| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * sl28cpld PWM driver |
| * |
| * Copyright (c) 2020 Michael Walle <michael@walle.cc> |
| * |
| * There is no public datasheet available for this PWM core. But it is easy |
| * enough to be briefly explained. It consists of one 8-bit counter. The PWM |
| * supports four distinct frequencies by selecting when to reset the counter. |
| * With the prescaler setting you can select which bit of the counter is used |
| * to reset it. This implies that the higher the frequency the less remaining |
| * bits are available for the actual counter. |
| * |
| * Let cnt[7:0] be the counter, clocked at 32kHz: |
| * +-----------+--------+--------------+-----------+---------------+ |
| * | prescaler | reset | counter bits | frequency | period length | |
| * +-----------+--------+--------------+-----------+---------------+ |
| * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns | |
| * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns | |
| * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns | |
| * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns | |
| * +-----------+--------+--------------+-----------+---------------+ |
| * |
| * Limitations: |
| * - The hardware cannot generate a 100% duty cycle if the prescaler is 0. |
| * - The hardware cannot atomically set the prescaler and the counter value, |
| * which might lead to glitches and inconsistent states if a write fails. |
| * - The counter is not reset if you switch the prescaler which leads |
| * to glitches, too. |
| * - The duty cycle will switch immediately and not after a complete cycle. |
| * - Depending on the actual implementation, disabling the PWM might have |
| * side effects. For example, if the output pin is shared with a GPIO pin |
| * it will automatically switch back to GPIO mode. |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/kernel.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/property.h> |
| #include <linux/pwm.h> |
| #include <linux/regmap.h> |
| |
| /* |
| * PWM timer block registers. |
| */ |
| #define SL28CPLD_PWM_CTRL 0x00 |
| #define SL28CPLD_PWM_CTRL_ENABLE BIT(7) |
| #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0) |
| #define SL28CPLD_PWM_CYCLE 0x01 |
| #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0) |
| |
| #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */ |
| #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler))) |
| #define SL28CPLD_PWM_PERIOD(prescaler) \ |
| (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)) |
| |
| /* |
| * We calculate the duty cycle like this: |
| * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle |
| * |
| * With |
| * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC |
| * max_duty_cycle = 1 << (7 - prescaler) |
| * this then simplifies to: |
| * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC |
| * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg |
| * |
| * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing |
| * precision by doing the divison first. |
| */ |
| #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \ |
| (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg)) |
| #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \ |
| (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK)) |
| |
| #define sl28cpld_pwm_read(priv, reg, val) \ |
| regmap_read((priv)->regmap, (priv)->offset + (reg), (val)) |
| #define sl28cpld_pwm_write(priv, reg, val) \ |
| regmap_write((priv)->regmap, (priv)->offset + (reg), (val)) |
| |
| struct sl28cpld_pwm { |
| struct regmap *regmap; |
| u32 offset; |
| }; |
| |
| static inline struct sl28cpld_pwm *sl28cpld_pwm_from_chip(struct pwm_chip *chip) |
| { |
| return pwmchip_get_drvdata(chip); |
| } |
| |
| static int sl28cpld_pwm_get_state(struct pwm_chip *chip, |
| struct pwm_device *pwm, |
| struct pwm_state *state) |
| { |
| struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); |
| unsigned int reg; |
| int prescaler; |
| |
| sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®); |
| |
| state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE; |
| |
| prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg); |
| state->period = SL28CPLD_PWM_PERIOD(prescaler); |
| |
| sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®); |
| state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg); |
| state->polarity = PWM_POLARITY_NORMAL; |
| |
| /* |
| * Sanitize values for the PWM core. Depending on the prescaler it |
