| /* |
| * linux/kernel/power/swsusp.c |
| * |
| * This file provides code to write suspend image to swap and read it back. |
| * |
| * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu> |
| * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz> |
| * |
| * This file is released under the GPLv2. |
| * |
| * I'd like to thank the following people for their work: |
| * |
| * Pavel Machek <pavel@ucw.cz>: |
| * Modifications, defectiveness pointing, being with me at the very beginning, |
| * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17. |
| * |
| * Steve Doddi <dirk@loth.demon.co.uk>: |
| * Support the possibility of hardware state restoring. |
| * |
| * Raph <grey.havens@earthling.net>: |
| * Support for preserving states of network devices and virtual console |
| * (including X and svgatextmode) |
| * |
| * Kurt Garloff <garloff@suse.de>: |
| * Straightened the critical function in order to prevent compilers from |
| * playing tricks with local variables. |
| * |
| * Andreas Mohr <a.mohr@mailto.de> |
| * |
| * Alex Badea <vampire@go.ro>: |
| * Fixed runaway init |
| * |
| * Rafael J. Wysocki <rjw@sisk.pl> |
| * Added the swap map data structure and reworked the handling of swap |
| * |
| * More state savers are welcome. Especially for the scsi layer... |
| * |
| * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/suspend.h> |
| #include <linux/smp_lock.h> |
| #include <linux/file.h> |
| #include <linux/utsname.h> |
| #include <linux/version.h> |
| #include <linux/delay.h> |
| #include <linux/bitops.h> |
| #include <linux/spinlock.h> |
| #include <linux/genhd.h> |
| #include <linux/kernel.h> |
| #include <linux/major.h> |
| #include <linux/swap.h> |
| #include <linux/pm.h> |
| #include <linux/device.h> |
| #include <linux/buffer_head.h> |
| #include <linux/swapops.h> |
| #include <linux/bootmem.h> |
| #include <linux/syscalls.h> |
| #include <linux/highmem.h> |
| #include <linux/bio.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/io.h> |
| |
| #include "power.h" |
| |
| #ifdef CONFIG_HIGHMEM |
| int save_highmem(void); |
| int restore_highmem(void); |
| #else |
| static int save_highmem(void) { return 0; } |
| static int restore_highmem(void) { return 0; } |
| #endif |
| |
| extern char resume_file[]; |
| |
| #define SWSUSP_SIG "S1SUSPEND" |
| |
| static struct swsusp_header { |
| char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)]; |
| swp_entry_t swsusp_info; |
| char orig_sig[10]; |
| char sig[10]; |
| } __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header; |
| |
| static struct swsusp_info swsusp_info; |
| |
| /* |
| * Saving part... |
| */ |
| |
| /* We memorize in swapfile_used what swap devices are used for suspension */ |
| #define SWAPFILE_UNUSED 0 |
| #define SWAPFILE_SUSPEND 1 /* This is the suspending device */ |
| #define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */ |
| |
| static unsigned short swapfile_used[MAX_SWAPFILES]; |
| static unsigned short root_swap; |
| |
| static int mark_swapfiles(swp_entry_t prev) |
| { |
| int error; |
| |
| rw_swap_page_sync(READ, |
| swp_entry(root_swap, 0), |
| virt_to_page((unsigned long)&swsusp_header)); |
| if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) || |
| !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) { |
| memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10); |
| memcpy(swsusp_header.sig,SWSUSP_SIG, 10); |
| swsusp_header.swsusp_info = prev; |
| error = rw_swap_page_sync(WRITE, |
| swp_entry(root_swap, 0), |
| virt_to_page((unsigned long) |
| &swsusp_header)); |
| } else { |
| pr_debug("swsusp: Partition is not swap space.\n"); |
| error = -ENODEV; |
| } |
| return error; |
| } |
| |
| /* |
| * Check whether the swap device is the specified resume |
| * device, irrespective of whether they are specified by |
