blob: 62c5c3331cfecdf5fcf0a5d20b4051b1b024968e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for STM32 Digital Camera Memory Interface Pixel Processor
*
* Copyright (C) STMicroelectronics SA 2023
* Authors: Hugues Fruchet <hugues.fruchet@foss.st.com>
* Alain Volmat <alain.volmat@foss.st.com>
* for STMicroelectronics.
*/
#include <linux/v4l2-mediabus.h>
#include <media/v4l2-event.h>
#include <media/v4l2-subdev.h>
#include "dcmipp-common.h"
#define DCMIPP_PRCR 0x104
#define DCMIPP_PRCR_FORMAT_SHIFT 16
#define DCMIPP_PRCR_FORMAT_YUV422 0x1e
#define DCMIPP_PRCR_FORMAT_RGB565 0x22
#define DCMIPP_PRCR_FORMAT_RAW8 0x2a
#define DCMIPP_PRCR_FORMAT_G8 0x4a
#define DCMIPP_PRCR_FORMAT_BYTE_STREAM 0x5a
#define DCMIPP_PRCR_ESS BIT(4)
#define DCMIPP_PRCR_PCKPOL BIT(5)
#define DCMIPP_PRCR_HSPOL BIT(6)
#define DCMIPP_PRCR_VSPOL BIT(7)
#define DCMIPP_PRCR_ENABLE BIT(14)
#define DCMIPP_PRCR_SWAPCYCLES BIT(25)
#define DCMIPP_PRESCR 0x108
#define DCMIPP_PRESUR 0x10c
#define IS_SINK(pad) (!(pad))
#define IS_SRC(pad) ((pad))
struct dcmipp_par_pix_map {
unsigned int code_sink;
unsigned int code_src;
u8 prcr_format;
u8 prcr_swapcycles;
};
#define PIXMAP_SINK_SRC_PRCR_SWAP(sink, src, prcr, swap) \
{ \
.code_sink = MEDIA_BUS_FMT_##sink, \
.code_src = MEDIA_BUS_FMT_##src, \
.prcr_format = DCMIPP_PRCR_FORMAT_##prcr, \
.prcr_swapcycles = swap, \
}
static const struct dcmipp_par_pix_map dcmipp_par_pix_map_list[] = {
/* RGB565 */
PIXMAP_SINK_SRC_PRCR_SWAP(RGB565_2X8_LE, RGB565_2X8_LE, RGB565, 1),
PIXMAP_SINK_SRC_PRCR_SWAP(RGB565_2X8_BE, RGB565_2X8_LE, RGB565, 0),
/* YUV422 */
PIXMAP_SINK_SRC_PRCR_SWAP(YUYV8_2X8, YUYV8_2X8, YUV422, 1),
PIXMAP_SINK_SRC_PRCR_SWAP(YUYV8_2X8, UYVY8_2X8, YUV422, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(UYVY8_2X8, UYVY8_2X8, YUV422, 1),
PIXMAP_SINK_SRC_PRCR_SWAP(UYVY8_2X8, YUYV8_2X8, YUV422, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(YVYU8_2X8, YVYU8_2X8, YUV422, 1),
PIXMAP_SINK_SRC_PRCR_SWAP(VYUY8_2X8, VYUY8_2X8, YUV422, 1),
/* GREY */
PIXMAP_SINK_SRC_PRCR_SWAP(Y8_1X8, Y8_1X8, G8, 0),
/* Raw Bayer */
PIXMAP_SINK_SRC_PRCR_SWAP(SBGGR8_1X8, SBGGR8_1X8, RAW8, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(SGBRG8_1X8, SGBRG8_1X8, RAW8, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(SGRBG8_1X8, SGRBG8_1X8, RAW8, 0),
PIXMAP_SINK_SRC_PRCR_SWAP(SRGGB8_1X8, SRGGB8_1X8, RAW8, 0),
/* JPEG */
PIXMAP_SINK_SRC_PRCR_SWAP(JPEG_1X8, JPEG_1X8, BYTE_STREAM, 0),
};
/*
* Search through the pix_map table, skipping two consecutive entry with the
* same code
*/
static inline const struct dcmipp_par_pix_map *dcmipp_par_pix_map_by_index
(unsigned int index,
unsigned int pad)
{
unsigned int i = 0;
u32 prev_code = 0, cur_code;
