| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2011, 2012 STRATO. All rights reserved. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/ratelimit.h> |
| #include <linux/sched/mm.h> |
| #include <crypto/hash.h> |
| #include "ctree.h" |
| #include "discard.h" |
| #include "volumes.h" |
| #include "disk-io.h" |
| #include "ordered-data.h" |
| #include "transaction.h" |
| #include "backref.h" |
| #include "extent_io.h" |
| #include "dev-replace.h" |
| #include "check-integrity.h" |
| #include "raid56.h" |
| #include "block-group.h" |
| #include "zoned.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "file-item.h" |
| #include "scrub.h" |
| |
| /* |
| * This is only the first step towards a full-features scrub. It reads all |
| * extent and super block and verifies the checksums. In case a bad checksum |
| * is found or the extent cannot be read, good data will be written back if |
| * any can be found. |
| * |
| * Future enhancements: |
| * - In case an unrepairable extent is encountered, track which files are |
| * affected and report them |
| * - track and record media errors, throw out bad devices |
| * - add a mode to also read unallocated space |
| */ |
| |
| struct scrub_block; |
| struct scrub_ctx; |
| |
| /* |
| * The following three values only influence the performance. |
| * |
| * The last one configures the number of parallel and outstanding I/O |
| * operations. The first one configures an upper limit for the number |
| * of (dynamically allocated) pages that are added to a bio. |
| */ |
| #define SCRUB_SECTORS_PER_BIO 32 /* 128KiB per bio for 4KiB pages */ |
| #define SCRUB_BIOS_PER_SCTX 64 /* 8MiB per device in flight for 4KiB pages */ |
| |
| /* |
| * The following value times PAGE_SIZE needs to be large enough to match the |
| * largest node/leaf/sector size that shall be supported. |
| */ |
| #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) |
| |
| #define SCRUB_MAX_PAGES (DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE)) |
| |
| /* |
| * Maximum number of mirrors that can be available for all profiles counting |
| * the target device of dev-replace as one. During an active device replace |
| * procedure, the target device of the copy operation is a mirror for the |
| * filesystem data as well that can be used to read data in order to repair |
| * read errors on other disks. |
| * |
| * Current value is derived from RAID1C4 with 4 copies. |
| */ |
| #define BTRFS_MAX_MIRRORS (4 + 1) |
| |
| struct scrub_recover { |
| refcount_t refs; |
| struct btrfs_io_context *bioc; |
| u64 map_length; |
| }; |
| |
| struct scrub_sector { |
| struct scrub_block *sblock; |
| struct list_head list; |
| u64 flags; /* extent flags */ |
| u64 generation; |
| /* Offset in bytes to @sblock. */ |
| u32 offset; |
| atomic_t refs; |
| unsigned int have_csum:1; |
| unsigned int io_error:1; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| |
| struct scrub_recover *recover; |
| }; |
| |
| struct scrub_bio { |
| int index; |
| struct scrub_ctx *sctx; |
| struct btrfs_device *dev; |
| struct bio *bio; |
| blk_status_t status; |
| u64 logical; |
| u64 physical; |
| struct scrub_sector *sectors[SCRUB_SECTORS_PER_BIO]; |
| int sector_count; |
| int next_free; |
| struct work_struct work; |
| }; |
| |
| struct scrub_block { |
| /* |
| * Each page will have its page::private used to record the logical |
| * bytenr. |
| */ |
| struct page *pages[SCRUB_MAX_PAGES]; |
| struct scrub_sector *sectors[SCRUB_MAX_SECTORS_PER_BLOCK]; |
| struct btrfs_device *dev; |
| /* Logical bytenr of the sblock */ |
| u64 logical; |
| u64 physical; |
| u64 physical_for_dev_replace; |
| /* Length of sblock in bytes */ |
| u32 len; |
| int sector_count; |
| int mirror_num; |
| |
| atomic_t outstanding_sectors; |
| refcount_t refs; /* free mem on transition to zero */ |
| struct scrub_ctx *sctx; |
| struct scrub_parity *sparity; |
| struct { |
| unsigned int header_error:1; |
| unsigned int checksum_error:1; |
| unsigned int no_io_error_seen:1; |
| unsigned int generation_error:1; /* also sets header_error */ |
| |
| /* The following is for the data used to check parity */ |
| /* It is for the data with checksum */ |
| unsigned int data_corrected:1; |
| }; |
| struct work_struct work; |
| }; |
| |
| /* Used for the chunks with parity stripe such RAID5/6 */ |
| struct scrub_parity { |
| struct scrub_ctx *sctx; |
| |
| struct btrfs_device *scrub_dev; |
| |
| u64 logic_start; |
| |
| u64 logic_end; |
| |
| int nsectors; |
| |
| u32 stripe_len; |
| |
| refcount_t refs; |
| |
| struct list_head sectors_list; |
| |
| /* Work of parity check and repair */ |
| struct work_struct work; |
| |
| /* Mark the parity blocks which have data */ |
| unsigned long dbitmap; |
| |
| /* |
| * Mark the parity blocks which have data, but errors happen when |
| * read data or check data |
| */ |
| unsigned long ebitmap; |
| }; |
| |
| struct scrub_ctx { |
| struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; |
| struct btrfs_fs_info *fs_info; |
| int first_free; |
| int curr; |
| atomic_t bios_in_flight; |
| atomic_t workers_pending; |
| spinlock_t list_lock; |
| wait_queue_head_t list_wait; |
| struct list_head csum_list; |
| atomic_t cancel_req; |
| int readonly; |
| int sectors_per_bio; |
| |
| /* State of IO submission throttling affecting the associated device */ |
| ktime_t throttle_deadline; |
| u64 throttle_sent; |
| |
| int is_dev_replace; |
| u64 write_pointer; |
| |
| struct scrub_bio *wr_curr_bio; |
| struct mutex wr_lock; |
| struct btrfs_device *wr_tgtdev; |
| bool flush_all_writes; |
| |
| /* |
| * statistics |
| */ |
| struct btrfs_scrub_progress stat; |
| spinlock_t stat_lock; |
| |
| /* |
| * Use a ref counter to avoid use-after-free issues. Scrub workers |
| * decrement bios_in_flight and workers_pending and then do a wakeup |
| * on the list_wait wait queue. We must ensure the main scrub task |
| * doesn't free the scrub context before or while the workers are |
| * doing the wakeup() call. |
| */ |
| refcount_t refs; |
| }; |
| |
| struct scrub_warning { |
| struct btrfs_path *path; |
| u64 extent_item_size; |
| const char *errstr; |
| u64 physical; |
| u64 logical; |
| struct btrfs_device *dev; |
| }; |
| |
| struct full_stripe_lock { |
| struct rb_node node; |
| u64 logical; |
| u64 refs; |
| struct mutex mutex; |
| }; |
| |
| #ifndef CONFIG_64BIT |
| /* This structure is for archtectures whose (void *) is smaller than u64 */ |
| struct scrub_page_private { |
| u64 logical; |
| }; |
| #endif |
| |
| static int attach_scrub_page_private(struct page *page, u64 logical) |
| { |
| #ifdef CONFIG_64BIT |
| attach_page_private(page, (void *)logical); |
| return 0; |
| #else |
| struct scrub_page_private *spp; |
| |
| spp = kmalloc(sizeof(*spp), GFP_KERNEL); |
| if (!spp) |
| return -ENOMEM; |
| spp->logical = logical; |
| attach_page_private(page, (void *)spp); |
| return 0; |
| #endif |
| } |
| |
| static void detach_scrub_page_private(struct page *page) |
| { |
| #ifdef CONFIG_64BIT |
| detach_page_private(page); |
| return; |
| #else |
| struct scrub_page_private *spp; |
| |
| spp = detach_page_private(page); |
| kfree(spp); |
| return; |
| #endif |
| } |
| |
| static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx, |
| struct btrfs_device *dev, |
| u64 logical, u64 physical, |
| u64 physical_for_dev_replace, |
| int mirror_num) |
| { |
| struct scrub_block *sblock; |
| |
| sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); |
| if (!sblock) |
| return NULL; |
| refcount_set(&sblock->refs, 1); |
| sblock->sctx = sctx; |
| sblock->logical = logical; |
| sblock->physical = physical; |
| sblock->physical_for_dev_replace = physical_for_dev_replace; |
| sblock->dev = dev; |
| sblock->mirror_num = mirror_num; |
| sblock->no_io_error_seen = 1; |
| /* |
| * Scrub_block::pages will be allocated at alloc_scrub_sector() when |
| * the corresponding page is not allocated. |
| */ |
| return sblock; |
| } |
| |
| /* |
| * Allocate a new scrub sector and attach it to @sblock. |
| * |
| * Will also allocate new pages for @sblock if needed. |
| */ |
| static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock, |
| u64 logical) |
| { |
| const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT; |
| struct scrub_sector *ssector; |
| |
| /* We must never have scrub_block exceed U32_MAX in size. */ |
| ASSERT(logical - sblock->logical < U32_MAX); |
| |
| ssector = kzalloc(sizeof(*ssector), GFP_KERNEL); |
| if (!ssector) |
| return NULL; |
| |
| /* Allocate a new page if the slot is not allocated */ |
| if (!sblock->pages[page_index]) { |
| int ret; |
| |
| sblock->pages[page_index] = alloc_page(GFP_KERNEL); |
| if (!sblock->pages[page_index]) { |
| kfree(ssector); |
| return NULL; |
| } |
| ret = attach_scrub_page_private(sblock->pages[page_index], |
| sblock->logical + (page_index << PAGE_SHIFT)); |
| if (ret < 0) { |
| kfree(ssector); |
| __free_page(sblock->pages[page_index]); |
| sblock->pages[page_index] = NULL; |
| return NULL; |
| } |
| } |
| |
| atomic_set(&ssector->refs, 1); |
| ssector->sblock = sblock; |
| /* The sector to be added should not be used */ |
| ASSERT(sblock->sectors[sblock->sector_count] == NULL); |
| ssector->offset = logical - sblock->logical; |
| |
| /* The sector count must be smaller than the limit */ |
| ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK); |
| |
| sblock->sectors[sblock->sector_count] = ssector; |
| sblock->sector_count++; |
| sblock->len += sblock->sctx->fs_info->sectorsize; |
| |
| return ssector; |
| } |
| |
| static struct page *scrub_sector_get_page(struct scrub_sector *ssector) |
| { |
| struct scrub_block *sblock = ssector->sblock; |
| pgoff_t index; |
| /* |
| * When calling this function, ssector must be alreaday attached to the |
| * parent sblock. |
| */ |
| ASSERT(sblock); |
| |
| /* The range should be inside the sblock range */ |
| ASSERT(ssector->offset < sblock->len); |
| |
| index = ssector->offset >> PAGE_SHIFT; |
| ASSERT(index < SCRUB_MAX_PAGES); |
| ASSERT(sblock->pages[index]); |
| ASSERT(PagePrivate(sblock->pages[index])); |
| return sblock->pages[index]; |
| } |
| |
| static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector) |
| { |
| struct scrub_block *sblock = ssector->sblock; |
| |
| /* |
| * When calling this function, ssector must be already attached to the |
| * parent sblock. |
| */ |
| ASSERT(sblock); |
| |
| /* The range should be inside the sblock range */ |
| ASSERT(ssector->offset < sblock->len); |
| |
| return offset_in_page(ssector->offset); |
| } |
| |
| static char *scrub_sector_get_kaddr(struct scrub_sector *ssector) |
| { |
| return page_address(scrub_sector_get_page(ssector)) + |
| scrub_sector_get_page_offset(ssector); |
| } |
| |
| static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector, |
| unsigned int len) |
| { |
| return bio_add_page(bio, scrub_sector_get_page(ssector), len, |
| scrub_sector_get_page_offset(ssector)); |
| } |
| |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock, |
| struct scrub_block *sblocks_for_recheck[]); |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info, |
| struct scrub_block *sblock, |
| int retry_failed_mirror); |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock); |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good); |
| static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good, |
| int sector_num, int force_write); |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); |
| static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, |
| int sector_num); |
| static int scrub_checksum_data(struct scrub_block *sblock); |
| static int scrub_checksum_tree_block(struct scrub_block *sblock); |
| static int scrub_checksum_super(struct scrub_block *sblock); |
| static void scrub_block_put(struct scrub_block *sblock); |
| static void scrub_sector_get(struct scrub_sector *sector); |
| static void scrub_sector_put(struct scrub_sector *sector); |
| static void scrub_parity_get(struct scrub_parity *sparity); |
| static void scrub_parity_put(struct scrub_parity *sparity); |
| static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, u64 flags, |
| u64 gen, int mirror_num, u8 *csum, |
| u64 physical_for_dev_replace); |
| static void scrub_bio_end_io(struct bio *bio); |
| static void scrub_bio_end_io_worker(struct work_struct *work); |
| static void scrub_block_complete(struct scrub_block *sblock); |
| static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, |
| u64 extent_logical, u32 extent_len, |
| u64 *extent_physical, |
| struct btrfs_device **extent_dev, |
| int *extent_mirror_num); |
| static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, |
| struct scrub_sector *sector); |
| static void scrub_wr_submit(struct scrub_ctx *sctx); |
| static void scrub_wr_bio_end_io(struct bio *bio); |
| static void scrub_wr_bio_end_io_worker(struct work_struct *work); |
| static void scrub_put_ctx(struct scrub_ctx *sctx); |
| |
| static inline int scrub_is_page_on_raid56(struct scrub_sector *sector) |
| { |
| return sector->recover && |
| (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); |
| } |
| |
| static void scrub_pending_bio_inc(struct scrub_ctx *sctx) |
| { |
| refcount_inc(&sctx->refs); |
| atomic_inc(&sctx->bios_in_flight); |
| } |
| |
| static void scrub_pending_bio_dec(struct scrub_ctx *sctx) |
| { |
| atomic_dec(&sctx->bios_in_flight); |
| wake_up(&sctx->list_wait); |
| scrub_put_ctx(sctx); |
| } |
| |
| static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| { |
| while (atomic_read(&fs_info->scrub_pause_req)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrub_pause_req) == 0); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| } |
| |
| static void scrub_pause_on(struct btrfs_fs_info *fs_info) |
| { |
| atomic_inc(&fs_info->scrubs_paused); |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| static void scrub_pause_off(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| __scrub_blocked_if_needed(fs_info); |
| atomic_dec(&fs_info->scrubs_paused); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) |
| { |
| scrub_pause_on(fs_info); |
| scrub_pause_off(fs_info); |
| } |
| |
| /* |
| * Insert new full stripe lock into full stripe locks tree |
| * |
| * Return pointer to existing or newly inserted full_stripe_lock structure if |
| * everything works well. |
| * Return ERR_PTR(-ENOMEM) if we failed to allocate memory |
| * |
| * NOTE: caller must hold full_stripe_locks_root->lock before calling this |
| * function |
| */ |
| static struct full_stripe_lock *insert_full_stripe_lock( |
| struct btrfs_full_stripe_locks_tree *locks_root, |
| u64 fstripe_logical) |
| { |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| struct full_stripe_lock *entry; |
| struct full_stripe_lock *ret; |
| |
| lockdep_assert_held(&locks_root->lock); |
| |
| p = &locks_root->root.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct full_stripe_lock, node); |
| if (fstripe_logical < entry->logical) { |
| p = &(*p)->rb_left; |
| } else if (fstripe_logical > entry->logical) { |
| p = &(*p)->rb_right; |
| } else { |
| entry->refs++; |
| return entry; |
| } |
| } |
| |
| /* |
| * Insert new lock. |
| */ |
| ret = kmalloc(sizeof(*ret), GFP_KERNEL); |
| if (!ret) |
| return ERR_PTR(-ENOMEM); |
| ret->logical = fstripe_logical; |
| ret->refs = 1; |
| mutex_init(&ret->mutex); |
| |
| rb_link_node(&ret->node, parent, p); |
| rb_insert_color(&ret->node, &locks_root->root); |
| return ret; |
| } |
| |
| /* |
| * Search for a full stripe lock of a block group |
| * |
| * Return pointer to existing full stripe lock if found |
| * Return NULL if not found |
| */ |
| static struct full_stripe_lock *search_full_stripe_lock( |
| struct btrfs_full_stripe_locks_tree *locks_root, |
| u64 fstripe_logical) |
| { |
| struct rb_node *node; |
| struct full_stripe_lock *entry; |
| |
| lockdep_assert_held(&locks_root->lock); |
| |
| node = locks_root->root.rb_node; |
| while (node) { |
| entry = rb_entry(node, struct full_stripe_lock, node); |
| if (fstripe_logical < entry->logical) |
| node = node->rb_left; |
| else if (fstripe_logical > entry->logical) |
| node = node->rb_right; |
| else |
| return entry; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Helper to get full stripe logical from a normal bytenr. |
| * |
| * Caller must ensure @cache is a RAID56 block group. |
| */ |
| static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) |
