| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Implementation of the Transmission Control Protocol(TCP). |
| * |
| * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $ |
| * |
| * IPv4 specific functions |
| * |
| * |
| * code split from: |
| * linux/ipv4/tcp.c |
| * linux/ipv4/tcp_input.c |
| * linux/ipv4/tcp_output.c |
| * |
| * See tcp.c for author information |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| /* |
| * Changes: |
| * David S. Miller : New socket lookup architecture. |
| * This code is dedicated to John Dyson. |
| * David S. Miller : Change semantics of established hash, |
| * half is devoted to TIME_WAIT sockets |
| * and the rest go in the other half. |
| * Andi Kleen : Add support for syncookies and fixed |
| * some bugs: ip options weren't passed to |
| * the TCP layer, missed a check for an |
| * ACK bit. |
| * Andi Kleen : Implemented fast path mtu discovery. |
| * Fixed many serious bugs in the |
| * request_sock handling and moved |
| * most of it into the af independent code. |
| * Added tail drop and some other bugfixes. |
| * Added new listen semantics. |
| * Mike McLagan : Routing by source |
| * Juan Jose Ciarlante: ip_dynaddr bits |
| * Andi Kleen: various fixes. |
| * Vitaly E. Lavrov : Transparent proxy revived after year |
| * coma. |
| * Andi Kleen : Fix new listen. |
| * Andi Kleen : Fix accept error reporting. |
| * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which |
| * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind |
| * a single port at the same time. |
| */ |
| |
| |
| #include <linux/types.h> |
| #include <linux/fcntl.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| #include <linux/cache.h> |
| #include <linux/jhash.h> |
| #include <linux/init.h> |
| #include <linux/times.h> |
| |
| #include <net/net_namespace.h> |
| #include <net/icmp.h> |
| #include <net/inet_hashtables.h> |
| #include <net/tcp.h> |
| #include <net/transp_v6.h> |
| #include <net/ipv6.h> |
| #include <net/inet_common.h> |
| #include <net/timewait_sock.h> |
| #include <net/xfrm.h> |
| #include <net/netdma.h> |
| |
| #include <linux/inet.h> |
| #include <linux/ipv6.h> |
| #include <linux/stddef.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| |
| #include <linux/crypto.h> |
| #include <linux/scatterlist.h> |
| |
| int sysctl_tcp_tw_reuse __read_mostly; |
| int sysctl_tcp_low_latency __read_mostly; |
| |
| /* Check TCP sequence numbers in ICMP packets. */ |
| #define ICMP_MIN_LENGTH 8 |
| |
| /* Socket used for sending RSTs */ |
| static struct socket *tcp_socket __read_mostly; |
| |
| void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, |
| __be32 addr); |
| static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key, |
| __be32 saddr, __be32 daddr, |
| struct tcphdr *th, int protocol, |
| int tcplen); |
| #endif |
| |
| struct inet_hashinfo __cacheline_aligned tcp_hashinfo = { |
| .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock), |
| .lhash_users = ATOMIC_INIT(0), |
| .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait), |
| }; |
| |
| static int tcp_v4_get_port(struct sock *sk, unsigned short snum) |
| { |
| return inet_csk_get_port(&tcp_hashinfo, sk, snum, |
| inet_csk_bind_conflict); |
| } |
| |
| static void tcp_v4_hash(struct sock *sk) |
| { |
| inet_hash(&tcp_hashinfo, sk); |
| } |
| |
| void tcp_unhash(struct sock *sk) |
| { |
| inet_unhash(&tcp_hashinfo, sk); |
| } |
| |
| static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb) |
| { |
| return secure_tcp_sequence_number(ip_hdr(skb)->daddr, |
| ip_hdr(skb)->saddr, |
| tcp_hdr(skb)->dest, |
| tcp_hdr(skb)->source); |
| } |
| |
| int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) |
| { |
| const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* With PAWS, it is safe from the viewpoint |
| of data integrity. Even without PAWS it is safe provided sequence |
| spaces do not overlap i.e. at data rates <= 80Mbit/sec. |
| |
| Actually, the idea is close to VJ's one, only timestamp cache is |
| held not per host, but per port pair and TW bucket is used as state |
| holder. |
| |
| If TW bucket has been already destroyed we fall back to VJ's scheme |
| and use initial timestamp retrieved from peer table. |
| */ |
| if (tcptw->tw_ts_recent_stamp && |
| (twp == NULL || (sysctl_tcp_tw_reuse && |
| get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { |
| tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; |
| if (tp->write_seq == 0) |
| tp->write_seq = 1; |
| tp->rx_opt.ts_recent = tcptw->tw_ts_recent; |
| tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; |
| sock_hold(sktw); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL_GPL(tcp_twsk_unique); |
| |
| /* This will initiate an outgoing connection. */ |
| int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; |
| struct rtable *rt; |
| __be32 daddr, nexthop; |
| int tmp; |
| int err; |
| |
| if (addr_len < sizeof(struct sockaddr_in)) |
| return -EINVAL; |
| |
| if (usin->sin_family != AF_INET) |
| return -EAFNOSUPPORT; |
| |
| nexthop = daddr = usin->sin_addr.s_addr; |
| if (inet->opt && inet->opt->srr) { |
| if (!daddr) |
| return -EINVAL; |
| nexthop = inet->opt->faddr; |
| } |
| |
| tmp = ip_route_connect(&rt, nexthop, inet->saddr, |
| RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, |
| IPPROTO_TCP, |
| inet->sport, usin->sin_port, sk, 1); |
| if (tmp < 0) { |
| if (tmp == -ENETUNREACH) |
| IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES); |
| return tmp; |
| } |
| |
| if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { |
| ip_rt_put(rt); |
| return -ENETUNREACH; |
| } |
| |
| if (!inet->opt || !inet->opt->srr) |
| daddr = rt->rt_dst; |
| |
| if (!inet->saddr) |
| inet->saddr = rt->rt_src; |
| inet->rcv_saddr = inet->saddr; |
| |
| if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) { |
| /* Reset inherited state */ |
| tp->rx_opt.ts_recent = 0; |
| tp->rx_opt.ts_recent_stamp = 0; |
| tp->write_seq = 0; |
| } |
| |
| if (tcp_death_row.sysctl_tw_recycle && |
| !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) { |
| struct inet_peer *peer = rt_get_peer(rt); |
| /* |
| * VJ's idea. We save last timestamp seen from |
| * the destination in peer table, when entering state |
| * TIME-WAIT * and initialize rx_opt.ts_recent from it, |
| * when trying new connection. |
| */ |
| if (peer != NULL && |
| peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) { |
| tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp; |
| tp->rx_opt.ts_recent = peer->tcp_ts; |
| } |
| } |
| |
| inet->dport = usin->sin_port; |
| inet->daddr = daddr; |
| |
| inet_csk(sk)->icsk_ext_hdr_len = 0; |
| if (inet->opt) |
| inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen; |
| |
| tp->rx_opt.mss_clamp = 536; |
| |
| /* Socket identity is still unknown (sport may be zero). |
| * However we set state to SYN-SENT and not releasing socket |
| * lock select source port, enter ourselves into the hash tables and |
| * complete initialization after this. |
| */ |
| tcp_set_state(sk, TCP_SYN_SENT); |
| err = inet_hash_connect(&tcp_death_row, sk); |
| if (err) |
| goto failure; |
| |
| err = ip_route_newports(&rt, IPPROTO_TCP, |
| inet->sport, inet->dport, sk); |
| if (err) |
| goto failure; |
| |
| /* OK, now commit destination to socket. */ |
| sk->sk_gso_type = SKB_GSO_TCPV4; |
| sk_setup_caps(sk, &rt->u.dst); |
| |
| if (!tp->write_seq) |
| tp->write_seq = secure_tcp_sequence_number(inet->saddr, |
| inet->daddr, |
| inet->sport, |
| usin->sin_port); |
| |
| inet->id = tp->write_seq ^ jiffies; |
| |
| err = tcp_connect(sk); |
| rt = NULL; |
| if (err) |
| goto failure; |
| |
| return 0; |
| |
| failure: |
| /* |
| * This unhashes the socket and releases the local port, |
| * if necessary. |
| */ |
| tcp_set_state(sk, TCP_CLOSE); |
| ip_rt_put(rt); |
| sk->sk_route_caps = 0; |
| inet->dport = 0; |
| return err; |
| } |
| |
| /* |
| * This routine does path mtu discovery as defined in RFC1191. |
| */ |
| static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu) |
| { |
| struct dst_entry *dst; |
| struct inet_sock *inet = inet_sk(sk); |
| |
| /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs |
| * send out by Linux are always <576bytes so they should go through |
| * unfragmented). |
| */ |
| if (sk->sk_state == TCP_LISTEN) |
| return; |
| |
| /* We don't check in the destentry if pmtu discovery is forbidden |
