blob: 0cf07194bbe89dfe6d86a78d31c0c0b7fdc63056 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Universal Flash Storage Host controller driver Core
* Copyright (C) 2011-2013 Samsung India Software Operations
* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
*
* Authors:
* Santosh Yaraganavi <santosh.sy@samsung.com>
* Vinayak Holikatti <h.vinayak@samsung.com>
*/
#include <linux/async.h>
#include <linux/devfreq.h>
#include <linux/nls.h>
#include <linux/of.h>
#include <linux/bitfield.h>
#include <linux/blk-pm.h>
#include <linux/blkdev.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
#include <linux/sched/clock.h>
#include <linux/iopoll.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_eh.h>
#include "ufshcd-priv.h"
#include <ufs/ufs_quirks.h>
#include <ufs/unipro.h>
#include "ufs-sysfs.h"
#include "ufs-debugfs.h"
#include "ufs-fault-injection.h"
#include "ufs_bsg.h"
#include "ufshcd-crypto.h"
#include <asm/unaligned.h>
#define CREATE_TRACE_POINTS
#include <trace/events/ufs.h>
#define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
UTP_TASK_REQ_COMPL |\
UFSHCD_ERROR_MASK)
#define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
UFSHCD_ERROR_MASK |\
MCQ_CQ_EVENT_STATUS)
/* UIC command timeout, unit: ms */
#define UIC_CMD_TIMEOUT 500
/* NOP OUT retries waiting for NOP IN response */
#define NOP_OUT_RETRIES 10
/* Timeout after 50 msecs if NOP OUT hangs without response */
#define NOP_OUT_TIMEOUT 50 /* msecs */
/* Query request retries */
#define QUERY_REQ_RETRIES 3
/* Query request timeout */
#define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
/* Advanced RPMB request timeout */
#define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
/* Task management command timeout */
#define TM_CMD_TIMEOUT 100 /* msecs */
/* maximum number of retries for a general UIC command */
#define UFS_UIC_COMMAND_RETRIES 3
/* maximum number of link-startup retries */
#define DME_LINKSTARTUP_RETRIES 3
/* maximum number of reset retries before giving up */
#define MAX_HOST_RESET_RETRIES 5
/* Maximum number of error handler retries before giving up */
#define MAX_ERR_HANDLER_RETRIES 5
/* Expose the flag value from utp_upiu_query.value */
#define MASK_QUERY_UPIU_FLAG_LOC 0xFF
/* Interrupt aggregation default timeout, unit: 40us */
#define INT_AGGR_DEF_TO 0x02
/* default delay of autosuspend: 2000 ms */
#define RPM_AUTOSUSPEND_DELAY_MS 2000
/* Default delay of RPM device flush delayed work */
#define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
/* Default value of wait time before gating device ref clock */
#define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
/* Polling time to wait for fDeviceInit */
#define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
/* Default RTC update every 10 seconds */
#define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
/* UFSHC 4.0 compliant HC support this mode. */
static bool use_mcq_mode = true;
static bool is_mcq_supported(struct ufs_hba *hba)
{
return hba->mcq_sup && use_mcq_mode;
}
module_param(use_mcq_mode, bool, 0644);
MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
#define ufshcd_toggle_vreg(_dev, _vreg, _on) \
({ \
int _ret; \
if (_on) \
_ret = ufshcd_enable_vreg(_dev, _vreg); \
else \
_ret = ufshcd_disable_vreg(_dev, _vreg); \
_ret; \
})
#define ufshcd_hex_dump(prefix_str, buf, len) do { \
size_t __len = (len); \
print_hex_dump(KERN_ERR, prefix_str, \
__len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
16, 4, buf, __len, false); \
} while (0)
int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
const char *prefix)
{
u32 *regs;
size_t pos;
if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
return -EINVAL;
regs = kzalloc(len, GFP_ATOMIC);
if (!regs)
return -ENOMEM;
for (pos = 0; pos < len; pos += 4) {
if (offset == 0 &&
pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
pos <= REG_UIC_ERROR_CODE_DME)
continue;
regs[pos / 4] = ufshcd_readl(hba, offset + pos);
}
ufshcd_hex_dump(prefix, regs, len);
kfree(regs);
return 0;
}
EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
enum {
UFSHCD_MAX_CHANNEL = 0,
UFSHCD_MAX_ID = 1,
UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED,
UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED,
};
static const char *const ufshcd_state_name[] = {
[UFSHCD_STATE_RESET] = "reset",
[UFSHCD_STATE_OPERATIONAL] = "operational",
[UFSHCD_STATE_ERROR] = "error",
[UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
};
/* UFSHCD error handling flags */
enum {
UFSHCD_EH_IN_PROGRESS = (1 << 0),
};
/* UFSHCD UIC layer error flags */
enum {
UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
};
#define ufshcd_set_eh_in_progress(h) \
((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
#define ufshcd_eh_in_progress(h) \
((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
#define ufshcd_clear_eh_in_progress(h) \
((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
/*
* For DeepSleep, the link is first put in hibern8 and then off.
* Leaving the link in hibern8 is not supported.
*/
[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
};
static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
{
return ufs_pm_lvl_states[lvl].dev_state;
}
static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
{
return ufs_pm_lvl_states[lvl].link_state;
}
static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
enum uic_link_state link_state)
{
enum ufs_pm_level lvl;
for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
(ufs_pm_lvl_states[lvl].link_state == link_state))
return lvl;
}
/* if no match found, return the level 0 */
return UFS_PM_LVL_0;
}
static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
{
return (hba->clk_gating.active_reqs || hba->outstanding_reqs || hba->outstanding_tasks ||
hba->active_uic_cmd || hba->uic_async_done);
}
static const struct ufs_dev_quirk ufs_fixups[] = {
/* UFS cards deviations table */
{ .wmanufacturerid = UFS_VENDOR_MICRON,
.model = UFS_ANY_MODEL,
.quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
.model = UFS_ANY_MODEL,
.quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
.model = UFS_ANY_MODEL,
.quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
.model = "hB8aL1" /*H28U62301AMR*/,
.quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
.model = UFS_ANY_MODEL,
.quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
.model = "THGLF2G9C8KBADG",
.quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
.model = "THGLF2G9D8KBADG",
.quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
{}
};
static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
static void ufshcd_async_scan(void *data, async_cookie_t cookie);
static int ufshcd_reset_and_restore(struct ufs_hba *hba);
static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
static void ufshcd_hba_exit(struct ufs_hba *hba);
static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
bool scale_up);
static irqreturn_t ufshcd_intr(int irq, void *__hba);
static int ufshcd_change_power_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *pwr_mode);
static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
struct ufs_vreg *vreg);
static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
bool enable);
static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
void ufshcd_enable_irq(struct ufs_hba *hba)
{
if (!hba->is_irq_enabled) {
enable_irq(hba->irq);
hba->is_irq_enabled = true;
}
}
EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
void ufshcd_disable_irq(struct ufs_hba *hba)
{
if (hba->is_irq_enabled) {
disable_irq(hba->irq);
hba->is_irq_enabled = false;
}
}
EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
static void ufshcd_configure_wb(struct ufs_hba *hba)
{
if (!ufshcd_is_wb_allowed(hba))
return;
ufshcd_wb_toggle(hba, true);
ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
if (ufshcd_is_wb_buf_flush_allowed(hba))
ufshcd_wb_toggle_buf_flush(hba, true);
}
static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
{
if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
scsi_unblock_requests(hba->host);
}
static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
{
if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
scsi_block_requests(hba->host);
}
static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
enum ufs_trace_str_t str_t)
{
struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
struct utp_upiu_header *header;
if (!trace_ufshcd_upiu_enabled())
return;
if (str_t == UFS_CMD_SEND)
header = &rq->header;
else
header = &hba->lrb[tag].ucd_rsp_ptr->header;
trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
UFS_TSF_CDB);
}
static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
enum ufs_trace_str_t str_t,
struct utp_upiu_req *rq_rsp)
{
if (!trace_ufshcd_upiu_enabled())
return;
trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
&rq_rsp->qr, UFS_TSF_OSF);
}
static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
enum ufs_trace_str_t str_t)
{
struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
if (!trace_ufshcd_upiu_enabled())
return;
if (str_t == UFS_TM_SEND)
trace_ufshcd_upiu(dev_name(hba->dev), str_t,
&descp->upiu_req.req_header,
&descp->upiu_req.input_param1,
UFS_TSF_TM_INPUT);
else
trace_ufshcd_upiu(dev_name(hba->dev), str_t,
&descp->upiu_rsp.rsp_header,
&descp->upiu_rsp.output_param1,
UFS_TSF_TM_OUTPUT);
}
static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
const struct uic_command *ucmd,
enum ufs_trace_str_t str_t)
{
u32 cmd;
if (!trace_ufshcd_uic_command_enabled())
return;
if (str_t == UFS_CMD_SEND)
cmd = ucmd->command;
else
cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
}
static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
enum ufs_trace_str_t str_t)
{
u64 lba = 0;
u8 opcode = 0, group_id = 0;
u32 doorbell = 0;
u32 intr;
int hwq_id = -1;
struct ufshcd_lrb *lrbp = &hba->lrb[tag];
struct scsi_cmnd *cmd = lrbp->cmd;
struct request *rq = scsi_cmd_to_rq(cmd);
int transfer_len = -1;
if (!cmd)
return;
/* trace UPIU also */
ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
if (!trace_ufshcd_command_enabled())
return;
opcode = cmd->cmnd[0];
if (opcode == READ_10 || opcode == WRITE_10) {
/*
* Currently we only fully trace read(10) and write(10) commands
*/
transfer_len =
be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
lba = scsi_get_lba(cmd);
if (opcode == WRITE_10)
group_id = lrbp->cmd->cmnd[6];
} else if (opcode == UNMAP) {
/*
* The number of Bytes to be unmapped beginning with the lba.
*/
transfer_len = blk_rq_bytes(rq);
lba = scsi_get_lba(cmd);
}
intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
if (is_mcq_enabled(hba)) {
struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
hwq_id = hwq->id;
} else {
doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
}
trace_ufshcd_command(cmd->device, str_t, tag, doorbell, hwq_id,
transfer_len, intr, lba, opcode, group_id);
}
static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
{
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
return;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
clki->max_freq)
dev_err(hba->dev, "clk: %s, rate: %u\n",
clki->name, clki->curr_freq);
}
}
static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
const char *err_name)
{
int i;
bool found = false;
const struct ufs_event_hist *e;
if (id >= UFS_EVT_CNT)
return;
e = &hba->ufs_stats.event[id];
for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
if (e->tstamp[p] == 0)
continue;
dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
e->val[p], div_u64(e->tstamp[p], 1000));
found = true;
}
if (!found)
dev_err(hba->dev, "No record of %s\n", err_name);
else
dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
}
static void ufshcd_print_evt_hist(struct ufs_hba *hba)
{
ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
"auto_hibern8_err");
ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
"link_startup_fail");
ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
"suspend_fail");
ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
"wlun suspend_fail");
ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
ufshcd_vops_dbg_register_dump(hba);
}
static
void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
{
const struct ufshcd_lrb *lrbp;
int prdt_length;
lrbp = &hba->lrb[tag];
dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
dev_err(hba->dev,
"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
tag, (u64)lrbp->utrd_dma_addr);
ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
sizeof(struct utp_transfer_req_desc));
dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
(u64)lrbp->ucd_req_dma_addr);
ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
sizeof(struct utp_upiu_req));
dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
(u64)lrbp->ucd_rsp_dma_addr);
ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
sizeof(struct utp_upiu_rsp));
prdt_length = le16_to_cpu(
lrbp->utr_descriptor_ptr->prd_table_length);
if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
prdt_length /= ufshcd_sg_entry_size(hba);
dev_err(hba->dev,
"UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
tag, prdt_length,
(u64)lrbp->ucd_prdt_dma_addr);
if (pr_prdt)
ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
ufshcd_sg_entry_size(hba) * prdt_length);
}
static bool ufshcd_print_tr_iter(struct request *req, void *priv)
{
struct scsi_device *sdev = req->q->queuedata;
struct Scsi_Host *shost = sdev->host;
struct ufs_hba *hba = shost_priv(shost);
ufshcd_print_tr(hba, req->tag, *(bool *)priv);
return true;
}
/**
* ufshcd_print_trs_all - print trs for all started requests.
* @hba: per-adapter instance.
* @pr_prdt: need to print prdt or not.
*/
static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
{
blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
}
static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
{
int tag;
for_each_set_bit(tag, &bitmap, hba->nutmrs) {
struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
}
}
static void ufshcd_print_host_state(struct ufs_hba *hba)
{
const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
hba->outstanding_reqs, hba->outstanding_tasks);
dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
hba->saved_err, hba->saved_uic_err);
dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
hba->curr_dev_pwr_mode, hba->uic_link_state);
dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
hba->pm_op_in_progress, hba->is_sys_suspended);
dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
hba->auto_bkops_enabled, hba->host->host_self_blocked);
dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
dev_err(hba->dev,
"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
hba->ufs_stats.hibern8_exit_cnt);
dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
div_u64(hba->ufs_stats.last_intr_ts, 1000),
hba->ufs_stats.last_intr_status);
dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
hba->eh_flags, hba->req_abort_count);
dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
hba->ufs_version, hba->capabilities, hba->caps);
dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
hba->dev_quirks);
if (sdev_ufs)
dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
ufshcd_print_clk_freqs(hba);
}
/**
* ufshcd_print_pwr_info - print power params as saved in hba
* power info
* @hba: per-adapter instance
*/
static void ufshcd_print_pwr_info(struct ufs_hba *hba)
{
static const char * const names[] = {
"INVALID MODE",
"FAST MODE",
"SLOW_MODE",
"INVALID MODE",
"FASTAUTO_MODE",
"SLOWAUTO_MODE",
"INVALID MODE",
};
/*
* Using dev_dbg to avoid messages during runtime PM to avoid
* never-ending cycles of messages written back to storage by user space
* causing runtime resume, causing more messages and so on.
*/
dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
__func__,
hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
names[hba->pwr_info.pwr_rx],
names[hba->pwr_info.pwr_tx],
hba->pwr_info.hs_rate);
}
static void ufshcd_device_reset(struct ufs_hba *hba)
{
int err;
err = ufshcd_vops_device_reset(hba);
if (!err) {
ufshcd_set_ufs_dev_active(hba);
if (ufshcd_is_wb_allowed(hba)) {
hba->dev_info.wb_enabled = false;
hba->dev_info.wb_buf_flush_enabled = false;
}
if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
hba->dev_info.rtc_time_baseline = 0;
}
if (err != -EOPNOTSUPP)
ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
}
void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
{
if (!us)
return;
if (us < 10)
udelay(us);
else
usleep_range(us, us + tolerance);
}
EXPORT_SYMBOL_GPL(ufshcd_delay_us);
/**
* ufshcd_wait_for_register - wait for register value to change
* @hba: per-adapter interface
* @reg: mmio register offset
* @mask: mask to apply to the read register value
* @val: value to wait for
* @interval_us: polling interval in microseconds
* @timeout_ms: timeout in milliseconds
*
* Return: -ETIMEDOUT on error, zero on success.
*/
static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
u32 val, unsigned long interval_us,
unsigned long timeout_ms)
{
int err = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
/* ignore bits that we don't intend to wait on */
val = val & mask;
while ((ufshcd_readl(hba, reg) & mask) != val) {
usleep_range(interval_us, interval_us + 50);
if (time_after(jiffies, timeout)) {
if ((ufshcd_readl(hba, reg) & mask) != val)
err = -ETIMEDOUT;
break;
}
}
return err;
}
/**
* ufshcd_get_intr_mask - Get the interrupt bit mask
* @hba: Pointer to adapter instance
*
* Return: interrupt bit mask per version
*/
static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
{
if (hba->ufs_version <= ufshci_version(2, 0))
return INTERRUPT_MASK_ALL_VER_11;
return INTERRUPT_MASK_ALL_VER_21;
}
/**
* ufshcd_get_ufs_version - Get the UFS version supported by the HBA
* @hba: Pointer to adapter instance
*
* Return: UFSHCI version supported by the controller
*/
static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
{
u32 ufshci_ver;
if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
else
ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
/*
* UFSHCI v1.x uses a different version scheme, in order
* to allow the use of comparisons with the ufshci_version
* function, we convert it to the same scheme as ufs 2.0+.
*/
if (ufshci_ver & 0x00010000)
return ufshci_version(1, ufshci_ver & 0x00000100);
return ufshci_ver;
}
/**
* ufshcd_is_device_present - Check if any device connected to
* the host controller
* @hba: pointer to adapter instance
*
* Return: true if device present, false if no device detected
*/
static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
}
/**
* ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
* @lrbp: pointer to local command reference block
* @cqe: pointer to the completion queue entry
*
* This function is used to get the OCS field from UTRD
*
* Return: the OCS field in the UTRD.
*/
static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
struct cq_entry *cqe)
{
if (cqe)
return le32_to_cpu(cqe->status) & MASK_OCS;
return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
}
/**
* ufshcd_utrl_clear() - Clear requests from the controller request list.
* @hba: per adapter instance
* @mask: mask with one bit set for each request to be cleared
*/
static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
{
if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
mask = ~mask;
/*
* From the UFSHCI specification: "UTP Transfer Request List CLear
* Register (UTRLCLR): This field is bit significant. Each bit
* corresponds to a slot in the UTP Transfer Request List, where bit 0
* corresponds to request slot 0. A bit in this field is set to ‘0’
* by host software to indicate to the host controller that a transfer
* request slot is cleared. The host controller
* shall free up any resources associated to the request slot
* immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
* host software indicates no change to request slots by setting the
* associated bits in this field to ‘1’. Bits in this field shall only
* be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
*/
ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
}
/**
* ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
* @hba: per adapter instance
* @pos: position of the bit to be cleared
*/
static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
{
if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
else
ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
}
/**
* ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
* @reg: Register value of host controller status
*
* Return: 0 on success; a positive value if failed.
*/
static inline int ufshcd_get_lists_status(u32 reg)
{
return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
}
/**
* ufshcd_get_uic_cmd_result - Get the UIC command result
* @hba: Pointer to adapter instance
*
* This function gets the result of UIC command completion
*
* Return: 0 on success; non-zero value on error.
*/
static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
MASK_UIC_COMMAND_RESULT;
}
/**
* ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
* @hba: Pointer to adapter instance
*
* This function gets UIC command argument3
*
* Return: 0 on success; non-zero value on error.
*/
static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
}
/**
* ufshcd_get_req_rsp - returns the TR response transaction type
* @ucd_rsp_ptr: pointer to response UPIU
*
* Return: UPIU type.
*/
static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return ucd_rsp_ptr->header.transaction_code;
}
/**
* ufshcd_is_exception_event - Check if the device raised an exception event
* @ucd_rsp_ptr: pointer to response UPIU
*
* The function checks if the device raised an exception event indicated in
* the Device Information field of response UPIU.
*
* Return: true if exception is raised, false otherwise.
*/
static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return ucd_rsp_ptr->header.device_information & 1;
}
/**
* ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
* @hba: per adapter instance
*/
static inline void
ufshcd_reset_intr_aggr(struct ufs_hba *hba)
{
ufshcd_writel(hba, INT_AGGR_ENABLE |
INT_AGGR_COUNTER_AND_TIMER_RESET,
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_config_intr_aggr - Configure interrupt aggregation values.
* @hba: per adapter instance
* @cnt: Interrupt aggregation counter threshold
* @tmout: Interrupt aggregation timeout value
*/
static inline void
ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
{
ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
INT_AGGR_COUNTER_THLD_VAL(cnt) |
INT_AGGR_TIMEOUT_VAL(tmout),
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_disable_intr_aggr - Disables interrupt aggregation.
* @hba: per adapter instance
*/
static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
{
ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
}
/**
* ufshcd_enable_run_stop_reg - Enable run-stop registers,
* When run-stop registers are set to 1, it indicates the
* host controller that it can process the requests
* @hba: per adapter instance
*/
static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
{
ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TASK_REQ_LIST_RUN_STOP);
ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
}
/**
* ufshcd_hba_start - Start controller initialization sequence
* @hba: per adapter instance
*/
static inline void ufshcd_hba_start(struct ufs_hba *hba)
{
u32 val = CONTROLLER_ENABLE;
if (ufshcd_crypto_enable(hba))
val |= CRYPTO_GENERAL_ENABLE;
ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
}
/**
* ufshcd_is_hba_active - Get controller state
* @hba: per adapter instance
*
* Return: true if and only if the controller is active.
*/
bool ufshcd_is_hba_active(struct ufs_hba *hba)
{
return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
}
EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
/**
* ufshcd_pm_qos_init - initialize PM QoS request
* @hba: per adapter instance
*/
void ufshcd_pm_qos_init(struct ufs_hba *hba)
{
if (hba->pm_qos_enabled)
return;
cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
if (cpu_latency_qos_request_active(&hba->pm_qos_req))
hba->pm_qos_enabled = true;
}
/**
* ufshcd_pm_qos_exit - remove request from PM QoS
* @hba: per adapter instance
*/
void ufshcd_pm_qos_exit(struct ufs_hba *hba)
{
if (!hba->pm_qos_enabled)
return;
cpu_latency_qos_remove_request(&hba->pm_qos_req);
hba->pm_qos_enabled = false;
}
/**
* ufshcd_pm_qos_update - update PM QoS request
* @hba: per adapter instance
* @on: If True, vote for perf PM QoS mode otherwise power save mode
*/
static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
{
if (!hba->pm_qos_enabled)
return;
cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
}
/**
* ufshcd_set_clk_freq - set UFS controller clock frequencies
* @hba: per adapter instance
* @scale_up: If True, set max possible frequency othewise set low frequency
*
* Return: 0 if successful; < 0 upon failure.
*/
static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
goto out;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk)) {
if (scale_up && clki->max_freq) {
if (clki->curr_freq == clki->max_freq)
continue;
ret = clk_set_rate(clki->clk, clki->max_freq);
if (ret) {
dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
__func__, clki->name,
clki->max_freq, ret);
break;
}
trace_ufshcd_clk_scaling(dev_name(hba->dev),
"scaled up", clki->name,
clki->curr_freq,
clki->max_freq);
clki->curr_freq = clki->max_freq;
} else if (!scale_up && clki->min_freq) {
if (clki->curr_freq == clki->min_freq)
continue;
ret = clk_set_rate(clki->clk, clki->min_freq);
if (ret) {
dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
__func__, clki->name,
clki->min_freq, ret);
break;
}
trace_ufshcd_clk_scaling(dev_name(hba->dev),
"scaled down", clki->name,
clki->curr_freq,
clki->min_freq);
clki->curr_freq = clki->min_freq;
}
}
dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
clki->name, clk_get_rate(clki->clk));
}
out:
return ret;
}
int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
struct dev_pm_opp *opp, void *data,
bool scaling_down)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct list_head *head = &hba->clk_list_head;
struct ufs_clk_info *clki;
unsigned long freq;
u8 idx = 0;
int ret;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk)) {
freq = dev_pm_opp_get_freq_indexed(opp, idx++);
/* Do not set rate for clocks having frequency as 0 */
if (!freq)
continue;
ret = clk_set_rate(clki->clk, freq);
if (ret) {
dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
__func__, clki->name, freq, ret);
return ret;
}
trace_ufshcd_clk_scaling(dev_name(dev),
(scaling_down ? "scaled down" : "scaled up"),
clki->name, hba->clk_scaling.target_freq, freq);
}
}
return 0;
}
EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
{
struct dev_pm_opp *opp;
int ret;
opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
&freq, 0);
if (IS_ERR(opp))
return PTR_ERR(opp);
ret = dev_pm_opp_set_opp(hba->dev, opp);
dev_pm_opp_put(opp);
return ret;
}
/**
* ufshcd_scale_clks - scale up or scale down UFS controller clocks
* @hba: per adapter instance
* @freq: frequency to scale
* @scale_up: True if scaling up and false if scaling down
*
* Return: 0 if successful; < 0 upon failure.
*/
static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
bool scale_up)
{
int ret = 0;
ktime_t start = ktime_get();
ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
if (ret)
goto out;
if (hba->use_pm_opp)
ret = ufshcd_opp_set_rate(hba, freq);
else
ret = ufshcd_set_clk_freq(hba, scale_up);
if (ret)
goto out;
ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
if (ret) {
if (hba->use_pm_opp)
ufshcd_opp_set_rate(hba,
hba->devfreq->previous_freq);
else
ufshcd_set_clk_freq(hba, !scale_up);
goto out;
}
ufshcd_pm_qos_update(hba, scale_up);
out:
trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
(scale_up ? "up" : "down"),
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
return ret;
}
/**
* ufshcd_is_devfreq_scaling_required - check if scaling is required or not
* @hba: per adapter instance
* @freq: frequency to scale
* @scale_up: True if scaling up and false if scaling down
*
* Return: true if scaling is required, false otherwise.
*/
static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
unsigned long freq, bool scale_up)
{
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
return false;
if (hba->use_pm_opp)
return freq != hba->clk_scaling.target_freq;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk)) {
if (scale_up && clki->max_freq) {
if (clki->curr_freq == clki->max_freq)
continue;
return true;
} else if (!scale_up && clki->min_freq) {
if (clki->curr_freq == clki->min_freq)
continue;
return true;
}
}
}
return false;
}
/*
* Determine the number of pending commands by counting the bits in the SCSI
* device budget maps. This approach has been selected because a bit is set in
* the budget map before scsi_host_queue_ready() checks the host_self_blocked
* flag. The host_self_blocked flag can be modified by calling
* scsi_block_requests() or scsi_unblock_requests().
*/
static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
{
const struct scsi_device *sdev;
u32 pending = 0;
lockdep_assert_held(hba->host->host_lock);
__shost_for_each_device(sdev, hba->host)
pending += sbitmap_weight(&sdev->budget_map);
return pending;
}
/*
* Wait until all pending SCSI commands and TMFs have finished or the timeout
* has expired.
*
* Return: 0 upon success; -EBUSY upon timeout.
*/
static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
u64 wait_timeout_us)
{
unsigned long flags;
int ret = 0;
u32 tm_doorbell;
u32 tr_pending;
bool timeout = false, do_last_check = false;
ktime_t start;
ufshcd_hold(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
/*
* Wait for all the outstanding tasks/transfer requests.
* Verify by checking the doorbell registers are clear.
*/
start = ktime_get();
do {
if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
ret = -EBUSY;
goto out;
}
tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
tr_pending = ufshcd_pending_cmds(hba);
if (!tm_doorbell && !tr_pending) {
timeout = false;
break;
} else if (do_last_check) {
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
io_schedule_timeout(msecs_to_jiffies(20));
if (ktime_to_us(ktime_sub(ktime_get(), start)) >
wait_timeout_us) {
timeout = true;
/*
* We might have scheduled out for long time so make
* sure to check if doorbells are cleared by this time
* or not.
*/
do_last_check = true;
}
spin_lock_irqsave(hba->host->host_lock, flags);
} while (tm_doorbell || tr_pending);
if (timeout) {
dev_err(hba->dev,
"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
__func__, tm_doorbell, tr_pending);
ret = -EBUSY;
}
out:
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_release(hba);
return ret;
}
/**
* ufshcd_scale_gear - scale up/down UFS gear
* @hba: per adapter instance
* @scale_up: True for scaling up gear and false for scaling down
*
* Return: 0 for success; -EBUSY if scaling can't happen at this time;
* non-zero for any other errors.
*/
static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
{
int ret = 0;
struct ufs_pa_layer_attr new_pwr_info;
if (scale_up) {
memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
sizeof(struct ufs_pa_layer_attr));
} else {
memcpy(&new_pwr_info, &hba->pwr_info,
sizeof(struct ufs_pa_layer_attr));
if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
/* save the current power mode */
memcpy(&hba->clk_scaling.saved_pwr_info,
&hba->pwr_info,
sizeof(struct ufs_pa_layer_attr));
/* scale down gear */
new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
}
}
/* check if the power mode needs to be changed or not? */
ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
if (ret)
dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
__func__, ret,
hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
new_pwr_info.gear_tx, new_pwr_info.gear_rx);
return ret;
}
/*
* Wait until all pending SCSI commands and TMFs have finished or the timeout
* has expired.
*
* Return: 0 upon success; -EBUSY upon timeout.
*/
static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
{
int ret = 0;
/*
* make sure that there are no outstanding requests when
* clock scaling is in progress
*/
ufshcd_scsi_block_requests(hba);
mutex_lock(&hba->wb_mutex);
down_write(&hba->clk_scaling_lock);
if (!hba->clk_scaling.is_allowed ||
ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
ret = -EBUSY;
up_write(&hba->clk_scaling_lock);
mutex_unlock(&hba->wb_mutex);
ufshcd_scsi_unblock_requests(hba);
goto out;
}
/* let's not get into low power until clock scaling is completed */
ufshcd_hold(hba);
out:
return ret;
}
static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
{
up_write(&hba->clk_scaling_lock);
/* Enable Write Booster if we have scaled up else disable it */
if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
ufshcd_wb_toggle(hba, scale_up);
mutex_unlock(&hba->wb_mutex);
ufshcd_scsi_unblock_requests(hba);
ufshcd_release(hba);
}
/**
* ufshcd_devfreq_scale - scale up/down UFS clocks and gear
* @hba: per adapter instance
* @freq: frequency to scale
* @scale_up: True for scaling up and false for scalin down
*
* Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
* for any other errors.