| { |
| u64 ret; |
| |
| /* |
| * Due to chunk item size limit, full stripe length should not be |
| * larger than U32_MAX. Just a sanity check here. |
| */ |
| WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); |
| |
| /* |
| * round_down() can only handle power of 2, while RAID56 full |
| * stripe length can be 64KiB * n, so we need to manually round down. |
| */ |
| ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * |
| cache->full_stripe_len + cache->start; |
| return ret; |
| } |
| |
| /* |
| * Lock a full stripe to avoid concurrency of recovery and read |
| * |
| * It's only used for profiles with parities (RAID5/6), for other profiles it |
| * does nothing. |
| * |
| * Return 0 if we locked full stripe covering @bytenr, with a mutex held. |
| * So caller must call unlock_full_stripe() at the same context. |
| * |
| * Return <0 if encounters error. |
| */ |
| static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, |
| bool *locked_ret) |
| { |
| struct btrfs_block_group *bg_cache; |
| struct btrfs_full_stripe_locks_tree *locks_root; |
| struct full_stripe_lock *existing; |
| u64 fstripe_start; |
| int ret = 0; |
| |
| *locked_ret = false; |
| bg_cache = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!bg_cache) { |
| ASSERT(0); |
| return -ENOENT; |
| } |
| |
| /* Profiles not based on parity don't need full stripe lock */ |
| if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| goto out; |
| locks_root = &bg_cache->full_stripe_locks_root; |
| |
| fstripe_start = get_full_stripe_logical(bg_cache, bytenr); |
| |
| /* Now insert the full stripe lock */ |
| mutex_lock(&locks_root->lock); |
| existing = insert_full_stripe_lock(locks_root, fstripe_start); |
| mutex_unlock(&locks_root->lock); |
| if (IS_ERR(existing)) { |
| ret = PTR_ERR(existing); |
| goto out; |
| } |
| mutex_lock(&existing->mutex); |
| *locked_ret = true; |
| out: |
| btrfs_put_block_group(bg_cache); |
| return ret; |
| } |
| |
| /* |
| * Unlock a full stripe. |
| * |
| * NOTE: Caller must ensure it's the same context calling corresponding |
| * lock_full_stripe(). |
| * |
| * Return 0 if we unlock full stripe without problem. |
| * Return <0 for error |
| */ |
| static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, |
| bool locked) |
| { |
| struct btrfs_block_group *bg_cache; |
| struct btrfs_full_stripe_locks_tree *locks_root; |
| struct full_stripe_lock *fstripe_lock; |
| u64 fstripe_start; |
| bool freeit = false; |
| int ret = 0; |
| |
| /* If we didn't acquire full stripe lock, no need to continue */ |
| if (!locked) |
| return 0; |
| |
| bg_cache = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!bg_cache) { |
| ASSERT(0); |
| return -ENOENT; |
| } |
| if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| goto out; |
| |
| locks_root = &bg_cache->full_stripe_locks_root; |
| fstripe_start = get_full_stripe_logical(bg_cache, bytenr); |
| |
| mutex_lock(&locks_root->lock); |
| fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); |
| /* Unpaired unlock_full_stripe() detected */ |
| if (!fstripe_lock) { |
| WARN_ON(1); |
| ret = -ENOENT; |
| mutex_unlock(&locks_root->lock); |
| goto out; |
| } |
| |
| if (fstripe_lock->refs == 0) { |
| WARN_ON(1); |
| btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", |
| fstripe_lock->logical); |
| } else { |
| fstripe_lock->refs--; |
| } |
| |
| if (fstripe_lock->refs == 0) { |
| rb_erase(&fstripe_lock->node, &locks_root->root); |
| freeit = true; |
| } |
| mutex_unlock(&locks_root->lock); |
| |
| mutex_unlock(&fstripe_lock->mutex); |
| if (freeit) |
| kfree(fstripe_lock); |
| out: |
| btrfs_put_block_group(bg_cache); |
| return ret; |
| } |
| |
| static void scrub_free_csums(struct scrub_ctx *sctx) |
| { |
| while (!list_empty(&sctx->csum_list)) { |
| struct btrfs_ordered_sum *sum; |
| sum = list_first_entry(&sctx->csum_list, |
| struct btrfs_ordered_sum, list); |
| list_del(&sum->list); |
| kfree(sum); |
| } |
| } |
| |
| static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) |
| { |
| int i; |
| |
| if (!sctx) |
| return; |
| |
| /* this can happen when scrub is cancelled */ |
| if (sctx->curr != -1) { |
| struct scrub_bio *sbio = sctx->bios[sctx->curr]; |
| |
| for (i = 0; i < sbio->sector_count; i++) |
| scrub_block_put(sbio->sectors[i]->sblock); |
| bio_put(sbio->bio); |
| } |
| |
| for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { |
| struct scrub_bio *sbio = sctx->bios[i]; |
| |
| if (!sbio) |
| break; |
| kfree(sbio); |
| } |
| |
| kfree(sctx->wr_curr_bio); |
| scrub_free_csums(sctx); |
| kfree(sctx); |
| } |
| |
| static void scrub_put_ctx(struct scrub_ctx *sctx) |
| { |
| if (refcount_dec_and_test(&sctx->refs)) |
| scrub_free_ctx(sctx); |
| } |
| |
| static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( |
| struct btrfs_fs_info *fs_info, int is_dev_replace) |
| { |
| struct scrub_ctx *sctx; |
| int i; |
| |
| sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); |
| if (!sctx) |
| goto nomem; |
| refcount_set(&sctx->refs, 1); |
| sctx->is_dev_replace = is_dev_replace; |
| sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO; |
| sctx->curr = -1; |
| sctx->fs_info = fs_info; |
| INIT_LIST_HEAD(&sctx->csum_list); |
| for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { |
| struct scrub_bio *sbio; |
| |
| sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); |
| if (!sbio) |
| goto nomem; |
| sctx->bios[i] = sbio; |
| |
| sbio->index = i; |
| sbio->sctx = sctx; |
| sbio->sector_count = 0; |
| INIT_WORK(&sbio->work, scrub_bio_end_io_worker); |
| |
| if (i != SCRUB_BIOS_PER_SCTX - 1) |
| sctx->bios[i]->next_free = i + 1; |
| else |
| sctx->bios[i]->next_free = -1; |
| } |
| sctx->first_free = 0; |
| atomic_set(&sctx->bios_in_flight, 0); |
| atomic_set(&sctx->workers_pending, 0); |
| atomic_set(&sctx->cancel_req, 0); |
| |
| spin_lock_init(&sctx->list_lock); |
| spin_lock_init(&sctx->stat_lock); |
| init_waitqueue_head(&sctx->list_wait); |
| sctx->throttle_deadline = 0; |
| |
| WARN_ON(sctx->wr_curr_bio != NULL); |
| mutex_init(&sctx->wr_lock); |
| sctx->wr_curr_bio = NULL; |
| if (is_dev_replace) { |
| WARN_ON(!fs_info->dev_replace.tgtdev); |
| sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; |
| sctx->flush_all_writes = false; |
| } |
| |
| return sctx; |
| |
| nomem: |
| scrub_free_ctx(sctx); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, |
| u64 root, void *warn_ctx) |
| { |
| u32 nlink; |
| int ret; |
| int i; |
| unsigned nofs_flag; |
| struct extent_buffer *eb; |
| struct btrfs_inode_item *inode_item; |
| struct scrub_warning *swarn = warn_ctx; |
| struct btrfs_fs_info *fs_info = swarn->dev->fs_info; |
| struct inode_fs_paths *ipath = NULL; |
| struct btrfs_root *local_root; |
| struct btrfs_key key; |
| |
| local_root = btrfs_get_fs_root(fs_info, root, true); |
| if (IS_ERR(local_root)) { |
| ret = PTR_ERR(local_root); |
| goto err; |
| } |
| |
| /* |
| * this makes the path point to (inum INODE_ITEM ioff) |
| */ |
| key.objectid = inum; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); |
| if (ret) { |
| btrfs_put_root(local_root); |
| btrfs_release_path(swarn->path); |
| goto err; |
| } |
| |
| eb = swarn->path->nodes[0]; |
| inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], |
| struct btrfs_inode_item); |
| nlink = btrfs_inode_nlink(eb, inode_item); |
| btrfs_release_path(swarn->path); |
| |
| /* |
| * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub |
| * uses GFP_NOFS in this context, so we keep it consistent but it does |
| * not seem to be strictly necessary. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| ipath = init_ipath(4096, local_root, swarn->path); |
| memalloc_nofs_restore(nofs_flag); |
| if (IS_ERR(ipath)) { |
| btrfs_put_root(local_root); |
| ret = PTR_ERR(ipath); |
| ipath = NULL; |
| goto err; |
| } |
| ret = paths_from_inode(inum, ipath); |
| |
| if (ret < 0) |
| goto err; |
| |
| /* |
| * we deliberately ignore the bit ipath might have been too small to |
| * hold all of the paths here |
| */ |
| for (i = 0; i < ipath->fspath->elem_cnt; ++i) |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", |
| swarn->errstr, swarn->logical, |
| btrfs_dev_name(swarn->dev), |
| swarn->physical, |
| root, inum, offset, |
| fs_info->sectorsize, nlink, |
| (char *)(unsigned long)ipath->fspath->val[i]); |
| |
| btrfs_put_root(local_root); |
| free_ipath(ipath); |
| return 0; |
| |
| err: |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", |
| swarn->errstr, swarn->logical, |
| btrfs_dev_name(swarn->dev), |
| swarn->physical, |
| root, inum, offset, ret); |
| |
| free_ipath(ipath); |
| return 0; |
| } |
| |
| static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) |
| { |
| struct btrfs_device *dev; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_path *path; |
| struct btrfs_key found_key; |
| struct extent_buffer *eb; |
| struct btrfs_extent_item *ei; |
| struct scrub_warning swarn; |
| unsigned long ptr = 0; |
| u64 flags = 0; |
| u64 ref_root; |
| u32 item_size; |
| u8 ref_level = 0; |
| int ret; |
| |
| WARN_ON(sblock->sector_count < 1); |
| dev = sblock->dev; |
| fs_info = sblock->sctx->fs_info; |
| |
| /* Super block error, no need to search extent tree. */ |
| if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { |
| btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", |
| errstr, btrfs_dev_name(dev), sblock->physical); |
| return; |
| } |
| path = btrfs_alloc_path(); |
| if (!path) |
| return; |
| |
| swarn.physical = sblock->physical; |
| swarn.logical = sblock->logical; |
| swarn.errstr = errstr; |
| swarn.dev = NULL; |
| |
| ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, |
| &flags); |
| if (ret < 0) |
| goto out; |
| |
| swarn.extent_item_size = found_key.offset; |
| |
| eb = path->nodes[0]; |
| ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); |
| item_size = btrfs_item_size(eb, path->slots[0]); |
| |
| if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| do { |
| ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, |
| item_size, &ref_root, |
| &ref_level); |
| btrfs_warn_in_rcu(fs_info, |
| "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", |
| errstr, swarn.logical, |
| btrfs_dev_name(dev), |
| swarn.physical, |
| ref_level ? "node" : "leaf", |
| ret < 0 ? -1 : ref_level, |
| ret < 0 ? -1 : ref_root); |
| } while (ret != 1); |
| btrfs_release_path(path); |
| } else { |
| struct btrfs_backref_walk_ctx ctx = { 0 }; |
| |
| btrfs_release_path(path); |
| |
| ctx.bytenr = found_key.objectid; |
| ctx.extent_item_pos = swarn.logical - found_key.objectid; |
| ctx.fs_info = fs_info; |
| |
| swarn.path = path; |
| swarn.dev = dev; |
| |
| iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| } |
| |
| static inline void scrub_get_recover(struct scrub_recover *recover) |
| { |
| refcount_inc(&recover->refs); |
| } |
| |
| static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, |
| struct scrub_recover *recover) |
| { |
| if (refcount_dec_and_test(&recover->refs)) { |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_put_bioc(recover->bioc); |
| kfree(recover); |
| } |
| } |
| |
| /* |
| * scrub_handle_errored_block gets called when either verification of the |
| * sectors failed or the bio failed to read, e.g. with EIO. In the latter |
| * case, this function handles all sectors in the bio, even though only one |
| * may be bad. |
| * The goal of this function is to repair the errored block by using the |
| * contents of one of the mirrors. |
| */ |
| static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) |
| { |
| struct scrub_ctx *sctx = sblock_to_check->sctx; |
| struct btrfs_device *dev = sblock_to_check->dev; |
| struct btrfs_fs_info *fs_info; |
| u64 logical; |
| unsigned int failed_mirror_index; |
| unsigned int is_metadata; |
| unsigned int have_csum; |
| /* One scrub_block for each mirror */ |
| struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 }; |
| struct scrub_block *sblock_bad; |
| int ret; |
| int mirror_index; |
| int sector_num; |
| int success; |
| bool full_stripe_locked; |
| unsigned int nofs_flag; |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| |
| BUG_ON(sblock_to_check->sector_count < 1); |
| fs_info = sctx->fs_info; |
| if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { |
| /* |
| * If we find an error in a super block, we just report it. |
| * They will get written with the next transaction commit |
| * anyway |
| */ |
| scrub_print_warning("super block error", sblock_to_check); |
| spin_lock(&sctx->stat_lock); |
| ++sctx->stat.super_errors; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| return 0; |
| } |
| logical = sblock_to_check->logical; |
| ASSERT(sblock_to_check->mirror_num); |
| failed_mirror_index = sblock_to_check->mirror_num - 1; |
| is_metadata = !(sblock_to_check->sectors[0]->flags & |
| BTRFS_EXTENT_FLAG_DATA); |
| have_csum = sblock_to_check->sectors[0]->have_csum; |
| |
| if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical)) |
| return 0; |
| |
| /* |
| * We must use GFP_NOFS because the scrub task might be waiting for a |
| * worker task executing this function and in turn a transaction commit |
| * might be waiting the scrub task to pause (which needs to wait for all |
| * the worker tasks to complete before pausing). |
| * We do allocations in the workers through insert_full_stripe_lock() |
| * and scrub_add_sector_to_wr_bio(), which happens down the call chain of |
| * this function. |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| /* |
| * For RAID5/6, race can happen for a different device scrub thread. |
| * For data corruption, Parity and Data threads will both try |
| * to recovery the data. |
| * Race can lead to doubly added csum error, or even unrecoverable |
| * error. |
| */ |
| ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); |
| if (ret < 0) { |
| memalloc_nofs_restore(nofs_flag); |
| spin_lock(&sctx->stat_lock); |
| if (ret == -ENOMEM) |
| sctx->stat.malloc_errors++; |
| sctx->stat.read_errors++; |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return ret; |
| } |
| |
| /* |
| * read all mirrors one after the other. This includes to |
| * re-read the extent or metadata block that failed (that was |
| * the cause that this fixup code is called) another time, |
| * sector by sector this time in order to know which sectors |
| * caused I/O errors and which ones are good (for all mirrors). |
| * It is the goal to handle the situation when more than one |
| * mirror contains I/O errors, but the errors do not |
| * overlap, i.e. the data can be repaired by selecting the |
| * sectors from those mirrors without I/O error on the |
| * particular sectors. One example (with blocks >= 2 * sectorsize) |
| * would be that mirror #1 has an I/O error on the first sector, |
| * the second sector is good, and mirror #2 has an I/O error on |
| * the second sector, but the first sector is good. |
| * Then the first sector of the first mirror can be repaired by |
| * taking the first sector of the second mirror, and the |
| * second sector of the second mirror can be repaired by |
| * copying the contents of the 2nd sector of the 1st mirror. |
| * One more note: if the sectors of one mirror contain I/O |
| * errors, the checksum cannot be verified. In order to get |
| * the best data for repairing, the first attempt is to find |
| * a mirror without I/O errors and with a validated checksum. |
| * Only if this is not possible, the sectors are picked from |
| * mirrors with I/O errors without considering the checksum. |
| * If the latter is the case, at the end, the checksum of the |
| * repaired area is verified in order to correctly maintain |
| * the statistics. |
| */ |
| for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { |
| /* |
| * Note: the two members refs and outstanding_sectors are not |
| * used in the blocks that are used for the recheck procedure. |
| * |
| * But alloc_scrub_block() will initialize sblock::ref anyway, |
| * so we can use scrub_block_put() to clean them up. |
| * |
| * And here we don't setup the physical/dev for the sblock yet, |
| * they will be correctly initialized in scrub_setup_recheck_block(). |
| */ |
| sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL, |
| logical, 0, 0, mirror_index); |
| if (!sblocks_for_recheck[mirror_index]) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| sctx->stat.read_errors++; |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| goto out; |
