blob: f4b05af0dd2f6f0e39e620a76909ed5998d7da44 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018 Intel Corporation */
#include "igc_phy.h"
/**
* igc_check_reset_block - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Read the PHY management control register and check whether a PHY reset
* is blocked. If a reset is not blocked return 0, otherwise
* return IGC_ERR_BLK_PHY_RESET (12).
*/
s32 igc_check_reset_block(struct igc_hw *hw)
{
u32 manc;
manc = rd32(IGC_MANC);
return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ?
IGC_ERR_BLK_PHY_RESET : 0;
}
/**
* igc_get_phy_id - Retrieve the PHY ID and revision
* @hw: pointer to the HW structure
*
* Reads the PHY registers and stores the PHY ID and possibly the PHY
* revision in the hardware structure.
*/
s32 igc_get_phy_id(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_id;
ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
if (ret_val)
goto out;
phy->id = (u32)(phy_id << 16);
usleep_range(200, 500);
ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
if (ret_val)
goto out;
phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
out:
return ret_val;
}
/**
* igc_phy_has_link - Polls PHY for link
* @hw: pointer to the HW structure
* @iterations: number of times to poll for link
* @usec_interval: delay between polling attempts
* @success: pointer to whether polling was successful or not
*
* Polls the PHY status register for link, 'iterations' number of times.
*/
s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations,
u32 usec_interval, bool *success)
{
u16 i, phy_status;
s32 ret_val = 0;
for (i = 0; i < iterations; i++) {
/* Some PHYs require the PHY_STATUS register to be read
* twice due to the link bit being sticky. No harm doing
* it across the board.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val && usec_interval > 0) {
/* If the first read fails, another entity may have
* ownership of the resources, wait and try again to
* see if they have relinquished the resources yet.
*/
if (usec_interval >= 1000)
mdelay(usec_interval / 1000);
else
udelay(usec_interval);
}
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_LINK_STATUS)
break;
if (usec_interval >= 1000)
mdelay(usec_interval / 1000);
else
udelay(usec_interval);
}
*success = (i < iterations) ? true : false;
return ret_val;
}
/**
* igc_power_up_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, restore the link to previous settings.
*/
void igc_power_up_phy_copper(struct igc_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN;
hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
}
/**
* igc_power_down_phy_copper - Power down copper PHY
* @hw: pointer to the HW structure
*
* Power down PHY to save power when interface is down and wake on lan
* is not enabled.
*/
void igc_power_down_phy_copper(struct igc_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
/* Temporary workaround - should be removed when PHY will implement
* IEEE registers as properly
*/
/* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/
usleep_range(1000, 2000);
}
/**
* igc_check_downshift - Checks whether a downshift in speed occurred
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns 1
*
* A downshift is detected by querying the PHY link health.
*/
s32 igc_check_downshift(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val;
switch (phy->type) {
case igc_phy_i225:
default:
/* speed downshift not supported */
phy->speed_downgraded = false;
ret_val = 0;
}
return ret_val;
}
/**
* igc_phy_hw_reset - PHY hardware reset
* @hw: pointer to the HW structure
*
* Verify the reset block is not blocking us from resetting. Acquire
* semaphore (if necessary) and read/set/write the device control reset
* bit in the PHY. Wait the appropriate delay time for the device to
* reset and release the semaphore (if necessary).
*/
s32 igc_phy_hw_reset(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
s32 ret_val;
u32 ctrl;
ret_val = igc_check_reset_block(hw);
if (ret_val) {
ret_val = 0;
goto out;
}
ret_val = phy->ops.acquire(hw);
if (ret_val)
goto out;
ctrl = rd32(IGC_CTRL);
wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST);
wrfl();
udelay(phy->reset_delay_us);
wr32(IGC_CTRL, ctrl);
wrfl();
usleep_range(1500, 2000);
phy->ops.release(hw);
out:
return ret_val;
}
/**
* igc_phy_setup_autoneg - Configure PHY for auto-negotiation
* @hw: pointer to the HW structure
*
* Reads the MII auto-neg advertisement register and/or the 1000T control
* register and if the PHY is already setup for auto-negotiation, then
* return successful. Otherwise, setup advertisement and flow control to
* the appropriate values for the wanted auto-negotiation.