| * identical names. |
| * |
| * (Thus, device inode aliasing is allowed. You can say /dev/hda4 |
| * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs] |
| * and they'll be considered the same device. This is *necessary* for |
| * devfs, since the resume code can only recognize the form /dev/hda4, |
| * but the suspend code would see the long name.) |
| */ |
| static int is_resume_device(const struct swap_info_struct *swap_info) |
| { |
| struct file *file = swap_info->swap_file; |
| struct inode *inode = file->f_dentry->d_inode; |
| |
| return S_ISBLK(inode->i_mode) && |
| swsusp_resume_device == MKDEV(imajor(inode), iminor(inode)); |
| } |
| |
| static int swsusp_swap_check(void) /* This is called before saving image */ |
| { |
| int i, len; |
| |
| len=strlen(resume_file); |
| root_swap = 0xFFFF; |
| |
| spin_lock(&swap_lock); |
| for (i=0; i<MAX_SWAPFILES; i++) { |
| if (!(swap_info[i].flags & SWP_WRITEOK)) { |
| swapfile_used[i]=SWAPFILE_UNUSED; |
| } else { |
| if (!len) { |
| printk(KERN_WARNING "resume= option should be used to set suspend device" ); |
| if (root_swap == 0xFFFF) { |
| swapfile_used[i] = SWAPFILE_SUSPEND; |
| root_swap = i; |
| } else |
| swapfile_used[i] = SWAPFILE_IGNORED; |
| } else { |
| /* we ignore all swap devices that are not the resume_file */ |
| if (is_resume_device(&swap_info[i])) { |
| swapfile_used[i] = SWAPFILE_SUSPEND; |
| root_swap = i; |
| } else { |
| swapfile_used[i] = SWAPFILE_IGNORED; |
| } |
| } |
| } |
| } |
| spin_unlock(&swap_lock); |
| return (root_swap != 0xffff) ? 0 : -ENODEV; |
| } |
| |
| /** |
| * This is called after saving image so modification |
| * will be lost after resume... and that's what we want. |
| * we make the device unusable. A new call to |
| * lock_swapdevices can unlock the devices. |
| */ |
| static void lock_swapdevices(void) |
| { |
| int i; |
| |
| spin_lock(&swap_lock); |
| for (i = 0; i< MAX_SWAPFILES; i++) |
| if (swapfile_used[i] == SWAPFILE_IGNORED) { |
| swap_info[i].flags ^= SWP_WRITEOK; |
| } |
| spin_unlock(&swap_lock); |
| } |
| |
| /** |
| * write_page - Write one page to a fresh swap location. |
| * @addr: Address we're writing. |
| * @loc: Place to store the entry we used. |
| * |
| * Allocate a new swap entry and 'sync' it. Note we discard -EIO |
| * errors. That is an artifact left over from swsusp. It did not |
| * check the return of rw_swap_page_sync() at all, since most pages |
| * written back to swap would return -EIO. |
| * This is a partial improvement, since we will at least return other |
| * errors, though we need to eventually fix the damn code. |
| */ |
| static int write_page(unsigned long addr, swp_entry_t *loc) |
| { |
| swp_entry_t entry; |
| int error = 0; |
| |
| entry = get_swap_page(); |
| if (swp_offset(entry) && |
| swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) { |
| error = rw_swap_page_sync(WRITE, entry, |
| virt_to_page(addr)); |
| if (error == -EIO) |
| error = 0; |
| if (!error) |
| *loc = entry; |
| } else |
| error = -ENOSPC; |
| return error; |
| } |
| |
| /** |
| * Swap map-handling functions |
| * |
| * The swap map is a data structure used for keeping track of each page |
| * written to the swap. It consists of many swap_map_page structures |
| * that contain each an array of MAP_PAGE_SIZE swap entries. |
| * These structures are linked together with the help of either the |
| * .next (in memory) or the .next_swap (in swap) member. |
| * |
| * The swap map is created during suspend. At that time we need to keep |
| * it in memory, because we have to free all of the allocated swap |
| * entries if an error occurs. The memory needed is preallocated |
| * so that we know in advance if there's enough of it. |
| * |
| * The first swap_map_page structure is filled with the swap entries that |
