blob: eddbbe21450ca9dca5e71bf6ec14866cde0935d3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2023 Intel Corporation. All rights reserved. */
#include <linux/acpi.h>
#include <linux/xarray.h>
#include <linux/fw_table.h>
#include <linux/node.h>
#include <linux/overflow.h>
#include "cxlpci.h"
#include "cxlmem.h"
#include "core.h"
#include "cxl.h"
#include "core.h"
struct dsmas_entry {
struct range dpa_range;
u8 handle;
struct access_coordinate coord;
int entries;
int qos_class;
};
static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg,
const unsigned long end)
{
struct acpi_cdat_header *hdr = &header->cdat;
struct acpi_cdat_dsmas *dsmas;
int size = sizeof(*hdr) + sizeof(*dsmas);
struct xarray *dsmas_xa = arg;
struct dsmas_entry *dent;
u16 len;
int rc;
len = le16_to_cpu((__force __le16)hdr->length);
if (len != size || (unsigned long)hdr + len > end) {
pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len);
return -EINVAL;
}
/* Skip common header */
dsmas = (struct acpi_cdat_dsmas *)(hdr + 1);
dent = kzalloc(sizeof(*dent), GFP_KERNEL);
if (!dent)
return -ENOMEM;
dent->handle = dsmas->dsmad_handle;
dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address);
dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) +
le64_to_cpu((__force __le64)dsmas->dpa_length) - 1;
rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL);
if (rc) {
kfree(dent);
return rc;
}
return 0;
}
static void cxl_access_coordinate_set(struct access_coordinate *coord,
int access, unsigned int val)
{
switch (access) {
case ACPI_HMAT_ACCESS_LATENCY:
coord->read_latency = val;
coord->write_latency = val;
break;
case ACPI_HMAT_READ_LATENCY:
coord->read_latency = val;
break;
case ACPI_HMAT_WRITE_LATENCY:
coord->write_latency = val;
break;
case ACPI_HMAT_ACCESS_BANDWIDTH:
coord->read_bandwidth = val;
coord->write_bandwidth = val;
break;
case ACPI_HMAT_READ_BANDWIDTH:
coord->read_bandwidth = val;
break;
case ACPI_HMAT_WRITE_BANDWIDTH:
coord->write_bandwidth = val;
break;
}
}
static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg,
const unsigned long end)
{
struct acpi_cdat_header *hdr = &header->cdat;
struct acpi_cdat_dslbis *dslbis;
int size = sizeof(*hdr) + sizeof(*dslbis);
struct xarray *dsmas_xa = arg;
struct dsmas_entry *dent;
__le64 le_base;
__le16 le_val;
u64 val;
u16 len;
int rc;
len = le16_to_cpu((__force __le16)hdr->length);
if (len != size || (unsigned long)hdr + len > end) {
pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len);
return -EINVAL;
}
/* Skip common header */
dslbis = (struct acpi_cdat_dslbis *)(hdr + 1);
/* Skip unrecognized data type */
if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
return 0;
/* Not a memory type, skip */
if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY)
return 0;
dent = xa_load(dsmas_xa, dslbis->handle);
if (!dent) {
pr_warn("No matching DSMAS entry for DSLBIS entry.\n");
return 0;
}
le_base = (__force __le64)dslbis->entry_base_unit;
le_val = (__force __le16)dslbis->entry[0];
rc = check_mul_overflow(le64_to_cpu(le_base),
le16_to_cpu(le_val), &val);
if (rc)
pr_warn("DSLBIS value overflowed.\n");
cxl_access_coordinate_set(&dent->coord, dslbis->data_type, val);
return 0;
}
static int cdat_table_parse_output(int rc)
{
if (rc < 0)
return rc;
if (rc == 0)
return -ENOENT;
return 0;
}
static int cxl_cdat_endpoint_process(struct cxl_port *port,
struct xarray *dsmas_xa)
{
int rc;
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler,
dsmas_xa, port->cdat.table, port->cdat.length);
rc = cdat_table_parse_output(rc);
if (rc)
return rc;
rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler,
dsmas_xa, port->cdat.table, port->cdat.length);
return cdat_table_parse_output(rc);
}
static int cxl_port_perf_data_calculate(struct cxl_port *port,
struct xarray *dsmas_xa)
{
struct access_coordinate ep_c;
struct access_coordinate coord[ACCESS_COORDINATE_MAX];
struct dsmas_entry *dent;
int valid_entries = 0;
unsigned long index;
int rc;
rc = cxl_endpoint_get_perf_coordinates(port, &ep_c);
if (rc) {
dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n");
return rc;
}
rc = cxl_hb_get_perf_coordinates(port, coord);
if (rc) {
dev_dbg(&port->dev, "Failed to retrieve hb perf coordinates.\n");
return rc;
}
struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port);
if (!cxl_root)
return -ENODEV;
if (!cxl_root->ops || !cxl_root->ops->qos_class)
return -EOPNOTSUPP;
xa_for_each(dsmas_xa, index, dent) {
int qos_class;
cxl_coordinates_combine(&dent->coord, &dent->coord, &ep_c);
/*
* Keeping the host bridge coordinates separate from the dsmas
* coordinates in order to allow calculation of access class
* 0 and 1 for region later.