*/
static s32 igc_phy_setup_autoneg(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
u16 aneg_multigbt_an_ctrl = 0;
u16 mii_1000t_ctrl_reg = 0;
u16 mii_autoneg_adv_reg;
s32 ret_val;
phy->autoneg_advertised &= phy->autoneg_mask;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
&mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
hw->phy.id == I225_I_PHY_ID) {
/* Read the MULTI GBT AN Control Register - reg 7.32 */
ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK <<
MMD_DEVADDR_SHIFT) |
ANEG_MULTIGBT_AN_CTRL,
&aneg_multigbt_an_ctrl);
if (ret_val)
return ret_val;
}
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
NWAY_AR_100TX_HD_CAPS |
NWAY_AR_10T_FD_CAPS |
NWAY_AR_10T_HD_CAPS);
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
hw_dbg("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
hw_dbg("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
hw_dbg("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
hw_dbg("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
hw_dbg("Advertise 1000mb Half duplex request denied!\n");
/* Do we want to advertise 1000 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
hw_dbg("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* We do not allow the Phy to advertise 2500 Mb Half Duplex */
if (phy->autoneg_advertised & ADVERTISE_2500_HALF)
hw_dbg("Advertise 2500mb Half duplex request denied!\n");
/* Do we want to advertise 2500 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_2500_FULL) {
hw_dbg("Advertise 2500mb Full duplex\n");
aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS;
} else {
aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
* negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc.current_mode) {
case igc_fc_none:
/* Flow control (Rx & Tx) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case igc_fc_rx_pause:
/* Rx Flow control is enabled, and Tx Flow control is
* disabled, by a software over-ride.
*
* Since there really isn't a way to advertise that we are
* capable of Rx Pause ONLY, we will advertise that we
* support both symmetric and asymmetric Rx PAUSE. Later
* (in igc_config_fc_after_link_up) we will disable the
* hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case igc_fc_tx_pause:
/* Tx Flow control is enabled, and Rx Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case igc_fc_full:
/* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
hw_dbg("Flow control param set incorrectly\n");
return -IGC_ERR_CONFIG;
}
ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (phy->autoneg_mask & ADVERTISE_1000_FULL)
ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
mii_1000t_ctrl_reg);
if ((phy->autoneg_mask & ADVERTISE_2500_FULL) &&
hw->phy.id == I225_I_PHY_ID)
ret_val = phy->ops.write_reg(hw,
(STANDARD_AN_REG_MASK <<
MMD_DEVADDR_SHIFT) |
ANEG_MULTIGBT_AN_CTRL,
aneg_multigbt_an_ctrl);
return ret_val;
}
/**
* igc_wait_autoneg - Wait for auto-neg completion
* @hw: pointer to the HW structure
*
* Waits for auto-negotiation to complete or for the auto-negotiation time
* limit to expire, which ever happens first.
*/
static s32 igc_wait_autoneg(struct igc_hw *hw)
{
u16 i, phy_status;
s32 ret_val = 0;
/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_AUTONEG_COMPLETE)
break;
msleep(100);
}
/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
* has completed.
*/
return ret_val;
}
/**
* igc_copper_link_autoneg - Setup/Enable autoneg for copper link
* @hw: pointer to the HW structure
*
* Performs initial bounds checking on autoneg advertisement parameter, then
* configure to advertise the full capability. Setup the PHY to autoneg
* and restart the negotiation process between the link partner. If
* autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
*/
static s32 igc_copper_link_autoneg(struct igc_hw *hw)
{
struct igc_phy_info *phy = &hw->phy;
u16 phy_ctrl;
s32 ret_val;
/* Perform some bounds checking on the autoneg advertisement
* parameter.
*/
phy->autoneg_advertised &= phy->autoneg_mask;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (phy->autoneg_advertised == 0)
phy->autoneg_advertised = phy->autoneg_mask;
hw_dbg("Reconfiguring auto-neg advertisement params\n");
ret_val = igc_phy_setup_autoneg(hw);
if (ret_val) {
hw_dbg("Error Setting up Auto-Negotiation\n");
goto out;
}
hw_dbg("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
goto out;
phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
goto out;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if (phy->autoneg_wait_to_complete) {
ret_val = igc_wait_autoneg(hw);
if (ret_val) {
hw_dbg("Error while waiting for autoneg to complete\n");
goto out;
}
}
hw->mac.get_link_status = true;
out:
return ret_val;
}
/**
* igc_setup_copper_link - Configure copper link settings
* @hw: pointer to the HW structure
*
* Calls the appropriate function to configure the link for auto-neg or forced
* speed and duplex. Then we check for link, once link is established calls
* to configure collision distance and flow control are called. If link is
* not established, we return -IGC_ERR_PHY (-2).
*/
s32 igc_setup_copper_link(struct igc_hw *hw)
{
s32 ret_val = 0;
bool link;
if (hw->mac.autoneg) {
/* Setup autoneg and flow control advertisement and perform
* autonegotiation.
