & 0xff;
si->num_tx_rings = val & 0xff;
val = enetc_rd(hw, ENETC_SIRFSCAPR);
si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
si->num_rss = 0;
val = enetc_rd(hw, ENETC_SIPCAPR0);
if (val & ENETC_SIPCAPR0_RSS) {
u32 rss;
rss = enetc_rd(hw, ENETC_SIRSSCAPR);
si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
}
if (val & ENETC_SIPCAPR0_QBV)
si->hw_features |= ENETC_SI_F_QBV;
}
static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
{
r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
&r->bd_dma_base, GFP_KERNEL);
if (!r->bd_base)
return -ENOMEM;
/* h/w requires 128B alignment */
if (!IS_ALIGNED(r->bd_dma_base, 128)) {
dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
r->bd_dma_base);
return -EINVAL;
}
return 0;
}
static int enetc_alloc_txbdr(struct enetc_bdr *txr)
{
int err;
txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
if (!txr->tx_swbd)
return -ENOMEM;
err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
if (err) {
vfree(txr->tx_swbd);
return err;
}
txr->next_to_clean = 0;
txr->next_to_use = 0;
return 0;
}
static void enetc_free_txbdr(struct enetc_bdr *txr)
{
int size, i;
for (i = 0; i < txr->bd_count; i++)
enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
size = txr->bd_count * sizeof(union enetc_tx_bd);
dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
txr->bd_base = NULL;
vfree(txr->tx_swbd);
txr->tx_swbd = NULL;
}
static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
{
int i, err;
for (i = 0; i < priv->num_tx_rings; i++) {
err = enetc_alloc_txbdr(priv->tx_ring[i]);
if (err)
goto fail;
}
return 0;
fail:
while (i-- > 0)
enetc_free_txbdr(priv->tx_ring[i]);
return err;
}
static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_tx_rings; i++)
enetc_free_txbdr(priv->tx_ring[i]);
}
static int enetc_alloc_rxbdr(struct enetc_bdr *rxr)
{
int err;
rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
if (!rxr->rx_swbd)
return -ENOMEM;
err = enetc_dma_alloc_bdr(rxr, sizeof(union enetc_rx_bd));
if (err) {
vfree(rxr->rx_swbd);
return err;
}
rxr->next_to_clean = 0;
rxr->next_to_use = 0;
rxr->next_to_alloc = 0;
return 0;
}
static void enetc_free_rxbdr(struct enetc_bdr *rxr)
{
int size;
size = rxr->bd_count * sizeof(union enetc_rx_bd);
dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
rxr->bd_base = NULL;
vfree(rxr->rx_swbd);
rxr->rx_swbd = NULL;
}
static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
{
int i, err;
for (i = 0; i < priv->num_rx_rings; i++) {
err = enetc_alloc_rxbdr(priv->rx_ring[i]);
if (err)
goto fail;
}
return 0;
fail:
while (i-- > 0)
enetc_free_rxbdr(priv->rx_ring[i]);
return err;
}
static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_rx_rings; i++)
enetc_free_rxbdr(priv->rx_ring[i]);
}
static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
{
int i;
if (!tx_ring->tx_swbd)
return;
for (i = 0; i < tx_ring->bd_count; i++) {
struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
enetc_free_tx_skb(tx_ring, tx_swbd);
}
tx_ring->next_to_clean = 0;
tx_ring->next_to_use = 0;
}
static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
{
int i;
if (!rx_ring->rx_swbd)
return;
for (i = 0; i < rx_ring->bd_count; i++) {
struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
if (!rx_swbd->page)
continue;
dma_unmap_page(rx_ring->dev, rx_swbd->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
__free_page(rx_swbd->page);
rx_swbd->page = NULL;
}
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
rx_ring->next_to_alloc = 0;
}
static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_rx_rings; i++)
enetc_free_rx_ring(priv->rx_ring[i]);
for (i = 0; i < priv->num_tx_rings; i++)
enetc_free_tx_ring(priv->tx_ring[i]);
}
static int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
{
int size = cbdr->bd_count * sizeof(struct enetc_cbd);
cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base,
GFP_KERNEL);
if (!cbdr->bd_base)
return -ENOMEM;
/* h/w requires 128B alignment */
if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) {
dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
return -EINVAL;
}
cbdr->next_to_clean = 0;
cbdr->next_to_use = 0;
return 0;
}
static void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
{
int size = cbdr->bd_count * sizeof(struct enetc_cbd);
dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
cbdr->bd_base = NULL;
}
static void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr)
{
/* set CBDR cache attributes */
enetc_wr(hw, ENETC_SICAR2,
ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base));
enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base));
enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count));
enetc_wr(hw, ENETC_SICBDRPIR, 0);
enetc_wr(hw, ENETC_SICBDRCIR, 0);
/* enable ring */
enetc_wr(hw, ENETC_SICBDRMR, BIT(31));
cbdr->pir = hw->reg + ENETC_SICBDRPIR;
cbdr->cir = hw->reg + ENETC_SICBDRCIR;
}
static void enetc_clear_cbdr(struct enetc_hw *hw)
{