*/
static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
bool scale_up)
{
int ret = 0;
ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
if (ret)
return ret;
/* scale down the gear before scaling down clocks */
if (!scale_up) {
ret = ufshcd_scale_gear(hba, false);
if (ret)
goto out_unprepare;
}
ret = ufshcd_scale_clks(hba, freq, scale_up);
if (ret) {
if (!scale_up)
ufshcd_scale_gear(hba, true);
goto out_unprepare;
}
/* scale up the gear after scaling up clocks */
if (scale_up) {
ret = ufshcd_scale_gear(hba, true);
if (ret) {
ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
false);
goto out_unprepare;
}
}
out_unprepare:
ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
return ret;
}
static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_scaling.suspend_work);
unsigned long irq_flags;
spin_lock_irqsave(hba->host->host_lock, irq_flags);
if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
return;
}
hba->clk_scaling.is_suspended = true;
hba->clk_scaling.window_start_t = 0;
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
devfreq_suspend_device(hba->devfreq);
}
static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_scaling.resume_work);
unsigned long irq_flags;
spin_lock_irqsave(hba->host->host_lock, irq_flags);
if (!hba->clk_scaling.is_suspended) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
return;
}
hba->clk_scaling.is_suspended = false;
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
devfreq_resume_device(hba->devfreq);
}
static int ufshcd_devfreq_target(struct device *dev,
unsigned long *freq, u32 flags)
{
int ret = 0;
struct ufs_hba *hba = dev_get_drvdata(dev);
ktime_t start;
bool scale_up = false, sched_clk_scaling_suspend_work = false;
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
unsigned long irq_flags;
if (!ufshcd_is_clkscaling_supported(hba))
return -EINVAL;
if (hba->use_pm_opp) {
struct dev_pm_opp *opp;
/* Get the recommended frequency from OPP framework */
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp))
return PTR_ERR(opp);
dev_pm_opp_put(opp);
} else {
/* Override with the closest supported frequency */
clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
list);
*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
}
spin_lock_irqsave(hba->host->host_lock, irq_flags);
if (ufshcd_eh_in_progress(hba)) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
return 0;
}
/* Skip scaling clock when clock scaling is suspended */
if (hba->clk_scaling.is_suspended) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
dev_warn(hba->dev, "clock scaling is suspended, skip");
return 0;
}
if (!hba->clk_scaling.active_reqs)
sched_clk_scaling_suspend_work = true;
if (list_empty(clk_list)) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
goto out;
}
/* Decide based on the target or rounded-off frequency and update */
if (hba->use_pm_opp)
scale_up = *freq > hba->clk_scaling.target_freq;
else
scale_up = *freq == clki->max_freq;
if (!hba->use_pm_opp && !scale_up)
*freq = clki->min_freq;
/* Update the frequency */
if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
ret = 0;
goto out; /* no state change required */
}
spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
start = ktime_get();
ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
if (!ret)
hba->clk_scaling.target_freq = *freq;
trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
(scale_up ? "up" : "down"),
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
out:
if (sched_clk_scaling_suspend_work && !scale_up)
queue_work(hba->clk_scaling.workq,
&hba->clk_scaling.suspend_work);
return ret;
}
static int ufshcd_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *stat)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_clk_scaling *scaling = &hba->clk_scaling;
unsigned long flags;
ktime_t curr_t;
if (!ufshcd_is_clkscaling_supported(hba))
return -EINVAL;
memset(stat, 0, sizeof(*stat));
spin_lock_irqsave(hba->host->host_lock, flags);
curr_t = ktime_get();
if (!scaling->window_start_t)
goto start_window;
/*
* If current frequency is 0, then the ondemand governor considers
* there's no initial frequency set. And it always requests to set
* to max. frequency.
*/
if (hba->use_pm_opp) {
stat->current_frequency = hba->clk_scaling.target_freq;
} else {
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
clki = list_first_entry(clk_list, struct ufs_clk_info, list);
stat->current_frequency = clki->curr_freq;
}
if (scaling->is_busy_started)
scaling->tot_busy_t += ktime_us_delta(curr_t,
scaling->busy_start_t);
stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
stat->busy_time = scaling->tot_busy_t;
start_window:
scaling->window_start_t = curr_t;
scaling->tot_busy_t = 0;
if (scaling->active_reqs) {
scaling->busy_start_t = curr_t;
scaling->is_busy_started = true;
} else {
scaling->busy_start_t = 0;
scaling->is_busy_started = false;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return 0;
}
static int ufshcd_devfreq_init(struct ufs_hba *hba)
{
struct list_head *clk_list = &hba->clk_list_head;
struct ufs_clk_info *clki;
struct devfreq *devfreq;
int ret;
/* Skip devfreq if we don't have any clocks in the list */
if (list_empty(clk_list))
return 0;
if (!hba->use_pm_opp) {
clki = list_first_entry(clk_list, struct ufs_clk_info, list);
dev_pm_opp_add(hba->dev, clki->min_freq, 0);
dev_pm_opp_add(hba->dev, clki->max_freq, 0);
}
ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
&hba->vps->ondemand_data);
devfreq = devfreq_add_device(hba->dev,
&hba->vps->devfreq_profile,
DEVFREQ_GOV_SIMPLE_ONDEMAND,
&hba->vps->ondemand_data);
if (IS_ERR(devfreq)) {
ret = PTR_ERR(devfreq);
dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
if (!hba->use_pm_opp) {
dev_pm_opp_remove(hba->dev, clki->min_freq);
dev_pm_opp_remove(hba->dev, clki->max_freq);
}
return ret;
}
hba->devfreq = devfreq;
return 0;
}
static void ufshcd_devfreq_remove(struct ufs_hba *hba)
{
struct list_head *clk_list = &hba->clk_list_head;
if (!hba->devfreq)
return;
devfreq_remove_device(hba->devfreq);
hba->devfreq = NULL;
if (!hba->use_pm_opp) {
struct ufs_clk_info *clki;
clki = list_first_entry(clk_list, struct ufs_clk_info, list);
dev_pm_opp_remove(hba->dev, clki->min_freq);
dev_pm_opp_remove(hba->dev, clki->max_freq);
}
}
static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
{
unsigned long flags;
bool suspend = false;
cancel_work_sync(&hba->clk_scaling.suspend_work);
cancel_work_sync(&hba->clk_scaling.resume_work);
spin_lock_irqsave(hba->host->host_lock, flags);
if (!hba->clk_scaling.is_suspended) {
suspend = true;
hba->clk_scaling.is_suspended = true;
hba->clk_scaling.window_start_t = 0;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (suspend)
devfreq_suspend_device(hba->devfreq);
}
static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
{
unsigned long flags;
bool resume = false;
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_scaling.is_suspended) {
resume = true;
hba->clk_scaling.is_suspended = false;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (resume)
devfreq_resume_device(hba->devfreq);
}
static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
}
static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
u32 value;
int err = 0;
if (kstrtou32(buf, 0, &value))
return -EINVAL;
down(&hba->host_sem);
if (!ufshcd_is_user_access_allowed(hba)) {
err = -EBUSY;
goto out;
}
value = !!value;
if (value == hba->clk_scaling.is_enabled)
goto out;
ufshcd_rpm_get_sync(hba);
ufshcd_hold(hba);
hba->clk_scaling.is_enabled = value;
if (value) {
ufshcd_resume_clkscaling(hba);
} else {
ufshcd_suspend_clkscaling(hba);
err = ufshcd_devfreq_scale(hba, ULONG_MAX, true);
if (err)
dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
__func__, err);
}
ufshcd_release(hba);
ufshcd_rpm_put_sync(hba);
out:
up(&hba->host_sem);
return err ? err : count;
}
static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
{
hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
hba->clk_scaling.enable_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
}
static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
{
if (hba->clk_scaling.enable_attr.attr.name)
device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
}
static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
{
char wq_name[sizeof("ufs_clkscaling_00")];
if (!ufshcd_is_clkscaling_supported(hba))
return;
if (!hba->clk_scaling.min_gear)
hba->clk_scaling.min_gear = UFS_HS_G1;
INIT_WORK(&hba->clk_scaling.suspend_work,
ufshcd_clk_scaling_suspend_work);
INIT_WORK(&hba->clk_scaling.resume_work,
ufshcd_clk_scaling_resume_work);
snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
hba->host->host_no);
hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
hba->clk_scaling.is_initialized = true;
}
static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
{
if (!hba->clk_scaling.is_initialized)
return;
ufshcd_remove_clk_scaling_sysfs(hba);
destroy_workqueue(hba->clk_scaling.workq);
ufshcd_devfreq_remove(hba);
hba->clk_scaling.is_initialized = false;
}
static void ufshcd_ungate_work(struct work_struct *work)
{
int ret;
unsigned long flags;
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_gating.ungate_work);
cancel_delayed_work_sync(&hba->clk_gating.gate_work);
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_gating.state == CLKS_ON) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_hba_vreg_set_hpm(hba);
ufshcd_setup_clocks(hba, true);
ufshcd_enable_irq(hba);
/* Exit from hibern8 */
if (ufshcd_can_hibern8_during_gating(hba)) {
/* Prevent gating in this path */
hba->clk_gating.is_suspended = true;
if (ufshcd_is_link_hibern8(hba)) {
ret = ufshcd_uic_hibern8_exit(hba);
if (ret)
dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
__func__, ret);
else
ufshcd_set_link_active(hba);
}
hba->clk_gating.is_suspended = false;
}
}
/**
* ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
* Also, exit from hibern8 mode and set the link as active.
* @hba: per adapter instance
*/
void ufshcd_hold(struct ufs_hba *hba)
{
bool flush_result;
unsigned long flags;
if (!ufshcd_is_clkgating_allowed(hba) ||
!hba->clk_gating.is_initialized)
return;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.active_reqs++;
start:
switch (hba->clk_gating.state) {
case CLKS_ON:
/*
* Wait for the ungate work to complete if in progress.
* Though the clocks may be in ON state, the link could
* still be in hibner8 state if hibern8 is allowed
* during clock gating.
* Make sure we exit hibern8 state also in addition to
* clocks being ON.
*/
if (ufshcd_can_hibern8_during_gating(hba) &&
ufshcd_is_link_hibern8(hba)) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
flush_result = flush_work(&hba->clk_gating.ungate_work);
if (hba->clk_gating.is_suspended && !flush_result)
return;
spin_lock_irqsave(hba->host->host_lock, flags);
goto start;
}
break;
case REQ_CLKS_OFF:
if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
hba->clk_gating.state = CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
break;
}
/*
* If we are here, it means gating work is either done or
* currently running. Hence, fall through to cancel gating
* work and to enable clocks.
*/
fallthrough;
case CLKS_OFF:
hba->clk_gating.state = REQ_CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
queue_work(hba->clk_gating.clk_gating_workq,
&hba->clk_gating.ungate_work);
/*
* fall through to check if we should wait for this
* work to be done or not.
*/
fallthrough;
case REQ_CLKS_ON:
spin_unlock_irqrestore(hba->host->host_lock, flags);
flush_work(&hba->clk_gating.ungate_work);
/* Make sure state is CLKS_ON before returning */
spin_lock_irqsave(hba->host->host_lock, flags);
goto start;
default:
dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
__func__, hba->clk_gating.state);
break;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
EXPORT_SYMBOL_GPL(ufshcd_hold);
static void ufshcd_gate_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(work, struct ufs_hba,
clk_gating.gate_work.work);
unsigned long flags;
int ret;
spin_lock_irqsave(hba->host->host_lock, flags);
/*
* In case you are here to cancel this work the gating state
* would be marked as REQ_CLKS_ON. In this case save time by
* skipping the gating work and exit after changing the clock
* state to CLKS_ON.
*/
if (hba->clk_gating.is_suspended ||
(hba->clk_gating.state != REQ_CLKS_OFF)) {
hba->clk_gating.state = CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
goto rel_lock;
}
if (ufshcd_is_ufs_dev_busy(hba) || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
goto rel_lock;
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* put the link into hibern8 mode before turning off clocks */
if (ufshcd_can_hibern8_during_gating(hba)) {
ret = ufshcd_uic_hibern8_enter(hba);
if (ret) {
hba->clk_gating.state = CLKS_ON;
dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
__func__, ret);
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
goto out;
}
ufshcd_set_link_hibern8(hba);
}
ufshcd_disable_irq(hba);
ufshcd_setup_clocks(hba, false);
/* Put the host controller in low power mode if possible */
ufshcd_hba_vreg_set_lpm(hba);
/*
* In case you are here to cancel this work the gating state
* would be marked as REQ_CLKS_ON. In this case keep the state
* as REQ_CLKS_ON which would anyway imply that clocks are off
* and a request to turn them on is pending. By doing this way,
* we keep the state machine in tact and this would ultimately
* prevent from doing cancel work multiple times when there are
* new requests arriving before the current cancel work is done.
*/
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->clk_gating.state == REQ_CLKS_OFF) {
hba->clk_gating.state = CLKS_OFF;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
}
rel_lock:
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
return;
}
/* host lock must be held before calling this variant */
static void __ufshcd_release(struct ufs_hba *hba)
{
if (!ufshcd_is_clkgating_allowed(hba))
return;
hba->clk_gating.active_reqs--;
if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
hba->active_uic_cmd || hba->uic_async_done ||
hba->clk_gating.state == CLKS_OFF)
return;
hba->clk_gating.state = REQ_CLKS_OFF;
trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
queue_delayed_work(hba->clk_gating.clk_gating_workq,
&hba->clk_gating.gate_work,
msecs_to_jiffies(hba->clk_gating.delay_ms));
}
void ufshcd_release(struct ufs_hba *hba)
{
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
__ufshcd_release(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
EXPORT_SYMBOL_GPL(ufshcd_release);
static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
}
void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.delay_ms = value;
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned long value;
if (kstrtoul(buf, 0, &value))
return -EINVAL;
ufshcd_clkgate_delay_set(dev, value);
return count;
}
static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
}
static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
unsigned long flags;
u32 value;
if (kstrtou32(buf, 0, &value))
return -EINVAL;
value = !!value;
spin_lock_irqsave(hba->host->host_lock, flags);
if (value == hba->clk_gating.is_enabled)
goto out;
if (value)
__ufshcd_release(hba);
else
hba->clk_gating.active_reqs++;
hba->clk_gating.is_enabled = value;
out:
spin_unlock_irqrestore(hba->host->host_lock, flags);
return count;
}
static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
{
hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
hba->clk_gating.delay_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
hba->clk_gating.enable_attr.attr.mode = 0644;
if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
}
static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
{
if (hba->clk_gating.delay_attr.attr.name)
device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
if (hba->clk_gating.enable_attr.attr.name)
device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
}
static void ufshcd_init_clk_gating(struct ufs_hba *hba)
{
char wq_name[sizeof("ufs_clk_gating_00")];
if (!ufshcd_is_clkgating_allowed(hba))
return;
hba->clk_gating.state = CLKS_ON;
hba->clk_gating.delay_ms = 150;
INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
hba->host->host_no);
hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
WQ_MEM_RECLAIM | WQ_HIGHPRI);
ufshcd_init_clk_gating_sysfs(hba);
hba->clk_gating.is_enabled = true;
hba->clk_gating.is_initialized = true;
}
static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
{
if (!hba->clk_gating.is_initialized)
return;
ufshcd_remove_clk_gating_sysfs(hba);
/* Ungate the clock if necessary. */
ufshcd_hold(hba);
hba->clk_gating.is_initialized = false;
ufshcd_release(hba);
destroy_workqueue(hba->clk_gating.clk_gating_workq);
}
static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
{
bool queue_resume_work = false;
ktime_t curr_t = ktime_get();
unsigned long flags;
if (!ufshcd_is_clkscaling_supported(hba))
return;
spin_lock_irqsave(hba->host->host_lock, flags);
if (!hba->clk_scaling.active_reqs++)
queue_resume_work = true;
if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
return;
}
if (queue_resume_work)
queue_work(hba->clk_scaling.workq,
&hba->clk_scaling.resume_work);
if (!hba->clk_scaling.window_start_t) {
hba->clk_scaling.window_start_t = curr_t;
hba->clk_scaling.tot_busy_t = 0;
hba->clk_scaling.is_busy_started = false;
}
if (!hba->clk_scaling.is_busy_started) {
hba->clk_scaling.busy_start_t = curr_t;
hba->clk_scaling.is_busy_started = true;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
{
struct ufs_clk_scaling *scaling = &hba->clk_scaling;
unsigned long flags;
if (!ufshcd_is_clkscaling_supported(hba))
return;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_scaling.active_reqs--;
if (!scaling->active_reqs && scaling->is_busy_started) {
scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
scaling->busy_start_t));
scaling->busy_start_t = 0;
scaling->is_busy_started = false;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static inline int ufshcd_monitor_opcode2dir(u8 opcode)
{
if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
return READ;
else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
return WRITE;
else
return -EINVAL;
}
static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp)
{
const struct ufs_hba_monitor *m = &hba->monitor;
return (m->enabled && lrbp && lrbp->cmd &&
(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
}
static void ufshcd_start_monitor(struct ufs_hba *hba,
const struct ufshcd_lrb *lrbp)
{
int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
hba->monitor.busy_start_ts[dir] = ktime_get();
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
{
int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
struct ufs_hba_monitor *m = &hba->monitor;
ktime_t now, inc, lat;
now = lrbp->compl_time_stamp;
inc = ktime_sub(now, m->busy_start_ts[dir]);
m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
m->nr_sec_rw[dir] += blk_rq_sectors(req);
/* Update latencies */
m->nr_req[dir]++;
lat = ktime_sub(now, lrbp->issue_time_stamp);
m->lat_sum[dir] += lat;
if (m->lat_max[dir] < lat || !m->lat_max[dir])
m->lat_max[dir] = lat;
if (m->lat_min[dir] > lat || !m->lat_min[dir])
m->lat_min[dir] = lat;
m->nr_queued[dir]--;
/* Push forward the busy start of monitor */
m->busy_start_ts[dir] = now;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
/**
* ufshcd_send_command - Send SCSI or device management commands
* @hba: per adapter instance
* @task_tag: Task tag of the command
* @hwq: pointer to hardware queue instance
*/
static inline
void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
struct ufs_hw_queue *hwq)
{
struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
unsigned long flags;
lrbp->issue_time_stamp = ktime_get();
lrbp->issue_time_stamp_local_clock = local_clock();
lrbp->compl_time_stamp = ktime_set(0, 0);
lrbp->compl_time_stamp_local_clock = 0;
ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
if (lrbp->cmd)
ufshcd_clk_scaling_start_busy(hba);
if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
ufshcd_start_monitor(hba, lrbp);
if (is_mcq_enabled(hba)) {
int utrd_size = sizeof(struct utp_transfer_req_desc);
struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
struct utp_transfer_req_desc *dest;
spin_lock(&hwq->sq_lock);
dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
memcpy(dest, src, utrd_size);
ufshcd_inc_sq_tail(hwq);
spin_unlock(&hwq->sq_lock);
} else {
spin_lock_irqsave(&hba->outstanding_lock, flags);
if (hba->vops && hba->vops->setup_xfer_req)
hba->vops->setup_xfer_req(hba, lrbp->task_tag,
!!lrbp->cmd);
__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
ufshcd_writel(hba, 1 << lrbp->task_tag,
REG_UTP_TRANSFER_REQ_DOOR_BELL);
spin_unlock_irqrestore(&hba->outstanding_lock, flags);
}
}
/**
* ufshcd_copy_sense_data - Copy sense data in case of check condition
* @lrbp: pointer to local reference block
*/
static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
{
u8 *const sense_buffer = lrbp->cmd->sense_buffer;
u16 resp_len;
int len;
resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
if (sense_buffer && resp_len) {
int len_to_copy;
len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
len_to_copy);
}
}
/**
* ufshcd_copy_query_response() - Copy the Query Response and the data
* descriptor
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*
* Return: 0 upon success; < 0 upon failure.
*/
static
int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
/* Get the descriptor */
if (hba->dev_cmd.query.descriptor &&
lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
GENERAL_UPIU_REQUEST_SIZE;
u16 resp_len;
u16 buf_len;
/* data segment length */
resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
.data_segment_length);
buf_len = be16_to_cpu(
hba->dev_cmd.query.request.upiu_req.length);
if (likely(buf_len >= resp_len)) {
memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
} else {
dev_warn(hba->dev,
"%s: rsp size %d is bigger than buffer size %d",
__func__, resp_len, buf_len);
return -EINVAL;
}
}
return 0;
}
/**
* ufshcd_hba_capabilities - Read controller capabilities
* @hba: per adapter instance
*
* Return: 0 on success, negative on error.
*/
static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
{
int err;
hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
/* nutrs and nutmrs are 0 based values */
hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
hba->nutmrs =
((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
hba->reserved_slot = hba->nutrs - 1;
/* Read crypto capabilities */
err = ufshcd_hba_init_crypto_capabilities(hba);
if (err) {
dev_err(hba->dev, "crypto setup failed\n");
return err;
}
hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
if (!hba->mcq_sup)
return 0;
hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
hba->mcq_capabilities);
return 0;
}
/**
* ufshcd_ready_for_uic_cmd - Check if controller is ready
* to accept UIC commands
* @hba: per adapter instance
*
* Return: true on success, else false.
*/
static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
{
u32 val;
int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
500, UIC_CMD_TIMEOUT * 1000, false, hba,
REG_CONTROLLER_STATUS);
return ret == 0;
}
/**
* ufshcd_get_upmcrs - Get the power mode change request status
* @hba: Pointer to adapter instance
*
* This function gets the UPMCRS field of HCS register
*
* Return: value of UPMCRS field.
*/
static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
{
return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
}
/**
* ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
* @hba: per adapter instance
* @uic_cmd: UIC command
*/
static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
lockdep_assert_held(&hba->uic_cmd_mutex);
WARN_ON(hba->active_uic_cmd);
hba->active_uic_cmd = uic_cmd;
/* Write Args */
ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
/* Write UIC Cmd */
ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
REG_UIC_COMMAND);
}
/**
* ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
* @hba: per adapter instance
* @uic_cmd: UIC command
*
* Return: 0 only if success.
*/
static int
ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
int ret;
unsigned long flags;
lockdep_assert_held(&hba->uic_cmd_mutex);
if (wait_for_completion_timeout(&uic_cmd->done,
msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
} else {
ret = -ETIMEDOUT;
dev_err(hba->dev,
"uic cmd 0x%x with arg3 0x%x completion timeout\n",
uic_cmd->command, uic_cmd->argument3);
if (!uic_cmd->cmd_active) {
dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
__func__);
ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
}
}
spin_lock_irqsave(hba->host->host_lock, flags);
hba->active_uic_cmd = NULL;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return ret;
}
/**
* __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
* @hba: per adapter instance
* @uic_cmd: UIC command
* @completion: initialize the completion only if this is set to true
*
* Return: 0 only if success.
*/
static int
__ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
bool completion)
{
lockdep_assert_held(&hba->uic_cmd_mutex);
if (!ufshcd_ready_for_uic_cmd(hba)) {
dev_err(hba->dev,
"Controller not ready to accept UIC commands\n");
return -EIO;
}
if (completion)
init_completion(&uic_cmd->done);
uic_cmd->cmd_active = 1;
ufshcd_dispatch_uic_cmd(hba, uic_cmd);
return 0;
}
/**
* ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
* @hba: per adapter instance
* @uic_cmd: UIC command
*
* Return: 0 only if success.
*/
int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
{
int ret;
if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
return 0;
ufshcd_hold(hba);
mutex_lock(&hba->uic_cmd_mutex);
ufshcd_add_delay_before_dme_cmd(hba);
ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
if (!ret)
ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
mutex_unlock(&hba->uic_cmd_mutex);
ufshcd_release(hba);
return ret;
}
/**
* ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
* @hba: per-adapter instance
* @lrbp: pointer to local reference block
* @sg_entries: The number of sg lists actually used
* @sg_list: Pointer to SG list
*/
static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
struct scatterlist *sg_list)
{
struct ufshcd_sg_entry *prd;
struct scatterlist *sg;
int i;
if (sg_entries) {
if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
lrbp->utr_descriptor_ptr->prd_table_length =
cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
else
lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
prd = lrbp->ucd_prdt_ptr;
for_each_sg(sg_list, sg, sg_entries, i) {
const unsigned int len = sg_dma_len(sg);
/*
* From the UFSHCI spec: "Data Byte Count (DBC): A '0'
* based value that indicates the length, in bytes, of
* the data block. A maximum of length of 256KB may
* exist for any entry. Bits 1:0 of this field shall be
* 11b to indicate Dword granularity. A value of '3'
* indicates 4 bytes, '7' indicates 8 bytes, etc."
*/
WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
prd->size = cpu_to_le32(len - 1);
prd->addr = cpu_to_le64(sg->dma_address);
prd->reserved = 0;
prd = (void *)prd + ufshcd_sg_entry_size(hba);
}
} else {
lrbp->utr_descriptor_ptr->prd_table_length = 0;
}
}
/**
* ufshcd_map_sg - Map scatter-gather list to prdt
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*
* Return: 0 in case of success, non-zero value in case of failure.
*/
static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct scsi_cmnd *cmd = lrbp->cmd;
int sg_segments = scsi_dma_map(cmd);
if (sg_segments < 0)
return sg_segments;
ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
return 0;
}
/**
* ufshcd_enable_intr - enable interrupts
* @hba: per adapter instance
* @intrs: interrupt bits
*/
static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
{
u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
set |= intrs;
ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
}
/**
* ufshcd_disable_intr - disable interrupts
* @hba: per adapter instance
* @intrs: interrupt bits
*/
static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
{
u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
set &= ~intrs;
ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
}
/**
* ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
* descriptor according to request
* @hba: per adapter instance
* @lrbp: pointer to local reference block
* @upiu_flags: flags required in the header
* @cmd_dir: requests data direction
* @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
*/
static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
u8 *upiu_flags, enum dma_data_direction cmd_dir,
int ehs_length)
{
struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
struct request_desc_header *h = &req_desc->header;
enum utp_data_direction data_direction;
lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
*h = (typeof(*h)){ };
if (cmd_dir == DMA_FROM_DEVICE) {
data_direction = UTP_DEVICE_TO_HOST;
*upiu_flags = UPIU_CMD_FLAGS_READ;
} else if (cmd_dir == DMA_TO_DEVICE) {
data_direction = UTP_HOST_TO_DEVICE;
*upiu_flags = UPIU_CMD_FLAGS_WRITE;
} else {
data_direction = UTP_NO_DATA_TRANSFER;
*upiu_flags = UPIU_CMD_FLAGS_NONE;
}
h->command_type = lrbp->command_type;
h->data_direction = data_direction;
h->ehs_length = ehs_length;
if (lrbp->intr_cmd)
h->interrupt = 1;
/* Prepare crypto related dwords */
ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
/*
* assigning invalid value for command status. Controller
* updates OCS on command completion, with the command
* status
*/
h->ocs = OCS_INVALID_COMMAND_STATUS;
req_desc->prd_table_length = 0;
}
/**
* ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
* for scsi commands
* @lrbp: local reference block pointer
* @upiu_flags: flags
*/
static
void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
{
struct scsi_cmnd *cmd = lrbp->cmd;
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
unsigned short cdb_len;
ucd_req_ptr->header = (struct utp_upiu_header){
.transaction_code = UPIU_TRANSACTION_COMMAND,
.flags = upiu_flags,
.lun = lrbp->lun,
.task_tag = lrbp->task_tag,
.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
};
WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
/**
* ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
* @hba: UFS hba
* @lrbp: local reference block pointer
* @upiu_flags: flags
*/
static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, u8 upiu_flags)
{
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
struct ufs_query *query = &hba->dev_cmd.query;
u16 len = be16_to_cpu(query->request.upiu_req.length);
/* Query request header */
ucd_req_ptr->header = (struct utp_upiu_header){
.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
.flags = upiu_flags,
.lun = lrbp->lun,
.task_tag = lrbp->task_tag,
.query_function = query->request.query_func,
/* Data segment length only need for WRITE_DESC */
.data_segment_length =
query->request.upiu_req.opcode ==
UPIU_QUERY_OPCODE_WRITE_DESC ?
cpu_to_be16(len) :
0,
};
/* Copy the Query Request buffer as is */
memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
QUERY_OSF_SIZE);
/* Copy the Descriptor */
if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
memcpy(ucd_req_ptr + 1, query->descriptor, len);
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
{
struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
ucd_req_ptr->header = (struct utp_upiu_header){
.transaction_code = UPIU_TRANSACTION_NOP_OUT,
.task_tag = lrbp->task_tag,
};
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
}
/**
* ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
* for Device Management Purposes
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp)
{
u8 upiu_flags;
int ret = 0;
ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
ufshcd_prepare_utp_nop_upiu(lrbp);
else
ret = -EINVAL;
return ret;
}
/**
* ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
* for SCSI Purposes
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*/
static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
u8 upiu_flags;
ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
if (ioprio_class == IOPRIO_CLASS_RT)
upiu_flags |= UPIU_CMD_FLAGS_CP;
ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
}
/**
* ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
* @upiu_wlun_id: UPIU W-LUN id
*
* Return: SCSI W-LUN id.
*/
static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
{
return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
}
static inline bool is_device_wlun(struct scsi_device *sdev)
{
return sdev->lun ==
ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
}
/*
* Associate the UFS controller queue with the default and poll HCTX types.