*/
ret_val = igc_copper_link_autoneg(hw);
if (ret_val)
goto out;
} else {
/* PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
hw_dbg("Forcing Speed and Duplex\n");
ret_val = hw->phy.ops.force_speed_duplex(hw);
if (ret_val) {
hw_dbg("Error Forcing Speed and Duplex\n");
goto out;
}
}
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
if (ret_val)
goto out;
if (link) {
hw_dbg("Valid link established!!!\n");
igc_config_collision_dist(hw);
ret_val = igc_config_fc_after_link_up(hw);
} else {
hw_dbg("Unable to establish link!!!\n");
}
out:
return ret_val;
}
/**
* igc_read_phy_reg_mdic - Read MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the MDI control register in the PHY at offset and stores the
* information read to data.
*/
static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data)
{
struct igc_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
s32 ret_val = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
hw_dbg("PHY Address %d is out of range\n", offset);
ret_val = -IGC_ERR_PARAM;
goto out;
}
/* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((offset << IGC_MDIC_REG_SHIFT) |
(phy->addr << IGC_MDIC_PHY_SHIFT) |
(IGC_MDIC_OP_READ));
wr32(IGC_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
usleep_range(500, 1000);
mdic = rd32(IGC_MDIC);
if (mdic & IGC_MDIC_READY)
break;
}
if (!(mdic & IGC_MDIC_READY)) {
hw_dbg("MDI Read did not complete\n");
ret_val = -IGC_ERR_PHY;
goto out;
}
if (mdic & IGC_MDIC_ERROR) {
hw_dbg("MDI Error\n");
ret_val = -IGC_ERR_PHY;
goto out;
}
*data = (u16)mdic;
out:
return ret_val;
}
/**
* igc_write_phy_reg_mdic - Write MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write to register at offset
*
* Writes data to MDI control register in the PHY at offset.
*/
static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data)
{
struct igc_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
s32 ret_val = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
hw_dbg("PHY Address %d is out of range\n", offset);
ret_val = -IGC_ERR_PARAM;
goto out;
}
/* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to write the desired data.
*/
mdic = (((u32)data) |
(offset << IGC_MDIC_REG_SHIFT) |
(phy->addr << IGC_MDIC_PHY_SHIFT) |
(IGC_MDIC_OP_WRITE));
wr32(IGC_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
usleep_range(500, 1000);
mdic = rd32(IGC_MDIC);
if (mdic & IGC_MDIC_READY)
break;
}
if (!(mdic & IGC_MDIC_READY)) {
hw_dbg("MDI Write did not complete\n");
ret_val = -IGC_ERR_PHY;
goto out;
}
if (mdic & IGC_MDIC_ERROR) {
hw_dbg("MDI Error\n");
ret_val = -IGC_ERR_PHY;
goto out;
}
out:
return ret_val;
}
/**
* __igc_access_xmdio_reg - Read/write XMDIO register
* @hw: pointer to the HW structure
* @address: XMDIO address to program
* @dev_addr: device address to program
* @data: pointer to value to read/write from/to the XMDIO address
* @read: boolean flag to indicate read or write
*/
static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address,
u8 dev_addr, u16 *data, bool read)
{
s32 ret_val;
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA |
dev_addr);
if (ret_val)
return ret_val;
if (read)
ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data);
else
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data);
if (ret_val)
return ret_val;
/* Recalibrate the device back to 0 */
ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0);
if (ret_val)
return ret_val;
return ret_val;
}
/**
* igc_read_xmdio_reg - Read XMDIO register
* @hw: pointer to the HW structure
* @addr: XMDIO address to program
* @dev_addr: device address to program
* @data: value to be read from the EMI address
*/
static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr,
u8 dev_addr, u16 *data)
{
return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true);
}
/**
* igc_write_xmdio_reg - Write XMDIO register
* @hw: pointer to the HW structure
* @addr: XMDIO address to program
* @dev_addr: device address to program
* @data: value to be written to the XMDIO address
*/
static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr,
u8 dev_addr, u16 data)
{
return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false);
}
/**
* igc_write_phy_reg_gpy - Write GPY PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
*/
s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data)
{
u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
s32 ret_val;
offset = offset & GPY_REG_MASK;
if (!dev_addr) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igc_write_phy_reg_mdic(hw, offset, data);
if (ret_val)
return ret_val;
hw->phy.ops.release(hw);
} else {
ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr,
data);
}
return ret_val;
}
/**
* igc_read_phy_reg_gpy - Read GPY PHY register
* @hw: pointer to the HW structure
* @offset: lower half is register offset to read to
* upper half is MMD to use.
* @data: data to read at register offset
*
* Acquires semaphore, if necessary, then reads the data in the PHY register
* at the offset. Release any acquired semaphores before exiting.
*/
s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data)
{
u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT;
s32 ret_val;
offset = offset & GPY_REG_MASK;
if (!dev_addr) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igc_read_phy_reg_mdic(hw, offset, data);
if (ret_val)
return ret_val;
hw->phy.ops.release(hw);
} else {
ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr,
data);
}
return ret_val;
}