*/
cxl_coordinates_combine(&coord[ACCESS_COORDINATE_CPU],
&coord[ACCESS_COORDINATE_CPU],
&dent->coord);
dent->entries = 1;
rc = cxl_root->ops->qos_class(cxl_root,
&coord[ACCESS_COORDINATE_CPU],
1, &qos_class);
if (rc != 1)
continue;
valid_entries++;
dent->qos_class = qos_class;
}
if (!valid_entries)
return -ENOENT;
return 0;
}
static void update_perf_entry(struct device *dev, struct dsmas_entry *dent,
struct cxl_dpa_perf *dpa_perf)
{
dpa_perf->dpa_range = dent->dpa_range;
dpa_perf->coord = dent->coord;
dpa_perf->qos_class = dent->qos_class;
dev_dbg(dev,
"DSMAS: dpa: %#llx qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n",
dent->dpa_range.start, dpa_perf->qos_class,
dent->coord.read_bandwidth, dent->coord.write_bandwidth,
dent->coord.read_latency, dent->coord.write_latency);
}
static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds,
struct xarray *dsmas_xa)
{
struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
struct device *dev = cxlds->dev;
struct range pmem_range = {
.start = cxlds->pmem_res.start,
.end = cxlds->pmem_res.end,
};
struct range ram_range = {
.start = cxlds->ram_res.start,
.end = cxlds->ram_res.end,
};
struct dsmas_entry *dent;
unsigned long index;
xa_for_each(dsmas_xa, index, dent) {
if (resource_size(&cxlds->ram_res) &&
range_contains(&ram_range, &dent->dpa_range))
update_perf_entry(dev, dent, &mds->ram_perf);
else if (resource_size(&cxlds->pmem_res) &&
range_contains(&pmem_range, &dent->dpa_range))
update_perf_entry(dev, dent, &mds->pmem_perf);
else
dev_dbg(dev, "no partition for dsmas dpa: %#llx\n",
dent->dpa_range.start);
}
}
static int match_cxlrd_qos_class(struct device *dev, void *data)
{
int dev_qos_class = *(int *)data;
struct cxl_root_decoder *cxlrd;
if (!is_root_decoder(dev))
return 0;
cxlrd = to_cxl_root_decoder(dev);
if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID)
return 0;
if (cxlrd->qos_class == dev_qos_class)
return 1;
return 0;
}
static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf)
{
*dpa_perf = (struct cxl_dpa_perf) {
.qos_class = CXL_QOS_CLASS_INVALID,
};
}
static bool cxl_qos_match(struct cxl_port *root_port,
struct cxl_dpa_perf *dpa_perf)
{
if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID)
return false;
if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class,
match_cxlrd_qos_class))
return false;
return true;
}
static int match_cxlrd_hb(struct device *dev, void *data)
{
struct device *host_bridge = data;
struct cxl_switch_decoder *cxlsd;
struct cxl_root_decoder *cxlrd;
if (!is_root_decoder(dev))
return 0;
cxlrd = to_cxl_root_decoder(dev);
cxlsd = &cxlrd->cxlsd;
guard(rwsem_read)(&cxl_region_rwsem);
for (int i = 0; i < cxlsd->nr_targets; i++) {
if (host_bridge == cxlsd->target[i]->dport_dev)
return 1;
}
return 0;
}
static int cxl_qos_class_verify(struct cxl_memdev *cxlmd)
{
struct cxl_dev_state *cxlds = cxlmd->cxlds;
struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
struct cxl_port *root_port;
int rc;
struct cxl_root *cxl_root __free(put_cxl_root) =
find_cxl_root(cxlmd->endpoint);
if (!cxl_root)
return -ENODEV;
root_port = &cxl_root->port;
/* Check that the QTG IDs are all sane between end device and root decoders */