* Initialize the mq_map[] arrays.
*/
static void ufshcd_map_queues(struct Scsi_Host *shost)
{
struct ufs_hba *hba = shost_priv(shost);
int i, queue_offset = 0;
if (!is_mcq_supported(hba)) {
hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
hba->nr_queues[HCTX_TYPE_READ] = 0;
hba->nr_queues[HCTX_TYPE_POLL] = 1;
hba->nr_hw_queues = 1;
}
for (i = 0; i < shost->nr_maps; i++) {
struct blk_mq_queue_map *map = &shost->tag_set.map[i];
map->nr_queues = hba->nr_queues[i];
if (!map->nr_queues)
continue;
map->queue_offset = queue_offset;
if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
map->queue_offset = 0;
blk_mq_map_queues(map);
queue_offset += map->nr_queues;
}
}
static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
{
struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
i * ufshcd_get_ucd_size(hba);
struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
i * ufshcd_get_ucd_size(hba);
u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
response_upiu);
u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
lrb->utr_descriptor_ptr = utrdlp + i;
lrb->utrd_dma_addr = hba->utrdl_dma_addr +
i * sizeof(struct utp_transfer_req_desc);
lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
lrb->ucd_req_dma_addr = cmd_desc_element_addr;
lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
}
/**
* ufshcd_queuecommand - main entry point for SCSI requests
* @host: SCSI host pointer
* @cmd: command from SCSI Midlayer
*
* Return: 0 for success, non-zero in case of failure.
*/
static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
{
struct ufs_hba *hba = shost_priv(host);
int tag = scsi_cmd_to_rq(cmd)->tag;
struct ufshcd_lrb *lrbp;
int err = 0;
struct ufs_hw_queue *hwq = NULL;
switch (hba->ufshcd_state) {
case UFSHCD_STATE_OPERATIONAL:
break;
case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
/*
* SCSI error handler can call ->queuecommand() while UFS error
* handler is in progress. Error interrupts could change the
* state from UFSHCD_STATE_RESET to
* UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
* being issued in that case.
*/
if (ufshcd_eh_in_progress(hba)) {
err = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
break;
case UFSHCD_STATE_EH_SCHEDULED_FATAL:
/*
* pm_runtime_get_sync() is used at error handling preparation
* stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
* PM ops, it can never be finished if we let SCSI layer keep
* retrying it, which gets err handler stuck forever. Neither
* can we let the scsi cmd pass through, because UFS is in bad
* state, the scsi cmd may eventually time out, which will get
* err handler blocked for too long. So, just fail the scsi cmd
* sent from PM ops, err handler can recover PM error anyways.
*/
if (hba->pm_op_in_progress) {
hba->force_reset = true;
set_host_byte(cmd, DID_BAD_TARGET);
scsi_done(cmd);
goto out;
}
fallthrough;
case UFSHCD_STATE_RESET:
err = SCSI_MLQUEUE_HOST_BUSY;
goto out;
case UFSHCD_STATE_ERROR:
set_host_byte(cmd, DID_ERROR);
scsi_done(cmd);
goto out;
}
hba->req_abort_count = 0;
ufshcd_hold(hba);
lrbp = &hba->lrb[tag];
lrbp->cmd = cmd;
lrbp->task_tag = tag;
lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
lrbp->req_abort_skip = false;
ufshcd_comp_scsi_upiu(hba, lrbp);
err = ufshcd_map_sg(hba, lrbp);
if (err) {
ufshcd_release(hba);
goto out;
}
if (is_mcq_enabled(hba))
hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
ufshcd_send_command(hba, tag, hwq);
out:
if (ufs_trigger_eh(hba)) {
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_schedule_eh_work(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
return err;
}
static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
enum dev_cmd_type cmd_type, u8 lun, int tag)
{
lrbp->cmd = NULL;
lrbp->task_tag = tag;
lrbp->lun = lun;
lrbp->intr_cmd = true; /* No interrupt aggregation */
ufshcd_prepare_lrbp_crypto(NULL, lrbp);
hba->dev_cmd.type = cmd_type;
}
static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
{
ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
return ufshcd_compose_devman_upiu(hba, lrbp);
}
/*
* Check with the block layer if the command is inflight
* @cmd: command to check.
*
* Return: true if command is inflight; false if not.
*/
bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
{
return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
}
/*
* Clear the pending command in the controller and wait until
* the controller confirms that the command has been cleared.
* @hba: per adapter instance
* @task_tag: The tag number of the command to be cleared.
*/
static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
{
u32 mask;
unsigned long flags;
int err;
if (is_mcq_enabled(hba)) {
/*
* MCQ mode. Clean up the MCQ resources similar to
* what the ufshcd_utrl_clear() does for SDB mode.
*/
err = ufshcd_mcq_sq_cleanup(hba, task_tag);
if (err) {
dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
__func__, task_tag, err);
return err;
}
return 0;
}
mask = 1U << task_tag;
/* clear outstanding transaction before retry */
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_utrl_clear(hba, mask);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/*
* wait for h/w to clear corresponding bit in door-bell.
* max. wait is 1 sec.
*/
return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
mask, ~mask, 1000, 1000);
}
/**
* ufshcd_dev_cmd_completion() - handles device management command responses
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*
* Return: 0 upon success; < 0 upon failure.
*/
static int
ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
enum upiu_response_transaction resp;
int err = 0;
hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
switch (resp) {
case UPIU_TRANSACTION_NOP_IN:
if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
err = -EINVAL;
dev_err(hba->dev, "%s: unexpected response %x\n",
__func__, resp);
}
break;
case UPIU_TRANSACTION_QUERY_RSP: {
u8 response = lrbp->ucd_rsp_ptr->header.response;
if (response == 0)
err = ufshcd_copy_query_response(hba, lrbp);
break;
}
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
err = -EPERM;
dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
__func__);
break;
case UPIU_TRANSACTION_RESPONSE:
if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
err = -EINVAL;
dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
}
break;
default:
err = -EINVAL;
dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
__func__, resp);
break;
}
return err;
}
static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp, int max_timeout)
{
unsigned long time_left = msecs_to_jiffies(max_timeout);
unsigned long flags;
bool pending;
int err;
retry:
time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
time_left);
if (likely(time_left)) {
/*
* The completion handler called complete() and the caller of
* this function still owns the @lrbp tag so the code below does
* not trigger any race conditions.
*/
hba->dev_cmd.complete = NULL;
err = ufshcd_get_tr_ocs(lrbp, NULL);
if (!err)
err = ufshcd_dev_cmd_completion(hba, lrbp);
} else {
err = -ETIMEDOUT;
dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
__func__, lrbp->task_tag);
/* MCQ mode */
if (is_mcq_enabled(hba)) {
/* successfully cleared the command, retry if needed */
if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
err = -EAGAIN;
hba->dev_cmd.complete = NULL;
return err;
}
/* SDB mode */
if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
/* successfully cleared the command, retry if needed */
err = -EAGAIN;
/*
* Since clearing the command succeeded we also need to
* clear the task tag bit from the outstanding_reqs
* variable.
*/
spin_lock_irqsave(&hba->outstanding_lock, flags);
pending = test_bit(lrbp->task_tag,
&hba->outstanding_reqs);
if (pending) {
hba->dev_cmd.complete = NULL;
__clear_bit(lrbp->task_tag,
&hba->outstanding_reqs);
}
spin_unlock_irqrestore(&hba->outstanding_lock, flags);
if (!pending) {
/*
* The completion handler ran while we tried to
* clear the command.
*/
time_left = 1;
goto retry;
}
} else {
dev_err(hba->dev, "%s: failed to clear tag %d\n",
__func__, lrbp->task_tag);
spin_lock_irqsave(&hba->outstanding_lock, flags);
pending = test_bit(lrbp->task_tag,
&hba->outstanding_reqs);
if (pending)
hba->dev_cmd.complete = NULL;
spin_unlock_irqrestore(&hba->outstanding_lock, flags);
if (!pending) {
/*
* The completion handler ran while we tried to
* clear the command.
*/
time_left = 1;
goto retry;
}
}
}
return err;
}
static void ufshcd_dev_man_lock(struct ufs_hba *hba)
{
ufshcd_hold(hba);
mutex_lock(&hba->dev_cmd.lock);
down_read(&hba->clk_scaling_lock);
}
static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
{
up_read(&hba->clk_scaling_lock);
mutex_unlock(&hba->dev_cmd.lock);
ufshcd_release(hba);
}
static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
const u32 tag, int timeout)
{
DECLARE_COMPLETION_ONSTACK(wait);
int err;
hba->dev_cmd.complete = &wait;
ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
(struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
return err;
}
/**
* ufshcd_exec_dev_cmd - API for sending device management requests
* @hba: UFS hba
* @cmd_type: specifies the type (NOP, Query...)
* @timeout: timeout in milliseconds
*
* Return: 0 upon success; < 0 upon failure.
*
* NOTE: Since there is only one available tag for device management commands,
* it is expected you hold the hba->dev_cmd.lock mutex.
*/
static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
enum dev_cmd_type cmd_type, int timeout)
{
const u32 tag = hba->reserved_slot;
struct ufshcd_lrb *lrbp = &hba->lrb[tag];
int err;
/* Protects use of hba->reserved_slot. */
lockdep_assert_held(&hba->dev_cmd.lock);
err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
if (unlikely(err))
return err;
return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
}
/**
* ufshcd_init_query() - init the query response and request parameters
* @hba: per-adapter instance
* @request: address of the request pointer to be initialized
* @response: address of the response pointer to be initialized
* @opcode: operation to perform
* @idn: flag idn to access
* @index: LU number to access
* @selector: query/flag/descriptor further identification
*/
static inline void ufshcd_init_query(struct ufs_hba *hba,
struct ufs_query_req **request, struct ufs_query_res **response,
enum query_opcode opcode, u8 idn, u8 index, u8 selector)
{
*request = &hba->dev_cmd.query.request;
*response = &hba->dev_cmd.query.response;
memset(*request, 0, sizeof(struct ufs_query_req));
memset(*response, 0, sizeof(struct ufs_query_res));
(*request)->upiu_req.opcode = opcode;
(*request)->upiu_req.idn = idn;
(*request)->upiu_req.index = index;
(*request)->upiu_req.selector = selector;
}
static int ufshcd_query_flag_retry(struct ufs_hba *hba,
enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
{
int ret;
int retries;
for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
if (ret)
dev_dbg(hba->dev,
"%s: failed with error %d, retries %d\n",
__func__, ret, retries);
else
break;
}
if (ret)
dev_err(hba->dev,
"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
__func__, opcode, idn, ret, retries);
return ret;
}
/**
* ufshcd_query_flag() - API function for sending flag query requests
* @hba: per-adapter instance
* @opcode: flag query to perform
* @idn: flag idn to access
* @index: flag index to access
* @flag_res: the flag value after the query request completes
*
* Return: 0 for success, non-zero in case of failure.
*/
int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
enum flag_idn idn, u8 index, bool *flag_res)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err, selector = 0;
int timeout = QUERY_REQ_TIMEOUT;
BUG_ON(!hba);
ufshcd_dev_man_lock(hba);
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
switch (opcode) {
case UPIU_QUERY_OPCODE_SET_FLAG:
case UPIU_QUERY_OPCODE_CLEAR_FLAG:
case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
break;
case UPIU_QUERY_OPCODE_READ_FLAG:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
if (!flag_res) {
/* No dummy reads */
dev_err(hba->dev, "%s: Invalid argument for read request\n",
__func__);
err = -EINVAL;
goto out_unlock;
}
break;
default:
dev_err(hba->dev,
"%s: Expected query flag opcode but got = %d\n",
__func__, opcode);
err = -EINVAL;
goto out_unlock;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
if (err) {
dev_err(hba->dev,
"%s: Sending flag query for idn %d failed, err = %d\n",
__func__, idn, err);
goto out_unlock;
}
if (flag_res)
*flag_res = (be32_to_cpu(response->upiu_res.value) &
MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
out_unlock:
ufshcd_dev_man_unlock(hba);
return err;
}
/**
* ufshcd_query_attr - API function for sending attribute requests
* @hba: per-adapter instance
* @opcode: attribute opcode
* @idn: attribute idn to access
* @index: index field
* @selector: selector field
* @attr_val: the attribute value after the query request completes
*
* Return: 0 for success, non-zero in case of failure.
*/
int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err;
BUG_ON(!hba);
if (!attr_val) {
dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
__func__, opcode);
return -EINVAL;
}
ufshcd_dev_man_lock(hba);
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
switch (opcode) {
case UPIU_QUERY_OPCODE_WRITE_ATTR:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
request->upiu_req.value = cpu_to_be32(*attr_val);
break;
case UPIU_QUERY_OPCODE_READ_ATTR:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
break;
default:
dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
__func__, opcode);
err = -EINVAL;
goto out_unlock;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
if (err) {
dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
__func__, opcode, idn, index, err);
goto out_unlock;
}
*attr_val = be32_to_cpu(response->upiu_res.value);
out_unlock:
ufshcd_dev_man_unlock(hba);
return err;
}
/**
* ufshcd_query_attr_retry() - API function for sending query
* attribute with retries
* @hba: per-adapter instance
* @opcode: attribute opcode
* @idn: attribute idn to access
* @index: index field
* @selector: selector field
* @attr_val: the attribute value after the query request
* completes
*
* Return: 0 for success, non-zero in case of failure.
*/
int ufshcd_query_attr_retry(struct ufs_hba *hba,
enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
u32 *attr_val)
{
int ret = 0;
u32 retries;
for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
ret = ufshcd_query_attr(hba, opcode, idn, index,
selector, attr_val);
if (ret)
dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
__func__, ret, retries);
else
break;
}
if (ret)
dev_err(hba->dev,
"%s: query attribute, idn %d, failed with error %d after %d retries\n",
__func__, idn, ret, QUERY_REQ_RETRIES);
return ret;
}
static int __ufshcd_query_descriptor(struct ufs_hba *hba,
enum query_opcode opcode, enum desc_idn idn, u8 index,
u8 selector, u8 *desc_buf, int *buf_len)
{
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
int err;
BUG_ON(!hba);
if (!desc_buf) {
dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
__func__, opcode);
return -EINVAL;
}
if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
__func__, *buf_len);
return -EINVAL;
}
ufshcd_dev_man_lock(hba);
ufshcd_init_query(hba, &request, &response, opcode, idn, index,
selector);
hba->dev_cmd.query.descriptor = desc_buf;
request->upiu_req.length = cpu_to_be16(*buf_len);
switch (opcode) {
case UPIU_QUERY_OPCODE_WRITE_DESC:
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
break;
case UPIU_QUERY_OPCODE_READ_DESC:
request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
break;
default:
dev_err(hba->dev,
"%s: Expected query descriptor opcode but got = 0x%.2x\n",
__func__, opcode);
err = -EINVAL;
goto out_unlock;
}
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
if (err) {
dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
__func__, opcode, idn, index, err);
goto out_unlock;
}
*buf_len = be16_to_cpu(response->upiu_res.length);
out_unlock:
hba->dev_cmd.query.descriptor = NULL;
ufshcd_dev_man_unlock(hba);
return err;
}
/**
* ufshcd_query_descriptor_retry - API function for sending descriptor requests
* @hba: per-adapter instance
* @opcode: attribute opcode
* @idn: attribute idn to access
* @index: index field
* @selector: selector field
* @desc_buf: the buffer that contains the descriptor
* @buf_len: length parameter passed to the device
*
* The buf_len parameter will contain, on return, the length parameter
* received on the response.
*
* Return: 0 for success, non-zero in case of failure.
*/
int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
enum query_opcode opcode,
enum desc_idn idn, u8 index,
u8 selector,
u8 *desc_buf, int *buf_len)
{
int err;
int retries;
for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
err = __ufshcd_query_descriptor(hba, opcode, idn, index,
selector, desc_buf, buf_len);
if (!err || err == -EINVAL)
break;
}
return err;
}
/**
* ufshcd_read_desc_param - read the specified descriptor parameter
* @hba: Pointer to adapter instance
* @desc_id: descriptor idn value
* @desc_index: descriptor index
* @param_offset: offset of the parameter to read
* @param_read_buf: pointer to buffer where parameter would be read
* @param_size: sizeof(param_read_buf)
*
* Return: 0 in case of success, non-zero otherwise.
*/
int ufshcd_read_desc_param(struct ufs_hba *hba,
enum desc_idn desc_id,
int desc_index,
u8 param_offset,
u8 *param_read_buf,
u8 param_size)
{
int ret;
u8 *desc_buf;
int buff_len = QUERY_DESC_MAX_SIZE;
bool is_kmalloc = true;
/* Safety check */
if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
return -EINVAL;
/* Check whether we need temp memory */
if (param_offset != 0 || param_size < buff_len) {
desc_buf = kzalloc(buff_len, GFP_KERNEL);
if (!desc_buf)
return -ENOMEM;
} else {
desc_buf = param_read_buf;
is_kmalloc = false;
}
/* Request for full descriptor */
ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
desc_id, desc_index, 0,
desc_buf, &buff_len);
if (ret) {
dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
__func__, desc_id, desc_index, param_offset, ret);
goto out;
}
/* Update descriptor length */
buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
if (param_offset >= buff_len) {
dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
__func__, param_offset, desc_id, buff_len);
ret = -EINVAL;
goto out;
}
/* Sanity check */
if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
ret = -EINVAL;
goto out;
}
if (is_kmalloc) {
/* Make sure we don't copy more data than available */
if (param_offset >= buff_len)
ret = -EINVAL;
else
memcpy(param_read_buf, &desc_buf[param_offset],
min_t(u32, param_size, buff_len - param_offset));
}
out:
if (is_kmalloc)
kfree(desc_buf);
return ret;
}
/**
* struct uc_string_id - unicode string
*
* @len: size of this descriptor inclusive
* @type: descriptor type
* @uc: unicode string character
*/
struct uc_string_id {
u8 len;
u8 type;
wchar_t uc[];
} __packed;
/* replace non-printable or non-ASCII characters with spaces */
static inline char ufshcd_remove_non_printable(u8 ch)
{
return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
}
/**
* ufshcd_read_string_desc - read string descriptor
* @hba: pointer to adapter instance
* @desc_index: descriptor index
* @buf: pointer to buffer where descriptor would be read,
* the caller should free the memory.
* @ascii: if true convert from unicode to ascii characters
* null terminated string.
*
* Return:
* * string size on success.
* * -ENOMEM: on allocation failure
* * -EINVAL: on a wrong parameter
*/
int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
u8 **buf, bool ascii)
{
struct uc_string_id *uc_str;
u8 *str;
int ret;
if (!buf)
return -EINVAL;
uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
if (!uc_str)
return -ENOMEM;
ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
(u8 *)uc_str, QUERY_DESC_MAX_SIZE);
if (ret < 0) {
dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
QUERY_REQ_RETRIES, ret);
str = NULL;
goto out;
}
if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
dev_dbg(hba->dev, "String Desc is of zero length\n");
str = NULL;
ret = 0;
goto out;
}
if (ascii) {
ssize_t ascii_len;
int i;
/* remove header and divide by 2 to move from UTF16 to UTF8 */
ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
str = kzalloc(ascii_len, GFP_KERNEL);
if (!str) {
ret = -ENOMEM;
goto out;
}
/*
* the descriptor contains string in UTF16 format
* we need to convert to utf-8 so it can be displayed
*/
ret = utf16s_to_utf8s(uc_str->uc,
uc_str->len - QUERY_DESC_HDR_SIZE,
UTF16_BIG_ENDIAN, str, ascii_len - 1);
/* replace non-printable or non-ASCII characters with spaces */
for (i = 0; i < ret; i++)
str[i] = ufshcd_remove_non_printable(str[i]);
str[ret++] = '\0';
} else {
str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
if (!str) {
ret = -ENOMEM;
goto out;
}
ret = uc_str->len;
}
out:
*buf = str;
kfree(uc_str);
return ret;
}
/**
* ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
* @hba: Pointer to adapter instance
* @lun: lun id
* @param_offset: offset of the parameter to read
* @param_read_buf: pointer to buffer where parameter would be read
* @param_size: sizeof(param_read_buf)
*
* Return: 0 in case of success, non-zero otherwise.
*/
static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
int lun,
enum unit_desc_param param_offset,
u8 *param_read_buf,
u32 param_size)
{
/*
* Unit descriptors are only available for general purpose LUs (LUN id
* from 0 to 7) and RPMB Well known LU.
*/
if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
return -EOPNOTSUPP;
return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
param_offset, param_read_buf, param_size);
}
static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
{
int err = 0;
u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
if (hba->dev_info.wspecversion >= 0x300) {
err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
&gating_wait);
if (err)
dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
err, gating_wait);
if (gating_wait == 0) {
gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
gating_wait);
}
hba->dev_info.clk_gating_wait_us = gating_wait;
}
return err;
}
/**
* ufshcd_memory_alloc - allocate memory for host memory space data structures
* @hba: per adapter instance
*
* 1. Allocate DMA memory for Command Descriptor array
* Each command descriptor consist of Command UPIU, Response UPIU and PRDT
* 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
* 3. Allocate DMA memory for UTP Task Management Request Descriptor List
* (UTMRDL)
* 4. Allocate memory for local reference block(lrb).
*
* Return: 0 for success, non-zero in case of failure.
*/
static int ufshcd_memory_alloc(struct ufs_hba *hba)
{
size_t utmrdl_size, utrdl_size, ucdl_size;
/* Allocate memory for UTP command descriptors */
ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
ucdl_size,
&hba->ucdl_dma_addr,
GFP_KERNEL);
/*
* UFSHCI requires UTP command descriptor to be 128 byte aligned.
*/
if (!hba->ucdl_base_addr ||
WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
dev_err(hba->dev,
"Command Descriptor Memory allocation failed\n");
goto out;
}
/*
* Allocate memory for UTP Transfer descriptors
* UFSHCI requires 1KB alignment of UTRD
*/
utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
utrdl_size,
&hba->utrdl_dma_addr,
GFP_KERNEL);
if (!hba->utrdl_base_addr ||
WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
dev_err(hba->dev,
"Transfer Descriptor Memory allocation failed\n");
goto out;
}
/*
* Skip utmrdl allocation; it may have been
* allocated during first pass and not released during
* MCQ memory allocation.
* See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
*/
if (hba->utmrdl_base_addr)
goto skip_utmrdl;
/*
* Allocate memory for UTP Task Management descriptors
* UFSHCI requires 1KB alignment of UTMRD
*/
utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
utmrdl_size,
&hba->utmrdl_dma_addr,
GFP_KERNEL);
if (!hba->utmrdl_base_addr ||
WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
dev_err(hba->dev,
"Task Management Descriptor Memory allocation failed\n");
goto out;
}
skip_utmrdl:
/* Allocate memory for local reference block */
hba->lrb = devm_kcalloc(hba->dev,
hba->nutrs, sizeof(struct ufshcd_lrb),
GFP_KERNEL);
if (!hba->lrb) {
dev_err(hba->dev, "LRB Memory allocation failed\n");
goto out;
}
return 0;
out:
return -ENOMEM;
}
/**
* ufshcd_host_memory_configure - configure local reference block with
* memory offsets
* @hba: per adapter instance
*
* Configure Host memory space
* 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
* address.
* 2. Update each UTRD with Response UPIU offset, Response UPIU length
* and PRDT offset.
* 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
* into local reference block.
*/
static void ufshcd_host_memory_configure(struct ufs_hba *hba)
{
struct utp_transfer_req_desc *utrdlp;
dma_addr_t cmd_desc_dma_addr;
dma_addr_t cmd_desc_element_addr;
u16 response_offset;
u16 prdt_offset;
int cmd_desc_size;
int i;
utrdlp = hba->utrdl_base_addr;
response_offset =
offsetof(struct utp_transfer_cmd_desc, response_upiu);
prdt_offset =
offsetof(struct utp_transfer_cmd_desc, prd_table);
cmd_desc_size = ufshcd_get_ucd_size(hba);
cmd_desc_dma_addr = hba->ucdl_dma_addr;
for (i = 0; i < hba->nutrs; i++) {
/* Configure UTRD with command descriptor base address */
cmd_desc_element_addr =
(cmd_desc_dma_addr + (cmd_desc_size * i));
utrdlp[i].command_desc_base_addr =
cpu_to_le64(cmd_desc_element_addr);
/* Response upiu and prdt offset should be in double words */
if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
utrdlp[i].response_upiu_offset =
cpu_to_le16(response_offset);
utrdlp[i].prd_table_offset =
cpu_to_le16(prdt_offset);
utrdlp[i].response_upiu_length =
cpu_to_le16(ALIGNED_UPIU_SIZE);
} else {
utrdlp[i].response_upiu_offset =
cpu_to_le16(response_offset >> 2);
utrdlp[i].prd_table_offset =
cpu_to_le16(prdt_offset >> 2);
utrdlp[i].response_upiu_length =
cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
}
ufshcd_init_lrb(hba, &hba->lrb[i], i);
}
}
/**
* ufshcd_dme_link_startup - Notify Unipro to perform link startup
* @hba: per adapter instance
*
* UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
* in order to initialize the Unipro link startup procedure.
* Once the Unipro links are up, the device connected to the controller
* is detected.
*
* Return: 0 on success, non-zero value on failure.
*/
static int ufshcd_dme_link_startup(struct ufs_hba *hba)
{
struct uic_command uic_cmd = {0};
int ret;
uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev,
"dme-link-startup: error code %d\n", ret);
return ret;
}
/**
* ufshcd_dme_reset - UIC command for DME_RESET
* @hba: per adapter instance
*
* DME_RESET command is issued in order to reset UniPro stack.
* This function now deals with cold reset.
*
* Return: 0 on success, non-zero value on failure.
*/
static int ufshcd_dme_reset(struct ufs_hba *hba)
{
struct uic_command uic_cmd = {0};
int ret;
uic_cmd.command = UIC_CMD_DME_RESET;
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_err(hba->dev,
"dme-reset: error code %d\n", ret);
return ret;
}
int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
int agreed_gear,
int adapt_val)
{
int ret;
if (agreed_gear < UFS_HS_G4)
adapt_val = PA_NO_ADAPT;
ret = ufshcd_dme_set(hba,
UIC_ARG_MIB(PA_TXHSADAPTTYPE),
adapt_val);
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
/**
* ufshcd_dme_enable - UIC command for DME_ENABLE
* @hba: per adapter instance
*
* DME_ENABLE command is issued in order to enable UniPro stack.
*
* Return: 0 on success, non-zero value on failure.
*/
static int ufshcd_dme_enable(struct ufs_hba *hba)
{
struct uic_command uic_cmd = {0};
int ret;
uic_cmd.command = UIC_CMD_DME_ENABLE;
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_err(hba->dev,
"dme-enable: error code %d\n", ret);
return ret;
}
static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
{
#define MIN_DELAY_BEFORE_DME_CMDS_US 1000
unsigned long min_sleep_time_us;
if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
return;
/*
* last_dme_cmd_tstamp will be 0 only for 1st call to
* this function
*/
if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
} else {
unsigned long delta =
(unsigned long) ktime_to_us(
ktime_sub(ktime_get(),
hba->last_dme_cmd_tstamp));
if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
min_sleep_time_us =
MIN_DELAY_BEFORE_DME_CMDS_US - delta;
else
return; /* no more delay required */
}
/* allow sleep for extra 50us if needed */
usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
}
/**
* ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
* @hba: per adapter instance
* @attr_sel: uic command argument1
* @attr_set: attribute set type as uic command argument2
* @mib_val: setting value as uic command argument3
* @peer: indicate whether peer or local
*
* Return: 0 on success, non-zero value on failure.
*/
int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
u8 attr_set, u32 mib_val, u8 peer)
{
struct uic_command uic_cmd = {0};
static const char *const action[] = {
"dme-set",
"dme-peer-set"
};
const char *set = action[!!peer];
int ret;
int retries = UFS_UIC_COMMAND_RETRIES;
uic_cmd.command = peer ?
UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
uic_cmd.argument1 = attr_sel;
uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
uic_cmd.argument3 = mib_val;
do {
/* for peer attributes we retry upon failure */
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
} while (ret && peer && --retries);
if (ret)
dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
set, UIC_GET_ATTR_ID(attr_sel), mib_val,
UFS_UIC_COMMAND_RETRIES - retries);
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
/**
* ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
* @hba: per adapter instance
* @attr_sel: uic command argument1
* @mib_val: the value of the attribute as returned by the UIC command
* @peer: indicate whether peer or local
*
* Return: 0 on success, non-zero value on failure.
*/
int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
u32 *mib_val, u8 peer)
{
struct uic_command uic_cmd = {0};
static const char *const action[] = {
"dme-get",
"dme-peer-get"
};
const char *get = action[!!peer];
int ret;
int retries = UFS_UIC_COMMAND_RETRIES;
struct ufs_pa_layer_attr orig_pwr_info;
struct ufs_pa_layer_attr temp_pwr_info;
bool pwr_mode_change = false;
if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
orig_pwr_info = hba->pwr_info;
temp_pwr_info = orig_pwr_info;
if (orig_pwr_info.pwr_tx == FAST_MODE ||
orig_pwr_info.pwr_rx == FAST_MODE) {
temp_pwr_info.pwr_tx = FASTAUTO_MODE;
temp_pwr_info.pwr_rx = FASTAUTO_MODE;
pwr_mode_change = true;
} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
orig_pwr_info.pwr_rx == SLOW_MODE) {
temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
pwr_mode_change = true;
}
if (pwr_mode_change) {
ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
if (ret)
goto out;
}
}
uic_cmd.command = peer ?
UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
uic_cmd.argument1 = attr_sel;
do {
/* for peer attributes we retry upon failure */
ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
if (ret)
dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
get, UIC_GET_ATTR_ID(attr_sel), ret);
} while (ret && peer && --retries);
if (ret)
dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
get, UIC_GET_ATTR_ID(attr_sel),
UFS_UIC_COMMAND_RETRIES - retries);
if (mib_val && !ret)
*mib_val = uic_cmd.argument3;
if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
&& pwr_mode_change)
ufshcd_change_power_mode(hba, &orig_pwr_info);
out:
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
/**
* ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
* state) and waits for it to take effect.
*
* @hba: per adapter instance
* @cmd: UIC command to execute
*
* DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
* DME_HIBERNATE_EXIT commands take some time to take its effect on both host
* and device UniPro link and hence it's final completion would be indicated by
* dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
* addition to normal UIC command completion Status (UCCS). This function only
* returns after the relevant status bits indicate the completion.
*
* Return: 0 on success, non-zero value on failure.
*/
static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
{
DECLARE_COMPLETION_ONSTACK(uic_async_done);
unsigned long flags;
u8 status;
int ret;
bool reenable_intr = false;
mutex_lock(&hba->uic_cmd_mutex);
ufshcd_add_delay_before_dme_cmd(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
if (ufshcd_is_link_broken(hba)) {
ret = -ENOLINK;
goto out_unlock;
}
hba->uic_async_done = &uic_async_done;
if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
/*
* Make sure UIC command completion interrupt is disabled before
* issuing UIC command.
*/
ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
reenable_intr = true;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
ret = __ufshcd_send_uic_cmd(hba, cmd, false);
if (ret) {
dev_err(hba->dev,
"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
cmd->command, cmd->argument3, ret);
goto out;
}
if (!wait_for_completion_timeout(hba->uic_async_done,
msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
dev_err(hba->dev,
"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
cmd->command, cmd->argument3);
if (!cmd->cmd_active) {
dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
__func__);
goto check_upmcrs;
}
ret = -ETIMEDOUT;
goto out;
}
check_upmcrs:
status = ufshcd_get_upmcrs(hba);
if (status != PWR_LOCAL) {
dev_err(hba->dev,
"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
cmd->command, status);
ret = (status != PWR_OK) ? status : -1;
}
out:
if (ret) {
ufshcd_print_host_state(hba);
ufshcd_print_pwr_info(hba);
ufshcd_print_evt_hist(hba);
}
spin_lock_irqsave(hba->host->host_lock, flags);
hba->active_uic_cmd = NULL;
hba->uic_async_done = NULL;
if (reenable_intr)
ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
if (ret) {
ufshcd_set_link_broken(hba);
ufshcd_schedule_eh_work(hba);
}
out_unlock:
spin_unlock_irqrestore(hba->host->host_lock, flags);
mutex_unlock(&hba->uic_cmd_mutex);
return ret;
}
/**
* ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
* using DME_SET primitives.
* @hba: per adapter instance
* @mode: powr mode value
*
* Return: 0 on success, non-zero value on failure.
*/
int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
{
struct uic_command uic_cmd = {0};
int ret;
if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
ret = ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
if (ret) {
dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
__func__, ret);
goto out;
}
}
uic_cmd.command = UIC_CMD_DME_SET;
uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
uic_cmd.argument3 = mode;
ufshcd_hold(hba);
ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
ufshcd_release(hba);
out:
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
int ufshcd_link_recovery(struct ufs_hba *hba)
{
int ret;
unsigned long flags;
spin_lock_irqsave(hba->host->host_lock, flags);
hba->ufshcd_state = UFSHCD_STATE_RESET;
ufshcd_set_eh_in_progress(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* Reset the attached device */
ufshcd_device_reset(hba);
ret = ufshcd_host_reset_and_restore(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
if (ret)
hba->ufshcd_state = UFSHCD_STATE_ERROR;
ufshcd_clear_eh_in_progress(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (ret)
dev_err(hba->dev, "%s: link recovery failed, err %d",
__func__, ret);
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
{
int ret;
struct uic_command uic_cmd = {0};
ktime_t start = ktime_get();
ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
if (ret)
dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
__func__, ret);
else
ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
POST_CHANGE);
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
{
struct uic_command uic_cmd = {0};
int ret;
ktime_t start = ktime_get();
ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
if (ret) {
dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
__func__, ret);
} else {
ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
POST_CHANGE);
hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
hba->ufs_stats.hibern8_exit_cnt++;
}
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
{
if (!ufshcd_is_auto_hibern8_supported(hba))
return;
ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
}
void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
{
const u32 cur_ahit = READ_ONCE(hba->ahit);
if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
return;
WRITE_ONCE(hba->ahit, ahit);
if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
ufshcd_rpm_get_sync(hba);
ufshcd_hold(hba);
ufshcd_configure_auto_hibern8(hba);
ufshcd_release(hba);
ufshcd_rpm_put_sync(hba);
}
}
EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
/**
* ufshcd_init_pwr_info - setting the POR (power on reset)
* values in hba power info
* @hba: per-adapter instance
*/
static void ufshcd_init_pwr_info(struct ufs_hba *hba)
{
hba->pwr_info.gear_rx = UFS_PWM_G1;
hba->pwr_info.gear_tx = UFS_PWM_G1;
hba->pwr_info.lane_rx = UFS_LANE_1;
hba->pwr_info.lane_tx = UFS_LANE_1;
hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
hba->pwr_info.hs_rate = 0;
}
/**
* ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
* @hba: per-adapter instance
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
{
struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
if (hba->max_pwr_info.is_valid)
return 0;
if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
pwr_info->pwr_tx = FASTAUTO_MODE;
pwr_info->pwr_rx = FASTAUTO_MODE;
} else {
pwr_info->pwr_tx = FAST_MODE;
pwr_info->pwr_rx = FAST_MODE;
}
pwr_info->hs_rate = PA_HS_MODE_B;
/* Get the connected lane count */
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
&pwr_info->lane_rx);
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&pwr_info->lane_tx);
if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
__func__,
pwr_info->lane_rx,
pwr_info->lane_tx);
return -EINVAL;
}
/*
* First, get the maximum gears of HS speed.
* If a zero value, it means there is no HSGEAR capability.
* Then, get the maximum gears of PWM speed.
*/
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
if (!pwr_info->gear_rx) {
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&pwr_info->gear_rx);
if (!pwr_info->gear_rx) {
dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
__func__, pwr_info->gear_rx);
return -EINVAL;
}
pwr_info->pwr_rx = SLOW_MODE;
}
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
&pwr_info->gear_tx);
if (!pwr_info->gear_tx) {
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
&pwr_info->gear_tx);
if (!pwr_info->gear_tx) {
dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
__func__, pwr_info->gear_tx);
return -EINVAL;
}
pwr_info->pwr_tx = SLOW_MODE;
}
hba->max_pwr_info.is_valid = true;
return 0;
}
static int ufshcd_change_power_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *pwr_mode)
{
int ret;
/* if already configured to the requested pwr_mode */
if (!hba->force_pmc &&
pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
dev_dbg(hba->dev, "%s: power already configured\n", __func__);
return 0;
}
/*
* Configure attributes for power mode change with below.
* - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
* - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
* - PA_HSSERIES
*/
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
pwr_mode->lane_rx);
if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
pwr_mode->pwr_rx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
else
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
pwr_mode->lane_tx);
if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
pwr_mode->pwr_tx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
else
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
pwr_mode->pwr_tx == FASTAUTO_MODE ||
pwr_mode->pwr_rx == FAST_MODE ||
pwr_mode->pwr_tx == FAST_MODE)
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
pwr_mode->hs_rate);
if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
DL_FC0ProtectionTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
DL_TC0ReplayTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
DL_AFC0ReqTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
DL_FC1ProtectionTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
DL_TC1ReplayTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
DL_AFC1ReqTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
DL_FC0ProtectionTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
DL_TC0ReplayTimeOutVal_Default);
ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
DL_AFC0ReqTimeOutVal_Default);
}
ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
| pwr_mode->pwr_tx);
if (ret) {
dev_err(hba->dev,
"%s: power mode change failed %d\n", __func__, ret);
} else {
ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
pwr_mode);
memcpy(&hba->pwr_info, pwr_mode,
sizeof(struct ufs_pa_layer_attr));
}
return ret;
}
/**
* ufshcd_config_pwr_mode - configure a new power mode
* @hba: per-adapter instance
* @desired_pwr_mode: desired power configuration
*
* Return: 0 upon success; < 0 upon failure.
*/
int ufshcd_config_pwr_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *desired_pwr_mode)
{
struct ufs_pa_layer_attr final_params = { 0 };
int ret;
ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
desired_pwr_mode, &final_params);
if (ret)
memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
ret = ufshcd_change_power_mode(hba, &final_params);
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
/**
* ufshcd_complete_dev_init() - checks device readiness
* @hba: per-adapter instance
*
* Set fDeviceInit flag and poll until device toggles it.
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_complete_dev_init(struct ufs_hba *hba)
{
int err;
bool flag_res = true;
ktime_t timeout;
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
if (err) {
dev_err(hba->dev,
"%s: setting fDeviceInit flag failed with error %d\n",
__func__, err);
goto out;
}
/* Poll fDeviceInit flag to be cleared */
timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
do {
err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
if (!flag_res)
break;
usleep_range(500, 1000);
} while (ktime_before(ktime_get(), timeout));
if (err) {
dev_err(hba->dev,
"%s: reading fDeviceInit flag failed with error %d\n",
__func__, err);
} else if (flag_res) {
dev_err(hba->dev,
"%s: fDeviceInit was not cleared by the device\n",
__func__);
err = -EBUSY;
}
out:
return err;
}
/**
* ufshcd_make_hba_operational - Make UFS controller operational
* @hba: per adapter instance
*
* To bring UFS host controller to operational state,
* 1. Enable required interrupts
* 2. Configure interrupt aggregation
* 3. Program UTRL and UTMRL base address
* 4. Configure run-stop-registers
*
* Return: 0 on success, non-zero value on failure.
*/
int ufshcd_make_hba_operational(struct ufs_hba *hba)
{
int err = 0;
u32 reg;
/* Enable required interrupts */
ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
/* Configure interrupt aggregation */
if (ufshcd_is_intr_aggr_allowed(hba))
ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
else
ufshcd_disable_intr_aggr(hba);
/* Configure UTRL and UTMRL base address registers */
ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
REG_UTP_TRANSFER_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
REG_UTP_TRANSFER_REQ_LIST_BASE_H);
ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
REG_UTP_TASK_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
REG_UTP_TASK_REQ_LIST_BASE_H);
/*
* UCRDY, UTMRLDY and UTRLRDY bits must be 1
*/
reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
if (!(ufshcd_get_lists_status(reg))) {
ufshcd_enable_run_stop_reg(hba);
} else {
dev_err(hba->dev,
"Host controller not ready to process requests");
err = -EIO;
}
return err;
}
EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
/**
* ufshcd_hba_stop - Send controller to reset state
* @hba: per adapter instance
*/
void ufshcd_hba_stop(struct ufs_hba *hba)
{
unsigned long flags;
int err;
/*
* Obtain the host lock to prevent that the controller is disabled
* while the UFS interrupt handler is active on another CPU.
*/
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
spin_unlock_irqrestore(hba->host->host_lock, flags);
err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
CONTROLLER_ENABLE, CONTROLLER_DISABLE,
10, 1);
if (err)
dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
}
EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
/**
* ufshcd_hba_execute_hce - initialize the controller
* @hba: per adapter instance
*
* The controller resets itself and controller firmware initialization
* sequence kicks off. When controller is ready it will set
* the Host Controller Enable bit to 1.
*
* Return: 0 on success, non-zero value on failure.
*/
static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
{
int retry_outer = 3;
int retry_inner;
start:
if (ufshcd_is_hba_active(hba))
/* change controller state to "reset state" */
ufshcd_hba_stop(hba);
/* UniPro link is disabled at this point */
ufshcd_set_link_off(hba);
ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
/* start controller initialization sequence */
ufshcd_hba_start(hba);
/*
* To initialize a UFS host controller HCE bit must be set to 1.
* During initialization the HCE bit value changes from 1->0->1.
* When the host controller completes initialization sequence
* it sets the value of HCE bit to 1. The same HCE bit is read back
* to check if the controller has completed initialization sequence.
* So without this delay the value HCE = 1, set in the previous
* instruction might be read back.
* This delay can be changed based on the controller.
*/
ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
/* wait for the host controller to complete initialization */
retry_inner = 50;
while (!ufshcd_is_hba_active(hba)) {
if (retry_inner) {
retry_inner--;
} else {
dev_err(hba->dev,
"Controller enable failed\n");
if (retry_outer) {
retry_outer--;
goto start;
}
return -EIO;
}
usleep_range(1000, 1100);
}
/* enable UIC related interrupts */
ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
return 0;
}
int ufshcd_hba_enable(struct ufs_hba *hba)
{
int ret;
if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
ufshcd_set_link_off(hba);
ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
/* enable UIC related interrupts */
ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
ret = ufshcd_dme_reset(hba);
if (ret) {
dev_err(hba->dev, "DME_RESET failed\n");
return ret;
}
ret = ufshcd_dme_enable(hba);
if (ret) {
dev_err(hba->dev, "Enabling DME failed\n");
return ret;
}
ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
} else {
ret = ufshcd_hba_execute_hce(hba);
}
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
{
int tx_lanes = 0, i, err = 0;
if (!peer)
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&tx_lanes);
else
ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
&tx_lanes);
for (i = 0; i < tx_lanes; i++) {
if (!peer)
err = ufshcd_dme_set(hba,
UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
0);
else
err = ufshcd_dme_peer_set(hba,
UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
0);
if (err) {
dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
__func__, peer, i, err);
break;
}
}
return err;
}
static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
{
return ufshcd_disable_tx_lcc(hba, true);
}
void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
{
struct ufs_event_hist *e;
if (id >= UFS_EVT_CNT)
return;
e = &hba->ufs_stats.event[id];
e->val[e->pos] = val;
e->tstamp[e->pos] = local_clock();
e->cnt += 1;
e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
ufshcd_vops_event_notify(hba, id, &val);
}
EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
/**
* ufshcd_link_startup - Initialize unipro link startup
* @hba: per adapter instance
*
* Return: 0 for success, non-zero in case of failure.
*/
static int ufshcd_link_startup(struct ufs_hba *hba)
{
int ret;
int retries = DME_LINKSTARTUP_RETRIES;
bool link_startup_again = false;
/*
* If UFS device isn't active then we will have to issue link startup
* 2 times to make sure the device state move to active.
*/
if (!ufshcd_is_ufs_dev_active(hba))
link_startup_again = true;
link_startup:
do {
ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
ret = ufshcd_dme_link_startup(hba);
/* check if device is detected by inter-connect layer */
if (!ret && !ufshcd_is_device_present(hba)) {
ufshcd_update_evt_hist(hba,
UFS_EVT_LINK_STARTUP_FAIL,
0);
dev_err(hba->dev, "%s: Device not present\n", __func__);
ret = -ENXIO;
goto out;
}
/*
* DME link lost indication is only received when link is up,
* but we can't be sure if the link is up until link startup
* succeeds. So reset the local Uni-Pro and try again.
*/
if (ret && retries && ufshcd_hba_enable(hba)) {
ufshcd_update_evt_hist(hba,
UFS_EVT_LINK_STARTUP_FAIL,
(u32)ret);
goto out;
}
} while (ret && retries--);
if (ret) {
/* failed to get the link up... retire */
ufshcd_update_evt_hist(hba,
UFS_EVT_LINK_STARTUP_FAIL,
(u32)ret);
goto out;
}
if (link_startup_again) {
link_startup_again = false;
retries = DME_LINKSTARTUP_RETRIES;
goto link_startup;
}
/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
ufshcd_init_pwr_info(hba);
ufshcd_print_pwr_info(hba);
if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
ret = ufshcd_disable_device_tx_lcc(hba);
if (ret)
goto out;
}
/* Include any host controller configuration via UIC commands */
ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
if (ret)
goto out;
/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
ret = ufshcd_make_hba_operational(hba);
out:
if (ret) {
dev_err(hba->dev, "link startup failed %d\n", ret);
ufshcd_print_host_state(hba);
ufshcd_print_pwr_info(hba);
ufshcd_print_evt_hist(hba);
}
return ret;
}
/**
* ufshcd_verify_dev_init() - Verify device initialization
* @hba: per-adapter instance
*
* Send NOP OUT UPIU and wait for NOP IN response to check whether the
* device Transport Protocol (UTP) layer is ready after a reset.
* If the UTP layer at the device side is not initialized, it may
* not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
* and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_verify_dev_init(struct ufs_hba *hba)
{
int err = 0;
int retries;
ufshcd_dev_man_lock(hba);
for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
hba->nop_out_timeout);
if (!err || err == -ETIMEDOUT)
break;
dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
}
ufshcd_dev_man_unlock(hba);
if (err)
dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
return err;
}
/**
* ufshcd_setup_links - associate link b/w device wlun and other luns
* @sdev: pointer to SCSI device
* @hba: pointer to ufs hba
*/
static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
{
struct device_link *link;
/*
* Device wlun is the supplier & rest of the luns are consumers.
* This ensures that device wlun suspends after all other luns.
*/
if (hba->ufs_device_wlun) {
link = device_link_add(&sdev->sdev_gendev,
&hba->ufs_device_wlun->sdev_gendev,
DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
if (!link) {
dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
dev_name(&hba->ufs_device_wlun->sdev_gendev));
return;
}
hba->luns_avail--;
/* Ignore REPORT_LUN wlun probing */
if (hba->luns_avail == 1) {
ufshcd_rpm_put(hba);
return;
}
} else {
/*
* Device wlun is probed. The assumption is that WLUNs are
* scanned before other LUNs.
*/
hba->luns_avail--;
}
}
/**
* ufshcd_lu_init - Initialize the relevant parameters of the LU
* @hba: per-adapter instance
* @sdev: pointer to SCSI device
*/
static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
{
int len = QUERY_DESC_MAX_SIZE;
u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
u8 lun_qdepth = hba->nutrs;
u8 *desc_buf;
int ret;
desc_buf = kzalloc(len, GFP_KERNEL);
if (!desc_buf)
goto set_qdepth;
ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
if (ret < 0) {
if (ret == -EOPNOTSUPP)
/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
lun_qdepth = 1;
kfree(desc_buf);
goto set_qdepth;
}
if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
/*
* In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
* use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
*/
lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
}
/*
* According to UFS device specification, the write protection mode is only supported by
* normal LU, not supported by WLUN.
*/
if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
!hba->dev_info.is_lu_power_on_wp &&
desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
hba->dev_info.is_lu_power_on_wp = true;
/* In case of RPMB LU, check if advanced RPMB mode is enabled */
if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
hba->dev_info.b_advanced_rpmb_en = true;
kfree(desc_buf);
set_qdepth:
/*
* For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
* bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
*/
dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
scsi_change_queue_depth(sdev, lun_qdepth);
}
/**
* ufshcd_slave_alloc - handle initial SCSI device configurations
* @sdev: pointer to SCSI device
*
* Return: success.
*/
static int ufshcd_slave_alloc(struct scsi_device *sdev)
{
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
sdev->use_10_for_ms = 1;
/* DBD field should be set to 1 in mode sense(10) */
sdev->set_dbd_for_ms = 1;
/* allow SCSI layer to restart the device in case of errors */
sdev->allow_restart = 1;
/* REPORT SUPPORTED OPERATION CODES is not supported */
sdev->no_report_opcodes = 1;
/* WRITE_SAME command is not supported */
sdev->no_write_same = 1;
ufshcd_lu_init(hba, sdev);
ufshcd_setup_links(hba, sdev);
return 0;
}
/**
* ufshcd_change_queue_depth - change queue depth
* @sdev: pointer to SCSI device
* @depth: required depth to set
*
* Change queue depth and make sure the max. limits are not crossed.
*
* Return: new queue depth.
*/
static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
{
return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
}
/**
* ufshcd_slave_configure - adjust SCSI device configurations
* @sdev: pointer to SCSI device
*
* Return: 0 (success).
*/
static int ufshcd_slave_configure(struct scsi_device *sdev)
{
struct ufs_hba *hba = shost_priv(sdev->host);
struct request_queue *q = sdev->request_queue;
blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
/*
* Block runtime-pm until all consumers are added.
* Refer ufshcd_setup_links().
*/
if (is_device_wlun(sdev))
pm_runtime_get_noresume(&sdev->sdev_gendev);
else if (ufshcd_is_rpm_autosuspend_allowed(hba))
sdev->rpm_autosuspend = 1;
/*
* Do not print messages during runtime PM to avoid never-ending cycles
* of messages written back to storage by user space causing runtime
* resume, causing more messages and so on.
*/
sdev->silence_suspend = 1;
ufshcd_crypto_register(hba, q);
return 0;
}
/**
* ufshcd_slave_destroy - remove SCSI device configurations
* @sdev: pointer to SCSI device
*/
static void ufshcd_slave_destroy(struct scsi_device *sdev)
{
struct ufs_hba *hba;
unsigned long flags;
hba = shost_priv(sdev->host);
/* Drop the reference as it won't be needed anymore */
if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
spin_lock_irqsave(hba->host->host_lock, flags);
hba->ufs_device_wlun = NULL;
spin_unlock_irqrestore(hba->host->host_lock, flags);
} else if (hba->ufs_device_wlun) {
struct device *supplier = NULL;
/* Ensure UFS Device WLUN exists and does not disappear */
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->ufs_device_wlun) {
supplier = &hba->ufs_device_wlun->sdev_gendev;
get_device(supplier);
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (supplier) {
/*
* If a LUN fails to probe (e.g. absent BOOT WLUN), the
* device will not have been registered but can still
* have a device link holding a reference to the device.
*/
device_link_remove(&sdev->sdev_gendev, supplier);
put_device(supplier);
}
}
}
/**
* ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
* @lrbp: pointer to local reference block of completed command
* @scsi_status: SCSI command status
*
* Return: value base on SCSI command status.
*/
static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
{
int result = 0;
switch (scsi_status) {
case SAM_STAT_CHECK_CONDITION:
ufshcd_copy_sense_data(lrbp);
fallthrough;
case SAM_STAT_GOOD:
result |= DID_OK << 16 | scsi_status;
break;
case SAM_STAT_TASK_SET_FULL:
case SAM_STAT_BUSY:
case SAM_STAT_TASK_ABORTED:
ufshcd_copy_sense_data(lrbp);
result |= scsi_status;
break;
default:
result |= DID_ERROR << 16;
break;
} /* end of switch */
return result;
}
/**
* ufshcd_transfer_rsp_status - Get overall status of the response
* @hba: per adapter instance
* @lrbp: pointer to local reference block of completed command
* @cqe: pointer to the completion queue entry
*
* Return: result of the command to notify SCSI midlayer.
*/
static inline int
ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
struct cq_entry *cqe)
{
int result = 0;
int scsi_status;
enum utp_ocs ocs;
u8 upiu_flags;
u32 resid;
upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
/*
* Test !overflow instead of underflow to support UFS devices that do
* not set either flag.
*/
if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
scsi_set_resid(lrbp->cmd, resid);
/* overall command status of utrd */
ocs = ufshcd_get_tr_ocs(lrbp, cqe);
if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
if (lrbp->ucd_rsp_ptr->header.response ||
lrbp->ucd_rsp_ptr->header.status)
ocs = OCS_SUCCESS;
}
switch (ocs) {
case OCS_SUCCESS:
hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
case UPIU_TRANSACTION_RESPONSE:
/*
* get the result based on SCSI status response
* to notify the SCSI midlayer of the command status
*/
scsi_status = lrbp->ucd_rsp_ptr->header.status;
result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
/*
* Currently we are only supporting BKOPs exception
* events hence we can ignore BKOPs exception event
* during power management callbacks. BKOPs exception
* event is not expected to be raised in runtime suspend
* callback as it allows the urgent bkops.
* During system suspend, we are anyway forcefully
* disabling the bkops and if urgent bkops is needed
* it will be enabled on system resume. Long term
* solution could be to abort the system suspend if
* UFS device needs urgent BKOPs.
*/
if (!hba->pm_op_in_progress &&
!ufshcd_eh_in_progress(hba) &&
ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
/* Flushed in suspend */
schedule_work(&hba->eeh_work);
break;
case UPIU_TRANSACTION_REJECT_UPIU:
/* TODO: handle Reject UPIU Response */
result = DID_ERROR << 16;
dev_err(hba->dev,
"Reject UPIU not fully implemented\n");
break;
default:
dev_err(hba->dev,
"Unexpected request response code = %x\n",
result);
result = DID_ERROR << 16;
break;
}
break;
case OCS_ABORTED:
result |= DID_ABORT << 16;
break;
case OCS_INVALID_COMMAND_STATUS:
result |= DID_REQUEUE << 16;
break;
case OCS_INVALID_CMD_TABLE_ATTR:
case OCS_INVALID_PRDT_ATTR:
case OCS_MISMATCH_DATA_BUF_SIZE:
case OCS_MISMATCH_RESP_UPIU_SIZE:
case OCS_PEER_COMM_FAILURE:
case OCS_FATAL_ERROR:
case OCS_DEVICE_FATAL_ERROR:
case OCS_INVALID_CRYPTO_CONFIG:
case OCS_GENERAL_CRYPTO_ERROR:
default:
result |= DID_ERROR << 16;
dev_err(hba->dev,
"OCS error from controller = %x for tag %d\n",
ocs, lrbp->task_tag);
ufshcd_print_evt_hist(hba);
ufshcd_print_host_state(hba);
break;
} /* end of switch */
if ((host_byte(result) != DID_OK) &&
(host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
ufshcd_print_tr(hba, lrbp->task_tag, true);
return result;
}
static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
u32 intr_mask)
{
if (!ufshcd_is_auto_hibern8_supported(hba) ||
!ufshcd_is_auto_hibern8_enabled(hba))
return false;
if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
return false;
if (hba->active_uic_cmd &&
(hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
return false;
return true;
}
/**
* ufshcd_uic_cmd_compl - handle completion of uic command
* @hba: per adapter instance
* @intr_status: interrupt status generated by the controller
*
* Return:
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
{
irqreturn_t retval = IRQ_NONE;
spin_lock(hba->host->host_lock);
if (ufshcd_is_auto_hibern8_error(hba, intr_status))
hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
hba->active_uic_cmd->argument2 |=
ufshcd_get_uic_cmd_result(hba);
hba->active_uic_cmd->argument3 =
ufshcd_get_dme_attr_val(hba);
if (!hba->uic_async_done)
hba->active_uic_cmd->cmd_active = 0;
complete(&hba->active_uic_cmd->done);
retval = IRQ_HANDLED;
}
if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
hba->active_uic_cmd->cmd_active = 0;
complete(hba->uic_async_done);
retval = IRQ_HANDLED;
}
if (retval == IRQ_HANDLED)
ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
UFS_CMD_COMP);
spin_unlock(hba->host->host_lock);
return retval;
}
/* Release the resources allocated for processing a SCSI command. */
void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp)
{
struct scsi_cmnd *cmd = lrbp->cmd;
scsi_dma_unmap(cmd);
ufshcd_release(hba);
ufshcd_clk_scaling_update_busy(hba);
}
/**
* ufshcd_compl_one_cqe - handle a completion queue entry
* @hba: per adapter instance
* @task_tag: the task tag of the request to be completed
* @cqe: pointer to the completion queue entry
*/
void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
struct cq_entry *cqe)
{
struct ufshcd_lrb *lrbp;
struct scsi_cmnd *cmd;
enum utp_ocs ocs;
lrbp = &hba->lrb[task_tag];
lrbp->compl_time_stamp = ktime_get();
cmd = lrbp->cmd;
if (cmd) {
if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
ufshcd_update_monitor(hba, lrbp);
ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
ufshcd_release_scsi_cmd(hba, lrbp);
/* Do not touch lrbp after scsi done */
scsi_done(cmd);
} else if (hba->dev_cmd.complete) {
if (cqe) {
ocs = le32_to_cpu(cqe->status) & MASK_OCS;
lrbp->utr_descriptor_ptr->header.ocs = ocs;
}
complete(hba->dev_cmd.complete);
}
}
/**
* __ufshcd_transfer_req_compl - handle SCSI and query command completion
* @hba: per adapter instance
* @completed_reqs: bitmask that indicates which requests to complete
*/
static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
unsigned long completed_reqs)
{
int tag;
for_each_set_bit(tag, &completed_reqs, hba->nutrs)
ufshcd_compl_one_cqe(hba, tag, NULL);
}
/* Any value that is not an existing queue number is fine for this constant. */
enum {
UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
};
static void ufshcd_clear_polled(struct ufs_hba *hba,
unsigned long *completed_reqs)
{
int tag;
for_each_set_bit(tag, completed_reqs, hba->nutrs) {
struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
if (!cmd)
continue;
if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
__clear_bit(tag, completed_reqs);
}
}
/*
* Return: > 0 if one or more commands have been completed or 0 if no
* requests have been completed.