| * on this route. We just assume that no packet_to_big packets |
| * are send back when pmtu discovery is not active. |
| * There is a small race when the user changes this flag in the |
| * route, but I think that's acceptable. |
| */ |
| if ((dst = __sk_dst_check(sk, 0)) == NULL) |
| return; |
| |
| dst->ops->update_pmtu(dst, mtu); |
| |
| /* Something is about to be wrong... Remember soft error |
| * for the case, if this connection will not able to recover. |
| */ |
| if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) |
| sk->sk_err_soft = EMSGSIZE; |
| |
| mtu = dst_mtu(dst); |
| |
| if (inet->pmtudisc != IP_PMTUDISC_DONT && |
| inet_csk(sk)->icsk_pmtu_cookie > mtu) { |
| tcp_sync_mss(sk, mtu); |
| |
| /* Resend the TCP packet because it's |
| * clear that the old packet has been |
| * dropped. This is the new "fast" path mtu |
| * discovery. |
| */ |
| tcp_simple_retransmit(sk); |
| } /* else let the usual retransmit timer handle it */ |
| } |
| |
| /* |
| * This routine is called by the ICMP module when it gets some |
| * sort of error condition. If err < 0 then the socket should |
| * be closed and the error returned to the user. If err > 0 |
| * it's just the icmp type << 8 | icmp code. After adjustment |
| * header points to the first 8 bytes of the tcp header. We need |
| * to find the appropriate port. |
| * |
| * The locking strategy used here is very "optimistic". When |
| * someone else accesses the socket the ICMP is just dropped |
| * and for some paths there is no check at all. |
| * A more general error queue to queue errors for later handling |
| * is probably better. |
| * |
| */ |
| |
| void tcp_v4_err(struct sk_buff *skb, u32 info) |
| { |
| struct iphdr *iph = (struct iphdr *)skb->data; |
| struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); |
| struct tcp_sock *tp; |
| struct inet_sock *inet; |
| const int type = icmp_hdr(skb)->type; |
| const int code = icmp_hdr(skb)->code; |
| struct sock *sk; |
| __u32 seq; |
| int err; |
| |
| if (skb->len < (iph->ihl << 2) + 8) { |
| ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); |
| return; |
| } |
| |
| sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr, |
| th->source, inet_iif(skb)); |
| if (!sk) { |
| ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); |
| return; |
| } |
| if (sk->sk_state == TCP_TIME_WAIT) { |
| inet_twsk_put(inet_twsk(sk)); |
| return; |
| } |
| |
| bh_lock_sock(sk); |
| /* If too many ICMPs get dropped on busy |
| * servers this needs to be solved differently. |
| */ |
| if (sock_owned_by_user(sk)) |
| NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS); |
| |
| if (sk->sk_state == TCP_CLOSE) |
| goto out; |
| |
| tp = tcp_sk(sk); |
| seq = ntohl(th->seq); |
| if (sk->sk_state != TCP_LISTEN && |
| !between(seq, tp->snd_una, tp->snd_nxt)) { |
| NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS); |
| goto out; |
| } |
| |
| switch (type) { |
| case ICMP_SOURCE_QUENCH: |
| /* Just silently ignore these. */ |
| goto out; |
| case ICMP_PARAMETERPROB: |
| err = EPROTO; |
| break; |
| case ICMP_DEST_UNREACH: |
| if (code > NR_ICMP_UNREACH) |
| goto out; |
| |
| if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ |
| if (!sock_owned_by_user(sk)) |
| do_pmtu_discovery(sk, iph, info); |
| goto out; |
| } |
| |
| err = icmp_err_convert[code].errno; |
| break; |
| case ICMP_TIME_EXCEEDED: |
| err = EHOSTUNREACH; |
| break; |
| default: |
| goto out; |
| } |
| |
| switch (sk->sk_state) { |
| struct request_sock *req, **prev; |
| case TCP_LISTEN: |
| if (sock_owned_by_user(sk)) |
| goto out; |
| |
| req = inet_csk_search_req(sk, &prev, th->dest, |
| iph->daddr, iph->saddr); |
| if (!req) |
| goto out; |
| |
| /* ICMPs are not backlogged, hence we cannot get |
| an established socket here. |
| */ |
| BUG_TRAP(!req->sk); |
| |
| if (seq != tcp_rsk(req)->snt_isn) { |
| NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS); |
| goto out; |
| } |
| |
| /* |
| * Still in SYN_RECV, just remove it silently. |
| * There is no good way to pass the error to the newly |
| * created socket, and POSIX does not want network |
| * errors returned from accept(). |
| */ |
| inet_csk_reqsk_queue_drop(sk, req, prev); |
| goto out; |
| |
| case TCP_SYN_SENT: |
| case TCP_SYN_RECV: /* Cannot happen. |
| It can f.e. if SYNs crossed. |
| */ |
| if (!sock_owned_by_user(sk)) { |
| sk->sk_err = err; |
| |
| sk->sk_error_report(sk); |
| |
| tcp_done(sk); |
| } else { |
| sk->sk_err_soft = err; |
| } |
| goto out; |
| } |
| |
| /* If we've already connected we will keep trying |
| * until we time out, or the user gives up. |
| * |
| * rfc1122 4.2.3.9 allows to consider as hard errors |
| * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, |
| * but it is obsoleted by pmtu discovery). |
| * |
| * Note, that in modern internet, where routing is unreliable |
| * and in each dark corner broken firewalls sit, sending random |
| * errors ordered by their masters even this two messages finally lose |
| * their original sense (even Linux sends invalid PORT_UNREACHs) |
| * |
| * Now we are in compliance with RFCs. |
| * --ANK (980905) |
| */ |
| |
| inet = inet_sk(sk); |
| if (!sock_owned_by_user(sk) && inet->recverr) { |
| sk->sk_err = err; |
| sk->sk_error_report(sk); |
| } else { /* Only an error on timeout */ |
| sk->sk_err_soft = err; |
| } |
| |
| out: |
| bh_unlock_sock(sk); |
| sock_put(sk); |
| } |
| |
| /* This routine computes an IPv4 TCP checksum. */ |
| void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct tcphdr *th = tcp_hdr(skb); |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| th->check = ~tcp_v4_check(len, inet->saddr, |
| inet->daddr, 0); |
| skb->csum_start = skb_transport_header(skb) - skb->head; |
| skb->csum_offset = offsetof(struct tcphdr, check); |
| } else { |
| th->check = tcp_v4_check(len, inet->saddr, inet->daddr, |
| csum_partial((char *)th, |
| th->doff << 2, |
| skb->csum)); |
| } |
| } |
| |
| int tcp_v4_gso_send_check(struct sk_buff *skb) |
| { |
| const struct iphdr *iph; |
| struct tcphdr *th; |
| |
| if (!pskb_may_pull(skb, sizeof(*th))) |
| return -EINVAL; |
| |
| iph = ip_hdr(skb); |
| th = tcp_hdr(skb); |
| |
| th->check = 0; |
| th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0); |
| skb->csum_start = skb_transport_header(skb) - skb->head; |
| skb->csum_offset = offsetof(struct tcphdr, check); |
| skb->ip_summed = CHECKSUM_PARTIAL; |
| return 0; |
| } |
| |
| /* |
| * This routine will send an RST to the other tcp. |
| * |
| * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) |
| * for reset. |
| * Answer: if a packet caused RST, it is not for a socket |
| * existing in our system, if it is matched to a socket, |
| * it is just duplicate segment or bug in other side's TCP. |
| * So that we build reply only basing on parameters |
| * arrived with segment. |
| * Exception: precedence violation. We do not implement it in any case. |
| */ |
| |
| static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcphdr *th = tcp_hdr(skb); |
| struct { |
| struct tcphdr th; |
| #ifdef CONFIG_TCP_MD5SIG |
| __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; |
| #endif |
| } rep; |
| struct ip_reply_arg arg; |
| #ifdef CONFIG_TCP_MD5SIG |
| struct tcp_md5sig_key *key; |
| #endif |
| |
| /* Never send a reset in response to a reset. */ |
| if (th->rst) |
| return; |
| |
| if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL) |
| return; |
| |
| /* Swap the send and the receive. */ |
| memset(&rep, 0, sizeof(rep)); |
| rep.th.dest = th->source; |
| rep.th.source = th->dest; |
| rep.th.doff = sizeof(struct tcphdr) / 4; |
| rep.th.rst = 1; |
| |
| if (th->ack) { |
| rep.th.seq = th->ack_seq; |
| } else { |
| rep.th.ack = 1; |
| rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + |
| skb->len - (th->doff << 2)); |
| } |
| |
| memset(&arg, 0, sizeof(arg)); |
| arg.iov[0].iov_base = (unsigned char *)&rep; |
| arg.iov[0].iov_len = sizeof(rep.th); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL; |
| if (key) { |
| rep.opt[0] = htonl((TCPOPT_NOP << 24) | |
| (TCPOPT_NOP << 16) | |
| (TCPOPT_MD5SIG << 8) | |
| TCPOLEN_MD5SIG); |
| /* Update length and the length the header thinks exists */ |
| arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; |
| rep.th.doff = arg.iov[0].iov_len / 4; |
| |
| tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1], |
| key, |
| ip_hdr(skb)->daddr, |
| ip_hdr(skb)->saddr, |
| &rep.th, IPPROTO_TCP, |