if (!cxl_qos_match(root_port, &mds->ram_perf))
reset_dpa_perf(&mds->ram_perf);
if (!cxl_qos_match(root_port, &mds->pmem_perf))
reset_dpa_perf(&mds->pmem_perf);
/* Check to make sure that the device's host bridge is under a root decoder */
rc = device_for_each_child(&root_port->dev,
cxlmd->endpoint->host_bridge, match_cxlrd_hb);
if (!rc) {
reset_dpa_perf(&mds->ram_perf);
reset_dpa_perf(&mds->pmem_perf);
}
return rc;
}
static void discard_dsmas(struct xarray *xa)
{
unsigned long index;
void *ent;
xa_for_each(xa, index, ent) {
xa_erase(xa, index);
kfree(ent);
}
xa_destroy(xa);
}
DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T))
void cxl_endpoint_parse_cdat(struct cxl_port *port)
{
struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev);
struct cxl_dev_state *cxlds = cxlmd->cxlds;
struct xarray __dsmas_xa;
struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa;
int rc;
xa_init(&__dsmas_xa);
if (!port->cdat.table)
return;
rc = cxl_cdat_endpoint_process(port, dsmas_xa);
if (rc < 0) {
dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc);
return;
}
rc = cxl_port_perf_data_calculate(port, dsmas_xa);
if (rc) {
dev_dbg(&port->dev, "Failed to do perf coord calculations.\n");
return;
}
cxl_memdev_set_qos_class(cxlds, dsmas_xa);
cxl_qos_class_verify(cxlmd);
cxl_memdev_update_perf(cxlmd);
}
EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, CXL);
static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg,
const unsigned long end)
{
struct acpi_cdat_sslbis_table {
struct acpi_cdat_header header;
struct acpi_cdat_sslbis sslbis_header;
struct acpi_cdat_sslbe entries[];
} *tbl = (struct acpi_cdat_sslbis_table *)header;
int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header);
struct acpi_cdat_sslbis *sslbis;
struct cxl_port *port = arg;
struct device *dev = &port->dev;
int remain, entries, i;
u16 len;
len = le16_to_cpu((__force __le16)header->cdat.length);
remain = len - size;
if (!remain || remain % sizeof(tbl->entries[0]) ||
(unsigned long)header + len > end) {
dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len);
return -EINVAL;
}
sslbis = &tbl->sslbis_header;
/* Unrecognized data type, we can skip */
if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH)
return 0;
entries = remain / sizeof(tbl->entries[0]);
if (struct_size(tbl, entries, entries) != len)
return -EINVAL;
for (i = 0; i < entries; i++) {
u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id);
u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id);
__le64 le_base;
__le16 le_val;
struct cxl_dport *dport;
unsigned long index;
u16 dsp_id;
u64 val;
switch (x) {
case ACPI_CDAT_SSLBIS_US_PORT:
dsp_id = y;
break;
case ACPI_CDAT_SSLBIS_ANY_PORT:
switch (y) {
case ACPI_CDAT_SSLBIS_US_PORT:
dsp_id = x;
break;
case ACPI_CDAT_SSLBIS_ANY_PORT:
dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT;
break;
default:
dsp_id = y;
break;
}
break;
default:
dsp_id = x;
break;
}
le_base = (__force __le64)tbl->sslbis_header.entry_base_unit;
le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth;
if (check_mul_overflow(le64_to_cpu(le_base),
le16_to_cpu(le_val), &val))
dev_warn(dev, "SSLBIS value overflowed!\n");
xa_for_each(&port->dports, index, dport) {