*/
static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
{
struct ufs_hba *hba = shost_priv(shost);
unsigned long completed_reqs, flags;
u32 tr_doorbell;
struct ufs_hw_queue *hwq;
if (is_mcq_enabled(hba)) {
hwq = &hba->uhq[queue_num];
return ufshcd_mcq_poll_cqe_lock(hba, hwq);
}
spin_lock_irqsave(&hba->outstanding_lock, flags);
tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
"completed: %#lx; outstanding: %#lx\n", completed_reqs,
hba->outstanding_reqs);
if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
/* Do not complete polled requests from interrupt context. */
ufshcd_clear_polled(hba, &completed_reqs);
}
hba->outstanding_reqs &= ~completed_reqs;
spin_unlock_irqrestore(&hba->outstanding_lock, flags);
if (completed_reqs)
__ufshcd_transfer_req_compl(hba, completed_reqs);
return completed_reqs != 0;
}
/**
* ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
* invoked from the error handler context or ufshcd_host_reset_and_restore()
* to complete the pending transfers and free the resources associated with
* the scsi command.
*
* @hba: per adapter instance
* @force_compl: This flag is set to true when invoked
* from ufshcd_host_reset_and_restore() in which case it requires special
* handling because the host controller has been reset by ufshcd_hba_stop().
*/
static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
bool force_compl)
{
struct ufs_hw_queue *hwq;
struct ufshcd_lrb *lrbp;
struct scsi_cmnd *cmd;
unsigned long flags;
int tag;
for (tag = 0; tag < hba->nutrs; tag++) {
lrbp = &hba->lrb[tag];
cmd = lrbp->cmd;
if (!ufshcd_cmd_inflight(cmd) ||
test_bit(SCMD_STATE_COMPLETE, &cmd->state))
continue;
hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
if (force_compl) {
ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
/*
* For those cmds of which the cqes are not present
* in the cq, complete them explicitly.
*/
spin_lock_irqsave(&hwq->cq_lock, flags);
if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
set_host_byte(cmd, DID_REQUEUE);
ufshcd_release_scsi_cmd(hba, lrbp);
scsi_done(cmd);
}
spin_unlock_irqrestore(&hwq->cq_lock, flags);
} else {
ufshcd_mcq_poll_cqe_lock(hba, hwq);
}
}
}
/**
* ufshcd_transfer_req_compl - handle SCSI and query command completion
* @hba: per adapter instance
*
* Return:
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
{
/* Resetting interrupt aggregation counters first and reading the
* DOOR_BELL afterward allows us to handle all the completed requests.
* In order to prevent other interrupts starvation the DB is read once
* after reset. The down side of this solution is the possibility of
* false interrupt if device completes another request after resetting
* aggregation and before reading the DB.
*/
if (ufshcd_is_intr_aggr_allowed(hba) &&
!(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
ufshcd_reset_intr_aggr(hba);
if (ufs_fail_completion(hba))
return IRQ_HANDLED;
/*
* Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
* do not want polling to trigger spurious interrupt complaints.
*/
ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
return IRQ_HANDLED;
}
int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
{
return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
&ee_ctrl_mask);
}
int ufshcd_write_ee_control(struct ufs_hba *hba)
{
int err;
mutex_lock(&hba->ee_ctrl_mutex);
err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
mutex_unlock(&hba->ee_ctrl_mutex);
if (err)
dev_err(hba->dev, "%s: failed to write ee control %d\n",
__func__, err);
return err;
}
int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
const u16 *other_mask, u16 set, u16 clr)
{
u16 new_mask, ee_ctrl_mask;
int err = 0;
mutex_lock(&hba->ee_ctrl_mutex);
new_mask = (*mask & ~clr) | set;
ee_ctrl_mask = new_mask | *other_mask;
if (ee_ctrl_mask != hba->ee_ctrl_mask)
err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
if (!err) {
hba->ee_ctrl_mask = ee_ctrl_mask;
*mask = new_mask;
}
mutex_unlock(&hba->ee_ctrl_mutex);
return err;
}
/**
* ufshcd_disable_ee - disable exception event
* @hba: per-adapter instance
* @mask: exception event to disable
*
* Disables exception event in the device so that the EVENT_ALERT
* bit is not set.
*
* Return: zero on success, non-zero error value on failure.
*/
static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
{
return ufshcd_update_ee_drv_mask(hba, 0, mask);
}
/**
* ufshcd_enable_ee - enable exception event
* @hba: per-adapter instance
* @mask: exception event to enable
*
* Enable corresponding exception event in the device to allow
* device to alert host in critical scenarios.
*
* Return: zero on success, non-zero error value on failure.
*/
static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
{
return ufshcd_update_ee_drv_mask(hba, mask, 0);
}
/**
* ufshcd_enable_auto_bkops - Allow device managed BKOPS
* @hba: per-adapter instance
*
* Allow device to manage background operations on its own. Enabling
* this might lead to inconsistent latencies during normal data transfers
* as the device is allowed to manage its own way of handling background
* operations.
*
* Return: zero on success, non-zero on failure.
*/
static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
{
int err = 0;
if (hba->auto_bkops_enabled)
goto out;
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
if (err) {
dev_err(hba->dev, "%s: failed to enable bkops %d\n",
__func__, err);
goto out;
}
hba->auto_bkops_enabled = true;
trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
/* No need of URGENT_BKOPS exception from the device */
err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
if (err)
dev_err(hba->dev, "%s: failed to disable exception event %d\n",
__func__, err);
out:
return err;
}
/**
* ufshcd_disable_auto_bkops - block device in doing background operations
* @hba: per-adapter instance
*
* Disabling background operations improves command response latency but
* has drawback of device moving into critical state where the device is
* not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
* host is idle so that BKOPS are managed effectively without any negative
* impacts.
*
* Return: zero on success, non-zero on failure.
*/
static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
{
int err = 0;
if (!hba->auto_bkops_enabled)
goto out;
/*
* If host assisted BKOPs is to be enabled, make sure
* urgent bkops exception is allowed.
*/
err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
if (err) {
dev_err(hba->dev, "%s: failed to enable exception event %d\n",
__func__, err);
goto out;
}
err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
if (err) {
dev_err(hba->dev, "%s: failed to disable bkops %d\n",
__func__, err);
ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
goto out;
}
hba->auto_bkops_enabled = false;
trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
hba->is_urgent_bkops_lvl_checked = false;
out:
return err;
}
/**
* ufshcd_force_reset_auto_bkops - force reset auto bkops state
* @hba: per adapter instance
*
* After a device reset the device may toggle the BKOPS_EN flag
* to default value. The s/w tracking variables should be updated
* as well. This function would change the auto-bkops state based on
* UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
*/
static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
{
if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
hba->auto_bkops_enabled = false;
hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
ufshcd_enable_auto_bkops(hba);
} else {
hba->auto_bkops_enabled = true;
hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
ufshcd_disable_auto_bkops(hba);
}
hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
hba->is_urgent_bkops_lvl_checked = false;
}
static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
{
return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
}
/**
* ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
* @hba: per-adapter instance
* @status: bkops_status value
*
* Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
* flag in the device to permit background operations if the device
* bkops_status is greater than or equal to "status" argument passed to
* this function, disable otherwise.
*
* Return: 0 for success, non-zero in case of failure.
*
* NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
* to know whether auto bkops is enabled or disabled after this function
* returns control to it.
*/
static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
enum bkops_status status)
{
int err;
u32 curr_status = 0;
err = ufshcd_get_bkops_status(hba, &curr_status);
if (err) {
dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
__func__, err);
goto out;
} else if (curr_status > BKOPS_STATUS_MAX) {
dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
__func__, curr_status);
err = -EINVAL;
goto out;
}
if (curr_status >= status)
err = ufshcd_enable_auto_bkops(hba);
else
err = ufshcd_disable_auto_bkops(hba);
out:
return err;
}
/**
* ufshcd_urgent_bkops - handle urgent bkops exception event
* @hba: per-adapter instance
*
* Enable fBackgroundOpsEn flag in the device to permit background
* operations.
*
* If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
* and negative error value for any other failure.
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_urgent_bkops(struct ufs_hba *hba)
{
return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
}
static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
{
return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
}
static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
{
int err;
u32 curr_status = 0;
if (hba->is_urgent_bkops_lvl_checked)
goto enable_auto_bkops;
err = ufshcd_get_bkops_status(hba, &curr_status);
if (err) {
dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
__func__, err);
goto out;
}
/*
* We are seeing that some devices are raising the urgent bkops
* exception events even when BKOPS status doesn't indicate performace
* impacted or critical. Handle these device by determining their urgent
* bkops status at runtime.
*/
if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
__func__, curr_status);
/* update the current status as the urgent bkops level */
hba->urgent_bkops_lvl = curr_status;
hba->is_urgent_bkops_lvl_checked = true;
}
enable_auto_bkops:
err = ufshcd_enable_auto_bkops(hba);
out:
if (err < 0)
dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
__func__, err);
}
static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
{
u32 value;
if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
return;
dev_info(hba->dev, "exception Tcase %d\n", value - 80);
ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
/*
* A placeholder for the platform vendors to add whatever additional
* steps required
*/
}
static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
{
u8 index;
enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
UPIU_QUERY_OPCODE_CLEAR_FLAG;
index = ufshcd_wb_get_query_index(hba);
return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
}
int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
{
int ret;
if (!ufshcd_is_wb_allowed(hba) ||
hba->dev_info.wb_enabled == enable)
return 0;
ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
if (ret) {
dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
__func__, enable ? "enabling" : "disabling", ret);
return ret;
}
hba->dev_info.wb_enabled = enable;
dev_dbg(hba->dev, "%s: Write Booster %s\n",
__func__, enable ? "enabled" : "disabled");
return ret;
}
static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
bool enable)
{
int ret;
ret = __ufshcd_wb_toggle(hba, enable,
QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
if (ret) {
dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
__func__, enable ? "enabling" : "disabling", ret);
return;
}
dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
__func__, enable ? "enabled" : "disabled");
}
int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
{
int ret;
if (!ufshcd_is_wb_allowed(hba) ||
hba->dev_info.wb_buf_flush_enabled == enable)
return 0;
ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
if (ret) {
dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
__func__, enable ? "enabling" : "disabling", ret);
return ret;
}
hba->dev_info.wb_buf_flush_enabled = enable;
dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
__func__, enable ? "enabled" : "disabled");
return ret;
}
static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
u32 avail_buf)
{
u32 cur_buf;
int ret;
u8 index;
index = ufshcd_wb_get_query_index(hba);
ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
index, 0, &cur_buf);
if (ret) {
dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
__func__, ret);
return false;
}
if (!cur_buf) {
dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
cur_buf);
return false;
}
/* Let it continue to flush when available buffer exceeds threshold */
return avail_buf < hba->vps->wb_flush_threshold;
}
static void ufshcd_wb_force_disable(struct ufs_hba *hba)
{
if (ufshcd_is_wb_buf_flush_allowed(hba))
ufshcd_wb_toggle_buf_flush(hba, false);
ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
ufshcd_wb_toggle(hba, false);
hba->caps &= ~UFSHCD_CAP_WB_EN;
dev_info(hba->dev, "%s: WB force disabled\n", __func__);
}
static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
{
u32 lifetime;
int ret;
u8 index;
index = ufshcd_wb_get_query_index(hba);
ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
index, 0, &lifetime);
if (ret) {
dev_err(hba->dev,
"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
__func__, ret);
return false;
}
if (lifetime == UFS_WB_EXCEED_LIFETIME) {
dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
__func__, lifetime);
return false;
}
dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
__func__, lifetime);
return true;
}
static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
{
int ret;
u32 avail_buf;
u8 index;
if (!ufshcd_is_wb_allowed(hba))
return false;
if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
ufshcd_wb_force_disable(hba);
return false;
}
/*
* The ufs device needs the vcc to be ON to flush.
* With user-space reduction enabled, it's enough to enable flush
* by checking only the available buffer. The threshold
* defined here is > 90% full.
* With user-space preserved enabled, the current-buffer
* should be checked too because the wb buffer size can reduce
* when disk tends to be full. This info is provided by current
* buffer (dCurrentWriteBoosterBufferSize). There's no point in
* keeping vcc on when current buffer is empty.
*/
index = ufshcd_wb_get_query_index(hba);
ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
index, 0, &avail_buf);
if (ret) {
dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
__func__, ret);
return false;
}
if (!hba->dev_info.b_presrv_uspc_en)
return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
}
static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
{
struct ufs_hba *hba = container_of(to_delayed_work(work),
struct ufs_hba,
rpm_dev_flush_recheck_work);
/*
* To prevent unnecessary VCC power drain after device finishes
* WriteBooster buffer flush or Auto BKOPs, force runtime resume
* after a certain delay to recheck the threshold by next runtime
* suspend.
*/
ufshcd_rpm_get_sync(hba);
ufshcd_rpm_put_sync(hba);
}
/**
* ufshcd_exception_event_handler - handle exceptions raised by device
* @work: pointer to work data
*
* Read bExceptionEventStatus attribute from the device and handle the
* exception event accordingly.
*/
static void ufshcd_exception_event_handler(struct work_struct *work)
{
struct ufs_hba *hba;
int err;
u32 status = 0;
hba = container_of(work, struct ufs_hba, eeh_work);
ufshcd_scsi_block_requests(hba);
err = ufshcd_get_ee_status(hba, &status);
if (err) {
dev_err(hba->dev, "%s: failed to get exception status %d\n",
__func__, err);
goto out;
}
trace_ufshcd_exception_event(dev_name(hba->dev), status);
if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
ufshcd_bkops_exception_event_handler(hba);
if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
ufshcd_temp_exception_event_handler(hba, status);
ufs_debugfs_exception_event(hba, status);
out:
ufshcd_scsi_unblock_requests(hba);
}
/* Complete requests that have door-bell cleared */
static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
{
if (is_mcq_enabled(hba))
ufshcd_mcq_compl_pending_transfer(hba, force_compl);
else
ufshcd_transfer_req_compl(hba);
ufshcd_tmc_handler(hba);
}
/**
* ufshcd_quirk_dl_nac_errors - This function checks if error handling is
* to recover from the DL NAC errors or not.
* @hba: per-adapter instance
*
* Return: true if error handling is required, false otherwise.
*/
static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
{
unsigned long flags;
bool err_handling = true;
spin_lock_irqsave(hba->host->host_lock, flags);
/*
* UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
* device fatal error and/or DL NAC & REPLAY timeout errors.
*/
if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
goto out;
if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
((hba->saved_err & UIC_ERROR) &&
(hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
goto out;
if ((hba->saved_err & UIC_ERROR) &&
(hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
int err;
/*
* wait for 50ms to see if we can get any other errors or not.
*/
spin_unlock_irqrestore(hba->host->host_lock, flags);
msleep(50);
spin_lock_irqsave(hba->host->host_lock, flags);
/*
* now check if we have got any other severe errors other than
* DL NAC error?
*/
if ((hba->saved_err & INT_FATAL_ERRORS) ||
((hba->saved_err & UIC_ERROR) &&
(hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
goto out;
/*
* As DL NAC is the only error received so far, send out NOP
* command to confirm if link is still active or not.
* - If we don't get any response then do error recovery.
* - If we get response then clear the DL NAC error bit.
*/
spin_unlock_irqrestore(hba->host->host_lock, flags);
err = ufshcd_verify_dev_init(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
if (err)
goto out;
/* Link seems to be alive hence ignore the DL NAC errors */
if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
hba->saved_err &= ~UIC_ERROR;
/* clear NAC error */
hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
if (!hba->saved_uic_err)
err_handling = false;
}
out:
spin_unlock_irqrestore(hba->host->host_lock, flags);
return err_handling;
}
/* host lock must be held before calling this func */
static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
{
return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
(hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
}
void ufshcd_schedule_eh_work(struct ufs_hba *hba)
{
lockdep_assert_held(hba->host->host_lock);
/* handle fatal errors only when link is not in error state */
if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
if (hba->force_reset || ufshcd_is_link_broken(hba) ||
ufshcd_is_saved_err_fatal(hba))
hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
else
hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
queue_work(hba->eh_wq, &hba->eh_work);
}
}
static void ufshcd_force_error_recovery(struct ufs_hba *hba)
{
spin_lock_irq(hba->host->host_lock);
hba->force_reset = true;
ufshcd_schedule_eh_work(hba);
spin_unlock_irq(hba->host->host_lock);
}
static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
{
mutex_lock(&hba->wb_mutex);
down_write(&hba->clk_scaling_lock);
hba->clk_scaling.is_allowed = allow;
up_write(&hba->clk_scaling_lock);
mutex_unlock(&hba->wb_mutex);
}
static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
{
if (suspend) {
if (hba->clk_scaling.is_enabled)
ufshcd_suspend_clkscaling(hba);
ufshcd_clk_scaling_allow(hba, false);
} else {
ufshcd_clk_scaling_allow(hba, true);
if (hba->clk_scaling.is_enabled)
ufshcd_resume_clkscaling(hba);
}
}
static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
{
ufshcd_rpm_get_sync(hba);
if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
hba->is_sys_suspended) {
enum ufs_pm_op pm_op;
/*
* Don't assume anything of resume, if
* resume fails, irq and clocks can be OFF, and powers
* can be OFF or in LPM.
*/
ufshcd_setup_hba_vreg(hba, true);
ufshcd_enable_irq(hba);
ufshcd_setup_vreg(hba, true);
ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
ufshcd_hold(hba);
if (!ufshcd_is_clkgating_allowed(hba))
ufshcd_setup_clocks(hba, true);
pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
ufshcd_vops_resume(hba, pm_op);
} else {
ufshcd_hold(hba);
if (ufshcd_is_clkscaling_supported(hba) &&
hba->clk_scaling.is_enabled)
ufshcd_suspend_clkscaling(hba);
ufshcd_clk_scaling_allow(hba, false);
}
ufshcd_scsi_block_requests(hba);
/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
blk_mq_wait_quiesce_done(&hba->host->tag_set);
cancel_work_sync(&hba->eeh_work);
}
static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
{
ufshcd_scsi_unblock_requests(hba);
ufshcd_release(hba);
if (ufshcd_is_clkscaling_supported(hba))
ufshcd_clk_scaling_suspend(hba, false);
ufshcd_rpm_put(hba);
}
static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
{
return (!hba->is_powered || hba->shutting_down ||
!hba->ufs_device_wlun ||
hba->ufshcd_state == UFSHCD_STATE_ERROR ||
(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
ufshcd_is_link_broken(hba))));
}
#ifdef CONFIG_PM
static void ufshcd_recover_pm_error(struct ufs_hba *hba)
{
struct Scsi_Host *shost = hba->host;
struct scsi_device *sdev;
struct request_queue *q;
int ret;
hba->is_sys_suspended = false;
/*
* Set RPM status of wlun device to RPM_ACTIVE,
* this also clears its runtime error.
*/
ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
/* hba device might have a runtime error otherwise */
if (ret)
ret = pm_runtime_set_active(hba->dev);
/*
* If wlun device had runtime error, we also need to resume those
* consumer scsi devices in case any of them has failed to be
* resumed due to supplier runtime resume failure. This is to unblock
* blk_queue_enter in case there are bios waiting inside it.
*/
if (!ret) {
shost_for_each_device(sdev, shost) {
q = sdev->request_queue;
if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
q->rpm_status == RPM_SUSPENDING))
pm_request_resume(q->dev);
}
}
}
#else
static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
{
}
#endif
static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
{
struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
u32 mode;
ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
return true;
if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
return true;
return false;
}
static bool ufshcd_abort_one(struct request *rq, void *priv)
{
int *ret = priv;
u32 tag = rq->tag;
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
struct scsi_device *sdev = cmd->device;
struct Scsi_Host *shost = sdev->host;
struct ufs_hba *hba = shost_priv(shost);
struct ufshcd_lrb *lrbp = &hba->lrb[tag];
struct ufs_hw_queue *hwq;
unsigned long flags;
*ret = ufshcd_try_to_abort_task(hba, tag);
dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
*ret ? "failed" : "succeeded");
/* Release cmd in MCQ mode if abort succeeds */
if (is_mcq_enabled(hba) && (*ret == 0)) {
hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
spin_lock_irqsave(&hwq->cq_lock, flags);
if (ufshcd_cmd_inflight(lrbp->cmd))
ufshcd_release_scsi_cmd(hba, lrbp);
spin_unlock_irqrestore(&hwq->cq_lock, flags);
}
return *ret == 0;
}
/**
* ufshcd_abort_all - Abort all pending commands.
* @hba: Host bus adapter pointer.
*
* Return: true if and only if the host controller needs to be reset.
*/
static bool ufshcd_abort_all(struct ufs_hba *hba)
{
int tag, ret = 0;
blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
if (ret)
goto out;
/* Clear pending task management requests */
for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
ret = ufshcd_clear_tm_cmd(hba, tag);
if (ret)
goto out;
}
out:
/* Complete the requests that are cleared by s/w */
ufshcd_complete_requests(hba, false);
return ret != 0;
}
/**
* ufshcd_err_handler - handle UFS errors that require s/w attention
* @work: pointer to work structure
*/
static void ufshcd_err_handler(struct work_struct *work)
{
int retries = MAX_ERR_HANDLER_RETRIES;
struct ufs_hba *hba;
unsigned long flags;
bool needs_restore;
bool needs_reset;
int pmc_err;
hba = container_of(work, struct ufs_hba, eh_work);
dev_info(hba->dev,
"%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
__func__, ufshcd_state_name[hba->ufshcd_state],
hba->is_powered, hba->shutting_down, hba->saved_err,
hba->saved_uic_err, hba->force_reset,
ufshcd_is_link_broken(hba) ? "; link is broken" : "");
down(&hba->host_sem);
spin_lock_irqsave(hba->host->host_lock, flags);
if (ufshcd_err_handling_should_stop(hba)) {
if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
spin_unlock_irqrestore(hba->host->host_lock, flags);
up(&hba->host_sem);
return;
}
ufshcd_set_eh_in_progress(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_err_handling_prepare(hba);
/* Complete requests that have door-bell cleared by h/w */
ufshcd_complete_requests(hba, false);
spin_lock_irqsave(hba->host->host_lock, flags);
again:
needs_restore = false;
needs_reset = false;
if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
hba->ufshcd_state = UFSHCD_STATE_RESET;
/*
* A full reset and restore might have happened after preparation
* is finished, double check whether we should stop.
*/
if (ufshcd_err_handling_should_stop(hba))
goto skip_err_handling;
if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
bool ret;
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
ret = ufshcd_quirk_dl_nac_errors(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
if (!ret && ufshcd_err_handling_should_stop(hba))
goto skip_err_handling;
}
if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
(hba->saved_uic_err &&
(hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_print_host_state(hba);
ufshcd_print_pwr_info(hba);
ufshcd_print_evt_hist(hba);
ufshcd_print_tmrs(hba, hba->outstanding_tasks);
ufshcd_print_trs_all(hba, pr_prdt);
spin_lock_irqsave(hba->host->host_lock, flags);
}
/*
* if host reset is required then skip clearing the pending
* transfers forcefully because they will get cleared during
* host reset and restore
*/
if (hba->force_reset || ufshcd_is_link_broken(hba) ||
ufshcd_is_saved_err_fatal(hba) ||
((hba->saved_err & UIC_ERROR) &&
(hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
needs_reset = true;
goto do_reset;
}
/*
* If LINERESET was caught, UFS might have been put to PWM mode,
* check if power mode restore is needed.
*/
if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
if (!hba->saved_uic_err)
hba->saved_err &= ~UIC_ERROR;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (ufshcd_is_pwr_mode_restore_needed(hba))
needs_restore = true;
spin_lock_irqsave(hba->host->host_lock, flags);
if (!hba->saved_err && !needs_restore)
goto skip_err_handling;
}
hba->silence_err_logs = true;
/* release lock as clear command might sleep */
spin_unlock_irqrestore(hba->host->host_lock, flags);
needs_reset = ufshcd_abort_all(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->silence_err_logs = false;
if (needs_reset)
goto do_reset;
/*
* After all reqs and tasks are cleared from doorbell,
* now it is safe to retore power mode.
*/
if (needs_restore) {
spin_unlock_irqrestore(hba->host->host_lock, flags);
/*
* Hold the scaling lock just in case dev cmds
* are sent via bsg and/or sysfs.
*/
down_write(&hba->clk_scaling_lock);
hba->force_pmc = true;
pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
if (pmc_err) {
needs_reset = true;
dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
__func__, pmc_err);
}
hba->force_pmc = false;
ufshcd_print_pwr_info(hba);
up_write(&hba->clk_scaling_lock);
spin_lock_irqsave(hba->host->host_lock, flags);
}
do_reset:
/* Fatal errors need reset */
if (needs_reset) {
int err;
hba->force_reset = false;
spin_unlock_irqrestore(hba->host->host_lock, flags);
err = ufshcd_reset_and_restore(hba);
if (err)
dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
__func__, err);
else
ufshcd_recover_pm_error(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
}
skip_err_handling:
if (!needs_reset) {
if (hba->ufshcd_state == UFSHCD_STATE_RESET)
hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
if (hba->saved_err || hba->saved_uic_err)
dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
__func__, hba->saved_err, hba->saved_uic_err);
}
/* Exit in an operational state or dead */
if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
hba->ufshcd_state != UFSHCD_STATE_ERROR) {
if (--retries)
goto again;
hba->ufshcd_state = UFSHCD_STATE_ERROR;
}
ufshcd_clear_eh_in_progress(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_err_handling_unprepare(hba);
up(&hba->host_sem);
dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
ufshcd_state_name[hba->ufshcd_state]);
}
/**
* ufshcd_update_uic_error - check and set fatal UIC error flags.
* @hba: per-adapter instance
*
* Return:
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
{
u32 reg;
irqreturn_t retval = IRQ_NONE;
/* PHY layer error */
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
(reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
/*
* To know whether this error is fatal or not, DB timeout
* must be checked but this error is handled separately.
*/
if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
__func__);
/* Got a LINERESET indication. */
if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
struct uic_command *cmd = NULL;
hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
if (hba->uic_async_done && hba->active_uic_cmd)
cmd = hba->active_uic_cmd;
/*
* Ignore the LINERESET during power mode change
* operation via DME_SET command.
*/
if (cmd && (cmd->command == UIC_CMD_DME_SET))
hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
}
retval |= IRQ_HANDLED;
}
/* PA_INIT_ERROR is fatal and needs UIC reset */
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
(reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
else if (hba->dev_quirks &
UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
hba->uic_error |=
UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
}
retval |= IRQ_HANDLED;
}
/* UIC NL/TL/DME errors needs software retry */
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
if ((reg & UIC_NETWORK_LAYER_ERROR) &&
(reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
hba->uic_error |= UFSHCD_UIC_NL_ERROR;
retval |= IRQ_HANDLED;
}
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
(reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
hba->uic_error |= UFSHCD_UIC_TL_ERROR;
retval |= IRQ_HANDLED;
}
reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
if ((reg & UIC_DME_ERROR) &&
(reg & UIC_DME_ERROR_CODE_MASK)) {
ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
hba->uic_error |= UFSHCD_UIC_DME_ERROR;
retval |= IRQ_HANDLED;
}
dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
__func__, hba->uic_error);
return retval;
}
/**
* ufshcd_check_errors - Check for errors that need s/w attention
* @hba: per-adapter instance
* @intr_status: interrupt status generated by the controller
*
* Return:
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
{
bool queue_eh_work = false;
irqreturn_t retval = IRQ_NONE;
spin_lock(hba->host->host_lock);
hba->errors |= UFSHCD_ERROR_MASK & intr_status;
if (hba->errors & INT_FATAL_ERRORS) {
ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
hba->errors);
queue_eh_work = true;
}
if (hba->errors & UIC_ERROR) {
hba->uic_error = 0;
retval = ufshcd_update_uic_error(hba);
if (hba->uic_error)
queue_eh_work = true;
}
if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
dev_err(hba->dev,
"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
"Enter" : "Exit",
hba->errors, ufshcd_get_upmcrs(hba));
ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
hba->errors);
ufshcd_set_link_broken(hba);
queue_eh_work = true;
}
if (queue_eh_work) {
/*
* update the transfer error masks to sticky bits, let's do this
* irrespective of current ufshcd_state.
*/
hba->saved_err |= hba->errors;
hba->saved_uic_err |= hba->uic_error;
/* dump controller state before resetting */
if ((hba->saved_err &
(INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
(hba->saved_uic_err &&
(hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
__func__, hba->saved_err,
hba->saved_uic_err);
ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
"host_regs: ");
ufshcd_print_pwr_info(hba);
}
ufshcd_schedule_eh_work(hba);
retval |= IRQ_HANDLED;
}
/*
* if (!queue_eh_work) -
* Other errors are either non-fatal where host recovers
* itself without s/w intervention or errors that will be
* handled by the SCSI core layer.
*/
hba->errors = 0;
hba->uic_error = 0;
spin_unlock(hba->host->host_lock);
return retval;
}
/**
* ufshcd_tmc_handler - handle task management function completion
* @hba: per adapter instance
*
* Return:
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
{
unsigned long flags, pending, issued;
irqreturn_t ret = IRQ_NONE;
int tag;
spin_lock_irqsave(hba->host->host_lock, flags);
pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
issued = hba->outstanding_tasks & ~pending;
for_each_set_bit(tag, &issued, hba->nutmrs) {
struct request *req = hba->tmf_rqs[tag];
struct completion *c = req->end_io_data;
complete(c);
ret = IRQ_HANDLED;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return ret;
}
/**
* ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
* @hba: per adapter instance
*
* Return: IRQ_HANDLED if interrupt is handled.