enetc_wr(hw, ENETC_SICBDRMR, 0);
}
static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
{
int *rss_table;
int i;
rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
if (!rss_table)
return -ENOMEM;
/* Set up RSS table defaults */
for (i = 0; i < si->num_rss; i++)
rss_table[i] = i % num_groups;
enetc_set_rss_table(si, rss_table, si->num_rss);
kfree(rss_table);
return 0;
}
static int enetc_configure_si(struct enetc_ndev_priv *priv)
{
struct enetc_si *si = priv->si;
struct enetc_hw *hw = &si->hw;
int err;
enetc_setup_cbdr(hw, &si->cbd_ring);
/* set SI cache attributes */
enetc_wr(hw, ENETC_SICAR0,
ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
/* enable SI */
enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
if (si->num_rss) {
err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
if (err)
return err;
}
return 0;
}
void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
{
struct enetc_si *si = priv->si;
int cpus = num_online_cpus();
priv->tx_bd_count = ENETC_BDR_DEFAULT_SIZE;
priv->rx_bd_count = ENETC_BDR_DEFAULT_SIZE;
/* Enable all available TX rings in order to configure as many
* priorities as possible, when needed.
* TODO: Make # of TX rings run-time configurable
*/
priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
priv->num_tx_rings = si->num_tx_rings;
priv->bdr_int_num = cpus;
/* SI specific */
si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE;
}
int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
{
struct enetc_si *si = priv->si;
int err;
err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring);
if (err)
return err;
priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
GFP_KERNEL);
if (!priv->cls_rules) {
err = -ENOMEM;
goto err_alloc_cls;
}
err = enetc_configure_si(priv);
if (err)
goto err_config_si;
return 0;
err_config_si:
kfree(priv->cls_rules);
err_alloc_cls:
enetc_clear_cbdr(&si->hw);
enetc_free_cbdr(priv->dev, &si->cbd_ring);
return err;
}
void enetc_free_si_resources(struct enetc_ndev_priv *priv)
{
struct enetc_si *si = priv->si;
enetc_clear_cbdr(&si->hw);
enetc_free_cbdr(priv->dev, &si->cbd_ring);
kfree(priv->cls_rules);
}
static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
{
int idx = tx_ring->index;
u32 tbmr;
enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
lower_32_bits(tx_ring->bd_dma_base));
enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
upper_32_bits(tx_ring->bd_dma_base));
WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
ENETC_RTBLENR_LEN(tx_ring->bd_count));
/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
/* enable Tx ints by setting pkt thr to 1 */
enetc_txbdr_wr(hw, idx, ENETC_TBICIR0, ENETC_TBICIR0_ICEN | 0x1);
tbmr = ENETC_TBMR_EN;
if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
tbmr |= ENETC_TBMR_VIH;
/* enable ring */
enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
tx_ring->idr = hw->reg + ENETC_SITXIDR;
}
static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
{
int idx = rx_ring->index;
u32 rbmr;
enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
lower_32_bits(rx_ring->bd_dma_base));
enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
upper_32_bits(rx_ring->bd_dma_base));
WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
ENETC_RTBLENR_LEN(rx_ring->bd_count));
enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
/* enable Rx ints by setting pkt thr to 1 */
enetc_rxbdr_wr(hw, idx, ENETC_RBICIR0, ENETC_RBICIR0_ICEN | 0x1);
rbmr = ENETC_RBMR_EN;
#ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
rbmr |= ENETC_RBMR_BDS;
#endif
if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
rbmr |= ENETC_RBMR_VTE;
rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
rx_ring->idr = hw->reg + ENETC_SIRXIDR;
enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
/* enable ring */
enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
}
static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_tx_rings; i++)
enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
for (i = 0; i < priv->num_rx_rings; i++)
enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
}
static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
{
int idx = rx_ring->index;
/* disable EN bit on ring */
enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
}
static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
{
int delay = 8, timeout = 100;
int idx = tx_ring->index;
/* disable EN bit on ring */
enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
/* wait for busy to clear */
while (delay < timeout &&
enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
msleep(delay);
delay *= 2;
}
if (delay >= timeout)
netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
idx);
}
static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_tx_rings; i++)
enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
for (i = 0; i < priv->num_rx_rings; i++)
enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
udelay(1);