| } |
| } |
| |
| /* Setup the context, map the logical blocks and alloc the sectors */ |
| ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); |
| if (ret) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors++; |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| goto out; |
| } |
| BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); |
| sblock_bad = sblocks_for_recheck[failed_mirror_index]; |
| |
| /* build and submit the bios for the failed mirror, check checksums */ |
| scrub_recheck_block(fs_info, sblock_bad, 1); |
| |
| if (!sblock_bad->header_error && !sblock_bad->checksum_error && |
| sblock_bad->no_io_error_seen) { |
| /* |
| * The error disappeared after reading sector by sector, or |
| * the area was part of a huge bio and other parts of the |
| * bio caused I/O errors, or the block layer merged several |
| * read requests into one and the error is caused by a |
| * different bio (usually one of the two latter cases is |
| * the cause) |
| */ |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.unverified_errors++; |
| sblock_to_check->data_corrected = 1; |
| spin_unlock(&sctx->stat_lock); |
| |
| if (sctx->is_dev_replace) |
| scrub_write_block_to_dev_replace(sblock_bad); |
| goto out; |
| } |
| |
| if (!sblock_bad->no_io_error_seen) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors++; |
| spin_unlock(&sctx->stat_lock); |
| if (__ratelimit(&rs)) |
| scrub_print_warning("i/o error", sblock_to_check); |
| btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); |
| } else if (sblock_bad->checksum_error) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.csum_errors++; |
| spin_unlock(&sctx->stat_lock); |
| if (__ratelimit(&rs)) |
| scrub_print_warning("checksum error", sblock_to_check); |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| } else if (sblock_bad->header_error) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.verify_errors++; |
| spin_unlock(&sctx->stat_lock); |
| if (__ratelimit(&rs)) |
| scrub_print_warning("checksum/header error", |
| sblock_to_check); |
| if (sblock_bad->generation_error) |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_GENERATION_ERRS); |
| else |
| btrfs_dev_stat_inc_and_print(dev, |
| BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| } |
| |
| if (sctx->readonly) { |
| ASSERT(!sctx->is_dev_replace); |
| goto out; |
| } |
| |
| /* |
| * now build and submit the bios for the other mirrors, check |
| * checksums. |
| * First try to pick the mirror which is completely without I/O |
| * errors and also does not have a checksum error. |
| * If one is found, and if a checksum is present, the full block |
| * that is known to contain an error is rewritten. Afterwards |
| * the block is known to be corrected. |
| * If a mirror is found which is completely correct, and no |
| * checksum is present, only those sectors are rewritten that had |
| * an I/O error in the block to be repaired, since it cannot be |
| * determined, which copy of the other sectors is better (and it |
| * could happen otherwise that a correct sector would be |
| * overwritten by a bad one). |
| */ |
| for (mirror_index = 0; ;mirror_index++) { |
| struct scrub_block *sblock_other; |
| |
| if (mirror_index == failed_mirror_index) |
| continue; |
| |
| /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ |
| if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) { |
| if (mirror_index >= BTRFS_MAX_MIRRORS) |
| break; |
| if (!sblocks_for_recheck[mirror_index]->sector_count) |
| break; |
| |
| sblock_other = sblocks_for_recheck[mirror_index]; |
| } else { |
| struct scrub_recover *r = sblock_bad->sectors[0]->recover; |
| int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs; |
| |
| if (mirror_index >= max_allowed) |
| break; |
| if (!sblocks_for_recheck[1]->sector_count) |
| break; |
| |
| ASSERT(failed_mirror_index == 0); |
| sblock_other = sblocks_for_recheck[1]; |
| sblock_other->mirror_num = 1 + mirror_index; |
| } |
| |
| /* build and submit the bios, check checksums */ |
| scrub_recheck_block(fs_info, sblock_other, 0); |
| |
| if (!sblock_other->header_error && |
| !sblock_other->checksum_error && |
| sblock_other->no_io_error_seen) { |
| if (sctx->is_dev_replace) { |
| scrub_write_block_to_dev_replace(sblock_other); |
| goto corrected_error; |
| } else { |
| ret = scrub_repair_block_from_good_copy( |
| sblock_bad, sblock_other); |
| if (!ret) |
| goto corrected_error; |
| } |
| } |
| } |
| |
| if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) |
| goto did_not_correct_error; |
| |
| /* |
| * In case of I/O errors in the area that is supposed to be |
| * repaired, continue by picking good copies of those sectors. |
| * Select the good sectors from mirrors to rewrite bad sectors from |
| * the area to fix. Afterwards verify the checksum of the block |
| * that is supposed to be repaired. This verification step is |
| * only done for the purpose of statistic counting and for the |
| * final scrub report, whether errors remain. |
| * A perfect algorithm could make use of the checksum and try |
| * all possible combinations of sectors from the different mirrors |
| * until the checksum verification succeeds. For example, when |
| * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector |
| * of mirror #2 is readable but the final checksum test fails, |
| * then the 2nd sector of mirror #3 could be tried, whether now |
| * the final checksum succeeds. But this would be a rare |
| * exception and is therefore not implemented. At least it is |
| * avoided that the good copy is overwritten. |
| * A more useful improvement would be to pick the sectors |
| * without I/O error based on sector sizes (512 bytes on legacy |
| * disks) instead of on sectorsize. Then maybe 512 byte of one |
| * mirror could be repaired by taking 512 byte of a different |
| * mirror, even if other 512 byte sectors in the same sectorsize |
| * area are unreadable. |
| */ |
| success = 1; |
| for (sector_num = 0; sector_num < sblock_bad->sector_count; |
| sector_num++) { |
| struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; |
| struct scrub_block *sblock_other = NULL; |
| |
| /* Skip no-io-error sectors in scrub */ |
| if (!sector_bad->io_error && !sctx->is_dev_replace) |
| continue; |
| |
| if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) { |
| /* |
| * In case of dev replace, if raid56 rebuild process |
| * didn't work out correct data, then copy the content |
| * in sblock_bad to make sure target device is identical |
| * to source device, instead of writing garbage data in |
| * sblock_for_recheck array to target device. |
| */ |
| sblock_other = NULL; |
| } else if (sector_bad->io_error) { |
| /* Try to find no-io-error sector in mirrors */ |
| for (mirror_index = 0; |
| mirror_index < BTRFS_MAX_MIRRORS && |
| sblocks_for_recheck[mirror_index]->sector_count > 0; |
| mirror_index++) { |
| if (!sblocks_for_recheck[mirror_index]-> |
| sectors[sector_num]->io_error) { |
| sblock_other = sblocks_for_recheck[mirror_index]; |
| break; |
| } |
| } |
| if (!sblock_other) |
| success = 0; |
| } |
| |
| if (sctx->is_dev_replace) { |
| /* |
| * Did not find a mirror to fetch the sector from. |
| * scrub_write_sector_to_dev_replace() handles this |
| * case (sector->io_error), by filling the block with |
| * zeros before submitting the write request |
| */ |
| if (!sblock_other) |
| sblock_other = sblock_bad; |
| |
| if (scrub_write_sector_to_dev_replace(sblock_other, |
| sector_num) != 0) { |
| atomic64_inc( |
| &fs_info->dev_replace.num_write_errors); |
| success = 0; |
| } |
| } else if (sblock_other) { |
| ret = scrub_repair_sector_from_good_copy(sblock_bad, |
| sblock_other, |
| sector_num, 0); |
| if (0 == ret) |
| sector_bad->io_error = 0; |
| else |
| success = 0; |
| } |
| } |
| |
| if (success && !sctx->is_dev_replace) { |
| if (is_metadata || have_csum) { |
| /* |
| * need to verify the checksum now that all |
| * sectors on disk are repaired (the write |
| * request for data to be repaired is on its way). |
| * Just be lazy and use scrub_recheck_block() |
| * which re-reads the data before the checksum |
| * is verified, but most likely the data comes out |
| * of the page cache. |
| */ |
| scrub_recheck_block(fs_info, sblock_bad, 1); |
| if (!sblock_bad->header_error && |
| !sblock_bad->checksum_error && |
| sblock_bad->no_io_error_seen) |
| goto corrected_error; |
| else |
| goto did_not_correct_error; |
| } else { |
| corrected_error: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.corrected_errors++; |
| sblock_to_check->data_corrected = 1; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "fixed up error at logical %llu on dev %s", |
| logical, btrfs_dev_name(dev)); |
| } |
| } else { |
| did_not_correct_error: |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "unable to fixup (regular) error at logical %llu on dev %s", |
| logical, btrfs_dev_name(dev)); |
| } |
| |
| out: |
| for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { |
| struct scrub_block *sblock = sblocks_for_recheck[mirror_index]; |
| struct scrub_recover *recover; |
| int sector_index; |
| |
| /* Not allocated, continue checking the next mirror */ |
| if (!sblock) |
| continue; |
| |
| for (sector_index = 0; sector_index < sblock->sector_count; |
| sector_index++) { |
| /* |
| * Here we just cleanup the recover, each sector will be |
| * properly cleaned up by later scrub_block_put() |
| */ |
| recover = sblock->sectors[sector_index]->recover; |
| if (recover) { |
| scrub_put_recover(fs_info, recover); |
| sblock->sectors[sector_index]->recover = NULL; |
| } |
| } |
| scrub_block_put(sblock); |
| } |
| |
| ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); |
| memalloc_nofs_restore(nofs_flag); |
| if (ret < 0) |
| return ret; |
| return 0; |
| } |
| |
| static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) |
| { |
| if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) |
| return 2; |
| else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) |
| return 3; |
| else |
| return (int)bioc->num_stripes; |
| } |
| |
| static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, |
| u64 *raid_map, |
| int nstripes, int mirror, |
| int *stripe_index, |
| u64 *stripe_offset) |
| { |
| int i; |
| |
| if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| /* RAID5/6 */ |
| for (i = 0; i < nstripes; i++) { |
| if (raid_map[i] == RAID6_Q_STRIPE || |
| raid_map[i] == RAID5_P_STRIPE) |
| continue; |
| |
| if (logical >= raid_map[i] && |
| logical < raid_map[i] + BTRFS_STRIPE_LEN) |
| break; |
| } |
| |
| *stripe_index = i; |
| *stripe_offset = logical - raid_map[i]; |
| } else { |
| /* The other RAID type */ |
| *stripe_index = mirror; |
| *stripe_offset = 0; |
| } |
| } |
| |
| static int scrub_setup_recheck_block(struct scrub_block *original_sblock, |
| struct scrub_block *sblocks_for_recheck[]) |
| { |
| struct scrub_ctx *sctx = original_sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u64 logical = original_sblock->logical; |
| u64 length = original_sblock->sector_count << fs_info->sectorsize_bits; |
| u64 generation = original_sblock->sectors[0]->generation; |
| u64 flags = original_sblock->sectors[0]->flags; |
| u64 have_csum = original_sblock->sectors[0]->have_csum; |
| struct scrub_recover *recover; |
| struct btrfs_io_context *bioc; |
| u64 sublen; |
| u64 mapped_length; |
| u64 stripe_offset; |
| int stripe_index; |
| int sector_index = 0; |
| int mirror_index; |
| int nmirrors; |
| int ret; |
| |
| while (length > 0) { |
| sublen = min_t(u64, length, fs_info->sectorsize); |
| mapped_length = sublen; |
| bioc = NULL; |
| |
| /* |
| * With a length of sectorsize, each returned stripe represents |
| * one mirror |
| */ |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, |
| logical, &mapped_length, &bioc); |
| if (ret || !bioc || mapped_length < sublen) { |
| btrfs_put_bioc(bioc); |
| btrfs_bio_counter_dec(fs_info); |
| return -EIO; |
| } |
| |
| recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL); |
| if (!recover) { |
| btrfs_put_bioc(bioc); |
| btrfs_bio_counter_dec(fs_info); |
| return -ENOMEM; |
| } |
| |
| refcount_set(&recover->refs, 1); |
| recover->bioc = bioc; |
| recover->map_length = mapped_length; |
| |
| ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK); |
| |
| nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS); |
| |
| for (mirror_index = 0; mirror_index < nmirrors; |
| mirror_index++) { |
| struct scrub_block *sblock; |
| struct scrub_sector *sector; |
| |
| sblock = sblocks_for_recheck[mirror_index]; |
| sblock->sctx = sctx; |
| |
| sector = alloc_scrub_sector(sblock, logical); |
| if (!sector) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| scrub_put_recover(fs_info, recover); |
| return -ENOMEM; |
| } |
| sector->flags = flags; |
| sector->generation = generation; |
| sector->have_csum = have_csum; |
| if (have_csum) |
| memcpy(sector->csum, |
| original_sblock->sectors[0]->csum, |
| sctx->fs_info->csum_size); |
| |
| scrub_stripe_index_and_offset(logical, |
| bioc->map_type, |
| bioc->raid_map, |
| bioc->num_stripes - |
| bioc->num_tgtdevs, |
| mirror_index, |
| &stripe_index, |
| &stripe_offset); |
| /* |
| * We're at the first sector, also populate @sblock |
| * physical and dev. |
| */ |
| if (sector_index == 0) { |
| sblock->physical = |
| bioc->stripes[stripe_index].physical + |
| stripe_offset; |
| sblock->dev = bioc->stripes[stripe_index].dev; |
| sblock->physical_for_dev_replace = |
| original_sblock->physical_for_dev_replace; |
| } |
| |
| BUG_ON(sector_index >= original_sblock->sector_count); |
| scrub_get_recover(recover); |
| sector->recover = recover; |
| } |
| scrub_put_recover(fs_info, recover); |
| length -= sublen; |
| logical += sublen; |
| sector_index++; |
| } |
| |
| return 0; |
| } |
| |
| static void scrub_bio_wait_endio(struct bio *bio) |
| { |
| complete(bio->bi_private); |
| } |
| |
| static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, |
| struct bio *bio, |
| struct scrub_sector *sector) |
| { |
| DECLARE_COMPLETION_ONSTACK(done); |
| |
| bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >> |
| SECTOR_SHIFT; |
| bio->bi_private = &done; |
| bio->bi_end_io = scrub_bio_wait_endio; |
| raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num); |
| |
| wait_for_completion_io(&done); |
| return blk_status_to_errno(bio->bi_status); |
| } |
| |
| static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, |
| struct scrub_block *sblock) |
| { |
| struct scrub_sector *first_sector = sblock->sectors[0]; |
| struct bio *bio; |
| int i; |
| |
| /* All sectors in sblock belong to the same stripe on the same device. */ |
| ASSERT(sblock->dev); |
| if (!sblock->dev->bdev) |
| goto out; |
| |
| bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); |
| |
| for (i = 0; i < sblock->sector_count; i++) { |
| struct scrub_sector *sector = sblock->sectors[i]; |
| |
| bio_add_scrub_sector(bio, sector, fs_info->sectorsize); |
| } |
| |
| if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) { |
| bio_put(bio); |
| goto out; |
| } |
| |
| bio_put(bio); |
| |
| scrub_recheck_block_checksum(sblock); |
| |
| return; |
| out: |
| for (i = 0; i < sblock->sector_count; i++) |
| sblock->sectors[i]->io_error = 1; |
| |
| sblock->no_io_error_seen = 0; |
| } |
| |
| /* |
| * This function will check the on disk data for checksum errors, header errors |
| * and read I/O errors. If any I/O errors happen, the exact sectors which are |
| * errored are marked as being bad. The goal is to enable scrub to take those |
| * sectors that are not errored from all the mirrors so that the sectors that |
| * are errored in the just handled mirror can be repaired. |
| */ |
| static void scrub_recheck_block(struct btrfs_fs_info *fs_info, |
| struct scrub_block *sblock, |
| int retry_failed_mirror) |
| { |
| int i; |
| |
| sblock->no_io_error_seen = 1; |
| |
| /* short cut for raid56 */ |
| if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0])) |
| return scrub_recheck_block_on_raid56(fs_info, sblock); |
| |
| for (i = 0; i < sblock->sector_count; i++) { |
| struct scrub_sector *sector = sblock->sectors[i]; |
| struct bio bio; |
| struct bio_vec bvec; |
| |
| if (sblock->dev->bdev == NULL) { |
| sector->io_error = 1; |
| sblock->no_io_error_seen = 0; |
| continue; |
| } |
| |
| bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ); |
