| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * NILFS segment constructor. |
| * |
| * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. |
| * |
| * Written by Ryusuke Konishi. |
| * |
| */ |
| |
| #include <linux/pagemap.h> |
| #include <linux/buffer_head.h> |
| #include <linux/writeback.h> |
| #include <linux/bitops.h> |
| #include <linux/bio.h> |
| #include <linux/completion.h> |
| #include <linux/blkdev.h> |
| #include <linux/backing-dev.h> |
| #include <linux/freezer.h> |
| #include <linux/kthread.h> |
| #include <linux/crc32.h> |
| #include <linux/pagevec.h> |
| #include <linux/slab.h> |
| #include <linux/sched/signal.h> |
| |
| #include "nilfs.h" |
| #include "btnode.h" |
| #include "page.h" |
| #include "segment.h" |
| #include "sufile.h" |
| #include "cpfile.h" |
| #include "ifile.h" |
| #include "segbuf.h" |
| |
| |
| /* |
| * Segment constructor |
| */ |
| #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */ |
| |
| #define SC_MAX_SEGDELTA 64 /* |
| * Upper limit of the number of segments |
| * appended in collection retry loop |
| */ |
| |
| /* Construction mode */ |
| enum { |
| SC_LSEG_SR = 1, /* Make a logical segment having a super root */ |
| SC_LSEG_DSYNC, /* |
| * Flush data blocks of a given file and make |
| * a logical segment without a super root. |
| */ |
| SC_FLUSH_FILE, /* |
| * Flush data files, leads to segment writes without |
| * creating a checkpoint. |
| */ |
| SC_FLUSH_DAT, /* |
| * Flush DAT file. This also creates segments |
| * without a checkpoint. |
| */ |
| }; |
| |
| /* Stage numbers of dirty block collection */ |
| enum { |
| NILFS_ST_INIT = 0, |
| NILFS_ST_GC, /* Collecting dirty blocks for GC */ |
| NILFS_ST_FILE, |
| NILFS_ST_IFILE, |
| NILFS_ST_CPFILE, |
| NILFS_ST_SUFILE, |
| NILFS_ST_DAT, |
| NILFS_ST_SR, /* Super root */ |
| NILFS_ST_DSYNC, /* Data sync blocks */ |
| NILFS_ST_DONE, |
| }; |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/nilfs2.h> |
| |
| /* |
| * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are |
| * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of |
| * the variable must use them because transition of stage count must involve |
| * trace events (trace_nilfs2_collection_stage_transition). |
| * |
| * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't |
| * produce tracepoint events. It is provided just for making the intention |
| * clear. |
| */ |
| static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci) |
| { |
| sci->sc_stage.scnt++; |
| trace_nilfs2_collection_stage_transition(sci); |
| } |
| |
| static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt) |
| { |
| sci->sc_stage.scnt = next_scnt; |
| trace_nilfs2_collection_stage_transition(sci); |
| } |
| |
| static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci) |
| { |
| return sci->sc_stage.scnt; |
| } |
| |
| /* State flags of collection */ |
| #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */ |
| #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */ |
| #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */ |
| #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED) |
| |
| /* Operations depending on the construction mode and file type */ |
| struct nilfs_sc_operations { |
| int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *, |
| struct inode *); |
| int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *, |
| struct inode *); |
| int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *, |
| struct inode *); |
| void (*write_data_binfo)(struct nilfs_sc_info *, |
| struct nilfs_segsum_pointer *, |
| union nilfs_binfo *); |
| void (*write_node_binfo)(struct nilfs_sc_info *, |
| struct nilfs_segsum_pointer *, |
| union nilfs_binfo *); |
| }; |
| |
| /* |
| * Other definitions |
| */ |
| static void nilfs_segctor_start_timer(struct nilfs_sc_info *); |
| static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int); |
| static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *); |
| static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int); |
| |
| #define nilfs_cnt32_ge(a, b) \ |
| (typecheck(__u32, a) && typecheck(__u32, b) && \ |
| ((__s32)((a) - (b)) >= 0)) |
| |
| static int nilfs_prepare_segment_lock(struct super_block *sb, |
| struct nilfs_transaction_info *ti) |
| { |
| struct nilfs_transaction_info *cur_ti = current->journal_info; |
| void *save = NULL; |
| |
| if (cur_ti) { |
| if (cur_ti->ti_magic == NILFS_TI_MAGIC) |
| return ++cur_ti->ti_count; |
| |
| /* |
| * If journal_info field is occupied by other FS, |
| * it is saved and will be restored on |
| * nilfs_transaction_commit(). |
| */ |
| nilfs_warn(sb, "journal info from a different FS"); |
| save = current->journal_info; |
| } |
| if (!ti) { |
| ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS); |
| if (!ti) |
| return -ENOMEM; |
| ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC; |
| } else { |
| ti->ti_flags = 0; |
| } |
| ti->ti_count = 0; |
| ti->ti_save = save; |
| ti->ti_magic = NILFS_TI_MAGIC; |
| current->journal_info = ti; |
| return 0; |
| } |
| |
| /** |
| * nilfs_transaction_begin - start indivisible file operations. |
| * @sb: super block |
| * @ti: nilfs_transaction_info |
| * @vacancy_check: flags for vacancy rate checks |
| * |
| * nilfs_transaction_begin() acquires a reader/writer semaphore, called |
| * the segment semaphore, to make a segment construction and write tasks |
| * exclusive. The function is used with nilfs_transaction_commit() in pairs. |
| * The region enclosed by these two functions can be nested. To avoid a |
| * deadlock, the semaphore is only acquired or released in the outermost call. |
| * |
| * This function allocates a nilfs_transaction_info struct to keep context |
| * information on it. It is initialized and hooked onto the current task in |
| * the outermost call. If a pre-allocated struct is given to @ti, it is used |
| * instead; otherwise a new struct is assigned from a slab. |
| * |
| * When @vacancy_check flag is set, this function will check the amount of |
| * free space, and will wait for the GC to reclaim disk space if low capacity. |
| * |
| * Return Value: On success, 0 is returned. On error, one of the following |
| * negative error code is returned. |
| * |
| * %-ENOMEM - Insufficient memory available. |
| * |
| * %-ENOSPC - No space left on device |
| */ |
| int nilfs_transaction_begin(struct super_block *sb, |
| struct nilfs_transaction_info *ti, |
| int vacancy_check) |
| { |
| struct the_nilfs *nilfs; |
| int ret = nilfs_prepare_segment_lock(sb, ti); |
| struct nilfs_transaction_info *trace_ti; |
| |
| if (unlikely(ret < 0)) |
| return ret; |
| if (ret > 0) { |
| trace_ti = current->journal_info; |
| |
| trace_nilfs2_transaction_transition(sb, trace_ti, |
| trace_ti->ti_count, trace_ti->ti_flags, |
| TRACE_NILFS2_TRANSACTION_BEGIN); |
| return 0; |
| } |
| |
| sb_start_intwrite(sb); |
| |
| nilfs = sb->s_fs_info; |
| down_read(&nilfs->ns_segctor_sem); |
| if (vacancy_check && nilfs_near_disk_full(nilfs)) { |
| up_read(&nilfs->ns_segctor_sem); |
| ret = -ENOSPC; |
| goto failed; |
| } |
| |
| trace_ti = current->journal_info; |
| trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count, |
| trace_ti->ti_flags, |
| TRACE_NILFS2_TRANSACTION_BEGIN); |
| return 0; |
| |
| failed: |
| ti = current->journal_info; |
| current->journal_info = ti->ti_save; |
| if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) |
| kmem_cache_free(nilfs_transaction_cachep, ti); |
| sb_end_intwrite(sb); |
| return ret; |
| } |
| |
| /** |
| * nilfs_transaction_commit - commit indivisible file operations. |
| * @sb: super block |
| * |
| * nilfs_transaction_commit() releases the read semaphore which is |
| * acquired by nilfs_transaction_begin(). This is only performed |
| * in outermost call of this function. If a commit flag is set, |
| * nilfs_transaction_commit() sets a timer to start the segment |
| * constructor. If a sync flag is set, it starts construction |
| * directly. |
| */ |
| int nilfs_transaction_commit(struct super_block *sb) |
| { |
| struct nilfs_transaction_info *ti = current->journal_info; |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| int err = 0; |
| |
| BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); |