| arg.iov[0].iov_len); |
| } |
| #endif |
| arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, |
| ip_hdr(skb)->saddr, /* XXX */ |
| sizeof(struct tcphdr), IPPROTO_TCP, 0); |
| arg.csumoffset = offsetof(struct tcphdr, check) / 2; |
| |
| ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len); |
| |
| TCP_INC_STATS_BH(TCP_MIB_OUTSEGS); |
| TCP_INC_STATS_BH(TCP_MIB_OUTRSTS); |
| } |
| |
| /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states |
| outside socket context is ugly, certainly. What can I do? |
| */ |
| |
| static void tcp_v4_send_ack(struct tcp_timewait_sock *twsk, |
| struct sk_buff *skb, u32 seq, u32 ack, |
| u32 win, u32 ts) |
| { |
| struct tcphdr *th = tcp_hdr(skb); |
| struct { |
| struct tcphdr th; |
| __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) |
| #ifdef CONFIG_TCP_MD5SIG |
| + (TCPOLEN_MD5SIG_ALIGNED >> 2) |
| #endif |
| ]; |
| } rep; |
| struct ip_reply_arg arg; |
| #ifdef CONFIG_TCP_MD5SIG |
| struct tcp_md5sig_key *key; |
| struct tcp_md5sig_key tw_key; |
| #endif |
| |
| memset(&rep.th, 0, sizeof(struct tcphdr)); |
| memset(&arg, 0, sizeof(arg)); |
| |
| arg.iov[0].iov_base = (unsigned char *)&rep; |
| arg.iov[0].iov_len = sizeof(rep.th); |
| if (ts) { |
| rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | |
| (TCPOPT_TIMESTAMP << 8) | |
| TCPOLEN_TIMESTAMP); |
| rep.opt[1] = htonl(tcp_time_stamp); |
| rep.opt[2] = htonl(ts); |
| arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; |
| } |
| |
| /* Swap the send and the receive. */ |
| rep.th.dest = th->source; |
| rep.th.source = th->dest; |
| rep.th.doff = arg.iov[0].iov_len / 4; |
| rep.th.seq = htonl(seq); |
| rep.th.ack_seq = htonl(ack); |
| rep.th.ack = 1; |
| rep.th.window = htons(win); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| /* |
| * The SKB holds an imcoming packet, but may not have a valid ->sk |
| * pointer. This is especially the case when we're dealing with a |
| * TIME_WAIT ack, because the sk structure is long gone, and only |
| * the tcp_timewait_sock remains. So the md5 key is stashed in that |
| * structure, and we use it in preference. I believe that (twsk || |
| * skb->sk) holds true, but we program defensively. |
| */ |
| if (!twsk && skb->sk) { |
| key = tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr); |
| } else if (twsk && twsk->tw_md5_keylen) { |
| tw_key.key = twsk->tw_md5_key; |
| tw_key.keylen = twsk->tw_md5_keylen; |
| key = &tw_key; |
| } else |
| key = NULL; |
| |
| if (key) { |
| int offset = (ts) ? 3 : 0; |
| |
| rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | |
| (TCPOPT_NOP << 16) | |
| (TCPOPT_MD5SIG << 8) | |
| TCPOLEN_MD5SIG); |
| arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; |
| rep.th.doff = arg.iov[0].iov_len/4; |
| |
| tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset], |
| key, |
| ip_hdr(skb)->daddr, |
| ip_hdr(skb)->saddr, |
| &rep.th, IPPROTO_TCP, |
| arg.iov[0].iov_len); |
| } |
| #endif |
| arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, |
| ip_hdr(skb)->saddr, /* XXX */ |
| arg.iov[0].iov_len, IPPROTO_TCP, 0); |
| arg.csumoffset = offsetof(struct tcphdr, check) / 2; |
| if (twsk) |
| arg.bound_dev_if = twsk->tw_sk.tw_bound_dev_if; |
| |
| ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len); |
| |
| TCP_INC_STATS_BH(TCP_MIB_OUTSEGS); |
| } |
| |
| static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) |
| { |
| struct inet_timewait_sock *tw = inet_twsk(sk); |
| struct tcp_timewait_sock *tcptw = tcp_twsk(sk); |
| |
| tcp_v4_send_ack(tcptw, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, |
| tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, |
| tcptw->tw_ts_recent); |
| |
| inet_twsk_put(tw); |
| } |
| |
| static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, |
| struct request_sock *req) |
| { |
| tcp_v4_send_ack(NULL, skb, tcp_rsk(req)->snt_isn + 1, |
| tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd, |
| req->ts_recent); |
| } |
| |
| /* |
| * Send a SYN-ACK after having received an ACK. |
| * This still operates on a request_sock only, not on a big |
| * socket. |
| */ |
| static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req, |
| struct dst_entry *dst) |
| { |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| int err = -1; |
| struct sk_buff * skb; |
| |
| /* First, grab a route. */ |
| if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL) |
| goto out; |
| |
| skb = tcp_make_synack(sk, dst, req); |
| |
| if (skb) { |
| struct tcphdr *th = tcp_hdr(skb); |
| |
| th->check = tcp_v4_check(skb->len, |
| ireq->loc_addr, |
| ireq->rmt_addr, |
| csum_partial((char *)th, skb->len, |
| skb->csum)); |
| |
| err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr, |
| ireq->rmt_addr, |
| ireq->opt); |
| err = net_xmit_eval(err); |
| } |
| |
| out: |
| dst_release(dst); |
| return err; |
| } |
| |
| /* |
| * IPv4 request_sock destructor. |
| */ |
| static void tcp_v4_reqsk_destructor(struct request_sock *req) |
| { |
| kfree(inet_rsk(req)->opt); |
| } |
| |
| #ifdef CONFIG_SYN_COOKIES |
| static void syn_flood_warning(struct sk_buff *skb) |
| { |
| static unsigned long warntime; |
| |
| if (time_after(jiffies, (warntime + HZ * 60))) { |
| warntime = jiffies; |
| printk(KERN_INFO |
| "possible SYN flooding on port %d. Sending cookies.\n", |
| ntohs(tcp_hdr(skb)->dest)); |
| } |
| } |
| #endif |
| |
| /* |
| * Save and compile IPv4 options into the request_sock if needed. |
| */ |
| static struct ip_options *tcp_v4_save_options(struct sock *sk, |
| struct sk_buff *skb) |
| { |
| struct ip_options *opt = &(IPCB(skb)->opt); |
| struct ip_options *dopt = NULL; |
| |
| if (opt && opt->optlen) { |
| int opt_size = optlength(opt); |
| dopt = kmalloc(opt_size, GFP_ATOMIC); |
| if (dopt) { |
| if (ip_options_echo(dopt, skb)) { |
| kfree(dopt); |
| dopt = NULL; |
| } |
| } |
| } |
| return dopt; |
| } |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| /* |
| * RFC2385 MD5 checksumming requires a mapping of |
| * IP address->MD5 Key. |
| * We need to maintain these in the sk structure. |
| */ |
| |
| /* Find the Key structure for an address. */ |
| static struct tcp_md5sig_key * |
| tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int i; |
| |
| if (!tp->md5sig_info || !tp->md5sig_info->entries4) |
| return NULL; |
| for (i = 0; i < tp->md5sig_info->entries4; i++) { |
| if (tp->md5sig_info->keys4[i].addr == addr) |
| return &tp->md5sig_info->keys4[i].base; |
| } |
| return NULL; |
| } |
| |
| struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk, |
| struct sock *addr_sk) |
| { |
| return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr); |
| } |
| |
| EXPORT_SYMBOL(tcp_v4_md5_lookup); |
| |
| static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk, |
| struct request_sock *req) |
| { |
| return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr); |
| } |
| |
| /* This can be called on a newly created socket, from other files */ |
| int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, |
| u8 *newkey, u8 newkeylen) |
| { |
| /* Add Key to the list */ |
| struct tcp_md5sig_key *key; |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct tcp4_md5sig_key *keys; |
| |
| key = tcp_v4_md5_do_lookup(sk, addr); |
| if (key) { |
| /* Pre-existing entry - just update that one. */ |
| kfree(key->key); |
| key->key = newkey; |
| key->keylen = newkeylen; |
| } else { |
| struct tcp_md5sig_info *md5sig; |
| |
| if (!tp->md5sig_info) { |
| tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info), |
| GFP_ATOMIC); |
| if (!tp->md5sig_info) { |
| kfree(newkey); |
| return -ENOMEM; |
| } |
| sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
| } |
| if (tcp_alloc_md5sig_pool() == NULL) { |
| kfree(newkey); |
| return -ENOMEM; |
| } |
| md5sig = tp->md5sig_info; |
| |
| if (md5sig->alloced4 == md5sig->entries4) { |
| keys = kmalloc((sizeof(*keys) * |
| (md5sig->entries4 + 1)), GFP_ATOMIC); |
| if (!keys) { |
| kfree(newkey); |
| tcp_free_md5sig_pool(); |
| return -ENOMEM; |
| } |
| |
| if (md5sig->entries4) |
| memcpy(keys, md5sig->keys4, |
| sizeof(*keys) * md5sig->entries4); |
| |
| /* Free old key list, and reference new one */ |
| kfree(md5sig->keys4); |
| md5sig->keys4 = keys; |
| md5sig->alloced4++; |
| } |
| md5sig->entries4++; |
| md5sig->keys4[md5sig->entries4 - 1].addr = addr; |
| md5sig->keys4[md5sig->entries4 - 1].base.key = newkey; |
| md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen; |