*/
static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
{
struct ufs_hw_queue *hwq;
unsigned long outstanding_cqs;
unsigned int nr_queues;
int i, ret;
u32 events;
ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
if (ret)
outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
/* Exclude the poll queues */
nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
for_each_set_bit(i, &outstanding_cqs, nr_queues) {
hwq = &hba->uhq[i];
events = ufshcd_mcq_read_cqis(hba, i);
if (events)
ufshcd_mcq_write_cqis(hba, events, i);
if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
ufshcd_mcq_poll_cqe_lock(hba, hwq);
}
return IRQ_HANDLED;
}
/**
* ufshcd_sl_intr - Interrupt service routine
* @hba: per adapter instance
* @intr_status: contains interrupts generated by the controller
*
* Return:
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
{
irqreturn_t retval = IRQ_NONE;
if (intr_status & UFSHCD_UIC_MASK)
retval |= ufshcd_uic_cmd_compl(hba, intr_status);
if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
retval |= ufshcd_check_errors(hba, intr_status);
if (intr_status & UTP_TASK_REQ_COMPL)
retval |= ufshcd_tmc_handler(hba);
if (intr_status & UTP_TRANSFER_REQ_COMPL)
retval |= ufshcd_transfer_req_compl(hba);
if (intr_status & MCQ_CQ_EVENT_STATUS)
retval |= ufshcd_handle_mcq_cq_events(hba);
return retval;
}
/**
* ufshcd_intr - Main interrupt service routine
* @irq: irq number
* @__hba: pointer to adapter instance
*
* Return:
* IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_intr(int irq, void *__hba)
{
u32 intr_status, enabled_intr_status = 0;
irqreturn_t retval = IRQ_NONE;
struct ufs_hba *hba = __hba;
int retries = hba->nutrs;
intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
hba->ufs_stats.last_intr_status = intr_status;
hba->ufs_stats.last_intr_ts = local_clock();
/*
* There could be max of hba->nutrs reqs in flight and in worst case
* if the reqs get finished 1 by 1 after the interrupt status is
* read, make sure we handle them by checking the interrupt status
* again in a loop until we process all of the reqs before returning.
*/
while (intr_status && retries--) {
enabled_intr_status =
intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
if (enabled_intr_status)
retval |= ufshcd_sl_intr(hba, enabled_intr_status);
intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
}
if (enabled_intr_status && retval == IRQ_NONE &&
(!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
__func__,
intr_status,
hba->ufs_stats.last_intr_status,
enabled_intr_status);
ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
}
return retval;
}
static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
{
int err = 0;
u32 mask = 1 << tag;
unsigned long flags;
if (!test_bit(tag, &hba->outstanding_tasks))
goto out;
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_utmrl_clear(hba, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* poll for max. 1 sec to clear door bell register by h/w */
err = ufshcd_wait_for_register(hba,
REG_UTP_TASK_REQ_DOOR_BELL,
mask, 0, 1000, 1000);
dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
tag, err < 0 ? "failed" : "succeeded");
out:
return err;
}
static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
struct utp_task_req_desc *treq, u8 tm_function)
{
struct request_queue *q = hba->tmf_queue;
struct Scsi_Host *host = hba->host;
DECLARE_COMPLETION_ONSTACK(wait);
struct request *req;
unsigned long flags;
int task_tag, err;
/*
* blk_mq_alloc_request() is used here only to get a free tag.
*/
req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
if (IS_ERR(req))
return PTR_ERR(req);
req->end_io_data = &wait;
ufshcd_hold(hba);
spin_lock_irqsave(host->host_lock, flags);
task_tag = req->tag;
hba->tmf_rqs[req->tag] = req;
treq->upiu_req.req_header.task_tag = task_tag;
memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
/* send command to the controller */
__set_bit(task_tag, &hba->outstanding_tasks);
ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
spin_unlock_irqrestore(host->host_lock, flags);
ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
/* wait until the task management command is completed */
err = wait_for_completion_io_timeout(&wait,
msecs_to_jiffies(TM_CMD_TIMEOUT));
if (!err) {
ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
__func__, tm_function);
if (ufshcd_clear_tm_cmd(hba, task_tag))
dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
__func__, task_tag);
err = -ETIMEDOUT;
} else {
err = 0;
memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
}
spin_lock_irqsave(hba->host->host_lock, flags);
hba->tmf_rqs[req->tag] = NULL;
__clear_bit(task_tag, &hba->outstanding_tasks);
spin_unlock_irqrestore(hba->host->host_lock, flags);
ufshcd_release(hba);
blk_mq_free_request(req);
return err;
}
/**
* ufshcd_issue_tm_cmd - issues task management commands to controller
* @hba: per adapter instance
* @lun_id: LUN ID to which TM command is sent
* @task_id: task ID to which the TM command is applicable
* @tm_function: task management function opcode
* @tm_response: task management service response return value
*
* Return: non-zero value on error, zero on success.
*/
static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
u8 tm_function, u8 *tm_response)
{
struct utp_task_req_desc treq = { };
enum utp_ocs ocs_value;
int err;
/* Configure task request descriptor */
treq.header.interrupt = 1;
treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
/* Configure task request UPIU */
treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
treq.upiu_req.req_header.lun = lun_id;
treq.upiu_req.req_header.tm_function = tm_function;
/*
* The host shall provide the same value for LUN field in the basic
* header and for Input Parameter.
*/
treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
treq.upiu_req.input_param2 = cpu_to_be32(task_id);
err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
if (err == -ETIMEDOUT)
return err;
ocs_value = treq.header.ocs & MASK_OCS;
if (ocs_value != OCS_SUCCESS)
dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
__func__, ocs_value);
else if (tm_response)
*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
MASK_TM_SERVICE_RESP;
return err;
}
/**
* ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
* @hba: per-adapter instance
* @req_upiu: upiu request
* @rsp_upiu: upiu reply
* @desc_buff: pointer to descriptor buffer, NULL if NA
* @buff_len: descriptor size, 0 if NA
* @cmd_type: specifies the type (NOP, Query...)
* @desc_op: descriptor operation
*
* Those type of requests uses UTP Transfer Request Descriptor - utrd.
* Therefore, it "rides" the device management infrastructure: uses its tag and
* tasks work queues.
*
* Since there is only one available tag for device management commands,
* the caller is expected to hold the hba->dev_cmd.lock mutex.
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
struct utp_upiu_req *req_upiu,
struct utp_upiu_req *rsp_upiu,
u8 *desc_buff, int *buff_len,
enum dev_cmd_type cmd_type,
enum query_opcode desc_op)
{
const u32 tag = hba->reserved_slot;
struct ufshcd_lrb *lrbp = &hba->lrb[tag];
int err = 0;
u8 upiu_flags;
/* Protects use of hba->reserved_slot. */
lockdep_assert_held(&hba->dev_cmd.lock);
ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
/* update the task tag in the request upiu */
req_upiu->header.task_tag = tag;
/* just copy the upiu request as it is */
memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
/* The Data Segment Area is optional depending upon the query
* function value. for WRITE DESCRIPTOR, the data segment
* follows right after the tsf.
*/
memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
*buff_len = 0;
}
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
/*
* ignore the returning value here - ufshcd_check_query_response is
* bound to fail since dev_cmd.query and dev_cmd.type were left empty.
* read the response directly ignoring all errors.
*/
ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
/* just copy the upiu response as it is */
memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
.data_segment_length);
if (*buff_len >= resp_len) {
memcpy(desc_buff, descp, resp_len);
*buff_len = resp_len;
} else {
dev_warn(hba->dev,
"%s: rsp size %d is bigger than buffer size %d",
__func__, resp_len, *buff_len);
*buff_len = 0;
err = -EINVAL;
}
}
ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
(struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
return err;
}
/**
* ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
* @hba: per-adapter instance
* @req_upiu: upiu request
* @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
* @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
* @desc_buff: pointer to descriptor buffer, NULL if NA
* @buff_len: descriptor size, 0 if NA
* @desc_op: descriptor operation
*
* Supports UTP Transfer requests (nop and query), and UTP Task
* Management requests.
* It is up to the caller to fill the upiu conent properly, as it will
* be copied without any further input validations.
*
* Return: 0 upon success; < 0 upon failure.
*/
int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
struct utp_upiu_req *req_upiu,
struct utp_upiu_req *rsp_upiu,
enum upiu_request_transaction msgcode,
u8 *desc_buff, int *buff_len,
enum query_opcode desc_op)
{
int err;
enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
struct utp_task_req_desc treq = { };
enum utp_ocs ocs_value;
u8 tm_f = req_upiu->header.tm_function;
switch (msgcode) {
case UPIU_TRANSACTION_NOP_OUT:
cmd_type = DEV_CMD_TYPE_NOP;
fallthrough;
case UPIU_TRANSACTION_QUERY_REQ:
ufshcd_dev_man_lock(hba);
err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
desc_buff, buff_len,
cmd_type, desc_op);
ufshcd_dev_man_unlock(hba);
break;
case UPIU_TRANSACTION_TASK_REQ:
treq.header.interrupt = 1;
treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
if (err == -ETIMEDOUT)
break;
ocs_value = treq.header.ocs & MASK_OCS;
if (ocs_value != OCS_SUCCESS) {
dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
ocs_value);
break;
}
memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
break;
default:
err = -EINVAL;
break;
}
return err;
}
/**
* ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
* @hba: per adapter instance
* @req_upiu: upiu request
* @rsp_upiu: upiu reply
* @req_ehs: EHS field which contains Advanced RPMB Request Message
* @rsp_ehs: EHS field which returns Advanced RPMB Response Message
* @sg_cnt: The number of sg lists actually used
* @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
* @dir: DMA direction
*
* Return: zero on success, non-zero on failure.
*/
int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
enum dma_data_direction dir)
{
const u32 tag = hba->reserved_slot;
struct ufshcd_lrb *lrbp = &hba->lrb[tag];
int err = 0;
int result;
u8 upiu_flags;
u8 *ehs_data;
u16 ehs_len;
int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
/* Protects use of hba->reserved_slot. */
ufshcd_dev_man_lock(hba);
ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
/* update the task tag */
req_upiu->header.task_tag = tag;
/* copy the UPIU(contains CDB) request as it is */
memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
/* Copy EHS, starting with byte32, immediately after the CDB package */
memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
if (dir != DMA_NONE && sg_list)
ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
if (!err) {
/* Just copy the upiu response as it is */
memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
/* Get the response UPIU result */
result = (lrbp->ucd_rsp_ptr->header.response << 8) |
lrbp->ucd_rsp_ptr->header.status;
ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
/*
* Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
* in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
* Message is 02h
*/
if (ehs_len == 2 && rsp_ehs) {
/*
* ucd_rsp_ptr points to a buffer with a length of 512 bytes
* (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
*/
ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
memcpy(rsp_ehs, ehs_data, ehs_len * 32);
}
}
ufshcd_dev_man_unlock(hba);
return err ? : result;
}
/**
* ufshcd_eh_device_reset_handler() - Reset a single logical unit.
* @cmd: SCSI command pointer
*
* Return: SUCCESS or FAILED.
*/
static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
{
unsigned long flags, pending_reqs = 0, not_cleared = 0;
struct Scsi_Host *host;
struct ufs_hba *hba;
struct ufs_hw_queue *hwq;
struct ufshcd_lrb *lrbp;
u32 pos, not_cleared_mask = 0;
int err;
u8 resp = 0xF, lun;
host = cmd->device->host;
hba = shost_priv(host);
lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
if (!err)
err = resp;
goto out;
}
if (is_mcq_enabled(hba)) {
for (pos = 0; pos < hba->nutrs; pos++) {
lrbp = &hba->lrb[pos];
if (ufshcd_cmd_inflight(lrbp->cmd) &&
lrbp->lun == lun) {
ufshcd_clear_cmd(hba, pos);
hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
ufshcd_mcq_poll_cqe_lock(hba, hwq);
}
}
err = 0;
goto out;
}
/* clear the commands that were pending for corresponding LUN */
spin_lock_irqsave(&hba->outstanding_lock, flags);
for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
if (hba->lrb[pos].lun == lun)
__set_bit(pos, &pending_reqs);
hba->outstanding_reqs &= ~pending_reqs;
spin_unlock_irqrestore(&hba->outstanding_lock, flags);
for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
if (ufshcd_clear_cmd(hba, pos) < 0) {
spin_lock_irqsave(&hba->outstanding_lock, flags);
not_cleared = 1U << pos &
ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
hba->outstanding_reqs |= not_cleared;
not_cleared_mask |= not_cleared;
spin_unlock_irqrestore(&hba->outstanding_lock, flags);
dev_err(hba->dev, "%s: failed to clear request %d\n",
__func__, pos);
}
}
__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
out:
hba->req_abort_count = 0;
ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
if (!err) {
err = SUCCESS;
} else {
dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
err = FAILED;
}
return err;
}
static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
{
struct ufshcd_lrb *lrbp;
int tag;
for_each_set_bit(tag, &bitmap, hba->nutrs) {
lrbp = &hba->lrb[tag];
lrbp->req_abort_skip = true;
}
}
/**
* ufshcd_try_to_abort_task - abort a specific task
* @hba: Pointer to adapter instance
* @tag: Task tag/index to be aborted
*
* Abort the pending command in device by sending UFS_ABORT_TASK task management
* command, and in host controller by clearing the door-bell register. There can
* be race between controller sending the command to the device while abort is
* issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
* really issued and then try to abort it.
*
* Return: zero on success, non-zero on failure.
*/
int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
{
struct ufshcd_lrb *lrbp = &hba->lrb[tag];
int err = 0;
int poll_cnt;
u8 resp = 0xF;
u32 reg;
for (poll_cnt = 100; poll_cnt; poll_cnt--) {
err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
UFS_QUERY_TASK, &resp);
if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
/* cmd pending in the device */
dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
__func__, tag);
break;
} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
/*
* cmd not pending in the device, check if it is
* in transition.
*/
dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
__func__, tag);
if (is_mcq_enabled(hba)) {
/* MCQ mode */
if (ufshcd_cmd_inflight(lrbp->cmd)) {
/* sleep for max. 200us same delay as in SDB mode */
usleep_range(100, 200);
continue;
}
/* command completed already */
dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
__func__, tag);
goto out;
}
/* Single Doorbell Mode */
reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
if (reg & (1 << tag)) {
/* sleep for max. 200us to stabilize */
usleep_range(100, 200);
continue;
}
/* command completed already */
dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
__func__, tag);
goto out;
} else {
dev_err(hba->dev,
"%s: no response from device. tag = %d, err %d\n",
__func__, tag, err);
if (!err)
err = resp; /* service response error */
goto out;
}
}
if (!poll_cnt) {
err = -EBUSY;
goto out;
}
err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
UFS_ABORT_TASK, &resp);
if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
if (!err) {
err = resp; /* service response error */
dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
__func__, tag, err);
}
goto out;
}
err = ufshcd_clear_cmd(hba, tag);
if (err)
dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
__func__, tag, err);
out:
return err;
}
/**
* ufshcd_abort - scsi host template eh_abort_handler callback
* @cmd: SCSI command pointer
*
* Return: SUCCESS or FAILED.
*/
static int ufshcd_abort(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host = cmd->device->host;
struct ufs_hba *hba = shost_priv(host);
int tag = scsi_cmd_to_rq(cmd)->tag;
struct ufshcd_lrb *lrbp = &hba->lrb[tag];
unsigned long flags;
int err = FAILED;
bool outstanding;
u32 reg;
ufshcd_hold(hba);
if (!is_mcq_enabled(hba)) {
reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
if (!test_bit(tag, &hba->outstanding_reqs)) {
/* If command is already aborted/completed, return FAILED. */
dev_err(hba->dev,
"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
__func__, tag, hba->outstanding_reqs, reg);
goto release;
}
}
/* Print Transfer Request of aborted task */
dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
/*
* Print detailed info about aborted request.
* As more than one request might get aborted at the same time,
* print full information only for the first aborted request in order
* to reduce repeated printouts. For other aborted requests only print
* basic details.
*/
scsi_print_command(cmd);
if (!hba->req_abort_count) {
ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
ufshcd_print_evt_hist(hba);
ufshcd_print_host_state(hba);
ufshcd_print_pwr_info(hba);
ufshcd_print_tr(hba, tag, true);
} else {
ufshcd_print_tr(hba, tag, false);
}
hba->req_abort_count++;
if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
/* only execute this code in single doorbell mode */
dev_err(hba->dev,
"%s: cmd was completed, but without a notifying intr, tag = %d",
__func__, tag);
__ufshcd_transfer_req_compl(hba, 1UL << tag);
goto release;
}
/*
* Task abort to the device W-LUN is illegal. When this command
* will fail, due to spec violation, scsi err handling next step
* will be to send LU reset which, again, is a spec violation.
* To avoid these unnecessary/illegal steps, first we clean up
* the lrb taken by this cmd and re-set it in outstanding_reqs,
* then queue the eh_work and bail.
*/
if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
spin_lock_irqsave(host->host_lock, flags);
hba->force_reset = true;
ufshcd_schedule_eh_work(hba);
spin_unlock_irqrestore(host->host_lock, flags);
goto release;
}
if (is_mcq_enabled(hba)) {
/* MCQ mode. Branch off to handle abort for mcq mode */
err = ufshcd_mcq_abort(cmd);
goto release;
}
/* Skip task abort in case previous aborts failed and report failure */
if (lrbp->req_abort_skip) {
dev_err(hba->dev, "%s: skipping abort\n", __func__);
ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
goto release;
}
err = ufshcd_try_to_abort_task(hba, tag);
if (err) {
dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
err = FAILED;
goto release;
}
/*
* Clear the corresponding bit from outstanding_reqs since the command
* has been aborted successfully.
*/
spin_lock_irqsave(&hba->outstanding_lock, flags);
outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
spin_unlock_irqrestore(&hba->outstanding_lock, flags);
if (outstanding)
ufshcd_release_scsi_cmd(hba, lrbp);
err = SUCCESS;
release:
/* Matches the ufshcd_hold() call at the start of this function. */
ufshcd_release(hba);
return err;
}
/**
* ufshcd_host_reset_and_restore - reset and restore host controller
* @hba: per-adapter instance
*
* Note that host controller reset may issue DME_RESET to
* local and remote (device) Uni-Pro stack and the attributes
* are reset to default state.
*
* Return: zero on success, non-zero on failure.
*/
static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
{
int err;
/*
* Stop the host controller and complete the requests
* cleared by h/w
*/
ufshcd_hba_stop(hba);
hba->silence_err_logs = true;
ufshcd_complete_requests(hba, true);
hba->silence_err_logs = false;
/* scale up clocks to max frequency before full reinitialization */
ufshcd_scale_clks(hba, ULONG_MAX, true);
err = ufshcd_hba_enable(hba);
/* Establish the link again and restore the device */
if (!err)
err = ufshcd_probe_hba(hba, false);
if (err)
dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
return err;
}
/**
* ufshcd_reset_and_restore - reset and re-initialize host/device
* @hba: per-adapter instance
*
* Reset and recover device, host and re-establish link. This
* is helpful to recover the communication in fatal error conditions.
*
* Return: zero on success, non-zero on failure.
*/
static int ufshcd_reset_and_restore(struct ufs_hba *hba)
{
u32 saved_err = 0;
u32 saved_uic_err = 0;
int err = 0;
unsigned long flags;
int retries = MAX_HOST_RESET_RETRIES;
spin_lock_irqsave(hba->host->host_lock, flags);
do {
/*
* This is a fresh start, cache and clear saved error first,
* in case new error generated during reset and restore.
*/
saved_err |= hba->saved_err;
saved_uic_err |= hba->saved_uic_err;
hba->saved_err = 0;
hba->saved_uic_err = 0;
hba->force_reset = false;
hba->ufshcd_state = UFSHCD_STATE_RESET;
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* Reset the attached device */
ufshcd_device_reset(hba);
err = ufshcd_host_reset_and_restore(hba);
spin_lock_irqsave(hba->host->host_lock, flags);
if (err)
continue;
/* Do not exit unless operational or dead */
if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
hba->ufshcd_state != UFSHCD_STATE_ERROR &&
hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
err = -EAGAIN;
} while (err && --retries);
/*
* Inform scsi mid-layer that we did reset and allow to handle
* Unit Attention properly.
*/
scsi_report_bus_reset(hba->host, 0);
if (err) {
hba->ufshcd_state = UFSHCD_STATE_ERROR;
hba->saved_err |= saved_err;
hba->saved_uic_err |= saved_uic_err;
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return err;
}
/**
* ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
* @cmd: SCSI command pointer
*
* Return: SUCCESS or FAILED.
*/
static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
{
int err = SUCCESS;
unsigned long flags;
struct ufs_hba *hba;
hba = shost_priv(cmd->device->host);
/*
* If runtime PM sent SSU and got a timeout, scsi_error_handler is
* stuck in this function waiting for flush_work(&hba->eh_work). And
* ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
* ufshcd_link_recovery instead of eh_work to prevent deadlock.
*/
if (hba->pm_op_in_progress) {
if (ufshcd_link_recovery(hba))
err = FAILED;
return err;
}
spin_lock_irqsave(hba->host->host_lock, flags);
hba->force_reset = true;
ufshcd_schedule_eh_work(hba);
dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
spin_unlock_irqrestore(hba->host->host_lock, flags);
flush_work(&hba->eh_work);
spin_lock_irqsave(hba->host->host_lock, flags);
if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
err = FAILED;
spin_unlock_irqrestore(hba->host->host_lock, flags);
return err;
}
/**
* ufshcd_get_max_icc_level - calculate the ICC level
* @sup_curr_uA: max. current supported by the regulator
* @start_scan: row at the desc table to start scan from
* @buff: power descriptor buffer
*
* Return: calculated max ICC level for specific regulator.
*/
static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
const char *buff)
{
int i;
int curr_uA;
u16 data;
u16 unit;
for (i = start_scan; i >= 0; i--) {
data = get_unaligned_be16(&buff[2 * i]);
unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
ATTR_ICC_LVL_UNIT_OFFSET;
curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
switch (unit) {
case UFSHCD_NANO_AMP:
curr_uA = curr_uA / 1000;
break;
case UFSHCD_MILI_AMP:
curr_uA = curr_uA * 1000;
break;
case UFSHCD_AMP:
curr_uA = curr_uA * 1000 * 1000;
break;
case UFSHCD_MICRO_AMP:
default:
break;
}
if (sup_curr_uA >= curr_uA)
break;
}
if (i < 0) {
i = 0;
pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
}
return (u32)i;
}
/**
* ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
* In case regulators are not initialized we'll return 0
* @hba: per-adapter instance
* @desc_buf: power descriptor buffer to extract ICC levels from.
*
* Return: calculated ICC level.
*/
static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
const u8 *desc_buf)
{
u32 icc_level = 0;
if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
!hba->vreg_info.vccq2) {
/*
* Using dev_dbg to avoid messages during runtime PM to avoid
* never-ending cycles of messages written back to storage by
* user space causing runtime resume, causing more messages and
* so on.
*/
dev_dbg(hba->dev,
"%s: Regulator capability was not set, actvIccLevel=%d",
__func__, icc_level);
goto out;
}
if (hba->vreg_info.vcc->max_uA)
icc_level = ufshcd_get_max_icc_level(
hba->vreg_info.vcc->max_uA,
POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
if (hba->vreg_info.vccq->max_uA)
icc_level = ufshcd_get_max_icc_level(
hba->vreg_info.vccq->max_uA,
icc_level,
&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
if (hba->vreg_info.vccq2->max_uA)
icc_level = ufshcd_get_max_icc_level(
hba->vreg_info.vccq2->max_uA,
icc_level,
&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
out:
return icc_level;
}
static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
{
int ret;
u8 *desc_buf;
u32 icc_level;
desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
if (!desc_buf)
return;
ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
desc_buf, QUERY_DESC_MAX_SIZE);
if (ret) {
dev_err(hba->dev,
"%s: Failed reading power descriptor ret = %d",
__func__, ret);
goto out;
}
icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
if (ret)
dev_err(hba->dev,
"%s: Failed configuring bActiveICCLevel = %d ret = %d",
__func__, icc_level, ret);
out:
kfree(desc_buf);
}
static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
{
struct Scsi_Host *shost = sdev->host;
scsi_autopm_get_device(sdev);
blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
if (sdev->rpm_autosuspend)
pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
shost->rpm_autosuspend_delay);
scsi_autopm_put_device(sdev);
}
/**
* ufshcd_scsi_add_wlus - Adds required W-LUs
* @hba: per-adapter instance
*
* UFS device specification requires the UFS devices to support 4 well known
* logical units:
* "REPORT_LUNS" (address: 01h)
* "UFS Device" (address: 50h)
* "RPMB" (address: 44h)
* "BOOT" (address: 30h)
* UFS device's power management needs to be controlled by "POWER CONDITION"
* field of SSU (START STOP UNIT) command. But this "power condition" field
* will take effect only when its sent to "UFS device" well known logical unit
* hence we require the scsi_device instance to represent this logical unit in
* order for the UFS host driver to send the SSU command for power management.
*
* We also require the scsi_device instance for "RPMB" (Replay Protected Memory
* Block) LU so user space process can control this LU. User space may also
* want to have access to BOOT LU.
*
* This function adds scsi device instances for each of all well known LUs
* (except "REPORT LUNS" LU).
*
* Return: zero on success (all required W-LUs are added successfully),
* non-zero error value on failure (if failed to add any of the required W-LU).
*/
static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
{
int ret = 0;
struct scsi_device *sdev_boot, *sdev_rpmb;
hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
if (IS_ERR(hba->ufs_device_wlun)) {
ret = PTR_ERR(hba->ufs_device_wlun);
hba->ufs_device_wlun = NULL;
goto out;
}
scsi_device_put(hba->ufs_device_wlun);
sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
if (IS_ERR(sdev_rpmb)) {
ret = PTR_ERR(sdev_rpmb);
goto remove_ufs_device_wlun;
}
ufshcd_blk_pm_runtime_init(sdev_rpmb);
scsi_device_put(sdev_rpmb);
sdev_boot = __scsi_add_device(hba->host, 0, 0,
ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
if (IS_ERR(sdev_boot)) {
dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
} else {
ufshcd_blk_pm_runtime_init(sdev_boot);
scsi_device_put(sdev_boot);
}
goto out;
remove_ufs_device_wlun:
scsi_remove_device(hba->ufs_device_wlun);
out:
return ret;
}
static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
{
struct ufs_dev_info *dev_info = &hba->dev_info;
u8 lun;
u32 d_lu_wb_buf_alloc;
u32 ext_ufs_feature;
if (!ufshcd_is_wb_allowed(hba))
return;
/*
* Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
* UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
* enabled
*/
if (!(dev_info->wspecversion >= 0x310 ||
dev_info->wspecversion == 0x220 ||
(hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
goto wb_disabled;
ext_ufs_feature = get_unaligned_be32(desc_buf +
DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
goto wb_disabled;
/*
* WB may be supported but not configured while provisioning. The spec
* says, in dedicated wb buffer mode, a max of 1 lun would have wb
* buffer configured.
*/
dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
dev_info->b_presrv_uspc_en =
desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
if (!get_unaligned_be32(desc_buf +
DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
goto wb_disabled;
} else {
for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
d_lu_wb_buf_alloc = 0;
ufshcd_read_unit_desc_param(hba,
lun,
UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
(u8 *)&d_lu_wb_buf_alloc,
sizeof(d_lu_wb_buf_alloc));
if (d_lu_wb_buf_alloc) {
dev_info->wb_dedicated_lu = lun;
break;
}
}
if (!d_lu_wb_buf_alloc)
goto wb_disabled;
}
if (!ufshcd_is_wb_buf_lifetime_available(hba))
goto wb_disabled;
return;
wb_disabled:
hba->caps &= ~UFSHCD_CAP_WB_EN;
}
static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
{
struct ufs_dev_info *dev_info = &hba->dev_info;
u32 ext_ufs_feature;
u8 mask = 0;
if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
return;
ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
mask |= MASK_EE_TOO_LOW_TEMP;
if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
mask |= MASK_EE_TOO_HIGH_TEMP;
if (mask) {
ufshcd_enable_ee(hba, mask);
ufs_hwmon_probe(hba, mask);
}
}
static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
{
struct ufs_dev_info *dev_info = &hba->dev_info;
u32 ext_ufs_feature;
u32 ext_iid_en = 0;
int err;
/* Only UFS-4.0 and above may support EXT_IID */
if (dev_info->wspecversion < 0x400)
goto out;
ext_ufs_feature = get_unaligned_be32(desc_buf +
DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
goto out;
err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
if (err)
dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
out:
dev_info->b_ext_iid_en = ext_iid_en;
}
void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
const struct ufs_dev_quirk *fixups)
{
const struct ufs_dev_quirk *f;
struct ufs_dev_info *dev_info = &hba->dev_info;
if (!fixups)
return;
for (f = fixups; f->quirk; f++) {
if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
f->wmanufacturerid == UFS_ANY_VENDOR) &&
((dev_info->model &&
STR_PRFX_EQUAL(f->model, dev_info->model)) ||
!strcmp(f->model, UFS_ANY_MODEL)))
hba->dev_quirks |= f->quirk;
}
}
EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
static void ufs_fixup_device_setup(struct ufs_hba *hba)
{
/* fix by general quirk table */
ufshcd_fixup_dev_quirks(hba, ufs_fixups);
/* allow vendors to fix quirks */
ufshcd_vops_fixup_dev_quirks(hba);
}
static void ufshcd_update_rtc(struct ufs_hba *hba)
{
struct timespec64 ts64;
int err;
u32 val;
ktime_get_real_ts64(&ts64);
if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
return;
}
/*
* The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
* 2146 is required, it is recommended to choose the relative RTC mode.