| ti->ti_flags |= NILFS_TI_COMMIT; |
| if (ti->ti_count > 0) { |
| ti->ti_count--; |
| trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, |
| ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); |
| return 0; |
| } |
| if (nilfs->ns_writer) { |
| struct nilfs_sc_info *sci = nilfs->ns_writer; |
| |
| if (ti->ti_flags & NILFS_TI_COMMIT) |
| nilfs_segctor_start_timer(sci); |
| if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark) |
| nilfs_segctor_do_flush(sci, 0); |
| } |
| up_read(&nilfs->ns_segctor_sem); |
| trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, |
| ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT); |
| |
| current->journal_info = ti->ti_save; |
| |
| if (ti->ti_flags & NILFS_TI_SYNC) |
| err = nilfs_construct_segment(sb); |
| if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) |
| kmem_cache_free(nilfs_transaction_cachep, ti); |
| sb_end_intwrite(sb); |
| return err; |
| } |
| |
| void nilfs_transaction_abort(struct super_block *sb) |
| { |
| struct nilfs_transaction_info *ti = current->journal_info; |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| |
| BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); |
| if (ti->ti_count > 0) { |
| ti->ti_count--; |
| trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, |
| ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); |
| return; |
| } |
| up_read(&nilfs->ns_segctor_sem); |
| |
| trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, |
| ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT); |
| |
| current->journal_info = ti->ti_save; |
| if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC) |
| kmem_cache_free(nilfs_transaction_cachep, ti); |
| sb_end_intwrite(sb); |
| } |
| |
| void nilfs_relax_pressure_in_lock(struct super_block *sb) |
| { |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| struct nilfs_sc_info *sci = nilfs->ns_writer; |
| |
| if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request) |
| return; |
| |
| set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); |
| up_read(&nilfs->ns_segctor_sem); |
| |
| down_write(&nilfs->ns_segctor_sem); |
| if (sci->sc_flush_request && |
| test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) { |
| struct nilfs_transaction_info *ti = current->journal_info; |
| |
| ti->ti_flags |= NILFS_TI_WRITER; |
| nilfs_segctor_do_immediate_flush(sci); |
| ti->ti_flags &= ~NILFS_TI_WRITER; |
| } |
| downgrade_write(&nilfs->ns_segctor_sem); |
| } |
| |
| static void nilfs_transaction_lock(struct super_block *sb, |
| struct nilfs_transaction_info *ti, |
| int gcflag) |
| { |
| struct nilfs_transaction_info *cur_ti = current->journal_info; |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| struct nilfs_sc_info *sci = nilfs->ns_writer; |
| |
| WARN_ON(cur_ti); |
| ti->ti_flags = NILFS_TI_WRITER; |
| ti->ti_count = 0; |
| ti->ti_save = cur_ti; |
| ti->ti_magic = NILFS_TI_MAGIC; |
| current->journal_info = ti; |
| |
| for (;;) { |
| trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, |
| ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK); |
| |
| down_write(&nilfs->ns_segctor_sem); |
| if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) |
| break; |
| |
| nilfs_segctor_do_immediate_flush(sci); |
| |
| up_write(&nilfs->ns_segctor_sem); |
| cond_resched(); |
| } |
| if (gcflag) |
| ti->ti_flags |= NILFS_TI_GC; |
| |
| trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, |
| ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK); |
| } |
| |
| static void nilfs_transaction_unlock(struct super_block *sb) |
| { |
| struct nilfs_transaction_info *ti = current->journal_info; |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| |
| BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC); |
| BUG_ON(ti->ti_count > 0); |
| |
| up_write(&nilfs->ns_segctor_sem); |
| current->journal_info = ti->ti_save; |
| |
| trace_nilfs2_transaction_transition(sb, ti, ti->ti_count, |
| ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK); |
| } |
| |
| static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci, |
| struct nilfs_segsum_pointer *ssp, |
| unsigned int bytes) |
| { |
| struct nilfs_segment_buffer *segbuf = sci->sc_curseg; |
| unsigned int blocksize = sci->sc_super->s_blocksize; |
| void *p; |
| |
| if (unlikely(ssp->offset + bytes > blocksize)) { |
| ssp->offset = 0; |
| BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh, |
| &segbuf->sb_segsum_buffers)); |
| ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh); |
| } |
| p = ssp->bh->b_data + ssp->offset; |
| ssp->offset += bytes; |
| return p; |
| } |
| |
| /** |
| * nilfs_segctor_reset_segment_buffer - reset the current segment buffer |
| * @sci: nilfs_sc_info |
| */ |
| static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci) |
| { |
| struct nilfs_segment_buffer *segbuf = sci->sc_curseg; |
| struct buffer_head *sumbh; |
| unsigned int sumbytes; |
| unsigned int flags = 0; |
| int err; |
| |
| if (nilfs_doing_gc()) |
| flags = NILFS_SS_GC; |
| err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno); |
| if (unlikely(err)) |
| return err; |
| |
| sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); |
| sumbytes = segbuf->sb_sum.sumbytes; |
| sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes; |
| sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes; |
| sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; |
| return 0; |
| } |
| |
| /** |
| * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area |
| * @sci: segment constructor object |
| * |
| * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of |
| * the current segment summary block. |
| */ |
| static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci) |
| { |
| struct nilfs_segsum_pointer *ssp; |
| |
| ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr; |
| if (ssp->offset < ssp->bh->b_size) |
| memset(ssp->bh->b_data + ssp->offset, 0, |
| ssp->bh->b_size - ssp->offset); |
| } |
| |
| static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci) |
| { |
| sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; |
| if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs)) |
| return -E2BIG; /* |
| * The current segment is filled up |
| * (internal code) |
| */ |
| nilfs_segctor_zeropad_segsum(sci); |
| sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg); |
| return nilfs_segctor_reset_segment_buffer(sci); |
| } |
| |
| static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci) |
| { |
| struct nilfs_segment_buffer *segbuf = sci->sc_curseg; |
| int err; |
| |
| if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) { |
| err = nilfs_segctor_feed_segment(sci); |
| if (err) |
| return err; |
| segbuf = sci->sc_curseg; |
| } |
| err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root); |
| if (likely(!err)) |
| segbuf->sb_sum.flags |= NILFS_SS_SR; |
| return err; |
| } |
| |
| /* |
| * Functions for making segment summary and payloads |
| */ |
| static int nilfs_segctor_segsum_block_required( |
| struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp, |
| unsigned int binfo_size) |
| { |
| unsigned int blocksize = sci->sc_super->s_blocksize; |
| /* Size of finfo and binfo is enough small against blocksize */ |
| |
| return ssp->offset + binfo_size + |
| (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) > |
| blocksize; |
| } |
| |
| static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci, |
| struct inode *inode) |
| { |
| sci->sc_curseg->sb_sum.nfinfo++; |
| sci->sc_binfo_ptr = sci->sc_finfo_ptr; |
| nilfs_segctor_map_segsum_entry( |
| sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo)); |
| |
| if (NILFS_I(inode)->i_root && |
| !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)) |
| set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); |
| /* skip finfo */ |
| } |
| |
| static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci, |
| struct inode *inode) |
| { |
| struct nilfs_finfo *finfo; |
| struct nilfs_inode_info *ii; |
| struct nilfs_segment_buffer *segbuf; |
| __u64 cno; |
| |
| if (sci->sc_blk_cnt == 0) |
| return; |
| |
| ii = NILFS_I(inode); |
| |
| if (ii->i_type & NILFS_I_TYPE_GC) |
| cno = ii->i_cno; |