| } |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(tcp_v4_md5_do_add); |
| |
| static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk, |
| u8 *newkey, u8 newkeylen) |
| { |
| return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr, |
| newkey, newkeylen); |
| } |
| |
| int tcp_v4_md5_do_del(struct sock *sk, __be32 addr) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| int i; |
| |
| for (i = 0; i < tp->md5sig_info->entries4; i++) { |
| if (tp->md5sig_info->keys4[i].addr == addr) { |
| /* Free the key */ |
| kfree(tp->md5sig_info->keys4[i].base.key); |
| tp->md5sig_info->entries4--; |
| |
| if (tp->md5sig_info->entries4 == 0) { |
| kfree(tp->md5sig_info->keys4); |
| tp->md5sig_info->keys4 = NULL; |
| tp->md5sig_info->alloced4 = 0; |
| } else if (tp->md5sig_info->entries4 != i) { |
| /* Need to do some manipulation */ |
| memmove(&tp->md5sig_info->keys4[i], |
| &tp->md5sig_info->keys4[i+1], |
| (tp->md5sig_info->entries4 - i) * |
| sizeof(struct tcp4_md5sig_key)); |
| } |
| tcp_free_md5sig_pool(); |
| return 0; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| EXPORT_SYMBOL(tcp_v4_md5_do_del); |
| |
| static void tcp_v4_clear_md5_list(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* Free each key, then the set of key keys, |
| * the crypto element, and then decrement our |
| * hold on the last resort crypto. |
| */ |
| if (tp->md5sig_info->entries4) { |
| int i; |
| for (i = 0; i < tp->md5sig_info->entries4; i++) |
| kfree(tp->md5sig_info->keys4[i].base.key); |
| tp->md5sig_info->entries4 = 0; |
| tcp_free_md5sig_pool(); |
| } |
| if (tp->md5sig_info->keys4) { |
| kfree(tp->md5sig_info->keys4); |
| tp->md5sig_info->keys4 = NULL; |
| tp->md5sig_info->alloced4 = 0; |
| } |
| } |
| |
| static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, |
| int optlen) |
| { |
| struct tcp_md5sig cmd; |
| struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; |
| u8 *newkey; |
| |
| if (optlen < sizeof(cmd)) |
| return -EINVAL; |
| |
| if (copy_from_user(&cmd, optval, sizeof(cmd))) |
| return -EFAULT; |
| |
| if (sin->sin_family != AF_INET) |
| return -EINVAL; |
| |
| if (!cmd.tcpm_key || !cmd.tcpm_keylen) { |
| if (!tcp_sk(sk)->md5sig_info) |
| return -ENOENT; |
| return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr); |
| } |
| |
| if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) |
| return -EINVAL; |
| |
| if (!tcp_sk(sk)->md5sig_info) { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL); |
| |
| if (!p) |
| return -EINVAL; |
| |
| tp->md5sig_info = p; |
| sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
| } |
| |
| newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL); |
| if (!newkey) |
| return -ENOMEM; |
| return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr, |
| newkey, cmd.tcpm_keylen); |
| } |
| |
| static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key, |
| __be32 saddr, __be32 daddr, |
| struct tcphdr *th, int protocol, |
| int tcplen) |
| { |
| struct scatterlist sg[4]; |
| __u16 data_len; |
| int block = 0; |
| __sum16 old_checksum; |
| struct tcp_md5sig_pool *hp; |
| struct tcp4_pseudohdr *bp; |
| struct hash_desc *desc; |
| int err; |
| unsigned int nbytes = 0; |
| |
| /* |
| * Okay, so RFC2385 is turned on for this connection, |
| * so we need to generate the MD5 hash for the packet now. |
| */ |
| |
| hp = tcp_get_md5sig_pool(); |
| if (!hp) |
| goto clear_hash_noput; |
| |
| bp = &hp->md5_blk.ip4; |
| desc = &hp->md5_desc; |
| |
| /* |
| * 1. the TCP pseudo-header (in the order: source IP address, |
| * destination IP address, zero-padded protocol number, and |
| * segment length) |
| */ |
| bp->saddr = saddr; |
| bp->daddr = daddr; |
| bp->pad = 0; |
| bp->protocol = protocol; |
| bp->len = htons(tcplen); |
| |
| sg_init_table(sg, 4); |
| |
| sg_set_buf(&sg[block++], bp, sizeof(*bp)); |
| nbytes += sizeof(*bp); |
| |
| /* 2. the TCP header, excluding options, and assuming a |
| * checksum of zero/ |
| */ |
| old_checksum = th->check; |
| th->check = 0; |
| sg_set_buf(&sg[block++], th, sizeof(struct tcphdr)); |
| nbytes += sizeof(struct tcphdr); |
| |
| /* 3. the TCP segment data (if any) */ |
| data_len = tcplen - (th->doff << 2); |
| if (data_len > 0) { |
| unsigned char *data = (unsigned char *)th + (th->doff << 2); |
| sg_set_buf(&sg[block++], data, data_len); |
| nbytes += data_len; |
| } |
| |
| /* 4. an independently-specified key or password, known to both |
| * TCPs and presumably connection-specific |
| */ |
| sg_set_buf(&sg[block++], key->key, key->keylen); |
| nbytes += key->keylen; |
| |
| sg_mark_end(&sg[block - 1]); |
| |
| /* Now store the Hash into the packet */ |
| err = crypto_hash_init(desc); |
| if (err) |
| goto clear_hash; |
| err = crypto_hash_update(desc, sg, nbytes); |
| if (err) |
| goto clear_hash; |
| err = crypto_hash_final(desc, md5_hash); |
| if (err) |
| goto clear_hash; |
| |
| /* Reset header, and free up the crypto */ |
| tcp_put_md5sig_pool(); |
| th->check = old_checksum; |
| |
| out: |
| return 0; |
| clear_hash: |
| tcp_put_md5sig_pool(); |
| clear_hash_noput: |
| memset(md5_hash, 0, 16); |
| goto out; |
| } |
| |
| int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key, |
| struct sock *sk, |
| struct dst_entry *dst, |
| struct request_sock *req, |
| struct tcphdr *th, int protocol, |
| int tcplen) |
| { |
| __be32 saddr, daddr; |
| |
| if (sk) { |
| saddr = inet_sk(sk)->saddr; |
| daddr = inet_sk(sk)->daddr; |
| } else { |
| struct rtable *rt = (struct rtable *)dst; |
| BUG_ON(!rt); |
| saddr = rt->rt_src; |
| daddr = rt->rt_dst; |
| } |
| return tcp_v4_do_calc_md5_hash(md5_hash, key, |
| saddr, daddr, |
| th, protocol, tcplen); |
| } |
| |
| EXPORT_SYMBOL(tcp_v4_calc_md5_hash); |
| |
| static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb) |
| { |
| /* |
| * This gets called for each TCP segment that arrives |
| * so we want to be efficient. |
| * We have 3 drop cases: |
| * o No MD5 hash and one expected. |
| * o MD5 hash and we're not expecting one. |
| * o MD5 hash and its wrong. |
| */ |
| __u8 *hash_location = NULL; |
| struct tcp_md5sig_key *hash_expected; |
| const struct iphdr *iph = ip_hdr(skb); |
| struct tcphdr *th = tcp_hdr(skb); |
| int length = (th->doff << 2) - sizeof(struct tcphdr); |
| int genhash; |
| unsigned char *ptr; |
| unsigned char newhash[16]; |
| |
| hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr); |
| |
| /* |
| * If the TCP option length is less than the TCP_MD5SIG |
| * option length, then we can shortcut |
| */ |
| if (length < TCPOLEN_MD5SIG) { |
| if (hash_expected) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* Okay, we can't shortcut - we have to grub through the options */ |
| ptr = (unsigned char *)(th + 1); |
| while (length > 0) { |
| int opcode = *ptr++; |
| int opsize; |
| |
| switch (opcode) { |
| case TCPOPT_EOL: |
| goto done_opts; |
| case TCPOPT_NOP: |
| length--; |
| continue; |
| default: |
| opsize = *ptr++; |
| if (opsize < 2) |
| goto done_opts; |
| if (opsize > length) |
| goto done_opts; |
| |
| if (opcode == TCPOPT_MD5SIG) { |
| hash_location = ptr; |
| goto done_opts; |
| } |
| } |
| ptr += opsize-2; |
| length -= opsize; |
| } |
| done_opts: |
| /* We've parsed the options - do we have a hash? */ |
| if (!hash_expected && !hash_location) |
| return 0; |
| |
| if (hash_expected && !hash_location) { |
| LIMIT_NETDEBUG(KERN_INFO "MD5 Hash expected but NOT found " |
| "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n", |
| NIPQUAD(iph->saddr), ntohs(th->source), |
| NIPQUAD(iph->daddr), ntohs(th->dest)); |
| return 1; |
| } |
| |
| if (!hash_expected && hash_location) { |
| LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found " |
| "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n", |
| NIPQUAD(iph->saddr), ntohs(th->source), |
| NIPQUAD(iph->daddr), ntohs(th->dest)); |
| return 1; |
| } |
| |
| /* Okay, so this is hash_expected and hash_location - |
| * so we need to calculate the checksum. |
| */ |
| genhash = tcp_v4_do_calc_md5_hash(newhash, |
| hash_expected, |
| iph->saddr, iph->daddr, |
| th, sk->sk_protocol, |
| skb->len); |
| |
| if (genhash || memcmp(hash_location, newhash, 16) != 0) { |
| if (net_ratelimit()) { |
| printk(KERN_INFO "MD5 Hash failed for " |
| "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n", |
| NIPQUAD(iph->saddr), ntohs(th->source), |
| NIPQUAD(iph->daddr), ntohs(th->dest), |