| bio_add_scrub_sector(&bio, sector, fs_info->sectorsize); |
| bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >> |
| SECTOR_SHIFT; |
| |
| btrfsic_check_bio(&bio); |
| if (submit_bio_wait(&bio)) { |
| sector->io_error = 1; |
| sblock->no_io_error_seen = 0; |
| } |
| |
| bio_uninit(&bio); |
| } |
| |
| if (sblock->no_io_error_seen) |
| scrub_recheck_block_checksum(sblock); |
| } |
| |
| static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector) |
| { |
| struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices; |
| int ret; |
| |
| ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| return !ret; |
| } |
| |
| static void scrub_recheck_block_checksum(struct scrub_block *sblock) |
| { |
| sblock->header_error = 0; |
| sblock->checksum_error = 0; |
| sblock->generation_error = 0; |
| |
| if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA) |
| scrub_checksum_data(sblock); |
| else |
| scrub_checksum_tree_block(sblock); |
| } |
| |
| static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good) |
| { |
| int i; |
| int ret = 0; |
| |
| for (i = 0; i < sblock_bad->sector_count; i++) { |
| int ret_sub; |
| |
| ret_sub = scrub_repair_sector_from_good_copy(sblock_bad, |
| sblock_good, i, 1); |
| if (ret_sub) |
| ret = ret_sub; |
| } |
| |
| return ret; |
| } |
| |
| static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, |
| struct scrub_block *sblock_good, |
| int sector_num, int force_write) |
| { |
| struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; |
| struct scrub_sector *sector_good = sblock_good->sectors[sector_num]; |
| struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; |
| const u32 sectorsize = fs_info->sectorsize; |
| |
| if (force_write || sblock_bad->header_error || |
| sblock_bad->checksum_error || sector_bad->io_error) { |
| struct bio bio; |
| struct bio_vec bvec; |
| int ret; |
| |
| if (!sblock_bad->dev->bdev) { |
| btrfs_warn_rl(fs_info, |
| "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); |
| return -EIO; |
| } |
| |
| bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE); |
| bio.bi_iter.bi_sector = (sblock_bad->physical + |
| sector_bad->offset) >> SECTOR_SHIFT; |
| ret = bio_add_scrub_sector(&bio, sector_good, sectorsize); |
| |
| btrfsic_check_bio(&bio); |
| ret = submit_bio_wait(&bio); |
| bio_uninit(&bio); |
| |
| if (ret) { |
| btrfs_dev_stat_inc_and_print(sblock_bad->dev, |
| BTRFS_DEV_STAT_WRITE_ERRS); |
| atomic64_inc(&fs_info->dev_replace.num_write_errors); |
| return -EIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) |
| { |
| struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; |
| int i; |
| |
| /* |
| * This block is used for the check of the parity on the source device, |
| * so the data needn't be written into the destination device. |
| */ |
| if (sblock->sparity) |
| return; |
| |
| for (i = 0; i < sblock->sector_count; i++) { |
| int ret; |
| |
| ret = scrub_write_sector_to_dev_replace(sblock, i); |
| if (ret) |
| atomic64_inc(&fs_info->dev_replace.num_write_errors); |
| } |
| } |
| |
| static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num) |
| { |
| const u32 sectorsize = sblock->sctx->fs_info->sectorsize; |
| struct scrub_sector *sector = sblock->sectors[sector_num]; |
| |
| if (sector->io_error) |
| memset(scrub_sector_get_kaddr(sector), 0, sectorsize); |
| |
| return scrub_add_sector_to_wr_bio(sblock->sctx, sector); |
| } |
| |
| static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) |
| { |
| int ret = 0; |
| u64 length; |
| |
| if (!btrfs_is_zoned(sctx->fs_info)) |
| return 0; |
| |
| if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) |
| return 0; |
| |
| if (sctx->write_pointer < physical) { |
| length = physical - sctx->write_pointer; |
| |
| ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, |
| sctx->write_pointer, length); |
| if (!ret) |
| sctx->write_pointer = physical; |
| } |
| return ret; |
| } |
| |
| static void scrub_block_get(struct scrub_block *sblock) |
| { |
| refcount_inc(&sblock->refs); |
| } |
| |
| static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, |
| struct scrub_sector *sector) |
| { |
| struct scrub_block *sblock = sector->sblock; |
| struct scrub_bio *sbio; |
| int ret; |
| const u32 sectorsize = sctx->fs_info->sectorsize; |
| |
| mutex_lock(&sctx->wr_lock); |
| again: |
| if (!sctx->wr_curr_bio) { |
| sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), |
| GFP_KERNEL); |
| if (!sctx->wr_curr_bio) { |
| mutex_unlock(&sctx->wr_lock); |
| return -ENOMEM; |
| } |
| sctx->wr_curr_bio->sctx = sctx; |
| sctx->wr_curr_bio->sector_count = 0; |
| } |
| sbio = sctx->wr_curr_bio; |
| if (sbio->sector_count == 0) { |
| ret = fill_writer_pointer_gap(sctx, sector->offset + |
| sblock->physical_for_dev_replace); |
| if (ret) { |
| mutex_unlock(&sctx->wr_lock); |
| return ret; |
| } |
| |
| sbio->physical = sblock->physical_for_dev_replace + sector->offset; |
| sbio->logical = sblock->logical + sector->offset; |
| sbio->dev = sctx->wr_tgtdev; |
| if (!sbio->bio) { |
| sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, |
| REQ_OP_WRITE, GFP_NOFS); |
| } |
| sbio->bio->bi_private = sbio; |
| sbio->bio->bi_end_io = scrub_wr_bio_end_io; |
| sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; |
| sbio->status = 0; |
| } else if (sbio->physical + sbio->sector_count * sectorsize != |
| sblock->physical_for_dev_replace + sector->offset || |
| sbio->logical + sbio->sector_count * sectorsize != |
| sblock->logical + sector->offset) { |
| scrub_wr_submit(sctx); |
| goto again; |
| } |
| |
| ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize); |
| if (ret != sectorsize) { |
| if (sbio->sector_count < 1) { |
| bio_put(sbio->bio); |
| sbio->bio = NULL; |
| mutex_unlock(&sctx->wr_lock); |
| return -EIO; |
| } |
| scrub_wr_submit(sctx); |
| goto again; |
| } |
| |
| sbio->sectors[sbio->sector_count] = sector; |
| scrub_sector_get(sector); |
| /* |
| * Since ssector no longer holds a page, but uses sblock::pages, we |
| * have to ensure the sblock had not been freed before our write bio |
| * finished. |
| */ |
| scrub_block_get(sector->sblock); |
| |
| sbio->sector_count++; |
| if (sbio->sector_count == sctx->sectors_per_bio) |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| return 0; |
| } |
| |
| static void scrub_wr_submit(struct scrub_ctx *sctx) |
| { |
| struct scrub_bio *sbio; |
| |
| if (!sctx->wr_curr_bio) |
| return; |
| |
| sbio = sctx->wr_curr_bio; |
| sctx->wr_curr_bio = NULL; |
| scrub_pending_bio_inc(sctx); |
| /* process all writes in a single worker thread. Then the block layer |
| * orders the requests before sending them to the driver which |
| * doubled the write performance on spinning disks when measured |
| * with Linux 3.5 */ |
| btrfsic_check_bio(sbio->bio); |
| submit_bio(sbio->bio); |
| |
| if (btrfs_is_zoned(sctx->fs_info)) |
| sctx->write_pointer = sbio->physical + sbio->sector_count * |
| sctx->fs_info->sectorsize; |
| } |
| |
| static void scrub_wr_bio_end_io(struct bio *bio) |
| { |
| struct scrub_bio *sbio = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sbio->dev->fs_info; |
| |
| sbio->status = bio->bi_status; |
| sbio->bio = bio; |
| |
| INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker); |
| queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); |
| } |
| |
| static void scrub_wr_bio_end_io_worker(struct work_struct *work) |
| { |
| struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); |
| struct scrub_ctx *sctx = sbio->sctx; |
| int i; |
| |
| ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); |
| if (sbio->status) { |
| struct btrfs_dev_replace *dev_replace = |
| &sbio->sctx->fs_info->dev_replace; |
| |
| for (i = 0; i < sbio->sector_count; i++) { |
| struct scrub_sector *sector = sbio->sectors[i]; |
| |
| sector->io_error = 1; |
| atomic64_inc(&dev_replace->num_write_errors); |
| } |
| } |
| |
| /* |
| * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in |
| * endio we should put the sblock. |
| */ |
| for (i = 0; i < sbio->sector_count; i++) { |
| scrub_block_put(sbio->sectors[i]->sblock); |
| scrub_sector_put(sbio->sectors[i]); |
| } |
| |
| bio_put(sbio->bio); |
| kfree(sbio); |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static int scrub_checksum(struct scrub_block *sblock) |
| { |
| u64 flags; |
| int ret; |
| |
| /* |
| * No need to initialize these stats currently, |
| * because this function only use return value |
| * instead of these stats value. |
| * |
| * Todo: |
| * always use stats |
| */ |
| sblock->header_error = 0; |
| sblock->generation_error = 0; |
| sblock->checksum_error = 0; |
| |
| WARN_ON(sblock->sector_count < 1); |
| flags = sblock->sectors[0]->flags; |
| ret = 0; |
| if (flags & BTRFS_EXTENT_FLAG_DATA) |
| ret = scrub_checksum_data(sblock); |
| else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) |
| ret = scrub_checksum_tree_block(sblock); |
| else if (flags & BTRFS_EXTENT_FLAG_SUPER) |
| ret = scrub_checksum_super(sblock); |
| else |
| WARN_ON(1); |
| if (ret) |
| scrub_handle_errored_block(sblock); |
| |
| return ret; |
| } |
| |
| static int scrub_checksum_data(struct scrub_block *sblock) |
| { |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| u8 csum[BTRFS_CSUM_SIZE]; |
| struct scrub_sector *sector; |
| char *kaddr; |
| |
| BUG_ON(sblock->sector_count < 1); |
| sector = sblock->sectors[0]; |
| if (!sector->have_csum) |
| return 0; |
| |
| kaddr = scrub_sector_get_kaddr(sector); |
| |
| shash->tfm = fs_info->csum_shash; |
| crypto_shash_init(shash); |
| |
| crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); |
| |
| if (memcmp(csum, sector->csum, fs_info->csum_size)) |
| sblock->checksum_error = 1; |
| return sblock->checksum_error; |
| } |
| |
| static int scrub_checksum_tree_block(struct scrub_block *sblock) |
| { |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_header *h; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| u8 on_disk_csum[BTRFS_CSUM_SIZE]; |
| /* |
| * This is done in sectorsize steps even for metadata as there's a |
| * constraint for nodesize to be aligned to sectorsize. This will need |
| * to change so we don't misuse data and metadata units like that. |
| */ |
| const u32 sectorsize = sctx->fs_info->sectorsize; |
| const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; |
| int i; |
| struct scrub_sector *sector; |
| char *kaddr; |
| |
| BUG_ON(sblock->sector_count < 1); |
| |
| /* Each member in sectors is just one sector */ |
| ASSERT(sblock->sector_count == num_sectors); |
| |
| sector = sblock->sectors[0]; |
| kaddr = scrub_sector_get_kaddr(sector); |
| h = (struct btrfs_header *)kaddr; |
| memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); |
| |
| /* |
| * we don't use the getter functions here, as we |
| * a) don't have an extent buffer and |
| * b) the page is already kmapped |
| */ |
| if (sblock->logical != btrfs_stack_header_bytenr(h)) |
| sblock->header_error = 1; |
| |
| if (sector->generation != btrfs_stack_header_generation(h)) { |
| sblock->header_error = 1; |
| sblock->generation_error = 1; |
| } |
| |
| if (!scrub_check_fsid(h->fsid, sector)) |
| sblock->header_error = 1; |
| |
| if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, |
| BTRFS_UUID_SIZE)) |
| sblock->header_error = 1; |
| |
| shash->tfm = fs_info->csum_shash; |
| crypto_shash_init(shash); |
| crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, |
| sectorsize - BTRFS_CSUM_SIZE); |
| |
| for (i = 1; i < num_sectors; i++) { |
| kaddr = scrub_sector_get_kaddr(sblock->sectors[i]); |
| crypto_shash_update(shash, kaddr, sectorsize); |
| } |
| |
| crypto_shash_final(shash, calculated_csum); |
| if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) |
| sblock->checksum_error = 1; |
| |
| return sblock->header_error || sblock->checksum_error; |
| } |
| |
| static int scrub_checksum_super(struct scrub_block *sblock) |
| { |
| struct btrfs_super_block *s; |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| u8 calculated_csum[BTRFS_CSUM_SIZE]; |
| struct scrub_sector *sector; |
| char *kaddr; |
| int fail_gen = 0; |
| int fail_cor = 0; |
| |
| BUG_ON(sblock->sector_count < 1); |
| sector = sblock->sectors[0]; |
| kaddr = scrub_sector_get_kaddr(sector); |
| s = (struct btrfs_super_block *)kaddr; |
| |
| if (sblock->logical != btrfs_super_bytenr(s)) |
| ++fail_cor; |
| |
| if (sector->generation != btrfs_super_generation(s)) |
| ++fail_gen; |
| |
| if (!scrub_check_fsid(s->fsid, sector)) |
| ++fail_cor; |
| |
| shash->tfm = fs_info->csum_shash; |
| crypto_shash_init(shash); |
| crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, |
| BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); |
| |
| if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) |
| ++fail_cor; |
| |
| return fail_cor + fail_gen; |
| } |
| |
| static void scrub_block_put(struct scrub_block *sblock) |
| { |
| if (refcount_dec_and_test(&sblock->refs)) { |
| int i; |
| |
| if (sblock->sparity) |
| scrub_parity_put(sblock->sparity); |
| |
| for (i = 0; i < sblock->sector_count; i++) |
| scrub_sector_put(sblock->sectors[i]); |
| for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) { |
| if (sblock->pages[i]) { |
| detach_scrub_page_private(sblock->pages[i]); |
| __free_page(sblock->pages[i]); |
| } |
| } |
| kfree(sblock); |
| } |
| } |
| |
| static void scrub_sector_get(struct scrub_sector *sector) |
| { |
| atomic_inc(§or->refs); |
| } |
| |
| static void scrub_sector_put(struct scrub_sector *sector) |
| { |
| if (atomic_dec_and_test(§or->refs)) |
| kfree(sector); |
| } |
| |
| /* |
| * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 |
| * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. |
| */ |
| static void scrub_throttle(struct scrub_ctx *sctx) |
| { |
| const int time_slice = 1000; |
| struct scrub_bio *sbio; |
| struct btrfs_device *device; |
| s64 delta; |
| ktime_t now; |
| u32 div; |
| u64 bwlimit; |
| |
| sbio = sctx->bios[sctx->curr]; |
| device = sbio->dev; |
| bwlimit = READ_ONCE(device->scrub_speed_max); |
| if (bwlimit == 0) |
| return; |
| |
| /* |
| * Slice is divided into intervals when the IO is submitted, adjust by |
| * bwlimit and maximum of 64 intervals. |
| */ |
| div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); |
| div = min_t(u32, 64, div); |
| |
| /* Start new epoch, set deadline */ |
| now = ktime_get(); |
| if (sctx->throttle_deadline == 0) { |
| sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); |
| sctx->throttle_sent = 0; |
| } |
| |
| /* Still in the time to send? */ |
| if (ktime_before(now, sctx->throttle_deadline)) { |
| /* If current bio is within the limit, send it */ |
| sctx->throttle_sent += sbio->bio->bi_iter.bi_size; |
| if (sctx->throttle_sent <= div_u64(bwlimit, div)) |
| return; |
| |
| /* We're over the limit, sleep until the rest of the slice */ |
| delta = ktime_ms_delta(sctx->throttle_deadline, now); |
| } else { |
| /* New request after deadline, start new epoch */ |
| delta = 0; |
| } |
| |
| if (delta) { |
| long timeout; |
| |
| timeout = div_u64(delta * HZ, 1000); |
| schedule_timeout_interruptible(timeout); |
| } |
| |
| /* Next call will start the deadline period */ |
| sctx->throttle_deadline = 0; |
| } |
| |
| static void scrub_submit(struct scrub_ctx *sctx) |
| { |
| struct scrub_bio *sbio; |
| |
| if (sctx->curr == -1) |
| return; |
| |
| scrub_throttle(sctx); |
| |
| sbio = sctx->bios[sctx->curr]; |
| sctx->curr = -1; |
| scrub_pending_bio_inc(sctx); |
| btrfsic_check_bio(sbio->bio); |
| submit_bio(sbio->bio); |
| } |
| |
| static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx, |
| struct scrub_sector *sector) |
| { |
| struct scrub_block *sblock = sector->sblock; |
| struct scrub_bio *sbio; |
| const u32 sectorsize = sctx->fs_info->sectorsize; |
| int ret; |
| |
| again: |
| /* |
| * grab a fresh bio or wait for one to become available |
| */ |
| while (sctx->curr == -1) { |
| spin_lock(&sctx->list_lock); |
| sctx->curr = sctx->first_free; |
| if (sctx->curr != -1) { |
| sctx->first_free = sctx->bios[sctx->curr]->next_free; |
| sctx->bios[sctx->curr]->next_free = -1; |
| sctx->bios[sctx->curr]->sector_count = 0; |
| spin_unlock(&sctx->list_lock); |
| } else { |
| spin_unlock(&sctx->list_lock); |
| wait_event(sctx->list_wait, sctx->first_free != -1); |
| } |
| } |
| sbio = sctx->bios[sctx->curr]; |
| if (sbio->sector_count == 0) { |
| sbio->physical = sblock->physical + sector->offset; |