}
static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
{
struct pci_dev *pdev = priv->si->pdev;
cpumask_t cpu_mask;
int i, j, err;
for (i = 0; i < priv->bdr_int_num; i++) {
int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
struct enetc_int_vector *v = priv->int_vector[i];
int entry = ENETC_BDR_INT_BASE_IDX + i;
struct enetc_hw *hw = &priv->si->hw;
snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
priv->ndev->name, i);
err = request_irq(irq, enetc_msix, 0, v->name, v);
if (err) {
dev_err(priv->dev, "request_irq() failed!\n");
goto irq_err;
}
v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
for (j = 0; j < v->count_tx_rings; j++) {
int idx = v->tx_ring[j].index;
enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
}
cpumask_clear(&cpu_mask);
cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
irq_set_affinity_hint(irq, &cpu_mask);
}
return 0;
irq_err:
while (i--) {
int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
irq_set_affinity_hint(irq, NULL);
free_irq(irq, priv->int_vector[i]);
}
return err;
}
static void enetc_free_irqs(struct enetc_ndev_priv *priv)
{
struct pci_dev *pdev = priv->si->pdev;
int i;
for (i = 0; i < priv->bdr_int_num; i++) {
int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
irq_set_affinity_hint(irq, NULL);
free_irq(irq, priv->int_vector[i]);
}
}
static void enetc_enable_interrupts(struct enetc_ndev_priv *priv)
{
int i;
/* enable Tx & Rx event indication */
for (i = 0; i < priv->num_rx_rings; i++) {
enetc_rxbdr_wr(&priv->si->hw, i,
ENETC_RBIER, ENETC_RBIER_RXTIE);
}
for (i = 0; i < priv->num_tx_rings; i++) {
enetc_txbdr_wr(&priv->si->hw, i,
ENETC_TBIER, ENETC_TBIER_TXTIE);
}
}
static void enetc_disable_interrupts(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_tx_rings; i++)
enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
for (i = 0; i < priv->num_rx_rings; i++)
enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
}
static void adjust_link(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct phy_device *phydev = ndev->phydev;
if (priv->active_offloads & ENETC_F_QBV)
enetc_sched_speed_set(ndev);
phy_print_status(phydev);
}
static int enetc_phy_connect(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct phy_device *phydev;
struct ethtool_eee edata;
if (!priv->phy_node)
return 0; /* phy-less mode */
phydev = of_phy_connect(ndev, priv->phy_node, &adjust_link,
0, priv->if_mode);
if (!phydev) {
dev_err(&ndev->dev, "could not attach to PHY\n");
return -ENODEV;
}
phy_attached_info(phydev);
/* disable EEE autoneg, until ENETC driver supports it */
memset(&edata, 0, sizeof(struct ethtool_eee));
phy_ethtool_set_eee(phydev, &edata);
return 0;
}
int enetc_open(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
int i, err;
err = enetc_setup_irqs(priv);
if (err)
return err;
err = enetc_phy_connect(ndev);
if (err)
goto err_phy_connect;
err = enetc_alloc_tx_resources(priv);
if (err)
goto err_alloc_tx;
err = enetc_alloc_rx_resources(priv);
if (err)
goto err_alloc_rx;
enetc_setup_bdrs(priv);
err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
if (err)
goto err_set_queues;
err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
if (err)
goto err_set_queues;
for (i = 0; i < priv->bdr_int_num; i++)
napi_enable(&priv->int_vector[i]->napi);
enetc_enable_interrupts(priv);
if (ndev->phydev)
phy_start(ndev->phydev);
else
netif_carrier_on(ndev);
netif_tx_start_all_queues(ndev);
return 0;
err_set_queues:
enetc_free_rx_resources(priv);
err_alloc_rx:
enetc_free_tx_resources(priv);
err_alloc_tx:
if (ndev->phydev)
phy_disconnect(ndev->phydev);
err_phy_connect:
enetc_free_irqs(priv);
return err;
}
int enetc_close(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
int i;
netif_tx_stop_all_queues(ndev);
if (ndev->phydev) {
phy_stop(ndev->phydev);
phy_disconnect(ndev->phydev);
} else {
netif_carrier_off(ndev);
}
for (i = 0; i < priv->bdr_int_num; i++) {
napi_synchronize(&priv->int_vector[i]->napi);
napi_disable(&priv->int_vector[i]->napi);
}
enetc_disable_interrupts(priv);
enetc_clear_bdrs(priv);
enetc_free_rxtx_rings(priv);
enetc_free_rx_resources(priv);
enetc_free_tx_resources(priv);
enetc_free_irqs(priv);
return 0;
}
static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct tc_mqprio_qopt *mqprio = type_data;
struct enetc_bdr *tx_ring;
u8 num_tc;
int i;
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
num_tc = mqprio->num_tc;
if (!num_tc) {
netdev_reset_tc(ndev);
netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
/* Reset all ring priorities to 0 */
for (i = 0; i < priv->num_tx_rings; i++) {
tx_ring = priv->tx_ring[i];
enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
}
return 0;
}
/* Check if we have enough BD rings available to accommodate all TCs */
if (num_tc > priv->num_tx_rings) {
netdev_err(ndev, "Max %d traffic classes supported\n",
priv->num_tx_rings);
return -EINVAL;
}
/* For the moment, we use only one BD ring per TC.