| * correspond to the first MAP_PAGE_SIZE data pages written to swap and |
| * so on. After the all of the data pages have been written, the order |
| * of the swap_map_page structures in the map is reversed so that they |
| * can be read from swap in the original order. This causes the data |
| * pages to be loaded in exactly the same order in which they have been |
| * saved. |
| * |
| * During resume we only need to use one swap_map_page structure |
| * at a time, which means that we only need to use two memory pages for |
| * reading the image - one for reading the swap_map_page structures |
| * and the second for reading the data pages from swap. |
| */ |
| |
| #define MAP_PAGE_SIZE ((PAGE_SIZE - sizeof(swp_entry_t) - sizeof(void *)) \ |
| / sizeof(swp_entry_t)) |
| |
| struct swap_map_page { |
| swp_entry_t entries[MAP_PAGE_SIZE]; |
| swp_entry_t next_swap; |
| struct swap_map_page *next; |
| }; |
| |
| static inline void free_swap_map(struct swap_map_page *swap_map) |
| { |
| struct swap_map_page *swp; |
| |
| while (swap_map) { |
| swp = swap_map->next; |
| free_page((unsigned long)swap_map); |
| swap_map = swp; |
| } |
| } |
| |
| static struct swap_map_page *alloc_swap_map(unsigned int nr_pages) |
| { |
| struct swap_map_page *swap_map, *swp; |
| unsigned n = 0; |
| |
| if (!nr_pages) |
| return NULL; |
| |
| pr_debug("alloc_swap_map(): nr_pages = %d\n", nr_pages); |
| swap_map = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); |
| swp = swap_map; |
| for (n = MAP_PAGE_SIZE; n < nr_pages; n += MAP_PAGE_SIZE) { |
| swp->next = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); |
| swp = swp->next; |
| if (!swp) { |
| free_swap_map(swap_map); |
| return NULL; |
| } |
| } |
| return swap_map; |
| } |
| |
| /** |
| * reverse_swap_map - reverse the order of pages in the swap map |
| * @swap_map |
| */ |
| |
| static inline struct swap_map_page *reverse_swap_map(struct swap_map_page *swap_map) |
| { |
| struct swap_map_page *prev, *next; |
| |
| prev = NULL; |
| while (swap_map) { |
| next = swap_map->next; |
| swap_map->next = prev; |
| prev = swap_map; |
| swap_map = next; |
| } |
| return prev; |
| } |
| |
| /** |
| * free_swap_map_entries - free the swap entries allocated to store |
| * the swap map @swap_map (this is only called in case of an error) |
| */ |
| static inline void free_swap_map_entries(struct swap_map_page *swap_map) |
| { |
| while (swap_map) { |
| if (swap_map->next_swap.val) |
| swap_free(swap_map->next_swap); |
| swap_map = swap_map->next; |
| } |
| } |
| |
| /** |
| * save_swap_map - save the swap map used for tracing the data pages |
| * stored in the swap |
| */ |
| |
| static int save_swap_map(struct swap_map_page *swap_map, swp_entry_t *start) |
| { |
| swp_entry_t entry = (swp_entry_t){0}; |
| int error; |
| |
| while (swap_map) { |
| swap_map->next_swap = entry; |
| if ((error = write_page((unsigned long)swap_map, &entry))) |
| return error; |
| swap_map = swap_map->next; |
| } |
| *start = entry; |
| return 0; |
| } |
| |
| /** |
| * free_image_entries - free the swap entries allocated to store |
| * the image data pages (this is only called in case of an error) |
| */ |
| |
| static inline void free_image_entries(struct swap_map_page *swp) |
| { |
| unsigned k; |
| |
| while (swp) { |
| for (k = 0; k < MAP_PAGE_SIZE; k++) |
| if (swp->entries[k].val) |
| swap_free(swp->entries[k]); |
| swp = swp->next; |
| } |
| } |
| |
| /** |
| * The swap_map_handle structure is used for handling the swap map in |
| * a file-alike way |
| */ |
| |
| struct swap_map_handle { |
| struct swap_map_page *cur; |
| unsigned int k; |
| }; |
| |
| static inline void init_swap_map_handle(struct swap_map_handle *handle, |
| struct swap_map_page *map) |
| { |
| handle->cur = map; |
| handle->k = 0; |
| } |
| |