| sbio->logical = sblock->logical + sector->offset; |
| sbio->dev = sblock->dev; |
| if (!sbio->bio) { |
| sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, |
| REQ_OP_READ, GFP_NOFS); |
| } |
| sbio->bio->bi_private = sbio; |
| sbio->bio->bi_end_io = scrub_bio_end_io; |
| sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; |
| sbio->status = 0; |
| } else if (sbio->physical + sbio->sector_count * sectorsize != |
| sblock->physical + sector->offset || |
| sbio->logical + sbio->sector_count * sectorsize != |
| sblock->logical + sector->offset || |
| sbio->dev != sblock->dev) { |
| scrub_submit(sctx); |
| goto again; |
| } |
| |
| sbio->sectors[sbio->sector_count] = sector; |
| ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize); |
| if (ret != sectorsize) { |
| if (sbio->sector_count < 1) { |
| bio_put(sbio->bio); |
| sbio->bio = NULL; |
| return -EIO; |
| } |
| scrub_submit(sctx); |
| goto again; |
| } |
| |
| scrub_block_get(sblock); /* one for the page added to the bio */ |
| atomic_inc(&sblock->outstanding_sectors); |
| sbio->sector_count++; |
| if (sbio->sector_count == sctx->sectors_per_bio) |
| scrub_submit(sctx); |
| |
| return 0; |
| } |
| |
| static void scrub_missing_raid56_end_io(struct bio *bio) |
| { |
| struct scrub_block *sblock = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; |
| |
| btrfs_bio_counter_dec(fs_info); |
| if (bio->bi_status) |
| sblock->no_io_error_seen = 0; |
| |
| bio_put(bio); |
| |
| queue_work(fs_info->scrub_workers, &sblock->work); |
| } |
| |
| static void scrub_missing_raid56_worker(struct work_struct *work) |
| { |
| struct scrub_block *sblock = container_of(work, struct scrub_block, work); |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u64 logical; |
| struct btrfs_device *dev; |
| |
| logical = sblock->logical; |
| dev = sblock->dev; |
| |
| if (sblock->no_io_error_seen) |
| scrub_recheck_block_checksum(sblock); |
| |
| if (!sblock->no_io_error_seen) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "IO error rebuilding logical %llu for dev %s", |
| logical, btrfs_dev_name(dev)); |
| } else if (sblock->header_error || sblock->checksum_error) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_err_rl_in_rcu(fs_info, |
| "failed to rebuild valid logical %llu for dev %s", |
| logical, btrfs_dev_name(dev)); |
| } else { |
| scrub_write_block_to_dev_replace(sblock); |
| } |
| |
| if (sctx->is_dev_replace && sctx->flush_all_writes) { |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| } |
| |
| scrub_block_put(sblock); |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static void scrub_missing_raid56_pages(struct scrub_block *sblock) |
| { |
| struct scrub_ctx *sctx = sblock->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| u64 length = sblock->sector_count << fs_info->sectorsize_bits; |
| u64 logical = sblock->logical; |
| struct btrfs_io_context *bioc = NULL; |
| struct bio *bio; |
| struct btrfs_raid_bio *rbio; |
| int ret; |
| int i; |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, |
| &length, &bioc); |
| if (ret || !bioc || !bioc->raid_map) |
| goto bioc_out; |
| |
| if (WARN_ON(!sctx->is_dev_replace || |
| !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { |
| /* |
| * We shouldn't be scrubbing a missing device. Even for dev |
| * replace, we should only get here for RAID 5/6. We either |
| * managed to mount something with no mirrors remaining or |
| * there's a bug in scrub_find_good_copy()/btrfs_map_block(). |
| */ |
| goto bioc_out; |
| } |
| |
| bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); |
| bio->bi_iter.bi_sector = logical >> 9; |
| bio->bi_private = sblock; |
| bio->bi_end_io = scrub_missing_raid56_end_io; |
| |
| rbio = raid56_alloc_missing_rbio(bio, bioc); |
| if (!rbio) |
| goto rbio_out; |
| |
| for (i = 0; i < sblock->sector_count; i++) { |
| struct scrub_sector *sector = sblock->sectors[i]; |
| |
| raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector), |
| scrub_sector_get_page_offset(sector), |
| sector->offset + sector->sblock->logical); |
| } |
| |
| INIT_WORK(&sblock->work, scrub_missing_raid56_worker); |
| scrub_block_get(sblock); |
| scrub_pending_bio_inc(sctx); |
| raid56_submit_missing_rbio(rbio); |
| btrfs_put_bioc(bioc); |
| return; |
| |
| rbio_out: |
| bio_put(bio); |
| bioc_out: |
| btrfs_bio_counter_dec(fs_info); |
| btrfs_put_bioc(bioc); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| } |
| |
| static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, u64 flags, |
| u64 gen, int mirror_num, u8 *csum, |
| u64 physical_for_dev_replace) |
| { |
| struct scrub_block *sblock; |
| const u32 sectorsize = sctx->fs_info->sectorsize; |
| int index; |
| |
| sblock = alloc_scrub_block(sctx, dev, logical, physical, |
| physical_for_dev_replace, mirror_num); |
| if (!sblock) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return -ENOMEM; |
| } |
| |
| for (index = 0; len > 0; index++) { |
| struct scrub_sector *sector; |
| /* |
| * Here we will allocate one page for one sector to scrub. |
| * This is fine if PAGE_SIZE == sectorsize, but will cost |
| * more memory for PAGE_SIZE > sectorsize case. |
| */ |
| u32 l = min(sectorsize, len); |
| |
| sector = alloc_scrub_sector(sblock, logical); |
| if (!sector) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| scrub_block_put(sblock); |
| return -ENOMEM; |
| } |
| sector->flags = flags; |
| sector->generation = gen; |
| if (csum) { |
| sector->have_csum = 1; |
| memcpy(sector->csum, csum, sctx->fs_info->csum_size); |
| } else { |
| sector->have_csum = 0; |
| } |
| len -= l; |
| logical += l; |
| physical += l; |
| physical_for_dev_replace += l; |
| } |
| |
| WARN_ON(sblock->sector_count == 0); |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { |
| /* |
| * This case should only be hit for RAID 5/6 device replace. See |
| * the comment in scrub_missing_raid56_pages() for details. |
| */ |
| scrub_missing_raid56_pages(sblock); |
| } else { |
| for (index = 0; index < sblock->sector_count; index++) { |
| struct scrub_sector *sector = sblock->sectors[index]; |
| int ret; |
| |
| ret = scrub_add_sector_to_rd_bio(sctx, sector); |
| if (ret) { |
| scrub_block_put(sblock); |
| return ret; |
| } |
| } |
| |
| if (flags & BTRFS_EXTENT_FLAG_SUPER) |
| scrub_submit(sctx); |
| } |
| |
| /* last one frees, either here or in bio completion for last page */ |
| scrub_block_put(sblock); |
| return 0; |
| } |
| |
| static void scrub_bio_end_io(struct bio *bio) |
| { |
| struct scrub_bio *sbio = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sbio->dev->fs_info; |
| |
| sbio->status = bio->bi_status; |
| sbio->bio = bio; |
| |
| queue_work(fs_info->scrub_workers, &sbio->work); |
| } |
| |
| static void scrub_bio_end_io_worker(struct work_struct *work) |
| { |
| struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); |
| struct scrub_ctx *sctx = sbio->sctx; |
| int i; |
| |
| ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); |
| if (sbio->status) { |
| for (i = 0; i < sbio->sector_count; i++) { |
| struct scrub_sector *sector = sbio->sectors[i]; |
| |
| sector->io_error = 1; |
| sector->sblock->no_io_error_seen = 0; |
| } |
| } |
| |
| /* Now complete the scrub_block items that have all pages completed */ |
| for (i = 0; i < sbio->sector_count; i++) { |
| struct scrub_sector *sector = sbio->sectors[i]; |
| struct scrub_block *sblock = sector->sblock; |
| |
| if (atomic_dec_and_test(&sblock->outstanding_sectors)) |
| scrub_block_complete(sblock); |
| scrub_block_put(sblock); |
| } |
| |
| bio_put(sbio->bio); |
| sbio->bio = NULL; |
| spin_lock(&sctx->list_lock); |
| sbio->next_free = sctx->first_free; |
| sctx->first_free = sbio->index; |
| spin_unlock(&sctx->list_lock); |
| |
| if (sctx->is_dev_replace && sctx->flush_all_writes) { |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| } |
| |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, |
| unsigned long *bitmap, |
| u64 start, u32 len) |
| { |
| u64 offset; |
| u32 nsectors; |
| u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; |
| |
| if (len >= sparity->stripe_len) { |
| bitmap_set(bitmap, 0, sparity->nsectors); |
| return; |
| } |
| |
| start -= sparity->logic_start; |
| start = div64_u64_rem(start, sparity->stripe_len, &offset); |
| offset = offset >> sectorsize_bits; |
| nsectors = len >> sectorsize_bits; |
| |
| if (offset + nsectors <= sparity->nsectors) { |
| bitmap_set(bitmap, offset, nsectors); |
| return; |
| } |
| |
| bitmap_set(bitmap, offset, sparity->nsectors - offset); |
| bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); |
| } |
| |
| static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, |
| u64 start, u32 len) |
| { |
| __scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len); |
| } |
| |
| static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, |
| u64 start, u32 len) |
| { |
| __scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len); |
| } |
| |
| static void scrub_block_complete(struct scrub_block *sblock) |
| { |
| int corrupted = 0; |
| |
| if (!sblock->no_io_error_seen) { |
| corrupted = 1; |
| scrub_handle_errored_block(sblock); |
| } else { |
| /* |
| * if has checksum error, write via repair mechanism in |
| * dev replace case, otherwise write here in dev replace |
| * case. |
| */ |
| corrupted = scrub_checksum(sblock); |
| if (!corrupted && sblock->sctx->is_dev_replace) |
| scrub_write_block_to_dev_replace(sblock); |
| } |
| |
| if (sblock->sparity && corrupted && !sblock->data_corrected) { |
| u64 start = sblock->logical; |
| u64 end = sblock->logical + |
| sblock->sectors[sblock->sector_count - 1]->offset + |
| sblock->sctx->fs_info->sectorsize; |
| |
| ASSERT(end - start <= U32_MAX); |
| scrub_parity_mark_sectors_error(sblock->sparity, |
| start, end - start); |
| } |
| } |
| |
| static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) |
| { |
| sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; |
| list_del(&sum->list); |
| kfree(sum); |
| } |
| |
| /* |
| * Find the desired csum for range [logical, logical + sectorsize), and store |
| * the csum into @csum. |
| * |
| * The search source is sctx->csum_list, which is a pre-populated list |
| * storing bytenr ordered csum ranges. We're responsible to cleanup any range |
| * that is before @logical. |
| * |
| * Return 0 if there is no csum for the range. |
| * Return 1 if there is csum for the range and copied to @csum. |
| */ |
| static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) |
| { |
| bool found = false; |
| |
| while (!list_empty(&sctx->csum_list)) { |
| struct btrfs_ordered_sum *sum = NULL; |
| unsigned long index; |
| unsigned long num_sectors; |
| |
| sum = list_first_entry(&sctx->csum_list, |
| struct btrfs_ordered_sum, list); |
| /* The current csum range is beyond our range, no csum found */ |
| if (sum->bytenr > logical) |
| break; |
| |
| /* |
| * The current sum is before our bytenr, since scrub is always |
| * done in bytenr order, the csum will never be used anymore, |
| * clean it up so that later calls won't bother with the range, |
| * and continue search the next range. |
| */ |
| if (sum->bytenr + sum->len <= logical) { |
| drop_csum_range(sctx, sum); |
| continue; |
| } |
| |
| /* Now the csum range covers our bytenr, copy the csum */ |
| found = true; |
| index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; |
| num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; |
| |
| memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, |
| sctx->fs_info->csum_size); |
| |
| /* Cleanup the range if we're at the end of the csum range */ |
| if (index == num_sectors - 1) |
| drop_csum_range(sctx, sum); |
| break; |
| } |
| if (!found) |
| return 0; |
| return 1; |
| } |
| |
| /* scrub extent tries to collect up to 64 kB for each bio */ |
| static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, |
| u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, u64 flags, |
| u64 gen, int mirror_num) |
| { |
| struct btrfs_device *src_dev = dev; |
| u64 src_physical = physical; |
| int src_mirror = mirror_num; |
| int ret; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| u32 blocksize; |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| blocksize = map->stripe_len; |
| else |
| blocksize = sctx->fs_info->sectorsize; |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.data_extents_scrubbed++; |
| sctx->stat.data_bytes_scrubbed += len; |
| spin_unlock(&sctx->stat_lock); |
| } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| blocksize = map->stripe_len; |
| else |
| blocksize = sctx->fs_info->nodesize; |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.tree_extents_scrubbed++; |
| sctx->stat.tree_bytes_scrubbed += len; |
| spin_unlock(&sctx->stat_lock); |
| } else { |
| blocksize = sctx->fs_info->sectorsize; |
| WARN_ON(1); |
| } |
| |
| /* |
| * For dev-replace case, we can have @dev being a missing device. |
| * Regular scrub will avoid its execution on missing device at all, |
| * as that would trigger tons of read error. |
| * |
| * Reading from missing device will cause read error counts to |
| * increase unnecessarily. |
| * So here we change the read source to a good mirror. |
| */ |
| if (sctx->is_dev_replace && !dev->bdev) |
| scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical, |
| &src_dev, &src_mirror); |
| while (len) { |
| u32 l = min(len, blocksize); |
| int have_csum = 0; |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| /* push csums to sbio */ |
| have_csum = scrub_find_csum(sctx, logical, csum); |
| if (have_csum == 0) |
| ++sctx->stat.no_csum; |
| } |
| ret = scrub_sectors(sctx, logical, l, src_physical, src_dev, |
| flags, gen, src_mirror, |
| have_csum ? csum : NULL, physical); |
| if (ret) |
| return ret; |
| len -= l; |
| logical += l; |
| physical += l; |
| src_physical += l; |
| } |
| return 0; |
| } |
| |
| static int scrub_sectors_for_parity(struct scrub_parity *sparity, |
| u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, |
| u64 flags, u64 gen, int mirror_num, u8 *csum) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| struct scrub_block *sblock; |
| const u32 sectorsize = sctx->fs_info->sectorsize; |
| int index; |
| |
| ASSERT(IS_ALIGNED(len, sectorsize)); |
| |
| sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num); |
| if (!sblock) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return -ENOMEM; |
| } |
| |
| sblock->sparity = sparity; |
| scrub_parity_get(sparity); |
| |
| for (index = 0; len > 0; index++) { |
| struct scrub_sector *sector; |
| |
| sector = alloc_scrub_sector(sblock, logical); |
| if (!sector) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| scrub_block_put(sblock); |
| return -ENOMEM; |
| } |
| sblock->sectors[index] = sector; |
| /* For scrub parity */ |
| scrub_sector_get(sector); |
| list_add_tail(§or->list, &sparity->sectors_list); |
| sector->flags = flags; |
| sector->generation = gen; |
| if (csum) { |
| sector->have_csum = 1; |
| memcpy(sector->csum, csum, sctx->fs_info->csum_size); |
| } else { |
| sector->have_csum = 0; |
| } |
| |
| /* Iterate over the stripe range in sectorsize steps */ |
| len -= sectorsize; |
| logical += sectorsize; |
| physical += sectorsize; |
| } |
| |
| WARN_ON(sblock->sector_count == 0); |
| for (index = 0; index < sblock->sector_count; index++) { |
| struct scrub_sector *sector = sblock->sectors[index]; |
| int ret; |
| |
| ret = scrub_add_sector_to_rd_bio(sctx, sector); |
| if (ret) { |
| scrub_block_put(sblock); |
| return ret; |
| } |
| } |
| |
| /* Last one frees, either here or in bio completion for last sector */ |
| scrub_block_put(sblock); |
| return 0; |
| } |
| |
| static int scrub_extent_for_parity(struct scrub_parity *sparity, |
| u64 logical, u32 len, |
| u64 physical, struct btrfs_device *dev, |
| u64 flags, u64 gen, int mirror_num) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| int ret; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| u32 blocksize; |
| |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { |
| scrub_parity_mark_sectors_error(sparity, logical, len); |
| return 0; |
| } |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| blocksize = sparity->stripe_len; |
| } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { |
| blocksize = sparity->stripe_len; |
| } else { |
| blocksize = sctx->fs_info->sectorsize; |
| WARN_ON(1); |
| } |
| |
| while (len) { |
| u32 l = min(len, blocksize); |
| int have_csum = 0; |
| |