| genhash ? " tcp_v4_calc_md5_hash failed" : ""); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| #endif |
| |
| struct request_sock_ops tcp_request_sock_ops __read_mostly = { |
| .family = PF_INET, |
| .obj_size = sizeof(struct tcp_request_sock), |
| .rtx_syn_ack = tcp_v4_send_synack, |
| .send_ack = tcp_v4_reqsk_send_ack, |
| .destructor = tcp_v4_reqsk_destructor, |
| .send_reset = tcp_v4_send_reset, |
| }; |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { |
| .md5_lookup = tcp_v4_reqsk_md5_lookup, |
| }; |
| #endif |
| |
| static struct timewait_sock_ops tcp_timewait_sock_ops = { |
| .twsk_obj_size = sizeof(struct tcp_timewait_sock), |
| .twsk_unique = tcp_twsk_unique, |
| .twsk_destructor= tcp_twsk_destructor, |
| }; |
| |
| int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) |
| { |
| struct inet_request_sock *ireq; |
| struct tcp_options_received tmp_opt; |
| struct request_sock *req; |
| __be32 saddr = ip_hdr(skb)->saddr; |
| __be32 daddr = ip_hdr(skb)->daddr; |
| __u32 isn = TCP_SKB_CB(skb)->when; |
| struct dst_entry *dst = NULL; |
| #ifdef CONFIG_SYN_COOKIES |
| int want_cookie = 0; |
| #else |
| #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */ |
| #endif |
| |
| /* Never answer to SYNs send to broadcast or multicast */ |
| if (((struct rtable *)skb->dst)->rt_flags & |
| (RTCF_BROADCAST | RTCF_MULTICAST)) |
| goto drop; |
| |
| /* TW buckets are converted to open requests without |
| * limitations, they conserve resources and peer is |
| * evidently real one. |
| */ |
| if (inet_csk_reqsk_queue_is_full(sk) && !isn) { |
| #ifdef CONFIG_SYN_COOKIES |
| if (sysctl_tcp_syncookies) { |
| want_cookie = 1; |
| } else |
| #endif |
| goto drop; |
| } |
| |
| /* Accept backlog is full. If we have already queued enough |
| * of warm entries in syn queue, drop request. It is better than |
| * clogging syn queue with openreqs with exponentially increasing |
| * timeout. |
| */ |
| if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) |
| goto drop; |
| |
| req = reqsk_alloc(&tcp_request_sock_ops); |
| if (!req) |
| goto drop; |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops; |
| #endif |
| |
| tcp_clear_options(&tmp_opt); |
| tmp_opt.mss_clamp = 536; |
| tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss; |
| |
| tcp_parse_options(skb, &tmp_opt, 0); |
| |
| if (want_cookie) { |
| tcp_clear_options(&tmp_opt); |
| tmp_opt.saw_tstamp = 0; |
| } |
| |
| if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) { |
| /* Some OSes (unknown ones, but I see them on web server, which |
| * contains information interesting only for windows' |
| * users) do not send their stamp in SYN. It is easy case. |
| * We simply do not advertise TS support. |
| */ |
| tmp_opt.saw_tstamp = 0; |
| tmp_opt.tstamp_ok = 0; |
| } |
| tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; |
| |
| tcp_openreq_init(req, &tmp_opt, skb); |
| |
| if (security_inet_conn_request(sk, skb, req)) |
| goto drop_and_free; |
| |
| ireq = inet_rsk(req); |
| ireq->loc_addr = daddr; |
| ireq->rmt_addr = saddr; |
| ireq->opt = tcp_v4_save_options(sk, skb); |
| if (!want_cookie) |
| TCP_ECN_create_request(req, tcp_hdr(skb)); |
| |
| if (want_cookie) { |
| #ifdef CONFIG_SYN_COOKIES |
| syn_flood_warning(skb); |
| #endif |
| isn = cookie_v4_init_sequence(sk, skb, &req->mss); |
| } else if (!isn) { |
| struct inet_peer *peer = NULL; |
| |
| /* VJ's idea. We save last timestamp seen |
| * from the destination in peer table, when entering |
| * state TIME-WAIT, and check against it before |
| * accepting new connection request. |
| * |
| * If "isn" is not zero, this request hit alive |
| * timewait bucket, so that all the necessary checks |
| * are made in the function processing timewait state. |
| */ |
| if (tmp_opt.saw_tstamp && |
| tcp_death_row.sysctl_tw_recycle && |
| (dst = inet_csk_route_req(sk, req)) != NULL && |
| (peer = rt_get_peer((struct rtable *)dst)) != NULL && |
| peer->v4daddr == saddr) { |
| if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL && |
| (s32)(peer->tcp_ts - req->ts_recent) > |
| TCP_PAWS_WINDOW) { |
| NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED); |
| dst_release(dst); |
| goto drop_and_free; |
| } |
| } |
| /* Kill the following clause, if you dislike this way. */ |
| else if (!sysctl_tcp_syncookies && |
| (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < |
| (sysctl_max_syn_backlog >> 2)) && |
| (!peer || !peer->tcp_ts_stamp) && |
| (!dst || !dst_metric(dst, RTAX_RTT))) { |
| /* Without syncookies last quarter of |
| * backlog is filled with destinations, |
| * proven to be alive. |
| * It means that we continue to communicate |
| * to destinations, already remembered |
| * to the moment of synflood. |
| */ |
| LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open " |
| "request from %u.%u.%u.%u/%u\n", |
| NIPQUAD(saddr), |
| ntohs(tcp_hdr(skb)->source)); |
| dst_release(dst); |
| goto drop_and_free; |
| } |
| |
| isn = tcp_v4_init_sequence(skb); |
| } |
| tcp_rsk(req)->snt_isn = isn; |
| |
| if (tcp_v4_send_synack(sk, req, dst)) |
| goto drop_and_free; |
| |
| if (want_cookie) { |
| reqsk_free(req); |
| } else { |
| inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); |
| } |
| return 0; |
| |
| drop_and_free: |
| reqsk_free(req); |
| drop: |
| return 0; |
| } |
| |
| |
| /* |
| * The three way handshake has completed - we got a valid synack - |
| * now create the new socket. |
| */ |
| struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req, |
| struct dst_entry *dst) |
| { |
| struct inet_request_sock *ireq; |
| struct inet_sock *newinet; |
| struct tcp_sock *newtp; |
| struct sock *newsk; |
| #ifdef CONFIG_TCP_MD5SIG |
| struct tcp_md5sig_key *key; |
| #endif |
| |
| if (sk_acceptq_is_full(sk)) |
| goto exit_overflow; |
| |
| if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL) |
| goto exit; |
| |
| newsk = tcp_create_openreq_child(sk, req, skb); |
| if (!newsk) |
| goto exit; |
| |
| newsk->sk_gso_type = SKB_GSO_TCPV4; |
| sk_setup_caps(newsk, dst); |
| |
| newtp = tcp_sk(newsk); |
| newinet = inet_sk(newsk); |
| ireq = inet_rsk(req); |
| newinet->daddr = ireq->rmt_addr; |
| newinet->rcv_saddr = ireq->loc_addr; |
| newinet->saddr = ireq->loc_addr; |
| newinet->opt = ireq->opt; |
| ireq->opt = NULL; |
| newinet->mc_index = inet_iif(skb); |
| newinet->mc_ttl = ip_hdr(skb)->ttl; |
| inet_csk(newsk)->icsk_ext_hdr_len = 0; |
| if (newinet->opt) |
| inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen; |
| newinet->id = newtp->write_seq ^ jiffies; |
| |
| tcp_mtup_init(newsk); |
| tcp_sync_mss(newsk, dst_mtu(dst)); |
| newtp->advmss = dst_metric(dst, RTAX_ADVMSS); |
| tcp_initialize_rcv_mss(newsk); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| /* Copy over the MD5 key from the original socket */ |
| if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) { |
| /* |
| * We're using one, so create a matching key |
| * on the newsk structure. If we fail to get |
| * memory, then we end up not copying the key |
| * across. Shucks. |
| */ |
| char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC); |
| if (newkey != NULL) |
| tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr, |
| newkey, key->keylen); |
| } |
| #endif |
| |
| __inet_hash_nolisten(&tcp_hashinfo, newsk); |
| __inet_inherit_port(&tcp_hashinfo, sk, newsk); |
| |
| return newsk; |
| |
| exit_overflow: |
| NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS); |
| exit: |
| NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS); |
| dst_release(dst); |
| return NULL; |
| } |
| |
| static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcphdr *th = tcp_hdr(skb); |
| const struct iphdr *iph = ip_hdr(skb); |
| struct sock *nsk; |
| struct request_sock **prev; |
| /* Find possible connection requests. */ |
| struct request_sock *req = inet_csk_search_req(sk, &prev, th->source, |
| iph->saddr, iph->daddr); |
| if (req) |
| return tcp_check_req(sk, skb, req, prev); |
| |
| nsk = inet_lookup_established(&tcp_hashinfo, iph->saddr, th->source, |
| iph->daddr, th->dest, inet_iif(skb)); |
| |
| if (nsk) { |
| if (nsk->sk_state != TCP_TIME_WAIT) { |
| bh_lock_sock(nsk); |
| return nsk; |
| } |
| inet_twsk_put(inet_twsk(nsk)); |
| return NULL; |
| } |
| |
| #ifdef CONFIG_SYN_COOKIES |
| if (!th->rst && !th->syn && th->ack) |
| sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt)); |
| #endif |
| return sk; |
| } |
| |