| else if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) |
| cno = 0; |
| else |
| cno = sci->sc_cno; |
| |
| finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr, |
| sizeof(*finfo)); |
| finfo->fi_ino = cpu_to_le64(inode->i_ino); |
| finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt); |
| finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt); |
| finfo->fi_cno = cpu_to_le64(cno); |
| |
| segbuf = sci->sc_curseg; |
| segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset + |
| sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1); |
| sci->sc_finfo_ptr = sci->sc_binfo_ptr; |
| sci->sc_blk_cnt = sci->sc_datablk_cnt = 0; |
| } |
| |
| static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci, |
| struct buffer_head *bh, |
| struct inode *inode, |
| unsigned int binfo_size) |
| { |
| struct nilfs_segment_buffer *segbuf; |
| int required, err = 0; |
| |
| retry: |
| segbuf = sci->sc_curseg; |
| required = nilfs_segctor_segsum_block_required( |
| sci, &sci->sc_binfo_ptr, binfo_size); |
| if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) { |
| nilfs_segctor_end_finfo(sci, inode); |
| err = nilfs_segctor_feed_segment(sci); |
| if (err) |
| return err; |
| goto retry; |
| } |
| if (unlikely(required)) { |
| nilfs_segctor_zeropad_segsum(sci); |
| err = nilfs_segbuf_extend_segsum(segbuf); |
| if (unlikely(err)) |
| goto failed; |
| } |
| if (sci->sc_blk_cnt == 0) |
| nilfs_segctor_begin_finfo(sci, inode); |
| |
| nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size); |
| /* Substitution to vblocknr is delayed until update_blocknr() */ |
| nilfs_segbuf_add_file_buffer(segbuf, bh); |
| sci->sc_blk_cnt++; |
| failed: |
| return err; |
| } |
| |
| /* |
| * Callback functions that enumerate, mark, and collect dirty blocks |
| */ |
| static int nilfs_collect_file_data(struct nilfs_sc_info *sci, |
| struct buffer_head *bh, struct inode *inode) |
| { |
| int err; |
| |
| err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); |
| if (err < 0) |
| return err; |
| |
| err = nilfs_segctor_add_file_block(sci, bh, inode, |
| sizeof(struct nilfs_binfo_v)); |
| if (!err) |
| sci->sc_datablk_cnt++; |
| return err; |
| } |
| |
| static int nilfs_collect_file_node(struct nilfs_sc_info *sci, |
| struct buffer_head *bh, |
| struct inode *inode) |
| { |
| return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); |
| } |
| |
| static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci, |
| struct buffer_head *bh, |
| struct inode *inode) |
| { |
| WARN_ON(!buffer_dirty(bh)); |
| return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); |
| } |
| |
| static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci, |
| struct nilfs_segsum_pointer *ssp, |
| union nilfs_binfo *binfo) |
| { |
| struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry( |
| sci, ssp, sizeof(*binfo_v)); |
| *binfo_v = binfo->bi_v; |
| } |
| |
| static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci, |
| struct nilfs_segsum_pointer *ssp, |
| union nilfs_binfo *binfo) |
| { |
| __le64 *vblocknr = nilfs_segctor_map_segsum_entry( |
| sci, ssp, sizeof(*vblocknr)); |
| *vblocknr = binfo->bi_v.bi_vblocknr; |
| } |
| |
| static const struct nilfs_sc_operations nilfs_sc_file_ops = { |
| .collect_data = nilfs_collect_file_data, |
| .collect_node = nilfs_collect_file_node, |
| .collect_bmap = nilfs_collect_file_bmap, |
| .write_data_binfo = nilfs_write_file_data_binfo, |
| .write_node_binfo = nilfs_write_file_node_binfo, |
| }; |
| |
| static int nilfs_collect_dat_data(struct nilfs_sc_info *sci, |
| struct buffer_head *bh, struct inode *inode) |
| { |
| int err; |
| |
| err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh); |
| if (err < 0) |
| return err; |
| |
| err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64)); |
| if (!err) |
| sci->sc_datablk_cnt++; |
| return err; |
| } |
| |
| static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci, |
| struct buffer_head *bh, struct inode *inode) |
| { |
| WARN_ON(!buffer_dirty(bh)); |
| return nilfs_segctor_add_file_block(sci, bh, inode, |
| sizeof(struct nilfs_binfo_dat)); |
| } |
| |
| static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci, |
| struct nilfs_segsum_pointer *ssp, |
| union nilfs_binfo *binfo) |
| { |
| __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp, |
| sizeof(*blkoff)); |
| *blkoff = binfo->bi_dat.bi_blkoff; |
| } |
| |
| static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci, |
| struct nilfs_segsum_pointer *ssp, |
| union nilfs_binfo *binfo) |
| { |
| struct nilfs_binfo_dat *binfo_dat = |
| nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat)); |
| *binfo_dat = binfo->bi_dat; |
| } |
| |
| static const struct nilfs_sc_operations nilfs_sc_dat_ops = { |
| .collect_data = nilfs_collect_dat_data, |
| .collect_node = nilfs_collect_file_node, |
| .collect_bmap = nilfs_collect_dat_bmap, |
| .write_data_binfo = nilfs_write_dat_data_binfo, |
| .write_node_binfo = nilfs_write_dat_node_binfo, |
| }; |
| |
| static const struct nilfs_sc_operations nilfs_sc_dsync_ops = { |
| .collect_data = nilfs_collect_file_data, |
| .collect_node = NULL, |
| .collect_bmap = NULL, |
| .write_data_binfo = nilfs_write_file_data_binfo, |
| .write_node_binfo = NULL, |
| }; |
| |
| static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode, |
| struct list_head *listp, |
| size_t nlimit, |
| loff_t start, loff_t end) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct folio_batch fbatch; |
| pgoff_t index = 0, last = ULONG_MAX; |
| size_t ndirties = 0; |
| int i; |
| |
| if (unlikely(start != 0 || end != LLONG_MAX)) { |
| /* |
| * A valid range is given for sync-ing data pages. The |
| * range is rounded to per-page; extra dirty buffers |
| * may be included if blocksize < pagesize. |
| */ |
| index = start >> PAGE_SHIFT; |
| last = end >> PAGE_SHIFT; |
| } |
| folio_batch_init(&fbatch); |
| repeat: |
| if (unlikely(index > last) || |
| !filemap_get_folios_tag(mapping, &index, last, |
| PAGECACHE_TAG_DIRTY, &fbatch)) |
| return ndirties; |
| |
| for (i = 0; i < folio_batch_count(&fbatch); i++) { |
| struct buffer_head *bh, *head; |
| struct folio *folio = fbatch.folios[i]; |
| |
| folio_lock(folio); |
| if (unlikely(folio->mapping != mapping)) { |
| /* Exclude folios removed from the address space */ |
| folio_unlock(folio); |
| continue; |
| } |
| head = folio_buffers(folio); |
| if (!head) |
| head = create_empty_buffers(folio, |
| i_blocksize(inode), 0); |
| folio_unlock(folio); |
| |
| bh = head; |
| do { |
| if (!buffer_dirty(bh) || buffer_async_write(bh)) |
| continue; |
| get_bh(bh); |
| list_add_tail(&bh->b_assoc_buffers, listp); |
| ndirties++; |
| if (unlikely(ndirties >= nlimit)) { |
| folio_batch_release(&fbatch); |
| cond_resched(); |
| return ndirties; |
| } |
| } while (bh = bh->b_this_page, bh != head); |
| } |
| folio_batch_release(&fbatch); |
| cond_resched(); |
| goto repeat; |
| } |
| |
| static void nilfs_lookup_dirty_node_buffers(struct inode *inode, |
| struct list_head *listp) |
| { |
| struct nilfs_inode_info *ii = NILFS_I(inode); |
| struct inode *btnc_inode = ii->i_assoc_inode; |
| struct folio_batch fbatch; |
| struct buffer_head *bh, *head; |
| unsigned int i; |
| pgoff_t index = 0; |
| |
| if (!btnc_inode) |
| return; |
| folio_batch_init(&fbatch); |
| |
| while (filemap_get_folios_tag(btnc_inode->i_mapping, &index, |
| (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) { |
| for (i = 0; i < folio_batch_count(&fbatch); i++) { |
| bh = head = folio_buffers(fbatch.folios[i]); |
| do { |
| if (buffer_dirty(bh) && |
| !buffer_async_write(bh)) { |
| get_bh(bh); |
| list_add_tail(&bh->b_assoc_buffers, |
| listp); |
| } |
| bh = bh->b_this_page; |
| } while (bh != head); |
| } |
| folio_batch_release(&fbatch); |
| cond_resched(); |
| } |
| } |
| |
| static void nilfs_dispose_list(struct the_nilfs *nilfs, |
| struct list_head *head, int force) |
| { |
| struct nilfs_inode_info *ii, *n; |
| struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii; |
| unsigned int nv = 0; |
| |
| while (!list_empty(head)) { |
| spin_lock(&nilfs->ns_inode_lock); |
| list_for_each_entry_safe(ii, n, head, i_dirty) { |
| list_del_init(&ii->i_dirty); |
| if (force) { |