| static inline int swap_map_write_page(struct swap_map_handle *handle, |
| unsigned long addr) |
| { |
| int error; |
| |
| error = write_page(addr, handle->cur->entries + handle->k); |
| if (error) |
| return error; |
| if (++handle->k >= MAP_PAGE_SIZE) { |
| handle->cur = handle->cur->next; |
| handle->k = 0; |
| } |
| return 0; |
| } |
| |
| /** |
| * save_image_data - save the data pages pointed to by the PBEs |
| * from the list @pblist using the swap map handle @handle |
| * (assume there are @nr_pages data pages to save) |
| */ |
| |
| static int save_image_data(struct pbe *pblist, |
| struct swap_map_handle *handle, |
| unsigned int nr_pages) |
| { |
| unsigned int m; |
| struct pbe *p; |
| int error = 0; |
| |
| printk("Saving image data pages (%u pages) ... ", nr_pages); |
| m = nr_pages / 100; |
| if (!m) |
| m = 1; |
| nr_pages = 0; |
| for_each_pbe (p, pblist) { |
| error = swap_map_write_page(handle, p->address); |
| if (error) |
| break; |
| if (!(nr_pages % m)) |
| printk("\b\b\b\b%3d%%", nr_pages / m); |
| nr_pages++; |
| } |
| if (!error) |
| printk("\b\b\b\bdone\n"); |
| return error; |
| } |
| |
| static void dump_info(void) |
| { |
| pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code); |
| pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages); |
| pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname); |
| pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename); |
| pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release); |
| pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version); |
| pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine); |
| pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname); |
| pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus); |
| pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages); |
| pr_debug(" swsusp: Total: %ld Pages\n", swsusp_info.pages); |
| } |
| |
| static void init_header(unsigned int nr_pages) |
| { |
| memset(&swsusp_info, 0, sizeof(swsusp_info)); |
| swsusp_info.version_code = LINUX_VERSION_CODE; |
| swsusp_info.num_physpages = num_physpages; |
| memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname)); |
| |
| swsusp_info.cpus = num_online_cpus(); |
| swsusp_info.image_pages = nr_pages; |
| swsusp_info.pages = nr_pages + |
| ((nr_pages * sizeof(long) + PAGE_SIZE - 1) >> PAGE_SHIFT); |
| } |
| |
| static int close_swap(void) |
| { |
| swp_entry_t entry; |
| int error; |
| |
| dump_info(); |
| error = write_page((unsigned long)&swsusp_info, &entry); |
| if (!error) { |
| printk( "S" ); |
| error = mark_swapfiles(entry); |
| printk( "|\n" ); |
| } |
| return error; |
| } |
| |
| /** |
| * pack_orig_addresses - the .orig_address fields of the PBEs from the |
| * list starting at @pbe are stored in the array @buf[] (1 page) |
| */ |
| |
| static inline struct pbe *pack_orig_addresses(unsigned long *buf, |
| struct pbe *pbe) |
| { |
| int j; |
| |
| for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) { |
| buf[j] = pbe->orig_address; |
| pbe = pbe->next; |
| } |
| if (!pbe) |
| for (; j < PAGE_SIZE / sizeof(long); j++) |
| buf[j] = 0; |
| return pbe; |
| } |
| |
| /** |
| * save_image_metadata - save the .orig_address fields of the PBEs |
| * from the list @pblist using the swap map handle @handle |
| */ |
| |
| static int save_image_metadata(struct pbe *pblist, |
| struct swap_map_handle *handle) |
| { |
| unsigned long *buf; |
| unsigned int n = 0; |
| struct pbe *p; |
| int error = 0; |
| |
| printk("Saving image metadata ... "); |
| buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC); |
| if (!buf) |
| return -ENOMEM; |
| p = pblist; |
| while (p) { |
| p = pack_orig_addresses(buf, p); |
| error = swap_map_write_page(handle, (unsigned long)buf); |
| if (error) |
| break; |
| n++; |
| } |
| free_page((unsigned long)buf); |