| if (flags & BTRFS_EXTENT_FLAG_DATA) { |
| /* push csums to sbio */ |
| have_csum = scrub_find_csum(sctx, logical, csum); |
| if (have_csum == 0) |
| goto skip; |
| } |
| ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev, |
| flags, gen, mirror_num, |
| have_csum ? csum : NULL); |
| if (ret) |
| return ret; |
| skip: |
| len -= l; |
| logical += l; |
| physical += l; |
| } |
| return 0; |
| } |
| |
| /* |
| * Given a physical address, this will calculate it's |
| * logical offset. if this is a parity stripe, it will return |
| * the most left data stripe's logical offset. |
| * |
| * return 0 if it is a data stripe, 1 means parity stripe. |
| */ |
| static int get_raid56_logic_offset(u64 physical, int num, |
| struct map_lookup *map, u64 *offset, |
| u64 *stripe_start) |
| { |
| int i; |
| int j = 0; |
| u64 stripe_nr; |
| u64 last_offset; |
| u32 stripe_index; |
| u32 rot; |
| const int data_stripes = nr_data_stripes(map); |
| |
| last_offset = (physical - map->stripes[num].physical) * data_stripes; |
| if (stripe_start) |
| *stripe_start = last_offset; |
| |
| *offset = last_offset; |
| for (i = 0; i < data_stripes; i++) { |
| *offset = last_offset + i * map->stripe_len; |
| |
| stripe_nr = div64_u64(*offset, map->stripe_len); |
| stripe_nr = div_u64(stripe_nr, data_stripes); |
| |
| /* Work out the disk rotation on this stripe-set */ |
| stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); |
| /* calculate which stripe this data locates */ |
| rot += i; |
| stripe_index = rot % map->num_stripes; |
| if (stripe_index == num) |
| return 0; |
| if (stripe_index < num) |
| j++; |
| } |
| *offset = last_offset + j * map->stripe_len; |
| return 1; |
| } |
| |
| static void scrub_free_parity(struct scrub_parity *sparity) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| struct scrub_sector *curr, *next; |
| int nbits; |
| |
| nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors); |
| if (nbits) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.read_errors += nbits; |
| sctx->stat.uncorrectable_errors += nbits; |
| spin_unlock(&sctx->stat_lock); |
| } |
| |
| list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) { |
| list_del_init(&curr->list); |
| scrub_sector_put(curr); |
| } |
| |
| kfree(sparity); |
| } |
| |
| static void scrub_parity_bio_endio_worker(struct work_struct *work) |
| { |
| struct scrub_parity *sparity = container_of(work, struct scrub_parity, |
| work); |
| struct scrub_ctx *sctx = sparity->sctx; |
| |
| btrfs_bio_counter_dec(sctx->fs_info); |
| scrub_free_parity(sparity); |
| scrub_pending_bio_dec(sctx); |
| } |
| |
| static void scrub_parity_bio_endio(struct bio *bio) |
| { |
| struct scrub_parity *sparity = bio->bi_private; |
| struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; |
| |
| if (bio->bi_status) |
| bitmap_or(&sparity->ebitmap, &sparity->ebitmap, |
| &sparity->dbitmap, sparity->nsectors); |
| |
| bio_put(bio); |
| |
| INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker); |
| queue_work(fs_info->scrub_parity_workers, &sparity->work); |
| } |
| |
| static void scrub_parity_check_and_repair(struct scrub_parity *sparity) |
| { |
| struct scrub_ctx *sctx = sparity->sctx; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct bio *bio; |
| struct btrfs_raid_bio *rbio; |
| struct btrfs_io_context *bioc = NULL; |
| u64 length; |
| int ret; |
| |
| if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap, |
| &sparity->ebitmap, sparity->nsectors)) |
| goto out; |
| |
| length = sparity->logic_end - sparity->logic_start; |
| |
| btrfs_bio_counter_inc_blocked(fs_info); |
| ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, |
| &length, &bioc); |
| if (ret || !bioc || !bioc->raid_map) |
| goto bioc_out; |
| |
| bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); |
| bio->bi_iter.bi_sector = sparity->logic_start >> 9; |
| bio->bi_private = sparity; |
| bio->bi_end_io = scrub_parity_bio_endio; |
| |
| rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, |
| sparity->scrub_dev, |
| &sparity->dbitmap, |
| sparity->nsectors); |
| btrfs_put_bioc(bioc); |
| if (!rbio) |
| goto rbio_out; |
| |
| scrub_pending_bio_inc(sctx); |
| raid56_parity_submit_scrub_rbio(rbio); |
| return; |
| |
| rbio_out: |
| bio_put(bio); |
| bioc_out: |
| btrfs_bio_counter_dec(fs_info); |
| bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap, |
| sparity->nsectors); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| out: |
| scrub_free_parity(sparity); |
| } |
| |
| static void scrub_parity_get(struct scrub_parity *sparity) |
| { |
| refcount_inc(&sparity->refs); |
| } |
| |
| static void scrub_parity_put(struct scrub_parity *sparity) |
| { |
| if (!refcount_dec_and_test(&sparity->refs)) |
| return; |
| |
| scrub_parity_check_and_repair(sparity); |
| } |
| |
| /* |
| * Return 0 if the extent item range covers any byte of the range. |
| * Return <0 if the extent item is before @search_start. |
| * Return >0 if the extent item is after @start_start + @search_len. |
| */ |
| static int compare_extent_item_range(struct btrfs_path *path, |
| u64 search_start, u64 search_len) |
| { |
| struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; |
| u64 len; |
| struct btrfs_key key; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || |
| key.type == BTRFS_METADATA_ITEM_KEY); |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| len = fs_info->nodesize; |
| else |
| len = key.offset; |
| |
| if (key.objectid + len <= search_start) |
| return -1; |
| if (key.objectid >= search_start + search_len) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * Locate one extent item which covers any byte in range |
| * [@search_start, @search_start + @search_length) |
| * |
| * If the path is not initialized, we will initialize the search by doing |
| * a btrfs_search_slot(). |
| * If the path is already initialized, we will use the path as the initial |
| * slot, to avoid duplicated btrfs_search_slot() calls. |
| * |
| * NOTE: If an extent item starts before @search_start, we will still |
| * return the extent item. This is for data extent crossing stripe boundary. |
| * |
| * Return 0 if we found such extent item, and @path will point to the extent item. |
| * Return >0 if no such extent item can be found, and @path will be released. |
| * Return <0 if hit fatal error, and @path will be released. |
| */ |
| static int find_first_extent_item(struct btrfs_root *extent_root, |
| struct btrfs_path *path, |
| u64 search_start, u64 search_len) |
| { |
| struct btrfs_fs_info *fs_info = extent_root->fs_info; |
| struct btrfs_key key; |
| int ret; |
| |
| /* Continue using the existing path */ |
| if (path->nodes[0]) |
| goto search_forward; |
| |
| if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) |
| key.type = BTRFS_METADATA_ITEM_KEY; |
| else |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| key.objectid = search_start; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| return ret; |
| |
| ASSERT(ret > 0); |
| /* |
| * Here we intentionally pass 0 as @min_objectid, as there could be |
| * an extent item starting before @search_start. |
| */ |
| ret = btrfs_previous_extent_item(extent_root, path, 0); |
| if (ret < 0) |
| return ret; |
| /* |
| * No matter whether we have found an extent item, the next loop will |
| * properly do every check on the key. |
| */ |
| search_forward: |
| while (true) { |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid >= search_start + search_len) |
| break; |
| if (key.type != BTRFS_METADATA_ITEM_KEY && |
| key.type != BTRFS_EXTENT_ITEM_KEY) |
| goto next; |
| |
| ret = compare_extent_item_range(path, search_start, search_len); |
| if (ret == 0) |
| return ret; |
| if (ret > 0) |
| break; |
| next: |
| path->slots[0]++; |
| if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(extent_root, path); |
| if (ret) { |
| /* Either no more item or fatal error */ |
| btrfs_release_path(path); |
| return ret; |
| } |
| } |
| } |
| btrfs_release_path(path); |
| return 1; |
| } |
| |
| static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, |
| u64 *size_ret, u64 *flags_ret, u64 *generation_ret) |
| { |
| struct btrfs_key key; |
| struct btrfs_extent_item *ei; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || |
| key.type == BTRFS_EXTENT_ITEM_KEY); |
| *extent_start_ret = key.objectid; |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| *size_ret = path->nodes[0]->fs_info->nodesize; |
| else |
| *size_ret = key.offset; |
| ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); |
| *flags_ret = btrfs_extent_flags(path->nodes[0], ei); |
| *generation_ret = btrfs_extent_generation(path->nodes[0], ei); |
| } |
| |
| static bool does_range_cross_boundary(u64 extent_start, u64 extent_len, |
| u64 boundary_start, u64 boudary_len) |
| { |
| return (extent_start < boundary_start && |
| extent_start + extent_len > boundary_start) || |
| (extent_start < boundary_start + boudary_len && |
| extent_start + extent_len > boundary_start + boudary_len); |
| } |
| |
| static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx, |
| struct scrub_parity *sparity, |
| struct map_lookup *map, |
| struct btrfs_device *sdev, |
| struct btrfs_path *path, |
| u64 logical) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); |
| struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical); |
| u64 cur_logical = logical; |
| int ret; |
| |
| ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); |
| |
| /* Path must not be populated */ |
| ASSERT(!path->nodes[0]); |
| |
| while (cur_logical < logical + map->stripe_len) { |
| struct btrfs_io_context *bioc = NULL; |
| struct btrfs_device *extent_dev; |
| u64 extent_start; |
| u64 extent_size; |
| u64 mapped_length; |
| u64 extent_flags; |
| u64 extent_gen; |
| u64 extent_physical; |
| u64 extent_mirror_num; |
| |
| ret = find_first_extent_item(extent_root, path, cur_logical, |
| logical + map->stripe_len - cur_logical); |
| /* No more extent item in this data stripe */ |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| if (ret < 0) |
| break; |
| get_extent_info(path, &extent_start, &extent_size, &extent_flags, |
| &extent_gen); |
| |
| /* Metadata should not cross stripe boundaries */ |
| if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && |
| does_range_cross_boundary(extent_start, extent_size, |
| logical, map->stripe_len)) { |
| btrfs_err(fs_info, |
| "scrub: tree block %llu spanning stripes, ignored. logical=%llu", |
| extent_start, logical); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| cur_logical += extent_size; |
| continue; |
| } |
| |
| /* Skip hole range which doesn't have any extent */ |
| cur_logical = max(extent_start, cur_logical); |
| |
| /* Truncate the range inside this data stripe */ |
| extent_size = min(extent_start + extent_size, |
| logical + map->stripe_len) - cur_logical; |
| extent_start = cur_logical; |
| ASSERT(extent_size <= U32_MAX); |
| |
| scrub_parity_mark_sectors_data(sparity, extent_start, extent_size); |
| |
| mapped_length = extent_size; |
| ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start, |
| &mapped_length, &bioc, 0); |
| if (!ret && (!bioc || mapped_length < extent_size)) |
| ret = -EIO; |
| if (ret) { |
| btrfs_put_bioc(bioc); |
| scrub_parity_mark_sectors_error(sparity, extent_start, |
| extent_size); |
| break; |
| } |
| extent_physical = bioc->stripes[0].physical; |
| extent_mirror_num = bioc->mirror_num; |
| extent_dev = bioc->stripes[0].dev; |
| btrfs_put_bioc(bioc); |
| |
| ret = btrfs_lookup_csums_list(csum_root, extent_start, |
| extent_start + extent_size - 1, |
| &sctx->csum_list, 1, false); |
| if (ret) { |
| scrub_parity_mark_sectors_error(sparity, extent_start, |
| extent_size); |
| break; |
| } |
| |
| ret = scrub_extent_for_parity(sparity, extent_start, |
| extent_size, extent_physical, |
| extent_dev, extent_flags, |
| extent_gen, extent_mirror_num); |
| scrub_free_csums(sctx); |
| |
| if (ret) { |
| scrub_parity_mark_sectors_error(sparity, extent_start, |
| extent_size); |
| break; |
| } |
| |
| cond_resched(); |
| cur_logical += extent_size; |
| } |
| btrfs_release_path(path); |
| return ret; |
| } |
| |
| static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, |
| struct map_lookup *map, |
| struct btrfs_device *sdev, |
| u64 logic_start, |
| u64 logic_end) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_path *path; |
| u64 cur_logical; |
| int ret; |
| struct scrub_parity *sparity; |
| int nsectors; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| return -ENOMEM; |
| } |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| |
| ASSERT(map->stripe_len <= U32_MAX); |
| nsectors = map->stripe_len >> fs_info->sectorsize_bits; |
| ASSERT(nsectors <= BITS_PER_LONG); |
| sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS); |
| if (!sparity) { |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.malloc_errors++; |
| spin_unlock(&sctx->stat_lock); |
| btrfs_free_path(path); |
| return -ENOMEM; |
| } |
| |
| ASSERT(map->stripe_len <= U32_MAX); |
| sparity->stripe_len = map->stripe_len; |
| sparity->nsectors = nsectors; |
| sparity->sctx = sctx; |
| sparity->scrub_dev = sdev; |
| sparity->logic_start = logic_start; |
| sparity->logic_end = logic_end; |
| refcount_set(&sparity->refs, 1); |
| INIT_LIST_HEAD(&sparity->sectors_list); |
| |
| ret = 0; |
| for (cur_logical = logic_start; cur_logical < logic_end; |
| cur_logical += map->stripe_len) { |
| ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map, |
| sdev, path, cur_logical); |
| if (ret < 0) |
| break; |
| } |
| |
| scrub_parity_put(sparity); |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| btrfs_free_path(path); |
| return ret < 0 ? ret : 0; |
| } |
| |
| static void sync_replace_for_zoned(struct scrub_ctx *sctx) |
| { |
| if (!btrfs_is_zoned(sctx->fs_info)) |
| return; |
| |
| sctx->flush_all_writes = true; |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| } |
| |
| static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, |
| u64 physical, u64 physical_end) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| int ret = 0; |
| |
| if (!btrfs_is_zoned(fs_info)) |
| return 0; |
| |
| wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| |
| mutex_lock(&sctx->wr_lock); |
| if (sctx->write_pointer < physical_end) { |
| ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, |
| physical, |
| sctx->write_pointer); |
| if (ret) |
| btrfs_err(fs_info, |
| "zoned: failed to recover write pointer"); |
| } |
| mutex_unlock(&sctx->wr_lock); |
| btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); |
| |
| return ret; |
| } |
| |
| /* |
| * Scrub one range which can only has simple mirror based profile. |
| * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in |
| * RAID0/RAID10). |
| * |
| * Since we may need to handle a subset of block group, we need @logical_start |
| * and @logical_length parameter. |
| */ |
| static int scrub_simple_mirror(struct scrub_ctx *sctx, |
| struct btrfs_root *extent_root, |
| struct btrfs_root *csum_root, |
| struct btrfs_block_group *bg, |
| struct map_lookup *map, |
| u64 logical_start, u64 logical_length, |
| struct btrfs_device *device, |
| u64 physical, int mirror_num) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| const u64 logical_end = logical_start + logical_length; |
| /* An artificial limit, inherit from old scrub behavior */ |
| const u32 max_length = SZ_64K; |
| struct btrfs_path path = { 0 }; |
| u64 cur_logical = logical_start; |
| int ret; |
| |
| /* The range must be inside the bg */ |
| ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); |
| |
| path.search_commit_root = 1; |
| path.skip_locking = 1; |
| /* Go through each extent items inside the logical range */ |
| while (cur_logical < logical_end) { |
| u64 extent_start; |
| u64 extent_len; |
| u64 extent_flags; |
| u64 extent_gen; |
| u64 scrub_len; |
| |
| /* Canceled? */ |
| if (atomic_read(&fs_info->scrub_cancel_req) || |
| atomic_read(&sctx->cancel_req)) { |
| ret = -ECANCELED; |
| break; |
| } |
| /* Paused? */ |
| if (atomic_read(&fs_info->scrub_pause_req)) { |
| /* Push queued extents */ |
| sctx->flush_all_writes = true; |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| wait_event(sctx->list_wait, |
| atomic_read(&sctx->bios_in_flight) == 0); |
| sctx->flush_all_writes = false; |
| scrub_blocked_if_needed(fs_info); |
| } |
| /* Block group removed? */ |
| spin_lock(&bg->lock); |