| if (unlikely(ii->i_bh)) { |
| brelse(ii->i_bh); |
| ii->i_bh = NULL; |
| } |
| } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) { |
| set_bit(NILFS_I_QUEUED, &ii->i_state); |
| list_add_tail(&ii->i_dirty, |
| &nilfs->ns_dirty_files); |
| continue; |
| } |
| ivec[nv++] = ii; |
| if (nv == SC_N_INODEVEC) |
| break; |
| } |
| spin_unlock(&nilfs->ns_inode_lock); |
| |
| for (pii = ivec; nv > 0; pii++, nv--) |
| iput(&(*pii)->vfs_inode); |
| } |
| } |
| |
| static void nilfs_iput_work_func(struct work_struct *work) |
| { |
| struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info, |
| sc_iput_work); |
| struct the_nilfs *nilfs = sci->sc_super->s_fs_info; |
| |
| nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0); |
| } |
| |
| static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs, |
| struct nilfs_root *root) |
| { |
| int ret = 0; |
| |
| if (nilfs_mdt_fetch_dirty(root->ifile)) |
| ret++; |
| if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile)) |
| ret++; |
| if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile)) |
| ret++; |
| if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat)) |
| ret++; |
| return ret; |
| } |
| |
| static int nilfs_segctor_clean(struct nilfs_sc_info *sci) |
| { |
| return list_empty(&sci->sc_dirty_files) && |
| !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) && |
| sci->sc_nfreesegs == 0 && |
| (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes)); |
| } |
| |
| static int nilfs_segctor_confirm(struct nilfs_sc_info *sci) |
| { |
| struct the_nilfs *nilfs = sci->sc_super->s_fs_info; |
| int ret = 0; |
| |
| if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) |
| set_bit(NILFS_SC_DIRTY, &sci->sc_flags); |
| |
| spin_lock(&nilfs->ns_inode_lock); |
| if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci)) |
| ret++; |
| |
| spin_unlock(&nilfs->ns_inode_lock); |
| return ret; |
| } |
| |
| static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci) |
| { |
| struct the_nilfs *nilfs = sci->sc_super->s_fs_info; |
| |
| nilfs_mdt_clear_dirty(sci->sc_root->ifile); |
| nilfs_mdt_clear_dirty(nilfs->ns_cpfile); |
| nilfs_mdt_clear_dirty(nilfs->ns_sufile); |
| nilfs_mdt_clear_dirty(nilfs->ns_dat); |
| } |
| |
| static void nilfs_fill_in_file_bmap(struct inode *ifile, |
| struct nilfs_inode_info *ii) |
| |
| { |
| struct buffer_head *ibh; |
| struct nilfs_inode *raw_inode; |
| |
| if (test_bit(NILFS_I_BMAP, &ii->i_state)) { |
| ibh = ii->i_bh; |
| BUG_ON(!ibh); |
| raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino, |
| ibh); |
| nilfs_bmap_write(ii->i_bmap, raw_inode); |
| nilfs_ifile_unmap_inode(raw_inode); |
| } |
| } |
| |
| static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci) |
| { |
| struct nilfs_inode_info *ii; |
| |
| list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) { |
| nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii); |
| set_bit(NILFS_I_COLLECTED, &ii->i_state); |
| } |
| } |
| |
| /** |
| * nilfs_write_root_mdt_inode - export root metadata inode information to |
| * the on-disk inode |
| * @inode: inode object of the root metadata file |
| * @raw_inode: on-disk inode |
| * |
| * nilfs_write_root_mdt_inode() writes inode information and bmap data of |
| * @inode to the inode area of the metadata file allocated on the super root |
| * block created to finalize the log. Since super root blocks are configured |
| * each time, this function zero-fills the unused area of @raw_inode. |
| */ |
| static void nilfs_write_root_mdt_inode(struct inode *inode, |
| struct nilfs_inode *raw_inode) |
| { |
| struct the_nilfs *nilfs = inode->i_sb->s_fs_info; |
| |
| nilfs_write_inode_common(inode, raw_inode); |
| |
| /* zero-fill unused portion of raw_inode */ |
| raw_inode->i_xattr = 0; |
| raw_inode->i_pad = 0; |
| memset((void *)raw_inode + sizeof(*raw_inode), 0, |
| nilfs->ns_inode_size - sizeof(*raw_inode)); |
| |
| nilfs_bmap_write(NILFS_I(inode)->i_bmap, raw_inode); |
| } |
| |
| static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci, |
| struct the_nilfs *nilfs) |
| { |
| struct buffer_head *bh_sr; |
| struct nilfs_super_root *raw_sr; |
| unsigned int isz, srsz; |
| |
| bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root; |
| |
| lock_buffer(bh_sr); |
| raw_sr = (struct nilfs_super_root *)bh_sr->b_data; |
| isz = nilfs->ns_inode_size; |
| srsz = NILFS_SR_BYTES(isz); |
| |
| raw_sr->sr_sum = 0; /* Ensure initialization within this update */ |
| raw_sr->sr_bytes = cpu_to_le16(srsz); |
| raw_sr->sr_nongc_ctime |
| = cpu_to_le64(nilfs_doing_gc() ? |
| nilfs->ns_nongc_ctime : sci->sc_seg_ctime); |
| raw_sr->sr_flags = 0; |
| |
| nilfs_write_root_mdt_inode(nilfs->ns_dat, (void *)raw_sr + |
| NILFS_SR_DAT_OFFSET(isz)); |
| nilfs_write_root_mdt_inode(nilfs->ns_cpfile, (void *)raw_sr + |
| NILFS_SR_CPFILE_OFFSET(isz)); |
| nilfs_write_root_mdt_inode(nilfs->ns_sufile, (void *)raw_sr + |
| NILFS_SR_SUFILE_OFFSET(isz)); |
| |
| memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz); |
| set_buffer_uptodate(bh_sr); |
| unlock_buffer(bh_sr); |
| } |
| |
| static void nilfs_redirty_inodes(struct list_head *head) |
| { |
| struct nilfs_inode_info *ii; |
| |
| list_for_each_entry(ii, head, i_dirty) { |
| if (test_bit(NILFS_I_COLLECTED, &ii->i_state)) |
| clear_bit(NILFS_I_COLLECTED, &ii->i_state); |
| } |
| } |
| |
| static void nilfs_drop_collected_inodes(struct list_head *head) |
| { |
| struct nilfs_inode_info *ii; |
| |
| list_for_each_entry(ii, head, i_dirty) { |
| if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state)) |
| continue; |
| |
| clear_bit(NILFS_I_INODE_SYNC, &ii->i_state); |
| set_bit(NILFS_I_UPDATED, &ii->i_state); |
| } |
| } |
| |
| static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci, |
| struct inode *inode, |
| struct list_head *listp, |
| int (*collect)(struct nilfs_sc_info *, |
| struct buffer_head *, |
| struct inode *)) |
| { |
| struct buffer_head *bh, *n; |
| int err = 0; |
| |
| if (collect) { |
| list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) { |
| list_del_init(&bh->b_assoc_buffers); |
| err = collect(sci, bh, inode); |
| brelse(bh); |
| if (unlikely(err)) |
| goto dispose_buffers; |
| } |
| return 0; |
| } |
| |
| dispose_buffers: |
| while (!list_empty(listp)) { |
| bh = list_first_entry(listp, struct buffer_head, |
| b_assoc_buffers); |
| list_del_init(&bh->b_assoc_buffers); |
| brelse(bh); |
| } |
| return err; |
| } |
| |
| static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci) |
| { |
| /* Remaining number of blocks within segment buffer */ |
| return sci->sc_segbuf_nblocks - |
| (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks); |
| } |
| |
| static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci, |
| struct inode *inode, |
| const struct nilfs_sc_operations *sc_ops) |
| { |
| LIST_HEAD(data_buffers); |
| LIST_HEAD(node_buffers); |
| int err; |
| |
| if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { |
| size_t n, rest = nilfs_segctor_buffer_rest(sci); |
| |
| n = nilfs_lookup_dirty_data_buffers( |
| inode, &data_buffers, rest + 1, 0, LLONG_MAX); |
| if (n > rest) { |
| err = nilfs_segctor_apply_buffers( |
| sci, inode, &data_buffers, |
| sc_ops->collect_data); |
| BUG_ON(!err); /* always receive -E2BIG or true error */ |
| goto break_or_fail; |
| } |
| } |
| nilfs_lookup_dirty_node_buffers(inode, &node_buffers); |
| |
| if (!(sci->sc_stage.flags & NILFS_CF_NODE)) { |
| err = nilfs_segctor_apply_buffers( |
| sci, inode, &data_buffers, sc_ops->collect_data); |
| if (unlikely(err)) { |
| /* dispose node list */ |
| nilfs_segctor_apply_buffers( |
| sci, inode, &node_buffers, NULL); |
| goto break_or_fail; |
| } |
| sci->sc_stage.flags |= NILFS_CF_NODE; |
| } |
| /* Collect node */ |
| err = nilfs_segctor_apply_buffers( |
| sci, inode, &node_buffers, sc_ops->collect_node); |
| if (unlikely(err)) |
| goto break_or_fail; |
| |
| nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers); |
| err = nilfs_segctor_apply_buffers( |
| sci, inode, &node_buffers, sc_ops->collect_bmap); |
| if (unlikely(err)) |
| goto break_or_fail; |
| |
| nilfs_segctor_end_finfo(sci, inode); |
| sci->sc_stage.flags &= ~NILFS_CF_NODE; |
| |
| break_or_fail: |
| return err; |
| } |
| |