| if (!error) |
| printk("done (%u pages saved)\n", n); |
| return error; |
| } |
| |
| /** |
| * enough_swap - Make sure we have enough swap to save the image. |
| * |
| * Returns TRUE or FALSE after checking the total amount of swap |
| * space avaiable. |
| * |
| * FIXME: si_swapinfo(&i) returns all swap devices information. |
| * We should only consider resume_device. |
| */ |
| |
| static int enough_swap(unsigned int nr_pages) |
| { |
| struct sysinfo i; |
| |
| si_swapinfo(&i); |
| pr_debug("swsusp: available swap: %lu pages\n", i.freeswap); |
| return i.freeswap > (nr_pages + PAGES_FOR_IO + |
| (nr_pages + PBES_PER_PAGE - 1) / PBES_PER_PAGE); |
| } |
| |
| /** |
| * write_suspend_image - Write entire image and metadata. |
| */ |
| static int write_suspend_image(struct pbe *pblist, unsigned int nr_pages) |
| { |
| struct swap_map_page *swap_map; |
| struct swap_map_handle handle; |
| int error; |
| |
| if (!enough_swap(nr_pages)) { |
| printk(KERN_ERR "swsusp: Not enough free swap\n"); |
| return -ENOSPC; |
| } |
| |
| init_header(nr_pages); |
| swap_map = alloc_swap_map(swsusp_info.pages); |
| if (!swap_map) |
| return -ENOMEM; |
| init_swap_map_handle(&handle, swap_map); |
| |
| error = save_image_metadata(pblist, &handle); |
| if (!error) |
| error = save_image_data(pblist, &handle, nr_pages); |
| if (error) |
| goto Free_image_entries; |
| |
| swap_map = reverse_swap_map(swap_map); |
| error = save_swap_map(swap_map, &swsusp_info.start); |
| if (error) |
| goto Free_map_entries; |
| |
| error = close_swap(); |
| if (error) |
| goto Free_map_entries; |
| |
| Free_swap_map: |
| free_swap_map(swap_map); |
| return error; |
| |
| Free_map_entries: |
| free_swap_map_entries(swap_map); |
| Free_image_entries: |
| free_image_entries(swap_map); |
| goto Free_swap_map; |
| } |
| |
| /* It is important _NOT_ to umount filesystems at this point. We want |
| * them synced (in case something goes wrong) but we DO not want to mark |
| * filesystem clean: it is not. (And it does not matter, if we resume |
| * correctly, we'll mark system clean, anyway.) |
| */ |
| int swsusp_write(struct pbe *pblist, unsigned int nr_pages) |
| { |
| int error; |
| |
| if ((error = swsusp_swap_check())) { |
| printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n"); |
| return error; |
| } |
| lock_swapdevices(); |
| error = write_suspend_image(pblist, nr_pages); |
| /* This will unlock ignored swap devices since writing is finished */ |
| lock_swapdevices(); |
| return error; |
| } |
| |
| int swsusp_suspend(void) |
| { |
| int error; |
| |
| if ((error = arch_prepare_suspend())) |
| return error; |
| local_irq_disable(); |
| /* At this point, device_suspend() has been called, but *not* |
| * device_power_down(). We *must* device_power_down() now. |
| * Otherwise, drivers for some devices (e.g. interrupt controllers) |
| * become desynchronized with the actual state of the hardware |
| * at resume time, and evil weirdness ensues. |
| */ |
| if ((error = device_power_down(PMSG_FREEZE))) { |
| printk(KERN_ERR "Some devices failed to power down, aborting suspend\n"); |
| goto Enable_irqs; |
| } |
| |
| if ((error = save_highmem())) { |
| printk(KERN_ERR "swsusp: Not enough free pages for highmem\n"); |
| goto Restore_highmem; |
| } |
| |
| save_processor_state(); |
| if ((error = swsusp_arch_suspend())) |
| printk(KERN_ERR "Error %d suspending\n", error); |
| /* Restore control flow magically appears here */ |
| restore_processor_state(); |
| Restore_highmem: |
| restore_highmem(); |
| device_power_up(); |
| Enable_irqs: |
| local_irq_enable(); |
| return error; |
| } |
| |
| int swsusp_resume(void) |
| { |
| int error; |
| local_irq_disable(); |
| if (device_power_down(PMSG_FREEZE)) |
| printk(KERN_ERR "Some devices failed to power down, very bad\n"); |