while (i < ARRAY_SIZE(dcmipp_par_pix_map_list)) {
if (IS_SRC(pad))
cur_code = dcmipp_par_pix_map_list[i].code_src;
else
cur_code = dcmipp_par_pix_map_list[i].code_sink;
if (cur_code == prev_code) {
i++;
continue;
}
prev_code = cur_code;
if (index == 0)
break;
i++;
index--;
}
if (i >= ARRAY_SIZE(dcmipp_par_pix_map_list))
return NULL;
return &dcmipp_par_pix_map_list[i];
}
static inline const struct dcmipp_par_pix_map *dcmipp_par_pix_map_by_code
(u32 code_sink, u32 code_src)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dcmipp_par_pix_map_list); i++) {
if ((dcmipp_par_pix_map_list[i].code_sink == code_sink &&
dcmipp_par_pix_map_list[i].code_src == code_src) ||
(dcmipp_par_pix_map_list[i].code_sink == code_src &&
dcmipp_par_pix_map_list[i].code_src == code_sink) ||
(dcmipp_par_pix_map_list[i].code_sink == code_sink &&
code_src == 0) ||
(code_sink == 0 &&
dcmipp_par_pix_map_list[i].code_src == code_src))
return &dcmipp_par_pix_map_list[i];
}
return NULL;
}
struct dcmipp_par_device {
struct dcmipp_ent_device ved;
struct v4l2_subdev sd;
struct device *dev;
void __iomem *regs;
bool streaming;
};
static const struct v4l2_mbus_framefmt fmt_default = {
.width = DCMIPP_FMT_WIDTH_DEFAULT,
.height = DCMIPP_FMT_HEIGHT_DEFAULT,
.code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.field = V4L2_FIELD_NONE,
.colorspace = DCMIPP_COLORSPACE_DEFAULT,
.ycbcr_enc = DCMIPP_YCBCR_ENC_DEFAULT,
.quantization = DCMIPP_QUANTIZATION_DEFAULT,
.xfer_func = DCMIPP_XFER_FUNC_DEFAULT,
};
static int dcmipp_par_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
unsigned int i;
for (i = 0; i < sd->entity.num_pads; i++) {
struct v4l2_mbus_framefmt *mf;
mf = v4l2_subdev_state_get_format(sd_state, i);
*mf = fmt_default;
}
return 0;
}
static int dcmipp_par_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
const struct dcmipp_par_pix_map *vpix =
dcmipp_par_pix_map_by_index(code->index, code->pad);
if (!vpix)
return -EINVAL;
code->code = IS_SRC(code->pad) ? vpix->code_src : vpix->code_sink;
return 0;
}
static int dcmipp_par_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
const struct dcmipp_par_pix_map *vpix;
if (fse->index)
return -EINVAL;
/* Only accept code in the pix map table */
vpix = dcmipp_par_pix_map_by_code(IS_SINK(fse->pad) ? fse->code : 0,
IS_SRC(fse->pad) ? fse->code : 0);
if (!vpix)
return -EINVAL;
fse->min_width = DCMIPP_FRAME_MIN_WIDTH;
fse->max_width = DCMIPP_FRAME_MAX_WIDTH;
fse->min_height = DCMIPP_FRAME_MIN_HEIGHT;
fse->max_height = DCMIPP_FRAME_MAX_HEIGHT;
return 0;
}
static void dcmipp_par_adjust_fmt(struct dcmipp_par_device *par,
struct v4l2_mbus_framefmt *fmt, __u32 pad)
{
const struct dcmipp_par_pix_map *vpix;