| static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci, |
| struct inode *inode) |
| { |
| LIST_HEAD(data_buffers); |
| size_t n, rest = nilfs_segctor_buffer_rest(sci); |
| int err; |
| |
| n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1, |
| sci->sc_dsync_start, |
| sci->sc_dsync_end); |
| |
| err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers, |
| nilfs_collect_file_data); |
| if (!err) { |
| nilfs_segctor_end_finfo(sci, inode); |
| BUG_ON(n > rest); |
| /* always receive -E2BIG or true error if n > rest */ |
| } |
| return err; |
| } |
| |
| /** |
| * nilfs_free_segments - free the segments given by an array of segment numbers |
| * @nilfs: nilfs object |
| * @segnumv: array of segment numbers to be freed |
| * @nsegs: number of segments to be freed in @segnumv |
| * |
| * nilfs_free_segments() wraps nilfs_sufile_freev() and |
| * nilfs_sufile_cancel_freev(), and edits the segment usage metadata file |
| * (sufile) to free all segments given by @segnumv and @nsegs at once. If |
| * it fails midway, it cancels the changes so that none of the segments are |
| * freed. If @nsegs is 0, this function does nothing. |
| * |
| * The freeing of segments is not finalized until the writing of a log with |
| * a super root block containing this sufile change is complete, and it can |
| * be canceled with nilfs_sufile_cancel_freev() until then. |
| * |
| * Return: 0 on success, or the following negative error code on failure. |
| * * %-EINVAL - Invalid segment number. |
| * * %-EIO - I/O error (including metadata corruption). |
| * * %-ENOMEM - Insufficient memory available. |
| */ |
| static int nilfs_free_segments(struct the_nilfs *nilfs, __u64 *segnumv, |
| size_t nsegs) |
| { |
| size_t ndone; |
| int ret; |
| |
| if (!nsegs) |
| return 0; |
| |
| ret = nilfs_sufile_freev(nilfs->ns_sufile, segnumv, nsegs, &ndone); |
| if (unlikely(ret)) { |
| nilfs_sufile_cancel_freev(nilfs->ns_sufile, segnumv, ndone, |
| NULL); |
| /* |
| * If a segment usage of the segments to be freed is in a |
| * hole block, nilfs_sufile_freev() will return -ENOENT. |
| * In this case, -EINVAL should be returned to the caller |
| * since there is something wrong with the given segment |
| * number array. This error can only occur during GC, so |
| * there is no need to worry about it propagating to other |
| * callers (such as fsync). |
| */ |
| if (ret == -ENOENT) { |
| nilfs_err(nilfs->ns_sb, |
| "The segment usage entry %llu to be freed is invalid (in a hole)", |
| (unsigned long long)segnumv[ndone]); |
| ret = -EINVAL; |
| } |
| } |
| return ret; |
| } |
| |
| static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode) |
| { |
| struct the_nilfs *nilfs = sci->sc_super->s_fs_info; |
| struct list_head *head; |
| struct nilfs_inode_info *ii; |
| int err = 0; |
| |
| switch (nilfs_sc_cstage_get(sci)) { |
| case NILFS_ST_INIT: |
| /* Pre-processes */ |
| sci->sc_stage.flags = 0; |
| |
| if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) { |
| sci->sc_nblk_inc = 0; |
| sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN; |
| if (mode == SC_LSEG_DSYNC) { |
| nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC); |
| goto dsync_mode; |
| } |
| } |
| |
| sci->sc_stage.dirty_file_ptr = NULL; |
| sci->sc_stage.gc_inode_ptr = NULL; |
| if (mode == SC_FLUSH_DAT) { |
| nilfs_sc_cstage_set(sci, NILFS_ST_DAT); |
| goto dat_stage; |
| } |
| nilfs_sc_cstage_inc(sci); |
| fallthrough; |
| case NILFS_ST_GC: |
| if (nilfs_doing_gc()) { |
| head = &sci->sc_gc_inodes; |
| ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr, |
| head, i_dirty); |
| list_for_each_entry_continue(ii, head, i_dirty) { |
| err = nilfs_segctor_scan_file( |
| sci, &ii->vfs_inode, |
| &nilfs_sc_file_ops); |
| if (unlikely(err)) { |
| sci->sc_stage.gc_inode_ptr = list_entry( |
| ii->i_dirty.prev, |
| struct nilfs_inode_info, |
| i_dirty); |
| goto break_or_fail; |
| } |
| set_bit(NILFS_I_COLLECTED, &ii->i_state); |
| } |
| sci->sc_stage.gc_inode_ptr = NULL; |
| } |
| nilfs_sc_cstage_inc(sci); |
| fallthrough; |
| case NILFS_ST_FILE: |
| head = &sci->sc_dirty_files; |
| ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head, |
| i_dirty); |
| list_for_each_entry_continue(ii, head, i_dirty) { |
| clear_bit(NILFS_I_DIRTY, &ii->i_state); |
| |
| err = nilfs_segctor_scan_file(sci, &ii->vfs_inode, |
| &nilfs_sc_file_ops); |
| if (unlikely(err)) { |
| sci->sc_stage.dirty_file_ptr = |
| list_entry(ii->i_dirty.prev, |
| struct nilfs_inode_info, |
| i_dirty); |
| goto break_or_fail; |
| } |
| /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */ |
| /* XXX: required ? */ |
| } |
| sci->sc_stage.dirty_file_ptr = NULL; |
| if (mode == SC_FLUSH_FILE) { |
| nilfs_sc_cstage_set(sci, NILFS_ST_DONE); |
| return 0; |
| } |
| nilfs_sc_cstage_inc(sci); |
| sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED; |
| fallthrough; |
| case NILFS_ST_IFILE: |
| err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile, |
| &nilfs_sc_file_ops); |
| if (unlikely(err)) |
| break; |
| nilfs_sc_cstage_inc(sci); |
| /* Creating a checkpoint */ |
| err = nilfs_cpfile_create_checkpoint(nilfs->ns_cpfile, |
| nilfs->ns_cno); |
| if (unlikely(err)) |
| break; |
| fallthrough; |
| case NILFS_ST_CPFILE: |
| err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile, |
| &nilfs_sc_file_ops); |
| if (unlikely(err)) |
| break; |
| nilfs_sc_cstage_inc(sci); |
| fallthrough; |
| case NILFS_ST_SUFILE: |
| err = nilfs_free_segments(nilfs, sci->sc_freesegs, |
| sci->sc_nfreesegs); |
| if (unlikely(err)) |
| break; |
| sci->sc_stage.flags |= NILFS_CF_SUFREED; |
| |
| err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile, |
| &nilfs_sc_file_ops); |
| if (unlikely(err)) |
| break; |
| nilfs_sc_cstage_inc(sci); |
| fallthrough; |
| case NILFS_ST_DAT: |
| dat_stage: |
| err = nilfs_segctor_scan_file(sci, nilfs->ns_dat, |
| &nilfs_sc_dat_ops); |
| if (unlikely(err)) |
| break; |
| if (mode == SC_FLUSH_DAT) { |
| nilfs_sc_cstage_set(sci, NILFS_ST_DONE); |
| return 0; |
| } |
| nilfs_sc_cstage_inc(sci); |
| fallthrough; |
| case NILFS_ST_SR: |
| if (mode == SC_LSEG_SR) { |
| /* Appending a super root */ |
| err = nilfs_segctor_add_super_root(sci); |
| if (unlikely(err)) |
| break; |
| } |
| /* End of a logical segment */ |
| sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; |
| nilfs_sc_cstage_set(sci, NILFS_ST_DONE); |
| return 0; |
| case NILFS_ST_DSYNC: |
| dsync_mode: |
| sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT; |
| ii = sci->sc_dsync_inode; |
| if (!test_bit(NILFS_I_BUSY, &ii->i_state)) |
| break; |
| |
| err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode); |
| if (unlikely(err)) |
| break; |
| sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND; |
| nilfs_sc_cstage_set(sci, NILFS_ST_DONE); |
| return 0; |
| case NILFS_ST_DONE: |
| return 0; |
| default: |
| BUG(); |
| } |
| |
| break_or_fail: |
| return err; |
| } |
| |
| /** |
| * nilfs_segctor_begin_construction - setup segment buffer to make a new log |
| * @sci: nilfs_sc_info |
| * @nilfs: nilfs object |
| */ |
| static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci, |
| struct the_nilfs *nilfs) |
| { |
| struct nilfs_segment_buffer *segbuf, *prev; |
| __u64 nextnum; |
| int err, alloc = 0; |
| |
| segbuf = nilfs_segbuf_new(sci->sc_super); |
| if (unlikely(!segbuf)) |
| return -ENOMEM; |
| |
| if (list_empty(&sci->sc_write_logs)) { |
| nilfs_segbuf_map(segbuf, nilfs->ns_segnum, |
| nilfs->ns_pseg_offset, nilfs); |
| if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { |
| nilfs_shift_to_next_segment(nilfs); |
| nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs); |
| } |
| |
| segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq; |
| nextnum = nilfs->ns_nextnum; |
| |
| if (nilfs->ns_segnum == nilfs->ns_nextnum) |
| /* Start from the head of a new full segment */ |
| alloc++; |
| } else { |
| /* Continue logs */ |
| prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs); |
| nilfs_segbuf_map_cont(segbuf, prev); |
| segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq; |
| nextnum = prev->sb_nextnum; |
| |
| if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) { |
| nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); |