| /* We'll ignore saved state, but this gets preempt count (etc) right */ |
| save_processor_state(); |
| error = swsusp_arch_resume(); |
| /* Code below is only ever reached in case of failure. Otherwise |
| * execution continues at place where swsusp_arch_suspend was called |
| */ |
| BUG_ON(!error); |
| /* The only reason why swsusp_arch_resume() can fail is memory being |
| * very tight, so we have to free it as soon as we can to avoid |
| * subsequent failures |
| */ |
| swsusp_free(); |
| restore_processor_state(); |
| restore_highmem(); |
| touch_softlockup_watchdog(); |
| device_power_up(); |
| local_irq_enable(); |
| return error; |
| } |
| |
| /** |
| * mark_unsafe_pages - mark the pages that cannot be used for storing |
| * the image during resume, because they conflict with the pages that |
| * had been used before suspend |
| */ |
| |
| static void mark_unsafe_pages(struct pbe *pblist) |
| { |
| struct zone *zone; |
| unsigned long zone_pfn; |
| struct pbe *p; |
| |
| if (!pblist) /* a sanity check */ |
| return; |
| |
| /* Clear page flags */ |
| for_each_zone (zone) { |
| for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) |
| if (pfn_valid(zone_pfn + zone->zone_start_pfn)) |
| ClearPageNosaveFree(pfn_to_page(zone_pfn + |
| zone->zone_start_pfn)); |
| } |
| |
| /* Mark orig addresses */ |
| for_each_pbe (p, pblist) |
| SetPageNosaveFree(virt_to_page(p->orig_address)); |
| |
| } |
| |
| static void copy_page_backup_list(struct pbe *dst, struct pbe *src) |
| { |
| /* We assume both lists contain the same number of elements */ |
| while (src) { |
| dst->orig_address = src->orig_address; |
| dst = dst->next; |
| src = src->next; |
| } |
| } |
| |
| /* |
| * Using bio to read from swap. |
| * This code requires a bit more work than just using buffer heads |
| * but, it is the recommended way for 2.5/2.6. |
| * The following are to signal the beginning and end of I/O. Bios |
| * finish asynchronously, while we want them to happen synchronously. |
| * A simple atomic_t, and a wait loop take care of this problem. |
| */ |
| |
| static atomic_t io_done = ATOMIC_INIT(0); |
| |
| static int end_io(struct bio *bio, unsigned int num, int err) |
| { |
| if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| panic("I/O error reading memory image"); |
| atomic_set(&io_done, 0); |
| return 0; |
| } |
| |
| static struct block_device *resume_bdev; |
| |
| /** |
| * submit - submit BIO request. |
| * @rw: READ or WRITE. |
| * @off physical offset of page. |
| * @page: page we're reading or writing. |
| * |
| * Straight from the textbook - allocate and initialize the bio. |
| * If we're writing, make sure the page is marked as dirty. |
| * Then submit it and wait. |
| */ |
| |
| static int submit(int rw, pgoff_t page_off, void *page) |
| { |
| int error = 0; |
| struct bio *bio; |
| |
| bio = bio_alloc(GFP_ATOMIC, 1); |
| if (!bio) |
| return -ENOMEM; |
| bio->bi_sector = page_off * (PAGE_SIZE >> 9); |
| bio_get(bio); |
| bio->bi_bdev = resume_bdev; |
| bio->bi_end_io = end_io; |
| |
| if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) { |
| printk("swsusp: ERROR: adding page to bio at %ld\n",page_off); |
| error = -EFAULT; |
| goto Done; |
| } |
| |
| if (rw == WRITE) |
| bio_set_pages_dirty(bio); |
| |
| atomic_set(&io_done, 1); |
| submit_bio(rw | (1 << BIO_RW_SYNC), bio); |
| while (atomic_read(&io_done)) |
| yield(); |
| |
| Done: |
| bio_put(bio); |
| return error; |
| } |
| |
| static int bio_read_page(pgoff_t page_off, void *page) |
| { |
| return submit(READ, page_off, page); |
| } |
| |
| static int bio_write_page(pgoff_t page_off, void *page) |
| { |
| return submit(WRITE, page_off, page); |
| } |
| |
| /** |
| * The following functions allow us to read data using a swap map |
| * in a file-alike way |
| */ |