if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT ||
dsp_id == dport->port_id)
cxl_access_coordinate_set(&dport->sw_coord,
sslbis->data_type,
val);
}
}
return 0;
}
void cxl_switch_parse_cdat(struct cxl_port *port)
{
int rc;
if (!port->cdat.table)
return;
rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler,
port, port->cdat.table, port->cdat.length);
rc = cdat_table_parse_output(rc);
if (rc)
dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc);
}
EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, CXL);
/**
* cxl_coordinates_combine - Combine the two input coordinates
*
* @out: Output coordinate of c1 and c2 combined
* @c1: input coordinates
* @c2: input coordinates
*/
void cxl_coordinates_combine(struct access_coordinate *out,
struct access_coordinate *c1,
struct access_coordinate *c2)
{
if (c1->write_bandwidth && c2->write_bandwidth)
out->write_bandwidth = min(c1->write_bandwidth,
c2->write_bandwidth);
out->write_latency = c1->write_latency + c2->write_latency;
if (c1->read_bandwidth && c2->read_bandwidth)
out->read_bandwidth = min(c1->read_bandwidth,
c2->read_bandwidth);
out->read_latency = c1->read_latency + c2->read_latency;
}
MODULE_IMPORT_NS(CXL);
void cxl_region_perf_data_calculate(struct cxl_region *cxlr,
struct cxl_endpoint_decoder *cxled)
{
struct cxl_memdev *cxlmd = cxled_to_memdev(cxled);
struct cxl_port *port = cxlmd->endpoint;
struct cxl_dev_state *cxlds = cxlmd->cxlds;
struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds);
struct access_coordinate hb_coord[ACCESS_COORDINATE_MAX];
struct access_coordinate coord;
struct range dpa = {
.start = cxled->dpa_res->start,
.end = cxled->dpa_res->end,
};
struct cxl_dpa_perf *perf;
int rc;
switch (cxlr->mode) {
case CXL_DECODER_RAM:
perf = &mds->ram_perf;
break;
case CXL_DECODER_PMEM:
perf = &mds->pmem_perf;
break;
default:
return;
}
lockdep_assert_held(&cxl_dpa_rwsem);
if (!range_contains(&perf->dpa_range, &dpa))
return;
rc = cxl_hb_get_perf_coordinates(port, hb_coord);
if (rc) {
dev_dbg(&port->dev, "Failed to retrieve hb perf coordinates.\n");
return;
}
for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) {
/* Pickup the host bridge coords */
cxl_coordinates_combine(&coord, &hb_coord[i], &perf->coord);
/* Get total bandwidth and the worst latency for the cxl region */
cxlr->coord[i].read_latency = max_t(unsigned int,
cxlr->coord[i].read_latency,
coord.read_latency);
cxlr->coord[i].write_latency = max_t(unsigned int,
cxlr->coord[i].write_latency,
coord.write_latency);
cxlr->coord[i].read_bandwidth += coord.read_bandwidth;
cxlr->coord[i].write_bandwidth += coord.write_bandwidth;
/*
* Convert latency to nanosec from picosec to be consistent
* with the resulting latency coordinates computed by the
* HMAT_REPORTING code.
*/
cxlr->coord[i].read_latency =
DIV_ROUND_UP(cxlr->coord[i].read_latency, 1000);
cxlr->coord[i].write_latency =
DIV_ROUND_UP(cxlr->coord[i].write_latency, 1000);
}
}
int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr,
enum access_coordinate_class access)
{
return hmat_update_target_coordinates(nid, &cxlr->coord[access], access);
}
bool cxl_need_node_perf_attrs_update(int nid)
{
return !acpi_node_backed_by_real_pxm(nid);
}