| segbuf->sb_sum.seg_seq++; |
| alloc++; |
| } |
| } |
| |
| err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum); |
| if (err) |
| goto failed; |
| |
| if (alloc) { |
| err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum); |
| if (err) |
| goto failed; |
| } |
| nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs); |
| |
| BUG_ON(!list_empty(&sci->sc_segbufs)); |
| list_add_tail(&segbuf->sb_list, &sci->sc_segbufs); |
| sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks; |
| return 0; |
| |
| failed: |
| nilfs_segbuf_free(segbuf); |
| return err; |
| } |
| |
| static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci, |
| struct the_nilfs *nilfs, int nadd) |
| { |
| struct nilfs_segment_buffer *segbuf, *prev; |
| struct inode *sufile = nilfs->ns_sufile; |
| __u64 nextnextnum; |
| LIST_HEAD(list); |
| int err, ret, i; |
| |
| prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs); |
| /* |
| * Since the segment specified with nextnum might be allocated during |
| * the previous construction, the buffer including its segusage may |
| * not be dirty. The following call ensures that the buffer is dirty |
| * and will pin the buffer on memory until the sufile is written. |
| */ |
| err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum); |
| if (unlikely(err)) |
| return err; |
| |
| for (i = 0; i < nadd; i++) { |
| /* extend segment info */ |
| err = -ENOMEM; |
| segbuf = nilfs_segbuf_new(sci->sc_super); |
| if (unlikely(!segbuf)) |
| goto failed; |
| |
| /* map this buffer to region of segment on-disk */ |
| nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs); |
| sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks; |
| |
| /* allocate the next next full segment */ |
| err = nilfs_sufile_alloc(sufile, &nextnextnum); |
| if (unlikely(err)) |
| goto failed_segbuf; |
| |
| segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1; |
| nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs); |
| |
| list_add_tail(&segbuf->sb_list, &list); |
| prev = segbuf; |
| } |
| list_splice_tail(&list, &sci->sc_segbufs); |
| return 0; |
| |
| failed_segbuf: |
| nilfs_segbuf_free(segbuf); |
| failed: |
| list_for_each_entry(segbuf, &list, sb_list) { |
| ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); |
| WARN_ON(ret); /* never fails */ |
| } |
| nilfs_destroy_logs(&list); |
| return err; |
| } |
| |
| static void nilfs_free_incomplete_logs(struct list_head *logs, |
| struct the_nilfs *nilfs) |
| { |
| struct nilfs_segment_buffer *segbuf, *prev; |
| struct inode *sufile = nilfs->ns_sufile; |
| int ret; |
| |
| segbuf = NILFS_FIRST_SEGBUF(logs); |
| if (nilfs->ns_nextnum != segbuf->sb_nextnum) { |
| ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); |
| WARN_ON(ret); /* never fails */ |
| } |
| if (atomic_read(&segbuf->sb_err)) { |
| /* Case 1: The first segment failed */ |
| if (segbuf->sb_pseg_start != segbuf->sb_fseg_start) |
| /* |
| * Case 1a: Partial segment appended into an existing |
| * segment |
| */ |
| nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start, |
| segbuf->sb_fseg_end); |
| else /* Case 1b: New full segment */ |
| set_nilfs_discontinued(nilfs); |
| } |
| |
| prev = segbuf; |
| list_for_each_entry_continue(segbuf, logs, sb_list) { |
| if (prev->sb_nextnum != segbuf->sb_nextnum) { |
| ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); |
| WARN_ON(ret); /* never fails */ |
| } |
| if (atomic_read(&segbuf->sb_err) && |
| segbuf->sb_segnum != nilfs->ns_nextnum) |
| /* Case 2: extended segment (!= next) failed */ |
| nilfs_sufile_set_error(sufile, segbuf->sb_segnum); |
| prev = segbuf; |
| } |
| } |
| |
| static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci, |
| struct inode *sufile) |
| { |
| struct nilfs_segment_buffer *segbuf; |
| unsigned long live_blocks; |
| int ret; |
| |
| list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { |
| live_blocks = segbuf->sb_sum.nblocks + |
| (segbuf->sb_pseg_start - segbuf->sb_fseg_start); |
| ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, |
| live_blocks, |
| sci->sc_seg_ctime); |
| WARN_ON(ret); /* always succeed because the segusage is dirty */ |
| } |
| } |
| |
| static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile) |
| { |
| struct nilfs_segment_buffer *segbuf; |
| int ret; |
| |
| segbuf = NILFS_FIRST_SEGBUF(logs); |
| ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, |
| segbuf->sb_pseg_start - |
| segbuf->sb_fseg_start, 0); |
| WARN_ON(ret); /* always succeed because the segusage is dirty */ |
| |
| list_for_each_entry_continue(segbuf, logs, sb_list) { |
| ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum, |
| 0, 0); |
| WARN_ON(ret); /* always succeed */ |
| } |
| } |
| |
| static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci, |
| struct nilfs_segment_buffer *last, |
| struct inode *sufile) |
| { |
| struct nilfs_segment_buffer *segbuf = last; |
| int ret; |
| |
| list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) { |
| sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks; |
| ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum); |
| WARN_ON(ret); |
| } |
| nilfs_truncate_logs(&sci->sc_segbufs, last); |
| } |
| |
| |
| static int nilfs_segctor_collect(struct nilfs_sc_info *sci, |
| struct the_nilfs *nilfs, int mode) |
| { |
| struct nilfs_cstage prev_stage = sci->sc_stage; |
| int err, nadd = 1; |
| |
| /* Collection retry loop */ |
| for (;;) { |
| sci->sc_nblk_this_inc = 0; |
| sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs); |
| |
| err = nilfs_segctor_reset_segment_buffer(sci); |
| if (unlikely(err)) |
| goto failed; |
| |
| err = nilfs_segctor_collect_blocks(sci, mode); |
| sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks; |
| if (!err) |
| break; |
| |
| if (unlikely(err != -E2BIG)) |
| goto failed; |
| |
| /* The current segment is filled up */ |
| if (mode != SC_LSEG_SR || |
| nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE) |
| break; |
| |
| nilfs_clear_logs(&sci->sc_segbufs); |
| |
| if (sci->sc_stage.flags & NILFS_CF_SUFREED) { |
| err = nilfs_sufile_cancel_freev(nilfs->ns_sufile, |
| sci->sc_freesegs, |
| sci->sc_nfreesegs, |
| NULL); |
| WARN_ON(err); /* do not happen */ |
| sci->sc_stage.flags &= ~NILFS_CF_SUFREED; |
| } |
| |
| err = nilfs_segctor_extend_segments(sci, nilfs, nadd); |
| if (unlikely(err)) |
| return err; |
| |
| nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA); |
| sci->sc_stage = prev_stage; |
| } |
| nilfs_segctor_zeropad_segsum(sci); |
| nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile); |
| return 0; |
| |
| failed: |
| return err; |
| } |
| |
| static void nilfs_list_replace_buffer(struct buffer_head *old_bh, |
| struct buffer_head *new_bh) |
| { |
| BUG_ON(!list_empty(&new_bh->b_assoc_buffers)); |
| |
| list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers); |
| /* The caller must release old_bh */ |
| } |
| |
| static int |
| nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci, |
| struct nilfs_segment_buffer *segbuf, |
| int mode) |
| { |
| struct inode *inode = NULL; |
| sector_t blocknr; |
| unsigned long nfinfo = segbuf->sb_sum.nfinfo; |
| unsigned long nblocks = 0, ndatablk = 0; |
| const struct nilfs_sc_operations *sc_op = NULL; |
| struct nilfs_segsum_pointer ssp; |
| struct nilfs_finfo *finfo = NULL; |
| union nilfs_binfo binfo; |
| struct buffer_head *bh, *bh_org; |
| ino_t ino = 0; |
| int err = 0; |
| |
| if (!nfinfo) |
| goto out; |
| |
| blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk; |
| ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers); |
| ssp.offset = sizeof(struct nilfs_segment_summary); |
| |
| list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) { |
| if (bh == segbuf->sb_super_root) |
| break; |
| if (!finfo) { |
| finfo = nilfs_segctor_map_segsum_entry( |
| sci, &ssp, sizeof(*finfo)); |
| ino = le64_to_cpu(finfo->fi_ino); |
| nblocks = le32_to_cpu(finfo->fi_nblocks); |
| ndatablk = le32_to_cpu(finfo->fi_ndatablk); |
| |
| inode = bh->b_folio->mapping->host; |
| |
| if (mode == SC_LSEG_DSYNC) |
| sc_op = &nilfs_sc_dsync_ops; |
| else if (ino == NILFS_DAT_INO) |
| sc_op = &nilfs_sc_dat_ops; |
| else /* file blocks */ |