/* Only accept code in the pix map table */
vpix = dcmipp_par_pix_map_by_code(IS_SINK(pad) ? fmt->code : 0,
IS_SRC(pad) ? fmt->code : 0);
if (!vpix)
fmt->code = fmt_default.code;
/* Exclude JPEG if BT656 bus is selected */
if (vpix && vpix->code_sink == MEDIA_BUS_FMT_JPEG_1X8 &&
par->ved.bus_type == V4L2_MBUS_BT656)
fmt->code = fmt_default.code;
fmt->width = clamp_t(u32, fmt->width, DCMIPP_FRAME_MIN_WIDTH,
DCMIPP_FRAME_MAX_WIDTH) & ~1;
fmt->height = clamp_t(u32, fmt->height, DCMIPP_FRAME_MIN_HEIGHT,
DCMIPP_FRAME_MAX_HEIGHT) & ~1;
if (fmt->field == V4L2_FIELD_ANY || fmt->field == V4L2_FIELD_ALTERNATE)
fmt->field = fmt_default.field;
dcmipp_colorimetry_clamp(fmt);
}
static int dcmipp_par_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
{
struct dcmipp_par_device *par = v4l2_get_subdevdata(sd);
struct v4l2_mbus_framefmt *mf;
if (par->streaming)
return -EBUSY;
mf = v4l2_subdev_state_get_format(sd_state, fmt->pad);
/* Set the new format */
dcmipp_par_adjust_fmt(par, &fmt->format, fmt->pad);
dev_dbg(par->dev, "%s: format update: old:%dx%d (0x%x, %d, %d, %d, %d) new:%dx%d (0x%x, %d, %d, %d, %d)\n",
par->sd.name,
/* old */
mf->width, mf->height, mf->code,
mf->colorspace, mf->quantization,
mf->xfer_func, mf->ycbcr_enc,
/* new */
fmt->format.width, fmt->format.height, fmt->format.code,
fmt->format.colorspace, fmt->format.quantization,
fmt->format.xfer_func, fmt->format.ycbcr_enc);
*mf = fmt->format;
/* When setting the sink format, report that format on the src pad */
if (IS_SINK(fmt->pad)) {
mf = v4l2_subdev_state_get_format(sd_state, 1);
*mf = fmt->format;
dcmipp_par_adjust_fmt(par, mf, 1);
}
return 0;
}
static const struct v4l2_subdev_pad_ops dcmipp_par_pad_ops = {
.enum_mbus_code = dcmipp_par_enum_mbus_code,
.enum_frame_size = dcmipp_par_enum_frame_size,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = dcmipp_par_set_fmt,
};
static int dcmipp_par_configure(struct dcmipp_par_device *par)
{
u32 val = 0;
const struct dcmipp_par_pix_map *vpix;
struct v4l2_subdev_state *state;
struct v4l2_mbus_framefmt *sink_fmt;
struct v4l2_mbus_framefmt *src_fmt;
/* Set vertical synchronization polarity */
if (par->ved.bus.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
val |= DCMIPP_PRCR_VSPOL;
/* Set horizontal synchronization polarity */
if (par->ved.bus.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
val |= DCMIPP_PRCR_HSPOL;
/* Set pixel clock polarity */
if (par->ved.bus.flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
val |= DCMIPP_PRCR_PCKPOL;
/*
* BT656 embedded synchronisation bus mode.
*
* Default SAV/EAV mode is supported here with default codes
* SAV=0xff000080 & EAV=0xff00009d.
* With DCMIPP this means LSC=SAV=0x80 & LEC=EAV=0x9d.