*/
val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
ufshcd_rpm_get_sync(hba);
err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
0, 0, &val);
ufshcd_rpm_put_sync(hba);
if (err)
dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
hba->dev_info.rtc_time_baseline = ts64.tv_sec;
}
static void ufshcd_rtc_work(struct work_struct *work)
{
struct ufs_hba *hba;
hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
/* Update RTC only when there are no requests in progress and UFSHCI is operational */
if (!ufshcd_is_ufs_dev_busy(hba) && hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL)
ufshcd_update_rtc(hba);
if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
schedule_delayed_work(&hba->ufs_rtc_update_work,
msecs_to_jiffies(hba->dev_info.rtc_update_period));
}
static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
{
u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
struct ufs_dev_info *dev_info = &hba->dev_info;
if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
dev_info->rtc_type = UFS_RTC_ABSOLUTE;
/*
* The concept of measuring time in Linux as the number of seconds elapsed since
* 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
* 2010 00:00, here we need to adjust ABS baseline.
*/
dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
mktime64(1970, 1, 1, 0, 0, 0);
} else {
dev_info->rtc_type = UFS_RTC_RELATIVE;
dev_info->rtc_time_baseline = 0;
}
/*
* We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
* how to calculate the specific update period for each time unit. And we disable periodic
* RTC update work, let user configure by sysfs node according to specific circumstance.
*/
dev_info->rtc_update_period = 0;
}
static int ufs_get_device_desc(struct ufs_hba *hba)
{
int err;
u8 model_index;
u8 *desc_buf;
struct ufs_dev_info *dev_info = &hba->dev_info;
desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
if (!desc_buf) {
err = -ENOMEM;
goto out;
}
err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
QUERY_DESC_MAX_SIZE);
if (err) {
dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
__func__, err);
goto out;
}
/*
* getting vendor (manufacturerID) and Bank Index in big endian
* format
*/
dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
/* getting Specification Version in big endian format */
dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
err = ufshcd_read_string_desc(hba, model_index,
&dev_info->model, SD_ASCII_STD);
if (err < 0) {
dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
__func__, err);
goto out;
}
hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
ufs_fixup_device_setup(hba);
ufshcd_wb_probe(hba, desc_buf);
ufshcd_temp_notif_probe(hba, desc_buf);
ufs_init_rtc(hba, desc_buf);
if (hba->ext_iid_sup)
ufshcd_ext_iid_probe(hba, desc_buf);
/*
* ufshcd_read_string_desc returns size of the string
* reset the error value
*/
err = 0;
out:
kfree(desc_buf);
return err;
}
static void ufs_put_device_desc(struct ufs_hba *hba)
{
struct ufs_dev_info *dev_info = &hba->dev_info;
kfree(dev_info->model);
dev_info->model = NULL;
}
/**
* ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
* less than device PA_TACTIVATE time.
* @hba: per-adapter instance
*
* Some UFS devices require host PA_TACTIVATE to be lower than device
* PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
* for such devices.
*
* Return: zero on success, non-zero error value on failure.
*/
static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
{
int ret = 0;
u32 granularity, peer_granularity;
u32 pa_tactivate, peer_pa_tactivate;
u32 pa_tactivate_us, peer_pa_tactivate_us;
static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
&granularity);
if (ret)
goto out;
ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
&peer_granularity);
if (ret)
goto out;
if ((granularity < PA_GRANULARITY_MIN_VAL) ||
(granularity > PA_GRANULARITY_MAX_VAL)) {
dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
__func__, granularity);
return -EINVAL;
}
if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
(peer_granularity > PA_GRANULARITY_MAX_VAL)) {
dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
__func__, peer_granularity);
return -EINVAL;
}
ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
if (ret)
goto out;
ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
&peer_pa_tactivate);
if (ret)
goto out;
pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
peer_pa_tactivate_us = peer_pa_tactivate *
gran_to_us_table[peer_granularity - 1];
if (pa_tactivate_us >= peer_pa_tactivate_us) {
u32 new_peer_pa_tactivate;
new_peer_pa_tactivate = pa_tactivate_us /
gran_to_us_table[peer_granularity - 1];
new_peer_pa_tactivate++;
ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
new_peer_pa_tactivate);
}
out:
return ret;
}
static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
{
ufshcd_vops_apply_dev_quirks(hba);
if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
/* set 1ms timeout for PA_TACTIVATE */
ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
ufshcd_quirk_tune_host_pa_tactivate(hba);
}
static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
{
hba->ufs_stats.hibern8_exit_cnt = 0;
hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
hba->req_abort_count = 0;
}
static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
{
int err;
u8 *desc_buf;
desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
if (!desc_buf) {
err = -ENOMEM;
goto out;
}
err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
desc_buf, QUERY_DESC_MAX_SIZE);
if (err) {
dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
__func__, err);
goto out;
}
if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
hba->dev_info.max_lu_supported = 32;
else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
hba->dev_info.max_lu_supported = 8;
out:
kfree(desc_buf);
return err;
}
struct ufs_ref_clk {
unsigned long freq_hz;
enum ufs_ref_clk_freq val;
};
static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
{19200000, REF_CLK_FREQ_19_2_MHZ},
{26000000, REF_CLK_FREQ_26_MHZ},
{38400000, REF_CLK_FREQ_38_4_MHZ},
{52000000, REF_CLK_FREQ_52_MHZ},
{0, REF_CLK_FREQ_INVAL},
};
static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)
{
int i;
for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
if (ufs_ref_clk_freqs[i].freq_hz == freq)
return ufs_ref_clk_freqs[i].val;
return REF_CLK_FREQ_INVAL;
}
void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
{
unsigned long freq;
freq = clk_get_rate(refclk);
hba->dev_ref_clk_freq =
ufs_get_bref_clk_from_hz(freq);
if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
dev_err(hba->dev,
"invalid ref_clk setting = %ld\n", freq);
}
static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
{
int err;
u32 ref_clk;
u32 freq = hba->dev_ref_clk_freq;
err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
if (err) {
dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
err);
goto out;
}
if (ref_clk == freq)
goto out; /* nothing to update */
err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
if (err) {
dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
ufs_ref_clk_freqs[freq].freq_hz);
goto out;
}
dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
ufs_ref_clk_freqs[freq].freq_hz);
out:
return err;
}
static int ufshcd_device_params_init(struct ufs_hba *hba)
{
bool flag;
int ret;
/* Init UFS geometry descriptor related parameters */
ret = ufshcd_device_geo_params_init(hba);
if (ret)
goto out;
/* Check and apply UFS device quirks */
ret = ufs_get_device_desc(hba);
if (ret) {
dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
__func__, ret);
goto out;
}
ufshcd_get_ref_clk_gating_wait(hba);
if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
hba->dev_info.f_power_on_wp_en = flag;
/* Probe maximum power mode co-supported by both UFS host and device */
if (ufshcd_get_max_pwr_mode(hba))
dev_err(hba->dev,
"%s: Failed getting max supported power mode\n",
__func__);
out:
return ret;
}
static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
{
int err;
struct ufs_query_req *request = NULL;
struct ufs_query_res *response = NULL;
struct ufs_dev_info *dev_info = &hba->dev_info;
struct utp_upiu_query_v4_0 *upiu_data;
if (dev_info->wspecversion < 0x400)
return;
ufshcd_dev_man_lock(hba);
ufshcd_init_query(hba, &request, &response,
UPIU_QUERY_OPCODE_WRITE_ATTR,
QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
if (err)
dev_err(hba->dev, "%s: failed to set timestamp %d\n",
__func__, err);
ufshcd_dev_man_unlock(hba);
}
/**
* ufshcd_add_lus - probe and add UFS logical units
* @hba: per-adapter instance
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_add_lus(struct ufs_hba *hba)
{
int ret;
/* Add required well known logical units to scsi mid layer */
ret = ufshcd_scsi_add_wlus(hba);
if (ret)
goto out;
/* Initialize devfreq after UFS device is detected */
if (ufshcd_is_clkscaling_supported(hba)) {
memcpy(&hba->clk_scaling.saved_pwr_info,
&hba->pwr_info,
sizeof(struct ufs_pa_layer_attr));
hba->clk_scaling.is_allowed = true;
ret = ufshcd_devfreq_init(hba);
if (ret)
goto out;
hba->clk_scaling.is_enabled = true;
ufshcd_init_clk_scaling_sysfs(hba);
}
ufs_bsg_probe(hba);
scsi_scan_host(hba->host);
out:
return ret;
}
/* SDB - Single Doorbell */
static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
{
size_t ucdl_size, utrdl_size;
ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
hba->ucdl_dma_addr);
utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
hba->utrdl_dma_addr);
devm_kfree(hba->dev, hba->lrb);
}
static int ufshcd_alloc_mcq(struct ufs_hba *hba)
{
int ret;
int old_nutrs = hba->nutrs;
ret = ufshcd_mcq_decide_queue_depth(hba);
if (ret < 0)
return ret;
hba->nutrs = ret;
ret = ufshcd_mcq_init(hba);
if (ret)
goto err;
/*
* Previously allocated memory for nutrs may not be enough in MCQ mode.
* Number of supported tags in MCQ mode may be larger than SDB mode.
*/
if (hba->nutrs != old_nutrs) {
ufshcd_release_sdb_queue(hba, old_nutrs);
ret = ufshcd_memory_alloc(hba);
if (ret)
goto err;
ufshcd_host_memory_configure(hba);
}
ret = ufshcd_mcq_memory_alloc(hba);
if (ret)
goto err;
return 0;
err:
hba->nutrs = old_nutrs;
return ret;
}
static void ufshcd_config_mcq(struct ufs_hba *hba)
{
int ret;
u32 intrs;
ret = ufshcd_mcq_vops_config_esi(hba);
dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
intrs = UFSHCD_ENABLE_MCQ_INTRS;
if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
intrs &= ~MCQ_CQ_EVENT_STATUS;
ufshcd_enable_intr(hba, intrs);
ufshcd_mcq_make_queues_operational(hba);
ufshcd_mcq_config_mac(hba, hba->nutrs);
hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
ufshcd_mcq_enable(hba);
hba->mcq_enabled = true;
dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
hba->nutrs);
}
static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
{
int ret;
struct Scsi_Host *host = hba->host;
hba->ufshcd_state = UFSHCD_STATE_RESET;
ret = ufshcd_link_startup(hba);
if (ret)
return ret;
if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
return ret;
/* Debug counters initialization */
ufshcd_clear_dbg_ufs_stats(hba);
/* UniPro link is active now */
ufshcd_set_link_active(hba);
/* Reconfigure MCQ upon reset */
if (is_mcq_enabled(hba) && !init_dev_params)
ufshcd_config_mcq(hba);
/* Verify device initialization by sending NOP OUT UPIU */
ret = ufshcd_verify_dev_init(hba);
if (ret)
return ret;
/* Initiate UFS initialization, and waiting until completion */
ret = ufshcd_complete_dev_init(hba);
if (ret)
return ret;
/*
* Initialize UFS device parameters used by driver, these
* parameters are associated with UFS descriptors.
*/
if (init_dev_params) {
ret = ufshcd_device_params_init(hba);
if (ret)
return ret;
if (is_mcq_supported(hba) && !hba->scsi_host_added) {
ret = ufshcd_alloc_mcq(hba);
if (!ret) {
ufshcd_config_mcq(hba);
} else {
/* Continue with SDB mode */
use_mcq_mode = false;
dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
ret);
}
ret = scsi_add_host(host, hba->dev);
if (ret) {
dev_err(hba->dev, "scsi_add_host failed\n");
return ret;
}
hba->scsi_host_added = true;
} else if (is_mcq_supported(hba)) {
/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
ufshcd_config_mcq(hba);
}
}
ufshcd_tune_unipro_params(hba);
/* UFS device is also active now */
ufshcd_set_ufs_dev_active(hba);
ufshcd_force_reset_auto_bkops(hba);
ufshcd_set_timestamp_attr(hba);
schedule_delayed_work(&hba->ufs_rtc_update_work,
msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
/* Gear up to HS gear if supported */
if (hba->max_pwr_info.is_valid) {
/*
* Set the right value to bRefClkFreq before attempting to
* switch to HS gears.
*/
if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
ufshcd_set_dev_ref_clk(hba);
ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
if (ret) {
dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
__func__, ret);
return ret;
}
}
return 0;
}
/**
* ufshcd_probe_hba - probe hba to detect device and initialize it
* @hba: per-adapter instance
* @init_dev_params: whether or not to call ufshcd_device_params_init().
*
* Execute link-startup and verify device initialization
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
{
ktime_t start = ktime_get();
unsigned long flags;
int ret;
ret = ufshcd_device_init(hba, init_dev_params);
if (ret)
goto out;
if (!hba->pm_op_in_progress &&
(hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
/* Reset the device and controller before doing reinit */
ufshcd_device_reset(hba);
ufshcd_hba_stop(hba);
ufshcd_vops_reinit_notify(hba);
ret = ufshcd_hba_enable(hba);
if (ret) {
dev_err(hba->dev, "Host controller enable failed\n");
ufshcd_print_evt_hist(hba);
ufshcd_print_host_state(hba);
goto out;
}
/* Reinit the device */
ret = ufshcd_device_init(hba, init_dev_params);
if (ret)
goto out;
}
ufshcd_print_pwr_info(hba);
/*
* bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
* and for removable UFS card as well, hence always set the parameter.
* Note: Error handler may issue the device reset hence resetting
* bActiveICCLevel as well so it is always safe to set this here.
*/
ufshcd_set_active_icc_lvl(hba);
/* Enable UFS Write Booster if supported */
ufshcd_configure_wb(hba);
if (hba->ee_usr_mask)
ufshcd_write_ee_control(hba);
ufshcd_configure_auto_hibern8(hba);
out:
spin_lock_irqsave(hba->host->host_lock, flags);
if (ret)
hba->ufshcd_state = UFSHCD_STATE_ERROR;
else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
spin_unlock_irqrestore(hba->host->host_lock, flags);
trace_ufshcd_init(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
/**
* ufshcd_async_scan - asynchronous execution for probing hba
* @data: data pointer to pass to this function
* @cookie: cookie data
*/
static void ufshcd_async_scan(void *data, async_cookie_t cookie)
{
struct ufs_hba *hba = (struct ufs_hba *)data;
int ret;
down(&hba->host_sem);
/* Initialize hba, detect and initialize UFS device */
ret = ufshcd_probe_hba(hba, true);
up(&hba->host_sem);
if (ret)
goto out;
/* Probe and add UFS logical units */
ret = ufshcd_add_lus(hba);
out:
pm_runtime_put_sync(hba->dev);
if (ret)
dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
}
static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
{
struct ufs_hba *hba = shost_priv(scmd->device->host);
if (!hba->system_suspending) {
/* Activate the error handler in the SCSI core. */
return SCSI_EH_NOT_HANDLED;
}
/*
* If we get here we know that no TMFs are outstanding and also that
* the only pending command is a START STOP UNIT command. Handle the
* timeout of that command directly to prevent a deadlock between
* ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
*/
ufshcd_link_recovery(hba);
dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
__func__, hba->outstanding_tasks);
return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
}
static const struct attribute_group *ufshcd_driver_groups[] = {
&ufs_sysfs_unit_descriptor_group,
&ufs_sysfs_lun_attributes_group,
NULL,
};
static struct ufs_hba_variant_params ufs_hba_vps = {
.hba_enable_delay_us = 1000,
.wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
.devfreq_profile.polling_ms = 100,
.devfreq_profile.target = ufshcd_devfreq_target,
.devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
.ondemand_data.upthreshold = 70,
.ondemand_data.downdifferential = 5,
};
static const struct scsi_host_template ufshcd_driver_template = {
.module = THIS_MODULE,
.name = UFSHCD,
.proc_name = UFSHCD,
.map_queues = ufshcd_map_queues,
.queuecommand = ufshcd_queuecommand,
.mq_poll = ufshcd_poll,
.slave_alloc = ufshcd_slave_alloc,
.slave_configure = ufshcd_slave_configure,
.slave_destroy = ufshcd_slave_destroy,
.change_queue_depth = ufshcd_change_queue_depth,
.eh_abort_handler = ufshcd_abort,
.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
.eh_host_reset_handler = ufshcd_eh_host_reset_handler,
.eh_timed_out = ufshcd_eh_timed_out,
.this_id = -1,
.sg_tablesize = SG_ALL,
.cmd_per_lun = UFSHCD_CMD_PER_LUN,
.can_queue = UFSHCD_CAN_QUEUE,
.max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
.max_sectors = SZ_1M / SECTOR_SIZE,
.max_host_blocked = 1,
.track_queue_depth = 1,
.skip_settle_delay = 1,
.sdev_groups = ufshcd_driver_groups,
};
static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
int ua)
{
int ret;
if (!vreg)
return 0;
/*
* "set_load" operation shall be required on those regulators
* which specifically configured current limitation. Otherwise
* zero max_uA may cause unexpected behavior when regulator is
* enabled or set as high power mode.
*/
if (!vreg->max_uA)
return 0;
ret = regulator_set_load(vreg->reg, ua);
if (ret < 0) {
dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
__func__, vreg->name, ua, ret);
}
return ret;
}
static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
struct ufs_vreg *vreg)
{
return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
}
static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
struct ufs_vreg *vreg)
{
if (!vreg)
return 0;
return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
}
static int ufshcd_config_vreg(struct device *dev,
struct ufs_vreg *vreg, bool on)
{
if (regulator_count_voltages(vreg->reg) <= 0)
return 0;
return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
}
static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
{
int ret = 0;
if (!vreg || vreg->enabled)
goto out;
ret = ufshcd_config_vreg(dev, vreg, true);
if (!ret)
ret = regulator_enable(vreg->reg);
if (!ret)
vreg->enabled = true;
else
dev_err(dev, "%s: %s enable failed, err=%d\n",
__func__, vreg->name, ret);
out:
return ret;
}
static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
{
int ret = 0;
if (!vreg || !vreg->enabled || vreg->always_on)
goto out;
ret = regulator_disable(vreg->reg);
if (!ret) {
/* ignore errors on applying disable config */
ufshcd_config_vreg(dev, vreg, false);
vreg->enabled = false;
} else {
dev_err(dev, "%s: %s disable failed, err=%d\n",
__func__, vreg->name, ret);
}
out:
return ret;
}
static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
{
int ret = 0;
struct device *dev = hba->dev;
struct ufs_vreg_info *info = &hba->vreg_info;
ret = ufshcd_toggle_vreg(dev, info->vcc, on);
if (ret)
goto out;
ret = ufshcd_toggle_vreg(dev, info->vccq, on);
if (ret)
goto out;
ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
out:
if (ret) {
ufshcd_toggle_vreg(dev, info->vccq2, false);
ufshcd_toggle_vreg(dev, info->vccq, false);
ufshcd_toggle_vreg(dev, info->vcc, false);
}
return ret;
}
static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
{
struct ufs_vreg_info *info = &hba->vreg_info;
return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
}
int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
{
int ret = 0;
if (!vreg)
goto out;
vreg->reg = devm_regulator_get(dev, vreg->name);
if (IS_ERR(vreg->reg)) {
ret = PTR_ERR(vreg->reg);
dev_err(dev, "%s: %s get failed, err=%d\n",
__func__, vreg->name, ret);
}
out:
return ret;
}
EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
static int ufshcd_init_vreg(struct ufs_hba *hba)
{
int ret = 0;
struct device *dev = hba->dev;
struct ufs_vreg_info *info = &hba->vreg_info;
ret = ufshcd_get_vreg(dev, info->vcc);
if (ret)
goto out;
ret = ufshcd_get_vreg(dev, info->vccq);
if (!ret)
ret = ufshcd_get_vreg(dev, info->vccq2);
out:
return ret;
}
static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
{
struct ufs_vreg_info *info = &hba->vreg_info;
return ufshcd_get_vreg(hba->dev, info->vdd_hba);
}
static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
{
int ret = 0;
struct ufs_clk_info *clki;
struct list_head *head = &hba->clk_list_head;
unsigned long flags;
ktime_t start = ktime_get();
bool clk_state_changed = false;
if (list_empty(head))
goto out;
ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
if (ret)
return ret;
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk)) {
/*
* Don't disable clocks which are needed
* to keep the link active.
*/
if (ufshcd_is_link_active(hba) &&
clki->keep_link_active)
continue;
clk_state_changed = on ^ clki->enabled;
if (on && !clki->enabled) {
ret = clk_prepare_enable(clki->clk);
if (ret) {
dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
__func__, clki->name, ret);
goto out;
}
} else if (!on && clki->enabled) {
clk_disable_unprepare(clki->clk);
}
clki->enabled = on;
dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
clki->name, on ? "en" : "dis");
}
}
ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
if (ret)
return ret;
if (!ufshcd_is_clkscaling_supported(hba))
ufshcd_pm_qos_update(hba, on);
out:
if (ret) {
list_for_each_entry(clki, head, list) {
if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
clk_disable_unprepare(clki->clk);
}
} else if (!ret && on) {
spin_lock_irqsave(hba->host->host_lock, flags);
hba->clk_gating.state = CLKS_ON;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
spin_unlock_irqrestore(hba->host->host_lock, flags);
}
if (clk_state_changed)
trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
(on ? "on" : "off"),
ktime_to_us(ktime_sub(ktime_get(), start)), ret);
return ret;
}
static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
{
u32 freq;
int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
if (ret) {
dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
return REF_CLK_FREQ_INVAL;
}
return ufs_get_bref_clk_from_hz(freq);
}
static int ufshcd_init_clocks(struct ufs_hba *hba)
{
int ret = 0;
struct ufs_clk_info *clki;
struct device *dev = hba->dev;
struct list_head *head = &hba->clk_list_head;
if (list_empty(head))
goto out;
list_for_each_entry(clki, head, list) {
if (!clki->name)
continue;
clki->clk = devm_clk_get(dev, clki->name);
if (IS_ERR(clki->clk)) {
ret = PTR_ERR(clki->clk);
dev_err(dev, "%s: %s clk get failed, %d\n",
__func__, clki->name, ret);
goto out;
}
/*
* Parse device ref clk freq as per device tree "ref_clk".
* Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
* in ufshcd_alloc_host().
*/
if (!strcmp(clki->name, "ref_clk"))
ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
if (clki->max_freq) {
ret = clk_set_rate(clki->clk, clki->max_freq);
if (ret) {
dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
__func__, clki->name,
clki->max_freq, ret);
goto out;
}
clki->curr_freq = clki->max_freq;
}
dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
clki->name, clk_get_rate(clki->clk));
}
/* Set Max. frequency for all clocks */
if (hba->use_pm_opp) {
ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
if (ret) {
dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
ret);
goto out;
}
}
out:
return ret;
}
static int ufshcd_variant_hba_init(struct ufs_hba *hba)
{
int err = 0;
if (!hba->vops)
goto out;
err = ufshcd_vops_init(hba);
if (err)
dev_err_probe(hba->dev, err,
"%s: variant %s init failed with err %d\n",
__func__, ufshcd_get_var_name(hba), err);
out:
return err;
}
static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
{
if (!hba->vops)
return;
ufshcd_vops_exit(hba);
}
static int ufshcd_hba_init(struct ufs_hba *hba)
{
int err;
/*
* Handle host controller power separately from the UFS device power
* rails as it will help controlling the UFS host controller power
* collapse easily which is different than UFS device power collapse.
* Also, enable the host controller power before we go ahead with rest
* of the initialization here.
*/
err = ufshcd_init_hba_vreg(hba);
if (err)
goto out;
err = ufshcd_setup_hba_vreg(hba, true);
if (err)
goto out;
err = ufshcd_init_clocks(hba);
if (err)
goto out_disable_hba_vreg;
if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
err = ufshcd_setup_clocks(hba, true);
if (err)
goto out_disable_hba_vreg;
err = ufshcd_init_vreg(hba);
if (err)
goto out_disable_clks;
err = ufshcd_setup_vreg(hba, true);
if (err)
goto out_disable_clks;
err = ufshcd_variant_hba_init(hba);
if (err)
goto out_disable_vreg;
ufs_debugfs_hba_init(hba);
ufs_fault_inject_hba_init(hba);
hba->is_powered = true;
goto out;
out_disable_vreg:
ufshcd_setup_vreg(hba, false);
out_disable_clks:
ufshcd_setup_clocks(hba, false);
out_disable_hba_vreg:
ufshcd_setup_hba_vreg(hba, false);
out:
return err;
}
static void ufshcd_hba_exit(struct ufs_hba *hba)
{
if (hba->is_powered) {
ufshcd_pm_qos_exit(hba);
ufshcd_exit_clk_scaling(hba);
ufshcd_exit_clk_gating(hba);
if (hba->eh_wq)
destroy_workqueue(hba->eh_wq);
ufs_debugfs_hba_exit(hba);
ufshcd_variant_hba_exit(hba);
ufshcd_setup_vreg(hba, false);
ufshcd_setup_clocks(hba, false);
ufshcd_setup_hba_vreg(hba, false);
hba->is_powered = false;
ufs_put_device_desc(hba);
}
}
static int ufshcd_execute_start_stop(struct scsi_device *sdev,
enum ufs_dev_pwr_mode pwr_mode,
struct scsi_sense_hdr *sshdr)
{
const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
struct scsi_failure failure_defs[] = {
{
.allowed = 2,
.result = SCMD_FAILURE_RESULT_ANY,
},
};
struct scsi_failures failures = {
.failure_definitions = failure_defs,
};
const struct scsi_exec_args args = {
.failures = &failures,
.sshdr = sshdr,
.req_flags = BLK_MQ_REQ_PM,
.scmd_flags = SCMD_FAIL_IF_RECOVERING,
};
return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
&args);
}
/**
* ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
* power mode
* @hba: per adapter instance
* @pwr_mode: device power mode to set
*
* Return: 0 if requested power mode is set successfully;
* < 0 if failed to set the requested power mode.
*/
static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
enum ufs_dev_pwr_mode pwr_mode)
{
struct scsi_sense_hdr sshdr;
struct scsi_device *sdp;
unsigned long flags;
int ret;
spin_lock_irqsave(hba->host->host_lock, flags);
sdp = hba->ufs_device_wlun;
if (sdp && scsi_device_online(sdp))
ret = scsi_device_get(sdp);
else
ret = -ENODEV;
spin_unlock_irqrestore(hba->host->host_lock, flags);
if (ret)
return ret;
/*
* If scsi commands fail, the scsi mid-layer schedules scsi error-
* handling, which would wait for host to be resumed. Since we know
* we are functional while we are here, skip host resume in error
* handling context.
*/
hba->host->eh_noresume = 1;
/*
* Current function would be generally called from the power management
* callbacks hence set the RQF_PM flag so that it doesn't resume the
* already suspended childs.
*/
ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
if (ret) {
sdev_printk(KERN_WARNING, sdp,
"START_STOP failed for power mode: %d, result %x\n",
pwr_mode, ret);
if (ret > 0) {
if (scsi_sense_valid(&sshdr))
scsi_print_sense_hdr(sdp, NULL, &sshdr);
ret = -EIO;
}
} else {
hba->curr_dev_pwr_mode = pwr_mode;
}
scsi_device_put(sdp);
hba->host->eh_noresume = 0;
return ret;
}
static int ufshcd_link_state_transition(struct ufs_hba *hba,
enum uic_link_state req_link_state,
bool check_for_bkops)
{
int ret = 0;
if (req_link_state == hba->uic_link_state)
return 0;
if (req_link_state == UIC_LINK_HIBERN8_STATE) {
ret = ufshcd_uic_hibern8_enter(hba);
if (!ret) {
ufshcd_set_link_hibern8(hba);
} else {
dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
__func__, ret);
goto out;
}
}
/*
* If autobkops is enabled, link can't be turned off because
* turning off the link would also turn off the device, except in the
* case of DeepSleep where the device is expected to remain powered.
*/
else if ((req_link_state == UIC_LINK_OFF_STATE) &&
(!check_for_bkops || !hba->auto_bkops_enabled)) {
/*
* Let's make sure that link is in low power mode, we are doing
* this currently by putting the link in Hibern8. Otherway to
* put the link in low power mode is to send the DME end point
* to device and then send the DME reset command to local
* unipro. But putting the link in hibern8 is much faster.
*
* Note also that putting the link in Hibern8 is a requirement
* for entering DeepSleep.
*/
ret = ufshcd_uic_hibern8_enter(hba);
if (ret) {
dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
__func__, ret);
goto out;
}
/*
* Change controller state to "reset state" which
* should also put the link in off/reset state
*/
ufshcd_hba_stop(hba);
/*
* TODO: Check if we need any delay to make sure that
* controller is reset
*/
ufshcd_set_link_off(hba);
}
out:
return ret;
}
static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
{
bool vcc_off = false;
/*
* It seems some UFS devices may keep drawing more than sleep current
* (atleast for 500us) from UFS rails (especially from VCCQ rail).