| sc_op = &nilfs_sc_file_ops; |
| } |
| bh_org = bh; |
| get_bh(bh_org); |
| err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr, |
| &binfo); |
| if (bh != bh_org) |
| nilfs_list_replace_buffer(bh_org, bh); |
| brelse(bh_org); |
| if (unlikely(err)) |
| goto failed_bmap; |
| |
| if (ndatablk > 0) |
| sc_op->write_data_binfo(sci, &ssp, &binfo); |
| else |
| sc_op->write_node_binfo(sci, &ssp, &binfo); |
| |
| blocknr++; |
| if (--nblocks == 0) { |
| finfo = NULL; |
| if (--nfinfo == 0) |
| break; |
| } else if (ndatablk > 0) |
| ndatablk--; |
| } |
| out: |
| return 0; |
| |
| failed_bmap: |
| return err; |
| } |
| |
| static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode) |
| { |
| struct nilfs_segment_buffer *segbuf; |
| int err; |
| |
| list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) { |
| err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode); |
| if (unlikely(err)) |
| return err; |
| nilfs_segbuf_fill_in_segsum(segbuf); |
| } |
| return 0; |
| } |
| |
| static void nilfs_begin_folio_io(struct folio *folio) |
| { |
| if (!folio || folio_test_writeback(folio)) |
| /* |
| * For split b-tree node pages, this function may be called |
| * twice. We ignore the 2nd or later calls by this check. |
| */ |
| return; |
| |
| folio_lock(folio); |
| folio_clear_dirty_for_io(folio); |
| folio_start_writeback(folio); |
| folio_unlock(folio); |
| } |
| |
| /** |
| * nilfs_prepare_write_logs - prepare to write logs |
| * @logs: logs to prepare for writing |
| * @seed: checksum seed value |
| * |
| * nilfs_prepare_write_logs() adds checksums and prepares the block |
| * buffers/folios for writing logs. In order to stabilize folios of |
| * memory-mapped file blocks by putting them in writeback state before |
| * calculating the checksums, first prepare to write payload blocks other |
| * than segment summary and super root blocks in which the checksums will |
| * be embedded. |
| */ |
| static void nilfs_prepare_write_logs(struct list_head *logs, u32 seed) |
| { |
| struct nilfs_segment_buffer *segbuf; |
| struct folio *bd_folio = NULL, *fs_folio = NULL; |
| struct buffer_head *bh; |
| |
| /* Prepare to write payload blocks */ |
| list_for_each_entry(segbuf, logs, sb_list) { |
| list_for_each_entry(bh, &segbuf->sb_payload_buffers, |
| b_assoc_buffers) { |
| if (bh == segbuf->sb_super_root) |
| break; |
| set_buffer_async_write(bh); |
| if (bh->b_folio != fs_folio) { |
| nilfs_begin_folio_io(fs_folio); |
| fs_folio = bh->b_folio; |
| } |
| } |
| } |
| nilfs_begin_folio_io(fs_folio); |
| |
| nilfs_add_checksums_on_logs(logs, seed); |
| |
| /* Prepare to write segment summary blocks */ |
| list_for_each_entry(segbuf, logs, sb_list) { |
| list_for_each_entry(bh, &segbuf->sb_segsum_buffers, |
| b_assoc_buffers) { |
| mark_buffer_dirty(bh); |
| if (bh->b_folio == bd_folio) |
| continue; |
| if (bd_folio) { |
| folio_lock(bd_folio); |
| folio_wait_writeback(bd_folio); |
| folio_clear_dirty_for_io(bd_folio); |
| folio_start_writeback(bd_folio); |
| folio_unlock(bd_folio); |
| } |
| bd_folio = bh->b_folio; |
| } |
| } |
| |
| /* Prepare to write super root block */ |
| bh = NILFS_LAST_SEGBUF(logs)->sb_super_root; |
| if (bh) { |
| mark_buffer_dirty(bh); |
| if (bh->b_folio != bd_folio) { |
| folio_lock(bd_folio); |
| folio_wait_writeback(bd_folio); |
| folio_clear_dirty_for_io(bd_folio); |
| folio_start_writeback(bd_folio); |
| folio_unlock(bd_folio); |
| bd_folio = bh->b_folio; |
| } |
| } |
| |
| if (bd_folio) { |
| folio_lock(bd_folio); |
| folio_wait_writeback(bd_folio); |
| folio_clear_dirty_for_io(bd_folio); |
| folio_start_writeback(bd_folio); |
| folio_unlock(bd_folio); |
| } |
| } |
| |
| static int nilfs_segctor_write(struct nilfs_sc_info *sci, |
| struct the_nilfs *nilfs) |
| { |
| int ret; |
| |
| ret = nilfs_write_logs(&sci->sc_segbufs, nilfs); |
| list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs); |
| return ret; |
| } |
| |
| static void nilfs_end_folio_io(struct folio *folio, int err) |
| { |
| if (!folio) |
| return; |
| |
| if (buffer_nilfs_node(folio_buffers(folio)) && |
| !folio_test_writeback(folio)) { |
| /* |
| * For b-tree node pages, this function may be called twice |
| * or more because they might be split in a segment. |
| */ |
| if (folio_test_dirty(folio)) { |
| /* |
| * For pages holding split b-tree node buffers, dirty |
| * flag on the buffers may be cleared discretely. |
| * In that case, the page is once redirtied for |
| * remaining buffers, and it must be cancelled if |
| * all the buffers get cleaned later. |
| */ |
| folio_lock(folio); |
| if (nilfs_folio_buffers_clean(folio)) |
| __nilfs_clear_folio_dirty(folio); |
| folio_unlock(folio); |
| } |
| return; |
| } |
| |
| if (err || !nilfs_folio_buffers_clean(folio)) |
| filemap_dirty_folio(folio->mapping, folio); |
| |
| folio_end_writeback(folio); |
| } |
| |
| static void nilfs_abort_logs(struct list_head *logs, int err) |
| { |
| struct nilfs_segment_buffer *segbuf; |
| struct folio *bd_folio = NULL, *fs_folio = NULL; |
| struct buffer_head *bh; |
| |
| if (list_empty(logs)) |
| return; |
| |
| list_for_each_entry(segbuf, logs, sb_list) { |
| list_for_each_entry(bh, &segbuf->sb_segsum_buffers, |
| b_assoc_buffers) { |
| clear_buffer_uptodate(bh); |
| if (bh->b_folio != bd_folio) { |
| if (bd_folio) |
| folio_end_writeback(bd_folio); |
| bd_folio = bh->b_folio; |
| } |
| } |
| |
| list_for_each_entry(bh, &segbuf->sb_payload_buffers, |
| b_assoc_buffers) { |
| if (bh == segbuf->sb_super_root) { |
| clear_buffer_uptodate(bh); |
| if (bh->b_folio != bd_folio) { |
| folio_end_writeback(bd_folio); |
| bd_folio = bh->b_folio; |
| } |
| break; |
| } |
| clear_buffer_async_write(bh); |
| if (bh->b_folio != fs_folio) { |
| nilfs_end_folio_io(fs_folio, err); |
| fs_folio = bh->b_folio; |
| } |
| } |
| } |
| if (bd_folio) |
| folio_end_writeback(bd_folio); |
| |
| nilfs_end_folio_io(fs_folio, err); |
| } |
| |
| static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci, |
| struct the_nilfs *nilfs, int err) |
| { |
| LIST_HEAD(logs); |
| int ret; |
| |
| list_splice_tail_init(&sci->sc_write_logs, &logs); |
| ret = nilfs_wait_on_logs(&logs); |
| nilfs_abort_logs(&logs, ret ? : err); |
| |
| list_splice_tail_init(&sci->sc_segbufs, &logs); |
| if (list_empty(&logs)) |
| return; /* if the first segment buffer preparation failed */ |
| |
| nilfs_cancel_segusage(&logs, nilfs->ns_sufile); |
| nilfs_free_incomplete_logs(&logs, nilfs); |
| |
| if (sci->sc_stage.flags & NILFS_CF_SUFREED) { |
| ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile, |
| sci->sc_freesegs, |
| sci->sc_nfreesegs, |
| NULL); |
| WARN_ON(ret); /* do not happen */ |
| } |
| |
| nilfs_destroy_logs(&logs); |
| } |
| |
| static void nilfs_set_next_segment(struct the_nilfs *nilfs, |
| struct nilfs_segment_buffer *segbuf) |
| { |
| nilfs->ns_segnum = segbuf->sb_segnum; |
| nilfs->ns_nextnum = segbuf->sb_nextnum; |
| nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start |
| + segbuf->sb_sum.nblocks; |
| nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq; |
| nilfs->ns_ctime = segbuf->sb_sum.ctime; |
| } |
| |
| static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci) |
| { |
| struct nilfs_segment_buffer *segbuf; |
| struct folio *bd_folio = NULL, *fs_folio = NULL; |
| struct the_nilfs *nilfs = sci->sc_super->s_fs_info; |
| int update_sr = false; |
| |
| list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) { |
| struct buffer_head *bh; |
| |
| list_for_each_entry(bh, &segbuf->sb_segsum_buffers, |
| b_assoc_buffers) { |
| set_buffer_uptodate(bh); |
| clear_buffer_dirty(bh); |
| if (bh->b_folio != bd_folio) { |
| if (bd_folio) |
| folio_end_writeback(bd_folio); |
| bd_folio = bh->b_folio; |
| } |
| } |
| /* |
| * We assume that the buffers which belong to the same folio |
| * continue over the buffer list. |
| * Under this assumption, the last BHs of folios is |
| * identifiable by the discontinuity of bh->b_folio |
| * (folio != fs_folio). |
| * |
| * For B-tree node blocks, however, this assumption is not |
| * guaranteed. The cleanup code of B-tree node folios needs |
| * special care. |
| */ |
| list_for_each_entry(bh, &segbuf->sb_payload_buffers, |