| static __sum16 tcp_v4_checksum_init(struct sk_buff *skb) |
| { |
| const struct iphdr *iph = ip_hdr(skb); |
| |
| if (skb->ip_summed == CHECKSUM_COMPLETE) { |
| if (!tcp_v4_check(skb->len, iph->saddr, |
| iph->daddr, skb->csum)) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| return 0; |
| } |
| } |
| |
| skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, |
| skb->len, IPPROTO_TCP, 0); |
| |
| if (skb->len <= 76) { |
| return __skb_checksum_complete(skb); |
| } |
| return 0; |
| } |
| |
| |
| /* The socket must have it's spinlock held when we get |
| * here. |
| * |
| * We have a potential double-lock case here, so even when |
| * doing backlog processing we use the BH locking scheme. |
| * This is because we cannot sleep with the original spinlock |
| * held. |
| */ |
| int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) |
| { |
| struct sock *rsk; |
| #ifdef CONFIG_TCP_MD5SIG |
| /* |
| * We really want to reject the packet as early as possible |
| * if: |
| * o We're expecting an MD5'd packet and this is no MD5 tcp option |
| * o There is an MD5 option and we're not expecting one |
| */ |
| if (tcp_v4_inbound_md5_hash(sk, skb)) |
| goto discard; |
| #endif |
| |
| if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ |
| TCP_CHECK_TIMER(sk); |
| if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) { |
| rsk = sk; |
| goto reset; |
| } |
| TCP_CHECK_TIMER(sk); |
| return 0; |
| } |
| |
| if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb)) |
| goto csum_err; |
| |
| if (sk->sk_state == TCP_LISTEN) { |
| struct sock *nsk = tcp_v4_hnd_req(sk, skb); |
| if (!nsk) |
| goto discard; |
| |
| if (nsk != sk) { |
| if (tcp_child_process(sk, nsk, skb)) { |
| rsk = nsk; |
| goto reset; |
| } |
| return 0; |
| } |
| } |
| |
| TCP_CHECK_TIMER(sk); |
| if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) { |
| rsk = sk; |
| goto reset; |
| } |
| TCP_CHECK_TIMER(sk); |
| return 0; |
| |
| reset: |
| tcp_v4_send_reset(rsk, skb); |
| discard: |
| kfree_skb(skb); |
| /* Be careful here. If this function gets more complicated and |
| * gcc suffers from register pressure on the x86, sk (in %ebx) |
| * might be destroyed here. This current version compiles correctly, |
| * but you have been warned. |
| */ |
| return 0; |
| |
| csum_err: |
| TCP_INC_STATS_BH(TCP_MIB_INERRS); |
| goto discard; |
| } |
| |
| /* |
| * From tcp_input.c |
| */ |
| |
| int tcp_v4_rcv(struct sk_buff *skb) |
| { |
| const struct iphdr *iph; |
| struct tcphdr *th; |
| struct sock *sk; |
| int ret; |
| |
| if (skb->pkt_type != PACKET_HOST) |
| goto discard_it; |
| |
| /* Count it even if it's bad */ |
| TCP_INC_STATS_BH(TCP_MIB_INSEGS); |
| |
| if (!pskb_may_pull(skb, sizeof(struct tcphdr))) |
| goto discard_it; |
| |
| th = tcp_hdr(skb); |
| |
| if (th->doff < sizeof(struct tcphdr) / 4) |
| goto bad_packet; |
| if (!pskb_may_pull(skb, th->doff * 4)) |
| goto discard_it; |
| |
| /* An explanation is required here, I think. |
| * Packet length and doff are validated by header prediction, |
| * provided case of th->doff==0 is eliminated. |
| * So, we defer the checks. */ |
| if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb)) |
| goto bad_packet; |
| |
| th = tcp_hdr(skb); |
| iph = ip_hdr(skb); |
| TCP_SKB_CB(skb)->seq = ntohl(th->seq); |
| TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + |
| skb->len - th->doff * 4); |
| TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); |
| TCP_SKB_CB(skb)->when = 0; |
| TCP_SKB_CB(skb)->flags = iph->tos; |
| TCP_SKB_CB(skb)->sacked = 0; |
| |
| sk = __inet_lookup(&tcp_hashinfo, iph->saddr, th->source, |
| iph->daddr, th->dest, inet_iif(skb)); |
| if (!sk) |
| goto no_tcp_socket; |
| |
| process: |
| if (sk->sk_state == TCP_TIME_WAIT) |
| goto do_time_wait; |
| |
| if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) |
| goto discard_and_relse; |
| nf_reset(skb); |
| |
| if (sk_filter(sk, skb)) |
| goto discard_and_relse; |
| |
| skb->dev = NULL; |
| |
| bh_lock_sock_nested(sk); |
| ret = 0; |
| if (!sock_owned_by_user(sk)) { |
| #ifdef CONFIG_NET_DMA |
| struct tcp_sock *tp = tcp_sk(sk); |
| if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) |
| tp->ucopy.dma_chan = get_softnet_dma(); |
| if (tp->ucopy.dma_chan) |
| ret = tcp_v4_do_rcv(sk, skb); |
| else |
| #endif |
| { |
| if (!tcp_prequeue(sk, skb)) |
| ret = tcp_v4_do_rcv(sk, skb); |
| } |
| } else |
| sk_add_backlog(sk, skb); |
| bh_unlock_sock(sk); |
| |
| sock_put(sk); |
| |
| return ret; |
| |
| no_tcp_socket: |
| if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) |
| goto discard_it; |
| |
| if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { |
| bad_packet: |
| TCP_INC_STATS_BH(TCP_MIB_INERRS); |
| } else { |
| tcp_v4_send_reset(NULL, skb); |
| } |
| |
| discard_it: |
| /* Discard frame. */ |
| kfree_skb(skb); |
| return 0; |
| |
| discard_and_relse: |
| sock_put(sk); |
| goto discard_it; |
| |
| do_time_wait: |
| if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { |
| inet_twsk_put(inet_twsk(sk)); |
| goto discard_it; |
| } |
| |
| if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { |
| TCP_INC_STATS_BH(TCP_MIB_INERRS); |
| inet_twsk_put(inet_twsk(sk)); |
| goto discard_it; |
| } |
| switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { |
| case TCP_TW_SYN: { |
| struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo, |
| iph->daddr, th->dest, |
| inet_iif(skb)); |
| if (sk2) { |
| inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row); |
| inet_twsk_put(inet_twsk(sk)); |
| sk = sk2; |
| goto process; |
| } |
| /* Fall through to ACK */ |
| } |
| case TCP_TW_ACK: |
| tcp_v4_timewait_ack(sk, skb); |
| break; |
| case TCP_TW_RST: |
| goto no_tcp_socket; |
| case TCP_TW_SUCCESS:; |
| } |
| goto discard_it; |
| } |
| |
| /* VJ's idea. Save last timestamp seen from this destination |
| * and hold it at least for normal timewait interval to use for duplicate |
| * segment detection in subsequent connections, before they enter synchronized |
| * state. |
| */ |
| |
| int tcp_v4_remember_stamp(struct sock *sk) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct rtable *rt = (struct rtable *)__sk_dst_get(sk); |
| struct inet_peer *peer = NULL; |
| int release_it = 0; |
| |
| if (!rt || rt->rt_dst != inet->daddr) { |
| peer = inet_getpeer(inet->daddr, 1); |
| release_it = 1; |
| } else { |
| if (!rt->peer) |
| rt_bind_peer(rt, 1); |
| peer = rt->peer; |
| } |
| |
| if (peer) { |
| if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 || |
| (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() && |
| peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) { |
| peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp; |
| peer->tcp_ts = tp->rx_opt.ts_recent; |
| } |
| if (release_it) |
| inet_putpeer(peer); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw) |
| { |
| struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1); |
| |
| if (peer) { |
| const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); |
| |
| if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 || |
| (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() && |
| peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) { |
| peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp; |
| peer->tcp_ts = tcptw->tw_ts_recent; |
| } |
| inet_putpeer(peer); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| struct inet_connection_sock_af_ops ipv4_specific = { |
| .queue_xmit = ip_queue_xmit, |
| .send_check = tcp_v4_send_check, |
| .rebuild_header = inet_sk_rebuild_header, |
| .conn_request = tcp_v4_conn_request, |
| .syn_recv_sock = tcp_v4_syn_recv_sock, |
| .remember_stamp = tcp_v4_remember_stamp, |
| .net_header_len = sizeof(struct iphdr), |
| .setsockopt = ip_setsockopt, |
| .getsockopt = ip_getsockopt, |
| .addr2sockaddr = inet_csk_addr2sockaddr, |
| .sockaddr_len = sizeof(struct sockaddr_in), |
| #ifdef CONFIG_COMPAT |
| .compat_setsockopt = compat_ip_setsockopt, |
| .compat_getsockopt = compat_ip_getsockopt, |
| #endif |
| }; |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| static struct tcp_sock_af_ops tcp_sock_ipv4_specific = { |
| .md5_lookup = tcp_v4_md5_lookup, |
| .calc_md5_hash = tcp_v4_calc_md5_hash, |
| .md5_add = tcp_v4_md5_add_func, |
| .md5_parse = tcp_v4_parse_md5_keys, |
| }; |
| #endif |
| |
| /* NOTE: A lot of things set to zero explicitly by call to |
| * sk_alloc() so need not be done here. |
| */ |