*/
if (par->ved.bus_type == V4L2_MBUS_BT656) {
val |= DCMIPP_PRCR_ESS;
/* Unmask all codes */
reg_write(par, DCMIPP_PRESUR, 0xffffffff);/* FEC:LEC:LSC:FSC */
/* Trig on LSC=0x80 & LEC=0x9d codes, ignore FSC and FEC */
reg_write(par, DCMIPP_PRESCR, 0xff9d80ff);/* FEC:LEC:LSC:FSC */
}
/* Set format */
state = v4l2_subdev_lock_and_get_active_state(&par->sd);
sink_fmt = v4l2_subdev_state_get_format(state, 0);
src_fmt = v4l2_subdev_state_get_format(state, 1);
v4l2_subdev_unlock_state(state);
vpix = dcmipp_par_pix_map_by_code(sink_fmt->code, src_fmt->code);
if (!vpix) {
dev_err(par->dev, "Invalid sink/src format configuration\n");
return -EINVAL;
}
val |= vpix->prcr_format << DCMIPP_PRCR_FORMAT_SHIFT;
/* swap cycles */
if (vpix->prcr_swapcycles)
val |= DCMIPP_PRCR_SWAPCYCLES;
reg_write(par, DCMIPP_PRCR, val);
return 0;
}
static int dcmipp_par_s_stream(struct v4l2_subdev *sd, int enable)
{
struct dcmipp_par_device *par =
container_of(sd, struct dcmipp_par_device, sd);
struct v4l2_subdev *s_subdev;
struct media_pad *pad;
int ret = 0;
/* Get source subdev */
pad = media_pad_remote_pad_first(&sd->entity.pads[0]);
if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
return -EINVAL;
s_subdev = media_entity_to_v4l2_subdev(pad->entity);
if (enable) {
ret = dcmipp_par_configure(par);
if (ret)
return ret;
/* Enable parallel interface */
reg_set(par, DCMIPP_PRCR, DCMIPP_PRCR_ENABLE);
ret = v4l2_subdev_call(s_subdev, video, s_stream, enable);
if (ret < 0) {
dev_err(par->dev,
"failed to start source subdev streaming (%d)\n",
ret);
return ret;
}
} else {
ret = v4l2_subdev_call(s_subdev, video, s_stream, enable);
if (ret < 0) {
dev_err(par->dev,
"failed to stop source subdev streaming (%d)\n",
ret);
return ret;
}
/* Disable parallel interface */
reg_clear(par, DCMIPP_PRCR, DCMIPP_PRCR_ENABLE);
}
par->streaming = enable;
return ret;
}
static const struct v4l2_subdev_video_ops dcmipp_par_video_ops = {
.s_stream = dcmipp_par_s_stream,
};
static const struct v4l2_subdev_ops dcmipp_par_ops = {
.pad = &dcmipp_par_pad_ops,
.video = &dcmipp_par_video_ops,
};
static void dcmipp_par_release(struct v4l2_subdev *sd)
{
struct dcmipp_par_device *par =
container_of(sd, struct dcmipp_par_device, sd);
kfree(par);
}
static const struct v4l2_subdev_internal_ops dcmipp_par_int_ops = {
.init_state = dcmipp_par_init_state,
.release = dcmipp_par_release,
};
void dcmipp_par_ent_release(struct dcmipp_ent_device *ved)
{
struct dcmipp_par_device *par =
container_of(ved, struct dcmipp_par_device, ved);
dcmipp_ent_sd_unregister(ved, &par->sd);
}
struct dcmipp_ent_device *dcmipp_par_ent_init(struct device *dev,
const char *entity_name,
struct v4l2_device *v4l2_dev,
void __iomem *regs)
{
struct dcmipp_par_device *par;
const unsigned long pads_flag[] = {
MEDIA_PAD_FL_SINK, MEDIA_PAD_FL_SOURCE,
};
int ret;
/* Allocate the par struct */
par = kzalloc(sizeof(*par), GFP_KERNEL);
if (!par)
return ERR_PTR(-ENOMEM);
par->regs = regs;
/* Initialize ved and sd */
ret = dcmipp_ent_sd_register(&par->ved, &par->sd, v4l2_dev,
entity_name, MEDIA_ENT_F_VID_IF_BRIDGE,
ARRAY_SIZE(pads_flag), pads_flag,
&dcmipp_par_int_ops, &dcmipp_par_ops,
NULL, NULL);
if (ret) {
kfree(par);
return ERR_PTR(ret);
}
par->dev = dev;
return &par->ved;
}