| |
| static inline void release_swap_map_reader(struct swap_map_handle *handle) |
| { |
| if (handle->cur) |
| free_page((unsigned long)handle->cur); |
| handle->cur = NULL; |
| } |
| |
| static inline int get_swap_map_reader(struct swap_map_handle *handle, |
| swp_entry_t start) |
| { |
| int error; |
| |
| if (!swp_offset(start)) |
| return -EINVAL; |
| handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_ATOMIC); |
| if (!handle->cur) |
| return -ENOMEM; |
| error = bio_read_page(swp_offset(start), handle->cur); |
| if (error) { |
| release_swap_map_reader(handle); |
| return error; |
| } |
| handle->k = 0; |
| return 0; |
| } |
| |
| static inline int swap_map_read_page(struct swap_map_handle *handle, void *buf) |
| { |
| unsigned long offset; |
| int error; |
| |
| if (!handle->cur) |
| return -EINVAL; |
| offset = swp_offset(handle->cur->entries[handle->k]); |
| if (!offset) |
| return -EINVAL; |
| error = bio_read_page(offset, buf); |
| if (error) |
| return error; |
| if (++handle->k >= MAP_PAGE_SIZE) { |
| handle->k = 0; |
| offset = swp_offset(handle->cur->next_swap); |
| if (!offset) |
| release_swap_map_reader(handle); |
| else |
| error = bio_read_page(offset, handle->cur); |
| } |
| return error; |
| } |
| |
| /* |
| * Sanity check if this image makes sense with this kernel/swap context |
| * I really don't think that it's foolproof but more than nothing.. |
| */ |
| |
| static const char *sanity_check(void) |
| { |
| dump_info(); |
| if (swsusp_info.version_code != LINUX_VERSION_CODE) |
| return "kernel version"; |
| if (swsusp_info.num_physpages != num_physpages) |
| return "memory size"; |
| if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname)) |
| return "system type"; |
| if (strcmp(swsusp_info.uts.release,system_utsname.release)) |
| return "kernel release"; |
| if (strcmp(swsusp_info.uts.version,system_utsname.version)) |
| return "version"; |
| if (strcmp(swsusp_info.uts.machine,system_utsname.machine)) |
| return "machine"; |
| #if 0 |
| /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */ |
| if (swsusp_info.cpus != num_possible_cpus()) |
| return "number of cpus"; |
| #endif |
| return NULL; |
| } |
| |
| static int check_header(void) |
| { |
| const char *reason = NULL; |
| int error; |
| |
| if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info))) |
| return error; |
| |
| /* Is this same machine? */ |
| if ((reason = sanity_check())) { |
| printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason); |
| return -EPERM; |
| } |
| return error; |
| } |
| |
| static int check_sig(void) |
| { |
| int error; |
| |
| memset(&swsusp_header, 0, sizeof(swsusp_header)); |
| if ((error = bio_read_page(0, &swsusp_header))) |
| return error; |
| if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) { |
| memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10); |
| |
| /* |
| * Reset swap signature now. |
| */ |
| error = bio_write_page(0, &swsusp_header); |
| } else { |
| return -EINVAL; |
| } |
| if (!error) |
| pr_debug("swsusp: Signature found, resuming\n"); |
| return error; |
| } |
| |
| /** |
| * load_image_data - load the image data using the swap map handle |
| * @handle and store them using the page backup list @pblist |
| * (assume there are @nr_pages pages to load) |
| */ |
| |
| static int load_image_data(struct pbe *pblist, |
| struct swap_map_handle *handle, |
| unsigned int nr_pages) |
| { |
| int error; |
| unsigned int m; |
| struct pbe *p; |
| |
| if (!pblist) |
| return -EINVAL; |
| printk("Loading image data pages (%u pages) ... ", nr_pages); |
| m = nr_pages / 100; |
| if (!m) |
| m = 1; |
| nr_pages = 0; |
| p = pblist; |
| while (p) { |
| error = swap_map_read_page(handle, (void *)p->address); |
| if (error) |
| break; |
| p = p->next; |
| if (!(nr_pages % m)) |