| static int tcp_v4_init_sock(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| skb_queue_head_init(&tp->out_of_order_queue); |
| tcp_init_xmit_timers(sk); |
| tcp_prequeue_init(tp); |
| |
| icsk->icsk_rto = TCP_TIMEOUT_INIT; |
| tp->mdev = TCP_TIMEOUT_INIT; |
| |
| /* So many TCP implementations out there (incorrectly) count the |
| * initial SYN frame in their delayed-ACK and congestion control |
| * algorithms that we must have the following bandaid to talk |
| * efficiently to them. -DaveM |
| */ |
| tp->snd_cwnd = 2; |
| |
| /* See draft-stevens-tcpca-spec-01 for discussion of the |
| * initialization of these values. |
| */ |
| tp->snd_ssthresh = 0x7fffffff; /* Infinity */ |
| tp->snd_cwnd_clamp = ~0; |
| tp->mss_cache = 536; |
| |
| tp->reordering = sysctl_tcp_reordering; |
| icsk->icsk_ca_ops = &tcp_init_congestion_ops; |
| |
| sk->sk_state = TCP_CLOSE; |
| |
| sk->sk_write_space = sk_stream_write_space; |
| sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); |
| |
| icsk->icsk_af_ops = &ipv4_specific; |
| icsk->icsk_sync_mss = tcp_sync_mss; |
| #ifdef CONFIG_TCP_MD5SIG |
| tp->af_specific = &tcp_sock_ipv4_specific; |
| #endif |
| |
| sk->sk_sndbuf = sysctl_tcp_wmem[1]; |
| sk->sk_rcvbuf = sysctl_tcp_rmem[1]; |
| |
| atomic_inc(&tcp_sockets_allocated); |
| |
| return 0; |
| } |
| |
| int tcp_v4_destroy_sock(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| tcp_clear_xmit_timers(sk); |
| |
| tcp_cleanup_congestion_control(sk); |
| |
| /* Cleanup up the write buffer. */ |
| tcp_write_queue_purge(sk); |
| |
| /* Cleans up our, hopefully empty, out_of_order_queue. */ |
| __skb_queue_purge(&tp->out_of_order_queue); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| /* Clean up the MD5 key list, if any */ |
| if (tp->md5sig_info) { |
| tcp_v4_clear_md5_list(sk); |
| kfree(tp->md5sig_info); |
| tp->md5sig_info = NULL; |
| } |
| #endif |
| |
| #ifdef CONFIG_NET_DMA |
| /* Cleans up our sk_async_wait_queue */ |
| __skb_queue_purge(&sk->sk_async_wait_queue); |
| #endif |
| |
| /* Clean prequeue, it must be empty really */ |
| __skb_queue_purge(&tp->ucopy.prequeue); |
| |
| /* Clean up a referenced TCP bind bucket. */ |
| if (inet_csk(sk)->icsk_bind_hash) |
| inet_put_port(&tcp_hashinfo, sk); |
| |
| /* |
| * If sendmsg cached page exists, toss it. |
| */ |
| if (sk->sk_sndmsg_page) { |
| __free_page(sk->sk_sndmsg_page); |
| sk->sk_sndmsg_page = NULL; |
| } |
| |
| atomic_dec(&tcp_sockets_allocated); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(tcp_v4_destroy_sock); |
| |
| #ifdef CONFIG_PROC_FS |
| /* Proc filesystem TCP sock list dumping. */ |
| |
| static inline struct inet_timewait_sock *tw_head(struct hlist_head *head) |
| { |
| return hlist_empty(head) ? NULL : |
| list_entry(head->first, struct inet_timewait_sock, tw_node); |
| } |
| |
| static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw) |
| { |
| return tw->tw_node.next ? |
| hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL; |
| } |
| |
| static void *listening_get_next(struct seq_file *seq, void *cur) |
| { |
| struct inet_connection_sock *icsk; |
| struct hlist_node *node; |
| struct sock *sk = cur; |
| struct tcp_iter_state* st = seq->private; |
| |
| if (!sk) { |
| st->bucket = 0; |
| sk = sk_head(&tcp_hashinfo.listening_hash[0]); |
| goto get_sk; |
| } |
| |
| ++st->num; |
| |
| if (st->state == TCP_SEQ_STATE_OPENREQ) { |
| struct request_sock *req = cur; |
| |
| icsk = inet_csk(st->syn_wait_sk); |
| req = req->dl_next; |
| while (1) { |
| while (req) { |
| if (req->rsk_ops->family == st->family) { |
| cur = req; |
| goto out; |
| } |
| req = req->dl_next; |
| } |
| if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries) |
| break; |
| get_req: |
| req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket]; |
| } |
| sk = sk_next(st->syn_wait_sk); |
| st->state = TCP_SEQ_STATE_LISTENING; |
| read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); |
| } else { |
| icsk = inet_csk(sk); |
| read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); |
| if (reqsk_queue_len(&icsk->icsk_accept_queue)) |
| goto start_req; |
| read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); |
| sk = sk_next(sk); |
| } |
| get_sk: |
| sk_for_each_from(sk, node) { |
| if (sk->sk_family == st->family) { |
| cur = sk; |
| goto out; |
| } |
| icsk = inet_csk(sk); |
| read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); |
| if (reqsk_queue_len(&icsk->icsk_accept_queue)) { |
| start_req: |
| st->uid = sock_i_uid(sk); |
| st->syn_wait_sk = sk; |
| st->state = TCP_SEQ_STATE_OPENREQ; |
| st->sbucket = 0; |
| goto get_req; |
| } |
| read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); |
| } |
| if (++st->bucket < INET_LHTABLE_SIZE) { |
| sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]); |
| goto get_sk; |
| } |
| cur = NULL; |
| out: |
| return cur; |
| } |
| |
| static void *listening_get_idx(struct seq_file *seq, loff_t *pos) |
| { |
| void *rc = listening_get_next(seq, NULL); |
| |
| while (rc && *pos) { |
| rc = listening_get_next(seq, rc); |
| --*pos; |
| } |
| return rc; |
| } |
| |
| static void *established_get_first(struct seq_file *seq) |
| { |
| struct tcp_iter_state* st = seq->private; |
| void *rc = NULL; |
| |
| for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) { |
| struct sock *sk; |
| struct hlist_node *node; |
| struct inet_timewait_sock *tw; |
| rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); |
| |
| read_lock_bh(lock); |
| sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { |
| if (sk->sk_family != st->family) { |
| continue; |
| } |
| rc = sk; |
| goto out; |
| } |
| st->state = TCP_SEQ_STATE_TIME_WAIT; |
| inet_twsk_for_each(tw, node, |
| &tcp_hashinfo.ehash[st->bucket].twchain) { |
| if (tw->tw_family != st->family) { |
| continue; |
| } |
| rc = tw; |
| goto out; |
| } |
| read_unlock_bh(lock); |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| } |
| out: |
| return rc; |
| } |
| |
| static void *established_get_next(struct seq_file *seq, void *cur) |
| { |
| struct sock *sk = cur; |
| struct inet_timewait_sock *tw; |
| struct hlist_node *node; |
| struct tcp_iter_state* st = seq->private; |
| |
| ++st->num; |
| |
| if (st->state == TCP_SEQ_STATE_TIME_WAIT) { |
| tw = cur; |
| tw = tw_next(tw); |
| get_tw: |
| while (tw && tw->tw_family != st->family) { |
| tw = tw_next(tw); |
| } |
| if (tw) { |
| cur = tw; |
| goto out; |
| } |
| read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| |
| if (++st->bucket < tcp_hashinfo.ehash_size) { |
| read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); |
| sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain); |
| } else { |
| cur = NULL; |
| goto out; |
| } |
| } else |
| sk = sk_next(sk); |
| |
| sk_for_each_from(sk, node) { |
| if (sk->sk_family == st->family) |
| goto found; |
| } |
| |
| st->state = TCP_SEQ_STATE_TIME_WAIT; |
| tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain); |
| goto get_tw; |
| found: |
| cur = sk; |
| out: |
| return cur; |
| } |
| |
| static void *established_get_idx(struct seq_file *seq, loff_t pos) |
| { |
| void *rc = established_get_first(seq); |
| |
| while (rc && pos) { |
| rc = established_get_next(seq, rc); |
| --pos; |
| } |
| return rc; |
| } |
| |
| static void *tcp_get_idx(struct seq_file *seq, loff_t pos) |
| { |
| void *rc; |
| struct tcp_iter_state* st = seq->private; |
| |
| inet_listen_lock(&tcp_hashinfo); |
| st->state = TCP_SEQ_STATE_LISTENING; |
| rc = listening_get_idx(seq, &pos); |
| |
| if (!rc) { |
| inet_listen_unlock(&tcp_hashinfo); |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| rc = established_get_idx(seq, pos); |
| } |
| |
| return rc; |
| } |
| |
| static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| struct tcp_iter_state* st = seq->private; |
| st->state = TCP_SEQ_STATE_LISTENING; |
| st->num = 0; |
| return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; |
| } |
| |
| static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| void *rc = NULL; |
| struct tcp_iter_state* st; |
| |
| if (v == SEQ_START_TOKEN) { |
| rc = tcp_get_idx(seq, 0); |
| goto out; |
| } |
| st = seq->private; |
| |
| switch (st->state) { |
| case TCP_SEQ_STATE_OPENREQ: |
| case TCP_SEQ_STATE_LISTENING: |
| rc = listening_get_next(seq, v); |
| if (!rc) { |
| inet_listen_unlock(&tcp_hashinfo); |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| rc = established_get_first(seq); |