| * might happen that we calculate a duty_cycle greater than the actual |
| * period. This might happen if someone (e.g. the bootloader) sets an |
| * invalid combination of values. The behavior of the hardware is |
| * undefined in this case. But we need to report sane values back to |
| * the PWM core. |
| */ |
| state->duty_cycle = min(state->duty_cycle, state->period); |
| |
| return 0; |
| } |
| |
| static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, |
| const struct pwm_state *state) |
| { |
| struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); |
| unsigned int cycle, prescaler; |
| bool write_duty_cycle_first; |
| int ret; |
| u8 ctrl; |
| |
| /* Polarity inversion is not supported */ |
| if (state->polarity != PWM_POLARITY_NORMAL) |
| return -EINVAL; |
| |
| /* |
| * Calculate the prescaler. Pick the biggest period that isn't |
| * bigger than the requested period. |
| */ |
| prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period); |
| prescaler = order_base_2(prescaler); |
| |
| if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK)) |
| return -ERANGE; |
| |
| ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler); |
| if (state->enabled) |
| ctrl |= SL28CPLD_PWM_CTRL_ENABLE; |
| |
| cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle); |
| cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)); |
| |
| /* |
| * Work around the hardware limitation. See also above. Trap 100% duty |
| * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't |
| * care about the frequency because its "all-one" in either case. |
| * |
| * We don't need to check the actual prescaler setting, because only |
| * if the prescaler is 0 we can have this particular value. |
| */ |
| if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) { |
| ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK; |
| ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1); |
| cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1); |
| } |
| |
| /* |
| * To avoid glitches when we switch the prescaler, we have to make sure |
| * we have a valid duty cycle for the new mode. |
| * |
| * Take the current prescaler (or the current period length) into |
| * account to decide whether we have to write the duty cycle or the new |
| * prescaler first. If the period length is decreasing we have to |
| * write the duty cycle first. |
| */ |
| write_duty_cycle_first = pwm->state.period > state->period; |
| |
| if (write_duty_cycle_first) { |
| ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); |
| if (ret) |
| return ret; |
| } |
| |
| ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl); |
| if (ret) |
| return ret; |
| |
| if (!write_duty_cycle_first) { |
| ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct pwm_ops sl28cpld_pwm_ops = { |
| .apply = sl28cpld_pwm_apply, |
| .get_state = sl28cpld_pwm_get_state, |
| }; |
| |
| static int sl28cpld_pwm_probe(struct platform_device *pdev) |
| { |
| struct sl28cpld_pwm *priv; |
| struct pwm_chip *chip; |
| int ret; |
| |
| if (!pdev->dev.parent) { |
| dev_err(&pdev->dev, "no parent device\n"); |
| return -ENODEV; |
| } |
| |
| chip = devm_pwmchip_alloc(&pdev->dev, 1, sizeof(*priv)); |
| if (IS_ERR(chip)) |
| return PTR_ERR(chip); |
| priv = sl28cpld_pwm_from_chip(chip); |
| |
| priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); |
| if (!priv->regmap) { |
| dev_err(&pdev->dev, "could not get parent regmap\n"); |
| return -ENODEV; |
| } |
| |
| ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset); |
| if (ret) { |
| dev_err(&pdev->dev, "no 'reg' property found (%pe)\n", |
| ERR_PTR(ret)); |
| return -EINVAL; |
| } |
| |
| /* Initialize the pwm_chip structure */ |
| chip->ops = &sl28cpld_pwm_ops; |
| |
| ret = devm_pwmchip_add(&pdev->dev, chip); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to add PWM chip (%pe)", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct of_device_id sl28cpld_pwm_of_match[] = { |
| { .compatible = "kontron,sl28cpld-pwm" }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match); |
| |
| static struct platform_driver sl28cpld_pwm_driver = { |
| .probe = sl28cpld_pwm_probe, |
| .driver = { |
| .name = "sl28cpld-pwm", |
| .of_match_table = sl28cpld_pwm_of_match, |
| }, |
| }; |
| module_platform_driver(sl28cpld_pwm_driver); |
| |
| MODULE_DESCRIPTION("sl28cpld PWM Driver"); |
| MODULE_AUTHOR("Michael Walle <michael@walle.cc>"); |
| MODULE_LICENSE("GPL"); |