*
* Configure num_tc BD rings with increasing priorities.
*/
for (i = 0; i < num_tc; i++) {
tx_ring = priv->tx_ring[i];
enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
}
/* Reset the number of netdev queues based on the TC count */
netif_set_real_num_tx_queues(ndev, num_tc);
netdev_set_num_tc(ndev, num_tc);
/* Each TC is associated with one netdev queue */
for (i = 0; i < num_tc; i++)
netdev_set_tc_queue(ndev, i, 1, i);
return 0;
}
int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
void *type_data)
{
switch (type) {
case TC_SETUP_QDISC_MQPRIO:
return enetc_setup_tc_mqprio(ndev, type_data);
case TC_SETUP_QDISC_TAPRIO:
return enetc_setup_tc_taprio(ndev, type_data);
case TC_SETUP_QDISC_CBS:
return enetc_setup_tc_cbs(ndev, type_data);
default:
return -EOPNOTSUPP;
}
}
struct net_device_stats *enetc_get_stats(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
unsigned long packets = 0, bytes = 0;
int i;
for (i = 0; i < priv->num_rx_rings; i++) {
packets += priv->rx_ring[i]->stats.packets;
bytes += priv->rx_ring[i]->stats.bytes;
}
stats->rx_packets = packets;
stats->rx_bytes = bytes;
bytes = 0;
packets = 0;
for (i = 0; i < priv->num_tx_rings; i++) {
packets += priv->tx_ring[i]->stats.packets;
bytes += priv->tx_ring[i]->stats.bytes;
}
stats->tx_packets = packets;
stats->tx_bytes = bytes;
return stats;
}
static int enetc_set_rss(struct net_device *ndev, int en)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_hw *hw = &priv->si->hw;
u32 reg;
enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
reg = enetc_rd(hw, ENETC_SIMR);
reg &= ~ENETC_SIMR_RSSE;
reg |= (en) ? ENETC_SIMR_RSSE : 0;
enetc_wr(hw, ENETC_SIMR, reg);
return 0;
}
int enetc_set_features(struct net_device *ndev,
netdev_features_t features)
{
netdev_features_t changed = ndev->features ^ features;
if (changed & NETIF_F_RXHASH)
enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
return 0;
}
#ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct hwtstamp_config config;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
break;
case HWTSTAMP_TX_ON:
priv->active_offloads |= ENETC_F_TX_TSTAMP;
break;
default:
return -ERANGE;
}
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
break;
default:
priv->active_offloads |= ENETC_F_RX_TSTAMP;
config.rx_filter = HWTSTAMP_FILTER_ALL;
}
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct hwtstamp_config config;
config.flags = 0;
if (priv->active_offloads & ENETC_F_TX_TSTAMP)
config.tx_type = HWTSTAMP_TX_ON;
else
config.tx_type = HWTSTAMP_TX_OFF;
config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
#endif
int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
{
#ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
if (cmd == SIOCSHWTSTAMP)
return enetc_hwtstamp_set(ndev, rq);
if (cmd == SIOCGHWTSTAMP)
return enetc_hwtstamp_get(ndev, rq);
#endif
if (!ndev->phydev)
return -EOPNOTSUPP;
return phy_mii_ioctl(ndev->phydev, rq, cmd);
}
int enetc_alloc_msix(struct enetc_ndev_priv *priv)
{
struct pci_dev *pdev = priv->si->pdev;
int size, v_tx_rings;
int i, n, err, nvec;
nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
/* allocate MSIX for both messaging and Rx/Tx interrupts */
n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
if (n < 0)
return n;
if (n != nvec)
return -EPERM;
/* # of tx rings per int vector */
v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
size = sizeof(struct enetc_int_vector) +
sizeof(struct enetc_bdr) * v_tx_rings;