* To avoid this situation, add 2ms delay before putting these UFS
* rails in LPM mode.
*/
if (!ufshcd_is_link_active(hba) &&
hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
usleep_range(2000, 2100);
/*
* If UFS device is either in UFS_Sleep turn off VCC rail to save some
* power.
*
* If UFS device and link is in OFF state, all power supplies (VCC,
* VCCQ, VCCQ2) can be turned off if power on write protect is not
* required. If UFS link is inactive (Hibern8 or OFF state) and device
* is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
*
* Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
* in low power state which would save some power.
*
* If Write Booster is enabled and the device needs to flush the WB
* buffer OR if bkops status is urgent for WB, keep Vcc on.
*/
if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
!hba->dev_info.is_lu_power_on_wp) {
ufshcd_setup_vreg(hba, false);
vcc_off = true;
} else if (!ufshcd_is_ufs_dev_active(hba)) {
ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
vcc_off = true;
if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
}
}
/*
* Some UFS devices require delay after VCC power rail is turned-off.
*/
if (vcc_off && hba->vreg_info.vcc &&
hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
usleep_range(5000, 5100);
}
#ifdef CONFIG_PM
static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
{
int ret = 0;
if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
!hba->dev_info.is_lu_power_on_wp) {
ret = ufshcd_setup_vreg(hba, true);
} else if (!ufshcd_is_ufs_dev_active(hba)) {
if (!ufshcd_is_link_active(hba)) {
ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
if (ret)
goto vcc_disable;
ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
if (ret)
goto vccq_lpm;
}
ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
}
goto out;
vccq_lpm:
ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
vcc_disable:
ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
out:
return ret;
}
#endif /* CONFIG_PM */
static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
{
if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
ufshcd_setup_hba_vreg(hba, false);
}
static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
{
if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
ufshcd_setup_hba_vreg(hba, true);
}
static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
int ret = 0;
bool check_for_bkops;
enum ufs_pm_level pm_lvl;
enum ufs_dev_pwr_mode req_dev_pwr_mode;
enum uic_link_state req_link_state;
hba->pm_op_in_progress = true;
if (pm_op != UFS_SHUTDOWN_PM) {
pm_lvl = pm_op == UFS_RUNTIME_PM ?
hba->rpm_lvl : hba->spm_lvl;
req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
} else {
req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
req_link_state = UIC_LINK_OFF_STATE;
}
/*
* If we can't transition into any of the low power modes
* just gate the clocks.
*/
ufshcd_hold(hba);
hba->clk_gating.is_suspended = true;
if (ufshcd_is_clkscaling_supported(hba))
ufshcd_clk_scaling_suspend(hba, true);
if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
req_link_state == UIC_LINK_ACTIVE_STATE) {
goto vops_suspend;
}
if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
(req_link_state == hba->uic_link_state))
goto enable_scaling;
/* UFS device & link must be active before we enter in this function */
if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
/* Wait err handler finish or trigger err recovery */
if (!ufshcd_eh_in_progress(hba))
ufshcd_force_error_recovery(hba);
ret = -EBUSY;
goto enable_scaling;
}
if (pm_op == UFS_RUNTIME_PM) {
if (ufshcd_can_autobkops_during_suspend(hba)) {
/*
* The device is idle with no requests in the queue,
* allow background operations if bkops status shows
* that performance might be impacted.
*/
ret = ufshcd_urgent_bkops(hba);
if (ret) {
/*
* If return err in suspend flow, IO will hang.
* Trigger error handler and break suspend for
* error recovery.
*/
ufshcd_force_error_recovery(hba);
ret = -EBUSY;
goto enable_scaling;
}
} else {
/* make sure that auto bkops is disabled */
ufshcd_disable_auto_bkops(hba);
}
/*
* If device needs to do BKOP or WB buffer flush during
* Hibern8, keep device power mode as "active power mode"
* and VCC supply.
*/
hba->dev_info.b_rpm_dev_flush_capable =
hba->auto_bkops_enabled ||
(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
((req_link_state == UIC_LINK_ACTIVE_STATE) &&
ufshcd_is_auto_hibern8_enabled(hba))) &&
ufshcd_wb_need_flush(hba));
}
flush_work(&hba->eeh_work);
ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
if (ret)
goto enable_scaling;
if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
if (pm_op != UFS_RUNTIME_PM)
/* ensure that bkops is disabled */
ufshcd_disable_auto_bkops(hba);
if (!hba->dev_info.b_rpm_dev_flush_capable) {
ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
if (ret && pm_op != UFS_SHUTDOWN_PM) {
/*
* If return err in suspend flow, IO will hang.
* Trigger error handler and break suspend for
* error recovery.
*/
ufshcd_force_error_recovery(hba);
ret = -EBUSY;
}
if (ret)
goto enable_scaling;
}
}
/*
* In the case of DeepSleep, the device is expected to remain powered
* with the link off, so do not check for bkops.
*/
check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
if (ret && pm_op != UFS_SHUTDOWN_PM) {
/*
* If return err in suspend flow, IO will hang.
* Trigger error handler and break suspend for
* error recovery.
*/
ufshcd_force_error_recovery(hba);
ret = -EBUSY;
}
if (ret)
goto set_dev_active;
vops_suspend:
/*
* Call vendor specific suspend callback. As these callbacks may access
* vendor specific host controller register space call them before the
* host clocks are ON.
*/
ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
if (ret)
goto set_link_active;
cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
goto out;
set_link_active:
/*
* Device hardware reset is required to exit DeepSleep. Also, for
* DeepSleep, the link is off so host reset and restore will be done
* further below.
*/
if (ufshcd_is_ufs_dev_deepsleep(hba)) {
ufshcd_device_reset(hba);
WARN_ON(!ufshcd_is_link_off(hba));
}
if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
ufshcd_set_link_active(hba);
else if (ufshcd_is_link_off(hba))
ufshcd_host_reset_and_restore(hba);
set_dev_active:
/* Can also get here needing to exit DeepSleep */
if (ufshcd_is_ufs_dev_deepsleep(hba)) {
ufshcd_device_reset(hba);
ufshcd_host_reset_and_restore(hba);
}
if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
ufshcd_disable_auto_bkops(hba);
enable_scaling:
if (ufshcd_is_clkscaling_supported(hba))
ufshcd_clk_scaling_suspend(hba, false);
hba->dev_info.b_rpm_dev_flush_capable = false;
out:
if (hba->dev_info.b_rpm_dev_flush_capable) {
schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
}
if (ret) {
ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
hba->clk_gating.is_suspended = false;
ufshcd_release(hba);
}
hba->pm_op_in_progress = false;
return ret;
}
#ifdef CONFIG_PM
static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
int ret;
enum uic_link_state old_link_state = hba->uic_link_state;
hba->pm_op_in_progress = true;
/*
* Call vendor specific resume callback. As these callbacks may access
* vendor specific host controller register space call them when the
* host clocks are ON.
*/
ret = ufshcd_vops_resume(hba, pm_op);
if (ret)
goto out;
/* For DeepSleep, the only supported option is to have the link off */
WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
if (ufshcd_is_link_hibern8(hba)) {
ret = ufshcd_uic_hibern8_exit(hba);
if (!ret) {
ufshcd_set_link_active(hba);
} else {
dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
__func__, ret);
goto vendor_suspend;
}
} else if (ufshcd_is_link_off(hba)) {
/*
* A full initialization of the host and the device is
* required since the link was put to off during suspend.
* Note, in the case of DeepSleep, the device will exit
* DeepSleep due to device reset.
*/
ret = ufshcd_reset_and_restore(hba);
/*
* ufshcd_reset_and_restore() should have already
* set the link state as active
*/
if (ret || !ufshcd_is_link_active(hba))
goto vendor_suspend;
}
if (!ufshcd_is_ufs_dev_active(hba)) {
ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
if (ret)
goto set_old_link_state;
ufshcd_set_timestamp_attr(hba);
schedule_delayed_work(&hba->ufs_rtc_update_work,
msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
}
if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
ufshcd_enable_auto_bkops(hba);
else
/*
* If BKOPs operations are urgently needed at this moment then
* keep auto-bkops enabled or else disable it.
*/
ufshcd_urgent_bkops(hba);
if (hba->ee_usr_mask)
ufshcd_write_ee_control(hba);
if (ufshcd_is_clkscaling_supported(hba))
ufshcd_clk_scaling_suspend(hba, false);
if (hba->dev_info.b_rpm_dev_flush_capable) {
hba->dev_info.b_rpm_dev_flush_capable = false;
cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
}
ufshcd_configure_auto_hibern8(hba);
goto out;
set_old_link_state:
ufshcd_link_state_transition(hba, old_link_state, 0);
vendor_suspend:
ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
out:
if (ret)
ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
hba->clk_gating.is_suspended = false;
ufshcd_release(hba);
hba->pm_op_in_progress = false;
return ret;
}
static int ufshcd_wl_runtime_suspend(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ufs_hba *hba;
int ret;
ktime_t start = ktime_get();
hba = shost_priv(sdev->host);
ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
if (ret)
dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
static int ufshcd_wl_runtime_resume(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ufs_hba *hba;
int ret = 0;
ktime_t start = ktime_get();
hba = shost_priv(sdev->host);
ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
if (ret)
dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
#endif
#ifdef CONFIG_PM_SLEEP
static int ufshcd_wl_suspend(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ufs_hba *hba;
int ret = 0;
ktime_t start = ktime_get();
hba = shost_priv(sdev->host);
down(&hba->host_sem);
hba->system_suspending = true;
if (pm_runtime_suspended(dev))
goto out;
ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
if (ret) {
dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
up(&hba->host_sem);
}
out:
if (!ret)
hba->is_sys_suspended = true;
trace_ufshcd_wl_suspend(dev_name(dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
static int ufshcd_wl_resume(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ufs_hba *hba;
int ret = 0;
ktime_t start = ktime_get();
hba = shost_priv(sdev->host);
if (pm_runtime_suspended(dev))
goto out;
ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
if (ret)
dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
out:
trace_ufshcd_wl_resume(dev_name(dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
if (!ret)
hba->is_sys_suspended = false;
hba->system_suspending = false;
up(&hba->host_sem);
return ret;
}
#endif
/**
* ufshcd_suspend - helper function for suspend operations
* @hba: per adapter instance
*
* This function will put disable irqs, turn off clocks
* and set vreg and hba-vreg in lpm mode.
*
* Return: 0 upon success; < 0 upon failure.
*/
static int ufshcd_suspend(struct ufs_hba *hba)
{
int ret;
if (!hba->is_powered)
return 0;
/*
* Disable the host irq as host controller as there won't be any
* host controller transaction expected till resume.
*/
ufshcd_disable_irq(hba);
ret = ufshcd_setup_clocks(hba, false);
if (ret) {
ufshcd_enable_irq(hba);
return ret;
}
if (ufshcd_is_clkgating_allowed(hba)) {
hba->clk_gating.state = CLKS_OFF;
trace_ufshcd_clk_gating(dev_name(hba->dev),
hba->clk_gating.state);
}
ufshcd_vreg_set_lpm(hba);
/* Put the host controller in low power mode if possible */
ufshcd_hba_vreg_set_lpm(hba);
ufshcd_pm_qos_update(hba, false);
return ret;
}
#ifdef CONFIG_PM
/**
* ufshcd_resume - helper function for resume operations
* @hba: per adapter instance
*
* This function basically turns on the regulators, clocks and
* irqs of the hba.
*
* Return: 0 for success and non-zero for failure.
*/
static int ufshcd_resume(struct ufs_hba *hba)
{
int ret;
if (!hba->is_powered)
return 0;
ufshcd_hba_vreg_set_hpm(hba);
ret = ufshcd_vreg_set_hpm(hba);
if (ret)
goto out;
/* Make sure clocks are enabled before accessing controller */
ret = ufshcd_setup_clocks(hba, true);
if (ret)
goto disable_vreg;
/* enable the host irq as host controller would be active soon */
ufshcd_enable_irq(hba);
goto out;
disable_vreg:
ufshcd_vreg_set_lpm(hba);
out:
if (ret)
ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
return ret;
}
#endif /* CONFIG_PM */
#ifdef CONFIG_PM_SLEEP
/**
* ufshcd_system_suspend - system suspend callback
* @dev: Device associated with the UFS controller.
*
* Executed before putting the system into a sleep state in which the contents
* of main memory are preserved.
*
* Return: 0 for success and non-zero for failure.
*/
int ufshcd_system_suspend(struct device *dev)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
int ret = 0;
ktime_t start = ktime_get();
if (pm_runtime_suspended(hba->dev))
goto out;
ret = ufshcd_suspend(hba);
out:
trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
EXPORT_SYMBOL(ufshcd_system_suspend);
/**
* ufshcd_system_resume - system resume callback
* @dev: Device associated with the UFS controller.
*
* Executed after waking the system up from a sleep state in which the contents
* of main memory were preserved.
*
* Return: 0 for success and non-zero for failure.
*/
int ufshcd_system_resume(struct device *dev)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
ktime_t start = ktime_get();
int ret = 0;
if (pm_runtime_suspended(hba->dev))
goto out;
ret = ufshcd_resume(hba);
out:
trace_ufshcd_system_resume(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
EXPORT_SYMBOL(ufshcd_system_resume);
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM
/**
* ufshcd_runtime_suspend - runtime suspend callback
* @dev: Device associated with the UFS controller.
*
* Check the description of ufshcd_suspend() function for more details.
*
* Return: 0 for success and non-zero for failure.
*/
int ufshcd_runtime_suspend(struct device *dev)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
int ret;
ktime_t start = ktime_get();
ret = ufshcd_suspend(hba);
trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
EXPORT_SYMBOL(ufshcd_runtime_suspend);
/**
* ufshcd_runtime_resume - runtime resume routine
* @dev: Device associated with the UFS controller.
*
* This function basically brings controller
* to active state. Following operations are done in this function:
*
* 1. Turn on all the controller related clocks
* 2. Turn ON VCC rail
*
* Return: 0 upon success; < 0 upon failure.
*/
int ufshcd_runtime_resume(struct device *dev)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
int ret;
ktime_t start = ktime_get();
ret = ufshcd_resume(hba);
trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
ktime_to_us(ktime_sub(ktime_get(), start)),
hba->curr_dev_pwr_mode, hba->uic_link_state);
return ret;
}
EXPORT_SYMBOL(ufshcd_runtime_resume);
#endif /* CONFIG_PM */
static void ufshcd_wl_shutdown(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ufs_hba *hba = shost_priv(sdev->host);
down(&hba->host_sem);
hba->shutting_down = true;
up(&hba->host_sem);
/* Turn on everything while shutting down */
ufshcd_rpm_get_sync(hba);
scsi_device_quiesce(sdev);
shost_for_each_device(sdev, hba->host) {
if (sdev == hba->ufs_device_wlun)
continue;
scsi_device_quiesce(sdev);
}
__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
/*
* Next, turn off the UFS controller and the UFS regulators. Disable
* clocks.
*/
if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
ufshcd_suspend(hba);
hba->is_powered = false;
}
/**
* ufshcd_remove - de-allocate SCSI host and host memory space
* data structure memory
* @hba: per adapter instance
*/
void ufshcd_remove(struct ufs_hba *hba)
{
if (hba->ufs_device_wlun)
ufshcd_rpm_get_sync(hba);
ufs_hwmon_remove(hba);
ufs_bsg_remove(hba);
ufs_sysfs_remove_nodes(hba->dev);
blk_mq_destroy_queue(hba->tmf_queue);
blk_put_queue(hba->tmf_queue);
blk_mq_free_tag_set(&hba->tmf_tag_set);
scsi_remove_host(hba->host);
/* disable interrupts */
ufshcd_disable_intr(hba, hba->intr_mask);
ufshcd_hba_stop(hba);
ufshcd_hba_exit(hba);
}
EXPORT_SYMBOL_GPL(ufshcd_remove);
#ifdef CONFIG_PM_SLEEP
int ufshcd_system_freeze(struct device *dev)
{
return ufshcd_system_suspend(dev);
}
EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
int ufshcd_system_restore(struct device *dev)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
int ret;
ret = ufshcd_system_resume(dev);
if (ret)
return ret;
/* Configure UTRL and UTMRL base address registers */
ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
REG_UTP_TRANSFER_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
REG_UTP_TRANSFER_REQ_LIST_BASE_H);
ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
REG_UTP_TASK_REQ_LIST_BASE_L);
ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
REG_UTP_TASK_REQ_LIST_BASE_H);
/*
* Make sure that UTRL and UTMRL base address registers
* are updated with the latest queue addresses. Only after
* updating these addresses, we can queue the new commands.
*/
ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
/* Resuming from hibernate, assume that link was OFF */
ufshcd_set_link_off(hba);
return 0;
}
EXPORT_SYMBOL_GPL(ufshcd_system_restore);
int ufshcd_system_thaw(struct device *dev)
{
return ufshcd_system_resume(dev);
}
EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
#endif /* CONFIG_PM_SLEEP */
/**
* ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
* @hba: pointer to Host Bus Adapter (HBA)
*/
void ufshcd_dealloc_host(struct ufs_hba *hba)
{
scsi_host_put(hba->host);
}
EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
/**
* ufshcd_set_dma_mask - Set dma mask based on the controller
* addressing capability
* @hba: per adapter instance
*
* Return: 0 for success, non-zero for failure.
*/
static int ufshcd_set_dma_mask(struct ufs_hba *hba)
{
if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
return 0;
}
return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
}
/**
* ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
* @dev: pointer to device handle
* @hba_handle: driver private handle
*
* Return: 0 on success, non-zero value on failure.
*/
int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
int err = 0;
if (!dev) {
dev_err(dev,
"Invalid memory reference for dev is NULL\n");
err = -ENODEV;
goto out_error;
}
host = scsi_host_alloc(&ufshcd_driver_template,
sizeof(struct ufs_hba));
if (!host) {
dev_err(dev, "scsi_host_alloc failed\n");
err = -ENOMEM;
goto out_error;
}
host->nr_maps = HCTX_TYPE_POLL + 1;
hba = shost_priv(host);
hba->host = host;
hba->dev = dev;
hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
hba->nop_out_timeout = NOP_OUT_TIMEOUT;
ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
INIT_LIST_HEAD(&hba->clk_list_head);
spin_lock_init(&hba->outstanding_lock);
*hba_handle = hba;
out_error:
return err;
}
EXPORT_SYMBOL(ufshcd_alloc_host);
/* This function exists because blk_mq_alloc_tag_set() requires this. */
static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *qd)
{
WARN_ON_ONCE(true);
return BLK_STS_NOTSUPP;
}
static const struct blk_mq_ops ufshcd_tmf_ops = {
.queue_rq = ufshcd_queue_tmf,
};
/**
* ufshcd_init - Driver initialization routine
* @hba: per-adapter instance
* @mmio_base: base register address
* @irq: Interrupt line of device
*
* Return: 0 on success, non-zero value on failure.
*/
int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
{
int err;
struct Scsi_Host *host = hba->host;
struct device *dev = hba->dev;
char eh_wq_name[sizeof("ufs_eh_wq_00")];
/*
* dev_set_drvdata() must be called before any callbacks are registered
* that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
* sysfs).
*/
dev_set_drvdata(dev, hba);
if (!mmio_base) {
dev_err(hba->dev,
"Invalid memory reference for mmio_base is NULL\n");
err = -ENODEV;
goto out_error;
}
hba->mmio_base = mmio_base;
hba->irq = irq;
hba->vps = &ufs_hba_vps;
err = ufshcd_hba_init(hba);
if (err)
goto out_error;
/* Read capabilities registers */
err = ufshcd_hba_capabilities(hba);
if (err)
goto out_disable;
/* Get UFS version supported by the controller */
hba->ufs_version = ufshcd_get_ufs_version(hba);
/* Get Interrupt bit mask per version */
hba->intr_mask = ufshcd_get_intr_mask(hba);
err = ufshcd_set_dma_mask(hba);
if (err) {
dev_err(hba->dev, "set dma mask failed\n");
goto out_disable;
}
/* Allocate memory for host memory space */
err = ufshcd_memory_alloc(hba);
if (err) {
dev_err(hba->dev, "Memory allocation failed\n");
goto out_disable;
}
/* Configure LRB */
ufshcd_host_memory_configure(hba);
host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
host->max_id = UFSHCD_MAX_ID;
host->max_lun = UFS_MAX_LUNS;
host->max_channel = UFSHCD_MAX_CHANNEL;
host->unique_id = host->host_no;
host->max_cmd_len = UFS_CDB_SIZE;
host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
/* Use default RPM delay if host not set */
if (host->rpm_autosuspend_delay == 0)
host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
hba->max_pwr_info.is_valid = false;
/* Initialize work queues */
snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
hba->host->host_no);
hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
if (!hba->eh_wq) {
dev_err(hba->dev, "%s: failed to create eh workqueue\n",
__func__);
err = -ENOMEM;
goto out_disable;
}
INIT_WORK(&hba->eh_work, ufshcd_err_handler);
INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
sema_init(&hba->host_sem, 1);
/* Initialize UIC command mutex */
mutex_init(&hba->uic_cmd_mutex);
/* Initialize mutex for device management commands */
mutex_init(&hba->dev_cmd.lock);
/* Initialize mutex for exception event control */
mutex_init(&hba->ee_ctrl_mutex);
mutex_init(&hba->wb_mutex);
init_rwsem(&hba->clk_scaling_lock);
ufshcd_init_clk_gating(hba);
ufshcd_init_clk_scaling(hba);
/*
* In order to avoid any spurious interrupt immediately after
* registering UFS controller interrupt handler, clear any pending UFS
* interrupt status and disable all the UFS interrupts.
*/
ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
REG_INTERRUPT_STATUS);
ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
/*
* Make sure that UFS interrupts are disabled and any pending interrupt
* status is cleared before registering UFS interrupt handler.
*/
ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
/* IRQ registration */
err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
if (err) {
dev_err(hba->dev, "request irq failed\n");
goto out_disable;
} else {
hba->is_irq_enabled = true;
}
if (!is_mcq_supported(hba)) {
err = scsi_add_host(host, hba->dev);
if (err) {
dev_err(hba->dev, "scsi_add_host failed\n");
goto out_disable;
}
}
hba->tmf_tag_set = (struct blk_mq_tag_set) {
.nr_hw_queues = 1,
.queue_depth = hba->nutmrs,
.ops = &ufshcd_tmf_ops,
.flags = BLK_MQ_F_NO_SCHED,
};
err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
if (err < 0)
goto out_remove_scsi_host;
hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
if (IS_ERR(hba->tmf_queue)) {
err = PTR_ERR(hba->tmf_queue);
goto free_tmf_tag_set;
}
hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
sizeof(*hba->tmf_rqs), GFP_KERNEL);
if (!hba->tmf_rqs) {
err = -ENOMEM;
goto free_tmf_queue;
}
/* Reset the attached device */
ufshcd_device_reset(hba);
ufshcd_init_crypto(hba);
/* Host controller enable */
err = ufshcd_hba_enable(hba);
if (err) {
dev_err(hba->dev, "Host controller enable failed\n");
ufshcd_print_evt_hist(hba);
ufshcd_print_host_state(hba);
goto free_tmf_queue;
}
/*
* Set the default power management level for runtime and system PM.
* Default power saving mode is to keep UFS link in Hibern8 state
* and UFS device in sleep state.
*/
hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
UFS_SLEEP_PWR_MODE,
UIC_LINK_HIBERN8_STATE);
hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
UFS_SLEEP_PWR_MODE,
UIC_LINK_HIBERN8_STATE);
INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
/* Set the default auto-hiberate idle timer value to 150 ms */
if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
}
/* Hold auto suspend until async scan completes */
pm_runtime_get_sync(dev);
atomic_set(&hba->scsi_block_reqs_cnt, 0);
/*
* We are assuming that device wasn't put in sleep/power-down
* state exclusively during the boot stage before kernel.
* This assumption helps avoid doing link startup twice during
* ufshcd_probe_hba().
*/
ufshcd_set_ufs_dev_active(hba);
async_schedule(ufshcd_async_scan, hba);
ufs_sysfs_add_nodes(hba->dev);
device_enable_async_suspend(dev);
ufshcd_pm_qos_init(hba);
return 0;
free_tmf_queue:
blk_mq_destroy_queue(hba->tmf_queue);
blk_put_queue(hba->tmf_queue);
free_tmf_tag_set:
blk_mq_free_tag_set(&hba->tmf_tag_set);
out_remove_scsi_host:
scsi_remove_host(hba->host);
out_disable:
hba->is_irq_enabled = false;
ufshcd_hba_exit(hba);
out_error:
return err;
}
EXPORT_SYMBOL_GPL(ufshcd_init);
void ufshcd_resume_complete(struct device *dev)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
if (hba->complete_put) {
ufshcd_rpm_put(hba);
hba->complete_put = false;
}
}
EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
{
struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
enum ufs_dev_pwr_mode dev_pwr_mode;
enum uic_link_state link_state;
unsigned long flags;
bool res;
spin_lock_irqsave(&dev->power.lock, flags);
dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
res = pm_runtime_suspended(dev) &&
hba->curr_dev_pwr_mode == dev_pwr_mode &&
hba->uic_link_state == link_state &&
!hba->dev_info.b_rpm_dev_flush_capable;
spin_unlock_irqrestore(&dev->power.lock, flags);
return res;
}
int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
int ret;
/*
* SCSI assumes that runtime-pm and system-pm for scsi drivers
* are same. And it doesn't wake up the device for system-suspend
* if it's runtime suspended. But ufs doesn't follow that.
* Refer ufshcd_resume_complete()
*/
if (hba->ufs_device_wlun) {
/* Prevent runtime suspend */
ufshcd_rpm_get_noresume(hba);
/*
* Check if already runtime suspended in same state as system
* suspend would be.
*/
if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
/* RPM state is not ok for SPM, so runtime resume */
ret = ufshcd_rpm_resume(hba);
if (ret < 0 && ret != -EACCES) {
ufshcd_rpm_put(hba);
return ret;
}
}
hba->complete_put = true;
}
return 0;
}
EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
int ufshcd_suspend_prepare(struct device *dev)
{
return __ufshcd_suspend_prepare(dev, true);
}
EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
#ifdef CONFIG_PM_SLEEP
static int ufshcd_wl_poweroff(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct ufs_hba *hba = shost_priv(sdev->host);
__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
return 0;
}
#endif
static int ufshcd_wl_probe(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
if (!is_device_wlun(sdev))
return -ENODEV;
blk_pm_runtime_init(sdev->request_queue, dev);
pm_runtime_set_autosuspend_delay(dev, 0);
pm_runtime_allow(dev);
return 0;
}
static int ufshcd_wl_remove(struct device *dev)
{
pm_runtime_forbid(dev);
return 0;
}
static const struct dev_pm_ops ufshcd_wl_pm_ops = {
#ifdef CONFIG_PM_SLEEP
.suspend = ufshcd_wl_suspend,
.resume = ufshcd_wl_resume,
.freeze = ufshcd_wl_suspend,
.thaw = ufshcd_wl_resume,
.poweroff = ufshcd_wl_poweroff,
.restore = ufshcd_wl_resume,
#endif
SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
};
static void ufshcd_check_header_layout(void)
{
/*
* gcc compilers before version 10 cannot do constant-folding for
* sub-byte bitfields. Hence skip the layout checks for gcc 9 and
* before.
*/
if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
return;
BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
.cci = 3})[0] != 3);
BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
.ehs_length = 2})[1] != 2);
BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
.enable_crypto = 1})[2]
!= 0x80);
BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
.command_type = 5,
.data_direction = 3,
.interrupt = 1,
})[3]) != ((5 << 4) | (3 << 1) | 1));
BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
cpu_to_le32(0xdeadbeef));
BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
.ocs = 4})[8] != 4);
BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
.cds = 5})[9] != 5);
BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
.dunu = cpu_to_le32(0xbadcafe)})[3] !=
cpu_to_le32(0xbadcafe));
BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
.iid = 0xf })[4] != 0xf0);
BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
.command_set_type = 0xf })[4] != 0xf);
}
/*
* ufs_dev_wlun_template - describes ufs device wlun
* ufs-device wlun - used to send pm commands
* All luns are consumers of ufs-device wlun.
*
* Currently, no sd driver is present for wluns.
* Hence the no specific pm operations are performed.
* With ufs design, SSU should be sent to ufs-device wlun.
* Hence register a scsi driver for ufs wluns only.
*/
static struct scsi_driver ufs_dev_wlun_template = {
.gendrv = {
.name = "ufs_device_wlun",
.probe = ufshcd_wl_probe,
.remove = ufshcd_wl_remove,
.pm = &ufshcd_wl_pm_ops,
.shutdown = ufshcd_wl_shutdown,
},
};
static int __init ufshcd_core_init(void)
{
int ret;
ufshcd_check_header_layout();
ufs_debugfs_init();
ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
if (ret)
ufs_debugfs_exit();
return ret;
}
static void __exit ufshcd_core_exit(void)
{
ufs_debugfs_exit();
scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
}
module_init(ufshcd_core_init);
module_exit(ufshcd_core_exit);
MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
MODULE_DESCRIPTION("Generic UFS host controller driver Core");
MODULE_SOFTDEP("pre: governor_simpleondemand");
MODULE_LICENSE("GPL");