| if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { |
| spin_unlock(&bg->lock); |
| ret = 0; |
| break; |
| } |
| spin_unlock(&bg->lock); |
| |
| ret = find_first_extent_item(extent_root, &path, cur_logical, |
| logical_end - cur_logical); |
| if (ret > 0) { |
| /* No more extent, just update the accounting */ |
| sctx->stat.last_physical = physical + logical_length; |
| ret = 0; |
| break; |
| } |
| if (ret < 0) |
| break; |
| get_extent_info(&path, &extent_start, &extent_len, |
| &extent_flags, &extent_gen); |
| /* Skip hole range which doesn't have any extent */ |
| cur_logical = max(extent_start, cur_logical); |
| |
| /* |
| * Scrub len has three limits: |
| * - Extent size limit |
| * - Scrub range limit |
| * This is especially imporatant for RAID0/RAID10 to reuse |
| * this function |
| * - Max scrub size limit |
| */ |
| scrub_len = min(min(extent_start + extent_len, |
| logical_end), cur_logical + max_length) - |
| cur_logical; |
| |
| if (extent_flags & BTRFS_EXTENT_FLAG_DATA) { |
| ret = btrfs_lookup_csums_list(csum_root, cur_logical, |
| cur_logical + scrub_len - 1, |
| &sctx->csum_list, 1, false); |
| if (ret) |
| break; |
| } |
| if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && |
| does_range_cross_boundary(extent_start, extent_len, |
| logical_start, logical_length)) { |
| btrfs_err(fs_info, |
| "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)", |
| extent_start, logical_start, logical_end); |
| spin_lock(&sctx->stat_lock); |
| sctx->stat.uncorrectable_errors++; |
| spin_unlock(&sctx->stat_lock); |
| cur_logical += scrub_len; |
| continue; |
| } |
| ret = scrub_extent(sctx, map, cur_logical, scrub_len, |
| cur_logical - logical_start + physical, |
| device, extent_flags, extent_gen, |
| mirror_num); |
| scrub_free_csums(sctx); |
| if (ret) |
| break; |
| if (sctx->is_dev_replace) |
| sync_replace_for_zoned(sctx); |
| cur_logical += scrub_len; |
| /* Don't hold CPU for too long time */ |
| cond_resched(); |
| } |
| btrfs_release_path(&path); |
| return ret; |
| } |
| |
| /* Calculate the full stripe length for simple stripe based profiles */ |
| static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) |
| { |
| ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)); |
| |
| return map->num_stripes / map->sub_stripes * map->stripe_len; |
| } |
| |
| /* Get the logical bytenr for the stripe */ |
| static u64 simple_stripe_get_logical(struct map_lookup *map, |
| struct btrfs_block_group *bg, |
| int stripe_index) |
| { |
| ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)); |
| ASSERT(stripe_index < map->num_stripes); |
| |
| /* |
| * (stripe_index / sub_stripes) gives how many data stripes we need to |
| * skip. |
| */ |
| return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start; |
| } |
| |
| /* Get the mirror number for the stripe */ |
| static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) |
| { |
| ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)); |
| ASSERT(stripe_index < map->num_stripes); |
| |
| /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ |
| return stripe_index % map->sub_stripes + 1; |
| } |
| |
| static int scrub_simple_stripe(struct scrub_ctx *sctx, |
| struct btrfs_root *extent_root, |
| struct btrfs_root *csum_root, |
| struct btrfs_block_group *bg, |
| struct map_lookup *map, |
| struct btrfs_device *device, |
| int stripe_index) |
| { |
| const u64 logical_increment = simple_stripe_full_stripe_len(map); |
| const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); |
| const u64 orig_physical = map->stripes[stripe_index].physical; |
| const int mirror_num = simple_stripe_mirror_num(map, stripe_index); |
| u64 cur_logical = orig_logical; |
| u64 cur_physical = orig_physical; |
| int ret = 0; |
| |
| while (cur_logical < bg->start + bg->length) { |
| /* |
| * Inside each stripe, RAID0 is just SINGLE, and RAID10 is |
| * just RAID1, so we can reuse scrub_simple_mirror() to scrub |
| * this stripe. |
| */ |
| ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map, |
| cur_logical, map->stripe_len, device, |
| cur_physical, mirror_num); |
| if (ret) |
| return ret; |
| /* Skip to next stripe which belongs to the target device */ |
| cur_logical += logical_increment; |
| /* For physical offset, we just go to next stripe */ |
| cur_physical += map->stripe_len; |
| } |
| return ret; |
| } |
| |
| static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, |
| struct btrfs_block_group *bg, |
| struct extent_map *em, |
| struct btrfs_device *scrub_dev, |
| int stripe_index) |
| { |
| struct btrfs_path *path; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_root *root; |
| struct btrfs_root *csum_root; |
| struct blk_plug plug; |
| struct map_lookup *map = em->map_lookup; |
| const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; |
| const u64 chunk_logical = bg->start; |
| int ret; |
| u64 physical = map->stripes[stripe_index].physical; |
| const u64 dev_stripe_len = btrfs_calc_stripe_length(em); |
| const u64 physical_end = physical + dev_stripe_len; |
| u64 logical; |
| u64 logic_end; |
| /* The logical increment after finishing one stripe */ |
| u64 increment; |
| /* Offset inside the chunk */ |
| u64 offset; |
| u64 stripe_logical; |
| u64 stripe_end; |
| int stop_loop = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * work on commit root. The related disk blocks are static as |
| * long as COW is applied. This means, it is save to rewrite |
| * them to repair disk errors without any race conditions |
| */ |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| path->reada = READA_FORWARD; |
| |
| wait_event(sctx->list_wait, |
| atomic_read(&sctx->bios_in_flight) == 0); |
| scrub_blocked_if_needed(fs_info); |
| |
| root = btrfs_extent_root(fs_info, bg->start); |
| csum_root = btrfs_csum_root(fs_info, bg->start); |
| |
| /* |
| * collect all data csums for the stripe to avoid seeking during |
| * the scrub. This might currently (crc32) end up to be about 1MB |
| */ |
| blk_start_plug(&plug); |
| |
| if (sctx->is_dev_replace && |
| btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { |
| mutex_lock(&sctx->wr_lock); |
| sctx->write_pointer = physical; |
| mutex_unlock(&sctx->wr_lock); |
| sctx->flush_all_writes = true; |
| } |
| |
| /* |
| * There used to be a big double loop to handle all profiles using the |
| * same routine, which grows larger and more gross over time. |
| * |
| * So here we handle each profile differently, so simpler profiles |
| * have simpler scrubbing function. |
| */ |
| if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID56_MASK))) { |
| /* |
| * Above check rules out all complex profile, the remaining |
| * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple |
| * mirrored duplication without stripe. |
| * |
| * Only @physical and @mirror_num needs to calculated using |
| * @stripe_index. |
| */ |
| ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, |
| bg->start, bg->length, scrub_dev, |
| map->stripes[stripe_index].physical, |
| stripe_index + 1); |
| offset = 0; |
| goto out; |
| } |
| if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { |
| ret = scrub_simple_stripe(sctx, root, csum_root, bg, map, |
| scrub_dev, stripe_index); |
| offset = map->stripe_len * (stripe_index / map->sub_stripes); |
| goto out; |
| } |
| |
| /* Only RAID56 goes through the old code */ |
| ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); |
| ret = 0; |
| |
| /* Calculate the logical end of the stripe */ |
| get_raid56_logic_offset(physical_end, stripe_index, |
| map, &logic_end, NULL); |
| logic_end += chunk_logical; |
| |
| /* Initialize @offset in case we need to go to out: label */ |
| get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); |
| increment = map->stripe_len * nr_data_stripes(map); |
| |
| /* |
| * Due to the rotation, for RAID56 it's better to iterate each stripe |
| * using their physical offset. |
| */ |
| while (physical < physical_end) { |
| ret = get_raid56_logic_offset(physical, stripe_index, map, |
| &logical, &stripe_logical); |
| logical += chunk_logical; |
| if (ret) { |
| /* it is parity strip */ |
| stripe_logical += chunk_logical; |
| stripe_end = stripe_logical + increment; |
| ret = scrub_raid56_parity(sctx, map, scrub_dev, |
| stripe_logical, |
| stripe_end); |
| if (ret) |
| goto out; |
| goto next; |
| } |
| |
| /* |
| * Now we're at a data stripe, scrub each extents in the range. |
| * |
| * At this stage, if we ignore the repair part, inside each data |
| * stripe it is no different than SINGLE profile. |
| * We can reuse scrub_simple_mirror() here, as the repair part |
| * is still based on @mirror_num. |
| */ |
| ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, |
| logical, map->stripe_len, |
| scrub_dev, physical, 1); |
| if (ret < 0) |
| goto out; |
| next: |
| logical += increment; |
| physical += map->stripe_len; |
| spin_lock(&sctx->stat_lock); |
| if (stop_loop) |
| sctx->stat.last_physical = |
| map->stripes[stripe_index].physical + dev_stripe_len; |
| else |
| sctx->stat.last_physical = physical; |
| spin_unlock(&sctx->stat_lock); |
| if (stop_loop) |
| break; |
| } |
| out: |
| /* push queued extents */ |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| blk_finish_plug(&plug); |
| btrfs_free_path(path); |
| |
| if (sctx->is_dev_replace && ret >= 0) { |
| int ret2; |
| |
| ret2 = sync_write_pointer_for_zoned(sctx, |
| chunk_logical + offset, |
| map->stripes[stripe_index].physical, |
| physical_end); |
| if (ret2) |
| ret = ret2; |
| } |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, |
| struct btrfs_block_group *bg, |
| struct btrfs_device *scrub_dev, |
| u64 dev_offset, |
| u64 dev_extent_len) |
| { |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct extent_map_tree *map_tree = &fs_info->mapping_tree; |
| struct map_lookup *map; |
| struct extent_map *em; |
| int i; |
| int ret = 0; |
| |
| read_lock(&map_tree->lock); |
| em = lookup_extent_mapping(map_tree, bg->start, bg->length); |
| read_unlock(&map_tree->lock); |
| |
| if (!em) { |
| /* |
| * Might have been an unused block group deleted by the cleaner |
| * kthread or relocation. |
| */ |
| spin_lock(&bg->lock); |
| if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) |
| ret = -EINVAL; |
| spin_unlock(&bg->lock); |
| |
| return ret; |
| } |
| if (em->start != bg->start) |
| goto out; |
| if (em->len < dev_extent_len) |
| goto out; |
| |
| map = em->map_lookup; |
| for (i = 0; i < map->num_stripes; ++i) { |
| if (map->stripes[i].dev->bdev == scrub_dev->bdev && |
| map->stripes[i].physical == dev_offset) { |
| ret = scrub_stripe(sctx, bg, em, scrub_dev, i); |
| if (ret) |
| goto out; |
| } |
| } |
| out: |
| free_extent_map(em); |
| |
| return ret; |
| } |
| |
| static int finish_extent_writes_for_zoned(struct btrfs_root *root, |
| struct btrfs_block_group *cache) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_trans_handle *trans; |
| |
| if (!btrfs_is_zoned(fs_info)) |
| return 0; |
| |
| btrfs_wait_block_group_reservations(cache); |
| btrfs_wait_nocow_writers(cache); |
| btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| return btrfs_commit_transaction(trans); |
| } |
| |
| static noinline_for_stack |
| int scrub_enumerate_chunks(struct scrub_ctx *sctx, |
| struct btrfs_device *scrub_dev, u64 start, u64 end) |
| { |
| struct btrfs_dev_extent *dev_extent = NULL; |
| struct btrfs_path *path; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| u64 chunk_offset; |
| int ret = 0; |
| int ro_set; |
| int slot; |
| struct extent_buffer *l; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_block_group *cache; |
| struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_FORWARD; |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| |
| key.objectid = scrub_dev->devid; |
| key.offset = 0ull; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| while (1) { |
| u64 dev_extent_len; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| break; |
| if (ret > 0) { |
| if (path->slots[0] >= |
| btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| break; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| } else { |
| ret = 0; |
| } |
| } |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| btrfs_item_key_to_cpu(l, &found_key, slot); |
| |
| if (found_key.objectid != scrub_dev->devid) |
| break; |
| |
| if (found_key.type != BTRFS_DEV_EXTENT_KEY) |
| break; |
| |
| if (found_key.offset >= end) |
| break; |
| |
| if (found_key.offset < key.offset) |
| break; |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| dev_extent_len = btrfs_dev_extent_length(l, dev_extent); |
| |
| if (found_key.offset + dev_extent_len <= start) |
| goto skip; |
| |
| chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); |
| |
| /* |
| * get a reference on the corresponding block group to prevent |
| * the chunk from going away while we scrub it |
| */ |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| |
| /* some chunks are removed but not committed to disk yet, |
| * continue scrubbing */ |
| if (!cache) |
| goto skip; |
| |
| ASSERT(cache->start <= chunk_offset); |
| /* |
| * We are using the commit root to search for device extents, so |
| * that means we could have found a device extent item from a |
| * block group that was deleted in the current transaction. The |
| * logical start offset of the deleted block group, stored at |
| * @chunk_offset, might be part of the logical address range of |
| * a new block group (which uses different physical extents). |
| * In this case btrfs_lookup_block_group() has returned the new |
| * block group, and its start address is less than @chunk_offset. |
| * |
| * We skip such new block groups, because it's pointless to |
| * process them, as we won't find their extents because we search |
| * for them using the commit root of the extent tree. For a device |
| * replace it's also fine to skip it, we won't miss copying them |
| * to the target device because we have the write duplication |
| * setup through the regular write path (by btrfs_map_block()), |
| * and we have committed a transaction when we started the device |
| * replace, right after setting up the device replace state. |
| */ |
| if (cache->start < chunk_offset) { |
| btrfs_put_block_group(cache); |
| goto skip; |
| } |
| |
| if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { |
| if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { |
| btrfs_put_block_group(cache); |
| goto skip; |
| } |
| } |
| |
| /* |
| * Make sure that while we are scrubbing the corresponding block |
| * group doesn't get its logical address and its device extents |
| * reused for another block group, which can possibly be of a |
| * different type and different profile. We do this to prevent |
| * false error detections and crashes due to bogus attempts to |
| * repair extents. |
| */ |
| spin_lock(&cache->lock); |
| if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { |
| spin_unlock(&cache->lock); |
| btrfs_put_block_group(cache); |
| goto skip; |
| } |
| btrfs_freeze_block_group(cache); |
| spin_unlock(&cache->lock); |
| |
| /* |
| * we need call btrfs_inc_block_group_ro() with scrubs_paused, |
| * to avoid deadlock caused by: |
| * btrfs_inc_block_group_ro() |
| * -> btrfs_wait_for_commit() |
| * -> btrfs_commit_transaction() |
| * -> btrfs_scrub_pause() |
| */ |
| scrub_pause_on(fs_info); |
| |
| /* |
| * Don't do chunk preallocation for scrub. |
| * |
| * This is especially important for SYSTEM bgs, or we can hit |
| * -EFBIG from btrfs_finish_chunk_alloc() like: |
| * 1. The only SYSTEM bg is marked RO. |
| * Since SYSTEM bg is small, that's pretty common. |
| * 2. New SYSTEM bg will be allocated |
| * Due to regular version will allocate new chunk. |
| * 3. New SYSTEM bg is empty and will get cleaned up |
| * Before cleanup really happens, it's marked RO again. |
| * 4. Empty SYSTEM bg get scrubbed |
| * We go back to 2. |
| * |
| * This can easily boost the amount of SYSTEM chunks if cleaner |
| * thread can't be triggered fast enough, and use up all space |
| * of btrfs_super_block::sys_chunk_array |
| * |
| * While for dev replace, we need to try our best to mark block |
| * group RO, to prevent race between: |
| * - Write duplication |
| * Contains latest data |
| * - Scrub copy |
| * Contains data from commit tree |
| * |
| * If target block group is not marked RO, nocow writes can |
| * be overwritten by scrub copy, causing data corruption. |