| } |
| break; |
| case TCP_SEQ_STATE_ESTABLISHED: |
| case TCP_SEQ_STATE_TIME_WAIT: |
| rc = established_get_next(seq, v); |
| break; |
| } |
| out: |
| ++*pos; |
| return rc; |
| } |
| |
| static void tcp_seq_stop(struct seq_file *seq, void *v) |
| { |
| struct tcp_iter_state* st = seq->private; |
| |
| switch (st->state) { |
| case TCP_SEQ_STATE_OPENREQ: |
| if (v) { |
| struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk); |
| read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); |
| } |
| case TCP_SEQ_STATE_LISTENING: |
| if (v != SEQ_START_TOKEN) |
| inet_listen_unlock(&tcp_hashinfo); |
| break; |
| case TCP_SEQ_STATE_TIME_WAIT: |
| case TCP_SEQ_STATE_ESTABLISHED: |
| if (v) |
| read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); |
| break; |
| } |
| } |
| |
| static int tcp_seq_open(struct inode *inode, struct file *file) |
| { |
| struct tcp_seq_afinfo *afinfo = PDE(inode)->data; |
| struct seq_file *seq; |
| struct tcp_iter_state *s; |
| int rc; |
| |
| if (unlikely(afinfo == NULL)) |
| return -EINVAL; |
| |
| s = kzalloc(sizeof(*s), GFP_KERNEL); |
| if (!s) |
| return -ENOMEM; |
| s->family = afinfo->family; |
| s->seq_ops.start = tcp_seq_start; |
| s->seq_ops.next = tcp_seq_next; |
| s->seq_ops.show = afinfo->seq_show; |
| s->seq_ops.stop = tcp_seq_stop; |
| |
| rc = seq_open(file, &s->seq_ops); |
| if (rc) |
| goto out_kfree; |
| seq = file->private_data; |
| seq->private = s; |
| out: |
| return rc; |
| out_kfree: |
| kfree(s); |
| goto out; |
| } |
| |
| int tcp_proc_register(struct tcp_seq_afinfo *afinfo) |
| { |
| int rc = 0; |
| struct proc_dir_entry *p; |
| |
| if (!afinfo) |
| return -EINVAL; |
| afinfo->seq_fops->owner = afinfo->owner; |
| afinfo->seq_fops->open = tcp_seq_open; |
| afinfo->seq_fops->read = seq_read; |
| afinfo->seq_fops->llseek = seq_lseek; |
| afinfo->seq_fops->release = seq_release_private; |
| |
| p = proc_net_fops_create(&init_net, afinfo->name, S_IRUGO, afinfo->seq_fops); |
| if (p) |
| p->data = afinfo; |
| else |
| rc = -ENOMEM; |
| return rc; |
| } |
| |
| void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo) |
| { |
| if (!afinfo) |
| return; |
| proc_net_remove(&init_net, afinfo->name); |
| memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops)); |
| } |
| |
| static void get_openreq4(struct sock *sk, struct request_sock *req, |
| char *tmpbuf, int i, int uid) |
| { |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| int ttd = req->expires - jiffies; |
| |
| sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X" |
| " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p", |
| i, |
| ireq->loc_addr, |
| ntohs(inet_sk(sk)->sport), |
| ireq->rmt_addr, |
| ntohs(ireq->rmt_port), |
| TCP_SYN_RECV, |
| 0, 0, /* could print option size, but that is af dependent. */ |
| 1, /* timers active (only the expire timer) */ |
| jiffies_to_clock_t(ttd), |
| req->retrans, |
| uid, |
| 0, /* non standard timer */ |
| 0, /* open_requests have no inode */ |
| atomic_read(&sk->sk_refcnt), |
| req); |
| } |
| |
| static void get_tcp4_sock(struct sock *sk, char *tmpbuf, int i) |
| { |
| int timer_active; |
| unsigned long timer_expires; |
| struct tcp_sock *tp = tcp_sk(sk); |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| struct inet_sock *inet = inet_sk(sk); |
| __be32 dest = inet->daddr; |
| __be32 src = inet->rcv_saddr; |
| __u16 destp = ntohs(inet->dport); |
| __u16 srcp = ntohs(inet->sport); |
| |
| if (icsk->icsk_pending == ICSK_TIME_RETRANS) { |
| timer_active = 1; |
| timer_expires = icsk->icsk_timeout; |
| } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { |
| timer_active = 4; |
| timer_expires = icsk->icsk_timeout; |
| } else if (timer_pending(&sk->sk_timer)) { |
| timer_active = 2; |
| timer_expires = sk->sk_timer.expires; |
| } else { |
| timer_active = 0; |
| timer_expires = jiffies; |
| } |
| |
| sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " |
| "%08X %5d %8d %lu %d %p %u %u %u %u %d", |
| i, src, srcp, dest, destp, sk->sk_state, |
| tp->write_seq - tp->snd_una, |
| sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog : |
| (tp->rcv_nxt - tp->copied_seq), |
| timer_active, |
| jiffies_to_clock_t(timer_expires - jiffies), |
| icsk->icsk_retransmits, |
| sock_i_uid(sk), |
| icsk->icsk_probes_out, |
| sock_i_ino(sk), |
| atomic_read(&sk->sk_refcnt), sk, |
| icsk->icsk_rto, |
| icsk->icsk_ack.ato, |
| (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, |
| tp->snd_cwnd, |
| tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh); |
| } |
| |
| static void get_timewait4_sock(struct inet_timewait_sock *tw, |
| char *tmpbuf, int i) |
| { |
| __be32 dest, src; |
| __u16 destp, srcp; |
| int ttd = tw->tw_ttd - jiffies; |
| |
| if (ttd < 0) |
| ttd = 0; |
| |
| dest = tw->tw_daddr; |
| src = tw->tw_rcv_saddr; |
| destp = ntohs(tw->tw_dport); |
| srcp = ntohs(tw->tw_sport); |
| |
| sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X" |
| " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p", |
| i, src, srcp, dest, destp, tw->tw_substate, 0, 0, |
| 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0, |
| atomic_read(&tw->tw_refcnt), tw); |
| } |
| |
| #define TMPSZ 150 |
| |
| static int tcp4_seq_show(struct seq_file *seq, void *v) |
| { |
| struct tcp_iter_state* st; |
| char tmpbuf[TMPSZ + 1]; |
| |
| if (v == SEQ_START_TOKEN) { |
| seq_printf(seq, "%-*s\n", TMPSZ - 1, |
| " sl local_address rem_address st tx_queue " |
| "rx_queue tr tm->when retrnsmt uid timeout " |
| "inode"); |
| goto out; |
| } |
| st = seq->private; |
| |
| switch (st->state) { |
| case TCP_SEQ_STATE_LISTENING: |
| case TCP_SEQ_STATE_ESTABLISHED: |
| get_tcp4_sock(v, tmpbuf, st->num); |
| break; |
| case TCP_SEQ_STATE_OPENREQ: |
| get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid); |
| break; |
| case TCP_SEQ_STATE_TIME_WAIT: |
| get_timewait4_sock(v, tmpbuf, st->num); |
| break; |
| } |
| seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf); |
| out: |
| return 0; |
| } |
| |
| static struct file_operations tcp4_seq_fops; |
| static struct tcp_seq_afinfo tcp4_seq_afinfo = { |
| .owner = THIS_MODULE, |
| .name = "tcp", |
| .family = AF_INET, |
| .seq_show = tcp4_seq_show, |
| .seq_fops = &tcp4_seq_fops, |
| }; |
| |
| int __init tcp4_proc_init(void) |
| { |
| return tcp_proc_register(&tcp4_seq_afinfo); |
| } |
| |
| void tcp4_proc_exit(void) |
| { |
| tcp_proc_unregister(&tcp4_seq_afinfo); |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| DEFINE_PROTO_INUSE(tcp) |
| |
| struct proto tcp_prot = { |
| .name = "TCP", |
| .owner = THIS_MODULE, |
| .close = tcp_close, |
| .connect = tcp_v4_connect, |
| .disconnect = tcp_disconnect, |
| .accept = inet_csk_accept, |
| .ioctl = tcp_ioctl, |
| .init = tcp_v4_init_sock, |
| .destroy = tcp_v4_destroy_sock, |
| .shutdown = tcp_shutdown, |
| .setsockopt = tcp_setsockopt, |
| .getsockopt = tcp_getsockopt, |
| .recvmsg = tcp_recvmsg, |
| .backlog_rcv = tcp_v4_do_rcv, |
| .hash = tcp_v4_hash, |
| .unhash = tcp_unhash, |
| .get_port = tcp_v4_get_port, |
| .enter_memory_pressure = tcp_enter_memory_pressure, |
| .sockets_allocated = &tcp_sockets_allocated, |
| .orphan_count = &tcp_orphan_count, |
| .memory_allocated = &tcp_memory_allocated, |
| .memory_pressure = &tcp_memory_pressure, |
| .sysctl_mem = sysctl_tcp_mem, |
| .sysctl_wmem = sysctl_tcp_wmem, |
| .sysctl_rmem = sysctl_tcp_rmem, |
| .max_header = MAX_TCP_HEADER, |
| .obj_size = sizeof(struct tcp_sock), |
| .twsk_prot = &tcp_timewait_sock_ops, |
| .rsk_prot = &tcp_request_sock_ops, |
| #ifdef CONFIG_COMPAT |
| .compat_setsockopt = compat_tcp_setsockopt, |
| .compat_getsockopt = compat_tcp_getsockopt, |
| #endif |
| REF_PROTO_INUSE(tcp) |
| }; |
| |
| void __init tcp_v4_init(struct net_proto_family *ops) |
| { |
| if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW, |
| IPPROTO_TCP) < 0) |
| panic("Failed to create the TCP control socket.\n"); |
| } |
| |
| EXPORT_SYMBOL(ipv4_specific); |
| EXPORT_SYMBOL(tcp_hashinfo); |
| EXPORT_SYMBOL(tcp_prot); |
| EXPORT_SYMBOL(tcp_unhash); |
| EXPORT_SYMBOL(tcp_v4_conn_request); |
| EXPORT_SYMBOL(tcp_v4_connect); |
| EXPORT_SYMBOL(tcp_v4_do_rcv); |
| EXPORT_SYMBOL(tcp_v4_remember_stamp); |
| EXPORT_SYMBOL(tcp_v4_send_check); |
| EXPORT_SYMBOL(tcp_v4_syn_recv_sock); |
| |
| #ifdef CONFIG_PROC_FS |
| EXPORT_SYMBOL(tcp_proc_register); |
| EXPORT_SYMBOL(tcp_proc_unregister); |
| #endif |
| EXPORT_SYMBOL(sysctl_tcp_low_latency); |
| |