| printk("\b\b\b\b%3d%%", nr_pages / m); |
| nr_pages++; |
| } |
| if (!error) |
| printk("\b\b\b\bdone\n"); |
| return error; |
| } |
| |
| /** |
| * unpack_orig_addresses - copy the elements of @buf[] (1 page) to |
| * the PBEs in the list starting at @pbe |
| */ |
| |
| static inline struct pbe *unpack_orig_addresses(unsigned long *buf, |
| struct pbe *pbe) |
| { |
| int j; |
| |
| for (j = 0; j < PAGE_SIZE / sizeof(long) && pbe; j++) { |
| pbe->orig_address = buf[j]; |
| pbe = pbe->next; |
| } |
| return pbe; |
| } |
| |
| /** |
| * load_image_metadata - load the image metadata using the swap map |
| * handle @handle and put them into the PBEs in the list @pblist |
| */ |
| |
| static int load_image_metadata(struct pbe *pblist, struct swap_map_handle *handle) |
| { |
| struct pbe *p; |
| unsigned long *buf; |
| unsigned int n = 0; |
| int error = 0; |
| |
| printk("Loading image metadata ... "); |
| buf = (unsigned long *)get_zeroed_page(GFP_ATOMIC); |
| if (!buf) |
| return -ENOMEM; |
| p = pblist; |
| while (p) { |
| error = swap_map_read_page(handle, buf); |
| if (error) |
| break; |
| p = unpack_orig_addresses(buf, p); |
| n++; |
| } |
| free_page((unsigned long)buf); |
| if (!error) |
| printk("done (%u pages loaded)\n", n); |
| return error; |
| } |
| |
| static int check_suspend_image(void) |
| { |
| int error = 0; |
| |
| if ((error = check_sig())) |
| return error; |
| |
| if ((error = check_header())) |
| return error; |
| |
| return 0; |
| } |
| |
| static int read_suspend_image(struct pbe **pblist_ptr) |
| { |
| int error = 0; |
| struct pbe *p, *pblist; |
| struct swap_map_handle handle; |
| unsigned int nr_pages = swsusp_info.image_pages; |
| |
| p = alloc_pagedir(nr_pages, GFP_ATOMIC, 0); |
| if (!p) |
| return -ENOMEM; |
| error = get_swap_map_reader(&handle, swsusp_info.start); |
| if (error) |
| /* The PBE list at p will be released by swsusp_free() */ |
| return error; |
| error = load_image_metadata(p, &handle); |
| if (!error) { |
| mark_unsafe_pages(p); |
| pblist = alloc_pagedir(nr_pages, GFP_ATOMIC, 1); |
| if (pblist) |
| copy_page_backup_list(pblist, p); |
| free_pagedir(p); |
| if (!pblist) |
| error = -ENOMEM; |
| |
| /* Allocate memory for the image and read the data from swap */ |
| if (!error) |
| error = alloc_data_pages(pblist, GFP_ATOMIC, 1); |
| if (!error) |
| error = load_image_data(pblist, &handle, nr_pages); |
| if (!error) |
| *pblist_ptr = pblist; |
| } |
| release_swap_map_reader(&handle); |
| return error; |
| } |
| |
| /** |
| * swsusp_check - Check for saved image in swap |
| */ |
| |
| int swsusp_check(void) |
| { |
| int error; |
| |
| resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ); |
| if (!IS_ERR(resume_bdev)) { |
| set_blocksize(resume_bdev, PAGE_SIZE); |
| error = check_suspend_image(); |
| if (error) |
| blkdev_put(resume_bdev); |
| } else |
| error = PTR_ERR(resume_bdev); |
| |
| if (!error) |
| pr_debug("swsusp: resume file found\n"); |
| else |
| pr_debug("swsusp: Error %d check for resume file\n", error); |
| return error; |
| } |
| |
| /** |
| * swsusp_read - Read saved image from swap. |
| */ |
| |
| int swsusp_read(struct pbe **pblist_ptr) |
| { |
| int error; |
| |
| if (IS_ERR(resume_bdev)) { |
| pr_debug("swsusp: block device not initialised\n"); |
| return PTR_ERR(resume_bdev); |
| } |
| |
| error = read_suspend_image(pblist_ptr); |
| blkdev_put(resume_bdev); |
| |
| if (!error) |
| pr_debug("swsusp: Reading resume file was successful\n"); |
| else |
| pr_debug("swsusp: Error %d resuming\n", error); |
| return error; |
| } |
| |
| /** |
| * swsusp_close - close swap device. |
| */ |
| |
| void swsusp_close(void) |
| { |
| if (IS_ERR(resume_bdev)) { |
| pr_debug("swsusp: block device not initialised\n"); |
| return; |
| } |
| |
| blkdev_put(resume_bdev); |
| } |