| * So for dev-replace, it's not allowed to continue if a block |
| * group is not RO. |
| */ |
| ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); |
| if (!ret && sctx->is_dev_replace) { |
| ret = finish_extent_writes_for_zoned(root, cache); |
| if (ret) { |
| btrfs_dec_block_group_ro(cache); |
| scrub_pause_off(fs_info); |
| btrfs_put_block_group(cache); |
| break; |
| } |
| } |
| |
| if (ret == 0) { |
| ro_set = 1; |
| } else if (ret == -ENOSPC && !sctx->is_dev_replace) { |
| /* |
| * btrfs_inc_block_group_ro return -ENOSPC when it |
| * failed in creating new chunk for metadata. |
| * It is not a problem for scrub, because |
| * metadata are always cowed, and our scrub paused |
| * commit_transactions. |
| */ |
| ro_set = 0; |
| } else if (ret == -ETXTBSY) { |
| btrfs_warn(fs_info, |
| "skipping scrub of block group %llu due to active swapfile", |
| cache->start); |
| scrub_pause_off(fs_info); |
| ret = 0; |
| goto skip_unfreeze; |
| } else { |
| btrfs_warn(fs_info, |
| "failed setting block group ro: %d", ret); |
| btrfs_unfreeze_block_group(cache); |
| btrfs_put_block_group(cache); |
| scrub_pause_off(fs_info); |
| break; |
| } |
| |
| /* |
| * Now the target block is marked RO, wait for nocow writes to |
| * finish before dev-replace. |
| * COW is fine, as COW never overwrites extents in commit tree. |
| */ |
| if (sctx->is_dev_replace) { |
| btrfs_wait_nocow_writers(cache); |
| btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, |
| cache->length); |
| } |
| |
| scrub_pause_off(fs_info); |
| down_write(&dev_replace->rwsem); |
| dev_replace->cursor_right = found_key.offset + dev_extent_len; |
| dev_replace->cursor_left = found_key.offset; |
| dev_replace->item_needs_writeback = 1; |
| up_write(&dev_replace->rwsem); |
| |
| ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, |
| dev_extent_len); |
| |
| /* |
| * flush, submit all pending read and write bios, afterwards |
| * wait for them. |
| * Note that in the dev replace case, a read request causes |
| * write requests that are submitted in the read completion |
| * worker. Therefore in the current situation, it is required |
| * that all write requests are flushed, so that all read and |
| * write requests are really completed when bios_in_flight |
| * changes to 0. |
| */ |
| sctx->flush_all_writes = true; |
| scrub_submit(sctx); |
| mutex_lock(&sctx->wr_lock); |
| scrub_wr_submit(sctx); |
| mutex_unlock(&sctx->wr_lock); |
| |
| wait_event(sctx->list_wait, |
| atomic_read(&sctx->bios_in_flight) == 0); |
| |
| scrub_pause_on(fs_info); |
| |
| /* |
| * must be called before we decrease @scrub_paused. |
| * make sure we don't block transaction commit while |
| * we are waiting pending workers finished. |
| */ |
| wait_event(sctx->list_wait, |
| atomic_read(&sctx->workers_pending) == 0); |
| sctx->flush_all_writes = false; |
| |
| scrub_pause_off(fs_info); |
| |
| if (sctx->is_dev_replace && |
| !btrfs_finish_block_group_to_copy(dev_replace->srcdev, |
| cache, found_key.offset)) |
| ro_set = 0; |
| |
| down_write(&dev_replace->rwsem); |
| dev_replace->cursor_left = dev_replace->cursor_right; |
| dev_replace->item_needs_writeback = 1; |
| up_write(&dev_replace->rwsem); |
| |
| if (ro_set) |
| btrfs_dec_block_group_ro(cache); |
| |
| /* |
| * We might have prevented the cleaner kthread from deleting |
| * this block group if it was already unused because we raced |
| * and set it to RO mode first. So add it back to the unused |
| * list, otherwise it might not ever be deleted unless a manual |
| * balance is triggered or it becomes used and unused again. |
| */ |
| spin_lock(&cache->lock); |
| if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && |
| !cache->ro && cache->reserved == 0 && cache->used == 0) { |
| spin_unlock(&cache->lock); |
| if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) |
| btrfs_discard_queue_work(&fs_info->discard_ctl, |
| cache); |
| else |
| btrfs_mark_bg_unused(cache); |
| } else { |
| spin_unlock(&cache->lock); |
| } |
| skip_unfreeze: |
| btrfs_unfreeze_block_group(cache); |
| btrfs_put_block_group(cache); |
| if (ret) |
| break; |
| if (sctx->is_dev_replace && |
| atomic64_read(&dev_replace->num_write_errors) > 0) { |
| ret = -EIO; |
| break; |
| } |
| if (sctx->stat.malloc_errors > 0) { |
| ret = -ENOMEM; |
| break; |
| } |
| skip: |
| key.offset = found_key.offset + dev_extent_len; |
| btrfs_release_path(path); |
| } |
| |
| btrfs_free_path(path); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, |
| struct btrfs_device *scrub_dev) |
| { |
| int i; |
| u64 bytenr; |
| u64 gen; |
| int ret; |
| struct btrfs_fs_info *fs_info = sctx->fs_info; |
| |
| if (BTRFS_FS_ERROR(fs_info)) |
| return -EROFS; |
| |
| /* Seed devices of a new filesystem has their own generation. */ |
| if (scrub_dev->fs_devices != fs_info->fs_devices) |
| gen = scrub_dev->generation; |
| else |
| gen = fs_info->last_trans_committed; |
| |
| for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| bytenr = btrfs_sb_offset(i); |
| if (bytenr + BTRFS_SUPER_INFO_SIZE > |
| scrub_dev->commit_total_bytes) |
| break; |
| if (!btrfs_check_super_location(scrub_dev, bytenr)) |
| continue; |
| |
| ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, |
| scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, |
| NULL, bytenr); |
| if (ret) |
| return ret; |
| } |
| wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| |
| return 0; |
| } |
| |
| static void scrub_workers_put(struct btrfs_fs_info *fs_info) |
| { |
| if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, |
| &fs_info->scrub_lock)) { |
| struct workqueue_struct *scrub_workers = fs_info->scrub_workers; |
| struct workqueue_struct *scrub_wr_comp = |
| fs_info->scrub_wr_completion_workers; |
| struct workqueue_struct *scrub_parity = |
| fs_info->scrub_parity_workers; |
| |
| fs_info->scrub_workers = NULL; |
| fs_info->scrub_wr_completion_workers = NULL; |
| fs_info->scrub_parity_workers = NULL; |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| if (scrub_workers) |
| destroy_workqueue(scrub_workers); |
| if (scrub_wr_comp) |
| destroy_workqueue(scrub_wr_comp); |
| if (scrub_parity) |
| destroy_workqueue(scrub_parity); |
| } |
| } |
| |
| /* |
| * get a reference count on fs_info->scrub_workers. start worker if necessary |
| */ |
| static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, |
| int is_dev_replace) |
| { |
| struct workqueue_struct *scrub_workers = NULL; |
| struct workqueue_struct *scrub_wr_comp = NULL; |
| struct workqueue_struct *scrub_parity = NULL; |
| unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; |
| int max_active = fs_info->thread_pool_size; |
| int ret = -ENOMEM; |
| |
| if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) |
| return 0; |
| |
| scrub_workers = alloc_workqueue("btrfs-scrub", flags, |
| is_dev_replace ? 1 : max_active); |
| if (!scrub_workers) |
| goto fail_scrub_workers; |
| |
| scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active); |
| if (!scrub_wr_comp) |
| goto fail_scrub_wr_completion_workers; |
| |
| scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active); |
| if (!scrub_parity) |
| goto fail_scrub_parity_workers; |
| |
| mutex_lock(&fs_info->scrub_lock); |
| if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { |
| ASSERT(fs_info->scrub_workers == NULL && |
| fs_info->scrub_wr_completion_workers == NULL && |
| fs_info->scrub_parity_workers == NULL); |
| fs_info->scrub_workers = scrub_workers; |
| fs_info->scrub_wr_completion_workers = scrub_wr_comp; |
| fs_info->scrub_parity_workers = scrub_parity; |
| refcount_set(&fs_info->scrub_workers_refcnt, 1); |
| mutex_unlock(&fs_info->scrub_lock); |
| return 0; |
| } |
| /* Other thread raced in and created the workers for us */ |
| refcount_inc(&fs_info->scrub_workers_refcnt); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| ret = 0; |
| destroy_workqueue(scrub_parity); |
| fail_scrub_parity_workers: |
| destroy_workqueue(scrub_wr_comp); |
| fail_scrub_wr_completion_workers: |
| destroy_workqueue(scrub_workers); |
| fail_scrub_workers: |
| return ret; |
| } |
| |
| int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, |
| u64 end, struct btrfs_scrub_progress *progress, |
| int readonly, int is_dev_replace) |
| { |
| struct btrfs_dev_lookup_args args = { .devid = devid }; |
| struct scrub_ctx *sctx; |
| int ret; |
| struct btrfs_device *dev; |
| unsigned int nofs_flag; |
| bool need_commit = false; |
| |
| if (btrfs_fs_closing(fs_info)) |
| return -EAGAIN; |
| |
| /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ |
| ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); |
| |
| /* |
| * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible |
| * value (max nodesize / min sectorsize), thus nodesize should always |
| * be fine. |
| */ |
| ASSERT(fs_info->nodesize <= |
| SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); |
| |
| /* Allocate outside of device_list_mutex */ |
| sctx = scrub_setup_ctx(fs_info, is_dev_replace); |
| if (IS_ERR(sctx)) |
| return PTR_ERR(sctx); |
| |
| ret = scrub_workers_get(fs_info, is_dev_replace); |
| if (ret) |
| goto out_free_ctx; |
| |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| dev = btrfs_find_device(fs_info->fs_devices, &args); |
| if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && |
| !is_dev_replace)) { |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| ret = -ENODEV; |
| goto out; |
| } |
| |
| if (!is_dev_replace && !readonly && |
| !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| btrfs_err_in_rcu(fs_info, |
| "scrub on devid %llu: filesystem on %s is not writable", |
| devid, btrfs_dev_name(dev)); |
| ret = -EROFS; |
| goto out; |
| } |
| |
| mutex_lock(&fs_info->scrub_lock); |
| if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| ret = -EIO; |
| goto out; |
| } |
| |
| down_read(&fs_info->dev_replace.rwsem); |
| if (dev->scrub_ctx || |
| (!is_dev_replace && |
| btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { |
| up_read(&fs_info->dev_replace.rwsem); |
| mutex_unlock(&fs_info->scrub_lock); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| ret = -EINPROGRESS; |
| goto out; |
| } |
| up_read(&fs_info->dev_replace.rwsem); |
| |
| sctx->readonly = readonly; |
| dev->scrub_ctx = sctx; |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| /* |
| * checking @scrub_pause_req here, we can avoid |
| * race between committing transaction and scrubbing. |
| */ |
| __scrub_blocked_if_needed(fs_info); |
| atomic_inc(&fs_info->scrubs_running); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| /* |
| * In order to avoid deadlock with reclaim when there is a transaction |
| * trying to pause scrub, make sure we use GFP_NOFS for all the |
| * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() |
| * invoked by our callees. The pausing request is done when the |
| * transaction commit starts, and it blocks the transaction until scrub |
| * is paused (done at specific points at scrub_stripe() or right above |
| * before incrementing fs_info->scrubs_running). |
| */ |
| nofs_flag = memalloc_nofs_save(); |
| if (!is_dev_replace) { |
| u64 old_super_errors; |
| |
| spin_lock(&sctx->stat_lock); |
| old_super_errors = sctx->stat.super_errors; |
| spin_unlock(&sctx->stat_lock); |
| |
| btrfs_info(fs_info, "scrub: started on devid %llu", devid); |
| /* |
| * by holding device list mutex, we can |
| * kick off writing super in log tree sync. |
| */ |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| ret = scrub_supers(sctx, dev); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| spin_lock(&sctx->stat_lock); |
| /* |
| * Super block errors found, but we can not commit transaction |
| * at current context, since btrfs_commit_transaction() needs |
| * to pause the current running scrub (hold by ourselves). |
| */ |
| if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) |
| need_commit = true; |
| spin_unlock(&sctx->stat_lock); |
| } |
| |
| if (!ret) |
| ret = scrub_enumerate_chunks(sctx, dev, start, end); |
| memalloc_nofs_restore(nofs_flag); |
| |
| wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); |
| atomic_dec(&fs_info->scrubs_running); |
| wake_up(&fs_info->scrub_pause_wait); |
| |
| wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); |
| |
| if (progress) |
| memcpy(progress, &sctx->stat, sizeof(*progress)); |
| |
| if (!is_dev_replace) |
| btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", |
| ret ? "not finished" : "finished", devid, ret); |
| |
| mutex_lock(&fs_info->scrub_lock); |
| dev->scrub_ctx = NULL; |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| scrub_workers_put(fs_info); |
| scrub_put_ctx(sctx); |
| |
| /* |
| * We found some super block errors before, now try to force a |
| * transaction commit, as scrub has finished. |
| */ |
| if (need_commit) { |
| struct btrfs_trans_handle *trans; |
| |
| trans = btrfs_start_transaction(fs_info->tree_root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_err(fs_info, |
| "scrub: failed to start transaction to fix super block errors: %d", ret); |
| return ret; |
| } |
| ret = btrfs_commit_transaction(trans); |
| if (ret < 0) |
| btrfs_err(fs_info, |
| "scrub: failed to commit transaction to fix super block errors: %d", ret); |
| } |
| return ret; |
| out: |
| scrub_workers_put(fs_info); |
| out_free_ctx: |
| scrub_free_ctx(sctx); |
| |
| return ret; |
| } |
| |
| void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| atomic_inc(&fs_info->scrub_pause_req); |
| while (atomic_read(&fs_info->scrubs_paused) != |
| atomic_read(&fs_info->scrubs_running)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrubs_paused) == |
| atomic_read(&fs_info->scrubs_running)); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| mutex_unlock(&fs_info->scrub_lock); |
| } |
| |
| void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) |
| { |
| atomic_dec(&fs_info->scrub_pause_req); |
| wake_up(&fs_info->scrub_pause_wait); |
| } |
| |
| int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->scrub_lock); |
| if (!atomic_read(&fs_info->scrubs_running)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| return -ENOTCONN; |
| } |
| |
| atomic_inc(&fs_info->scrub_cancel_req); |
| while (atomic_read(&fs_info->scrubs_running)) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| atomic_read(&fs_info->scrubs_running) == 0); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| atomic_dec(&fs_info->scrub_cancel_req); |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| return 0; |
| } |
| |
| int btrfs_scrub_cancel_dev(struct btrfs_device *dev) |
| { |
| struct btrfs_fs_info *fs_info = dev->fs_info; |
| struct scrub_ctx *sctx; |
| |
| mutex_lock(&fs_info->scrub_lock); |
| sctx = dev->scrub_ctx; |
| if (!sctx) { |
| mutex_unlock(&fs_info->scrub_lock); |
| return -ENOTCONN; |
| } |
| atomic_inc(&sctx->cancel_req); |
| while (dev->scrub_ctx) { |
| mutex_unlock(&fs_info->scrub_lock); |
| wait_event(fs_info->scrub_pause_wait, |
| dev->scrub_ctx == NULL); |
| mutex_lock(&fs_info->scrub_lock); |
| } |
| mutex_unlock(&fs_info->scrub_lock); |
| |
| return 0; |
| } |
| |
| int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, |
| struct btrfs_scrub_progress *progress) |
| { |
| struct btrfs_dev_lookup_args args = { .devid = devid }; |
| struct btrfs_device *dev; |
| struct scrub_ctx *sctx = NULL; |
| |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| dev = btrfs_find_device(fs_info->fs_devices, &args); |
| if (dev) |
| sctx = dev->scrub_ctx; |
| if (sctx) |
| memcpy(progress, &sctx->stat, sizeof(*progress)); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| |
| return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; |
| } |
| |
| static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, |
| u64 extent_logical, u32 extent_len, |
| u64 *extent_physical, |
| struct btrfs_device **extent_dev, |
| int *extent_mirror_num) |
| { |
| u64 mapped_length; |
| struct btrfs_io_context *bioc = NULL; |
| int ret; |
| |
| mapped_length = extent_len; |
| ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, |
| &mapped_length, &bioc, 0); |
| if (ret || !bioc || mapped_length < extent_len || |
| !bioc->stripes[0].dev->bdev) { |
| btrfs_put_bioc(bioc); |
| return; |
| } |
| |
| *extent_physical = bioc->stripes[0].physical; |
| *extent_mirror_num = bioc->mirror_num; |
| *extent_dev = bioc->stripes[0].dev; |
| btrfs_put_bioc(bioc); |
| } |