for (i = 0; i < priv->bdr_int_num; i++) {
struct enetc_int_vector *v;
struct enetc_bdr *bdr;
int j;
v = kzalloc(size, GFP_KERNEL);
if (!v) {
err = -ENOMEM;
goto fail;
}
priv->int_vector[i] = v;
netif_napi_add(priv->ndev, &v->napi, enetc_poll,
NAPI_POLL_WEIGHT);
v->count_tx_rings = v_tx_rings;
for (j = 0; j < v_tx_rings; j++) {
int idx;
/* default tx ring mapping policy */
if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
idx = 2 * j + i; /* 2 CPUs */
else
idx = j + i * v_tx_rings; /* default */
__set_bit(idx, &v->tx_rings_map);
bdr = &v->tx_ring[j];
bdr->index = idx;
bdr->ndev = priv->ndev;
bdr->dev = priv->dev;
bdr->bd_count = priv->tx_bd_count;
priv->tx_ring[idx] = bdr;
}
bdr = &v->rx_ring;
bdr->index = i;
bdr->ndev = priv->ndev;
bdr->dev = priv->dev;
bdr->bd_count = priv->rx_bd_count;
priv->rx_ring[i] = bdr;
}
return 0;
fail:
while (i--) {
netif_napi_del(&priv->int_vector[i]->napi);
kfree(priv->int_vector[i]);
}
pci_free_irq_vectors(pdev);
return err;
}
void enetc_free_msix(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->bdr_int_num; i++) {
struct enetc_int_vector *v = priv->int_vector[i];
netif_napi_del(&v->napi);
}
for (i = 0; i < priv->num_rx_rings; i++)
priv->rx_ring[i] = NULL;
for (i = 0; i < priv->num_tx_rings; i++)
priv->tx_ring[i] = NULL;
for (i = 0; i < priv->bdr_int_num; i++) {
kfree(priv->int_vector[i]);
priv->int_vector[i] = NULL;
}
/* disable all MSIX for this device */
pci_free_irq_vectors(priv->si->pdev);
}
static void enetc_kfree_si(struct enetc_si *si)
{
char *p = (char *)si - si->pad;
kfree(p);
}
static void enetc_detect_errata(struct enetc_si *si)
{
if (si->pdev->revision == ENETC_REV1)
si->errata = ENETC_ERR_TXCSUM | ENETC_ERR_VLAN_ISOL |
ENETC_ERR_UCMCSWP;
}
int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
{
struct enetc_si *si, *p;
struct enetc_hw *hw;
size_t alloc_size;
int err, len;
pcie_flr(pdev);
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev, "device enable failed\n");
return err;
}
/* set up for high or low dma */
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"DMA configuration failed: 0x%x\n", err);
goto err_dma;
}
}
err = pci_request_mem_regions(pdev, name);
if (err) {
dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
goto err_pci_mem_reg;
}
pci_set_master(pdev);
alloc_size = sizeof(struct enetc_si);
if (sizeof_priv) {
/* align priv to 32B */
alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
alloc_size += sizeof_priv;
}
/* force 32B alignment for enetc_si */
alloc_size += ENETC_SI_ALIGN - 1;
p = kzalloc(alloc_size, GFP_KERNEL);
if (!p) {
err = -ENOMEM;
goto err_alloc_si;
}
si = PTR_ALIGN(p, ENETC_SI_ALIGN);
si->pad = (char *)si - (char *)p;
pci_set_drvdata(pdev, si);
si->pdev = pdev;
hw = &si->hw;
len = pci_resource_len(pdev, ENETC_BAR_REGS);
hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
if (!hw->reg) {
err = -ENXIO;
dev_err(&pdev->dev, "ioremap() failed\n");
goto err_ioremap;
}
if (len > ENETC_PORT_BASE)
hw->port = hw->reg + ENETC_PORT_BASE;
if (len > ENETC_GLOBAL_BASE)
hw->global = hw->reg + ENETC_GLOBAL_BASE;
enetc_detect_errata(si);
return 0;
err_ioremap:
enetc_kfree_si(si);
err_alloc_si:
pci_release_mem_regions(pdev);
err_pci_mem_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
void enetc_pci_remove(struct pci_dev *pdev)
{
struct enetc_si *si = pci_get_drvdata(pdev);
struct enetc_hw *hw = &si->hw;
iounmap(hw->reg);
enetc_kfree_si(si);
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
}