| b_assoc_buffers) { |
| const unsigned long set_bits = BIT(BH_Uptodate); |
| const unsigned long clear_bits = |
| (BIT(BH_Dirty) | BIT(BH_Async_Write) | |
| BIT(BH_Delay) | BIT(BH_NILFS_Volatile) | |
| BIT(BH_NILFS_Redirected)); |
| |
| if (bh == segbuf->sb_super_root) { |
| set_buffer_uptodate(bh); |
| clear_buffer_dirty(bh); |
| if (bh->b_folio != bd_folio) { |
| folio_end_writeback(bd_folio); |
| bd_folio = bh->b_folio; |
| } |
| update_sr = true; |
| break; |
| } |
| set_mask_bits(&bh->b_state, clear_bits, set_bits); |
| if (bh->b_folio != fs_folio) { |
| nilfs_end_folio_io(fs_folio, 0); |
| fs_folio = bh->b_folio; |
| } |
| } |
| |
| if (!nilfs_segbuf_simplex(segbuf)) { |
| if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) { |
| set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); |
| sci->sc_lseg_stime = jiffies; |
| } |
| if (segbuf->sb_sum.flags & NILFS_SS_LOGEND) |
| clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags); |
| } |
| } |
| /* |
| * Since folios may continue over multiple segment buffers, |
| * end of the last folio must be checked outside of the loop. |
| */ |
| if (bd_folio) |
| folio_end_writeback(bd_folio); |
| |
| nilfs_end_folio_io(fs_folio, 0); |
| |
| nilfs_drop_collected_inodes(&sci->sc_dirty_files); |
| |
| if (nilfs_doing_gc()) |
| nilfs_drop_collected_inodes(&sci->sc_gc_inodes); |
| else |
| nilfs->ns_nongc_ctime = sci->sc_seg_ctime; |
| |
| sci->sc_nblk_inc += sci->sc_nblk_this_inc; |
| |
| segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs); |
| nilfs_set_next_segment(nilfs, segbuf); |
| |
| if (update_sr) { |
| nilfs->ns_flushed_device = 0; |
| nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start, |
| segbuf->sb_sum.seg_seq, nilfs->ns_cno++); |
| |
| clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags); |
| clear_bit(NILFS_SC_DIRTY, &sci->sc_flags); |
| set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); |
| nilfs_segctor_clear_metadata_dirty(sci); |
| } else |
| clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags); |
| } |
| |
| static int nilfs_segctor_wait(struct nilfs_sc_info *sci) |
| { |
| int ret; |
| |
| ret = nilfs_wait_on_logs(&sci->sc_write_logs); |
| if (!ret) { |
| nilfs_segctor_complete_write(sci); |
| nilfs_destroy_logs(&sci->sc_write_logs); |
| } |
| return ret; |
| } |
| |
| static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci, |
| struct the_nilfs *nilfs) |
| { |
| struct nilfs_inode_info *ii, *n; |
| struct inode *ifile = sci->sc_root->ifile; |
| |
| spin_lock(&nilfs->ns_inode_lock); |
| retry: |
| list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) { |
| if (!ii->i_bh) { |
| struct buffer_head *ibh; |
| int err; |
| |
| spin_unlock(&nilfs->ns_inode_lock); |
| err = nilfs_ifile_get_inode_block( |
| ifile, ii->vfs_inode.i_ino, &ibh); |
| if (unlikely(err)) { |
| nilfs_warn(sci->sc_super, |
| "log writer: error %d getting inode block (ino=%lu)", |
| err, ii->vfs_inode.i_ino); |
| return err; |
| } |
| spin_lock(&nilfs->ns_inode_lock); |
| if (likely(!ii->i_bh)) |
| ii->i_bh = ibh; |
| else |
| brelse(ibh); |
| goto retry; |
| } |
| |
| // Always redirty the buffer to avoid race condition |
| mark_buffer_dirty(ii->i_bh); |
| nilfs_mdt_mark_dirty(ifile); |
| |
| clear_bit(NILFS_I_QUEUED, &ii->i_state); |
| set_bit(NILFS_I_BUSY, &ii->i_state); |
| list_move_tail(&ii->i_dirty, &sci->sc_dirty_files); |
| } |
| spin_unlock(&nilfs->ns_inode_lock); |
| |
| return 0; |
| } |
| |
| static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci, |
| struct the_nilfs *nilfs) |
| { |
| struct nilfs_inode_info *ii, *n; |
| int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE); |
| int defer_iput = false; |
| |
| spin_lock(&nilfs->ns_inode_lock); |
| list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) { |
| if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) || |
| test_bit(NILFS_I_DIRTY, &ii->i_state)) |
| continue; |
| |
| clear_bit(NILFS_I_BUSY, &ii->i_state); |
| brelse(ii->i_bh); |
| ii->i_bh = NULL; |
| list_del_init(&ii->i_dirty); |
| if (!ii->vfs_inode.i_nlink || during_mount) { |
| /* |
| * Defer calling iput() to avoid deadlocks if |
| * i_nlink == 0 or mount is not yet finished. |
| */ |
| list_add_tail(&ii->i_dirty, &sci->sc_iput_queue); |
| defer_iput = true; |
| } else { |
| spin_unlock(&nilfs->ns_inode_lock); |
| iput(&ii->vfs_inode); |
| spin_lock(&nilfs->ns_inode_lock); |
| } |
| } |
| spin_unlock(&nilfs->ns_inode_lock); |
| |
| if (defer_iput) |
| schedule_work(&sci->sc_iput_work); |
| } |
| |
| /* |
| * Main procedure of segment constructor |
| */ |
| static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode) |
| { |
| struct the_nilfs *nilfs = sci->sc_super->s_fs_info; |
| int err; |
| |
| if (sb_rdonly(sci->sc_super)) |
| return -EROFS; |
| |
| nilfs_sc_cstage_set(sci, NILFS_ST_INIT); |
| sci->sc_cno = nilfs->ns_cno; |
| |
| err = nilfs_segctor_collect_dirty_files(sci, nilfs); |
| if (unlikely(err)) |
| goto out; |
| |
| if (nilfs_test_metadata_dirty(nilfs, sci->sc_root)) |
| set_bit(NILFS_SC_DIRTY, &sci->sc_flags); |
| |
| if (nilfs_segctor_clean(sci)) |
| goto out; |
| |
| do { |
| sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK; |
| |
| err = nilfs_segctor_begin_construction(sci, nilfs); |
| if (unlikely(err)) |
| goto failed; |
| |
| /* Update time stamp */ |
| sci->sc_seg_ctime = ktime_get_real_seconds(); |
| |
| err = nilfs_segctor_collect(sci, nilfs, mode); |
| if (unlikely(err)) |
| goto failed; |
| |
| /* Avoid empty segment */ |
| if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE && |
| nilfs_segbuf_empty(sci->sc_curseg)) { |
| nilfs_segctor_abort_construction(sci, nilfs, 1); |
| goto out; |
| } |
| |
| err = nilfs_segctor_assign(sci, mode); |
| if (unlikely(err)) |
| goto failed; |
| |
| if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED) |
| nilfs_segctor_fill_in_file_bmap(sci); |
| |
| if (mode == SC_LSEG_SR && |
| nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) { |
| err = nilfs_cpfile_finalize_checkpoint( |
| nilfs->ns_cpfile, nilfs->ns_cno, sci->sc_root, |
| sci->sc_nblk_inc + sci->sc_nblk_this_inc, |
| sci->sc_seg_ctime, |
| !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags)); |
| if (unlikely(err)) |
| goto failed_to_write; |
| |
| nilfs_segctor_fill_in_super_root(sci, nilfs); |
| } |
| nilfs_segctor_update_segusage(sci, nilfs->ns_sufile); |
| |
| /* Write partial segments */ |
| nilfs_prepare_write_logs(&sci->sc_segbufs, nilfs->ns_crc_seed); |
| |
| err = nilfs_segctor_write(sci, nilfs); |
| if (unlikely(err)) |
| goto failed_to_write; |
| |
| if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE || |
| nilfs->ns_blocksize_bits != PAGE_SHIFT) { |
| /* |
| * At this point, we avoid double buffering |
| * for blocksize < pagesize because page dirty |
| * flag is turned off during write and dirty |
| * buffers are not properly collected for |
| * pages crossing over segments. |
| */ |
| err = nilfs_segctor_wait(sci); |
| if (err) |
| goto failed_to_write; |
| } |
| } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE); |
| |
| out: |
| nilfs_segctor_drop_written_files(sci, nilfs); |
| return err; |
| |
| failed_to_write: |
| failed: |
| if (mode == SC_LSEG_SR && nilfs_sc_cstage_get(sci) >= NILFS_ST_IFILE) |
| nilfs_redirty_inodes(&sci->sc_dirty_files); |
| if (nilfs_doing_gc()) |
| nilfs_redirty_inodes(&sci->sc_gc_inodes); |
| nilfs_segctor_abort_construction(sci, nilfs, err); |
| goto out; |
| } |
| |
| /** |
| * nilfs_segctor_start_timer - set timer of background write |
| * @sci: nilfs_sc_info |
| * |
| * If the timer has already been set, it ignores the new request. |
| * This function MUST be called within a section locking the segment |
| * semaphore. |
| */ |
| static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci) |
| { |
| spin_lock(&sci->sc_state_lock); |
| if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) { |
| if (sci->sc_task) { |
| sci->sc_timer.expires = jiffies + sci->sc_interval; |
| add_timer(&sci->sc_timer); |
| } |
| sci->sc_state |= NILFS_SEGCTOR_COMMIT; |
| } |
| spin_unlock(&sci->sc_state_lock); |
| } |
| |
| static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn) |
| { |
| spin_lock(&sci->sc_state_lock); |
| if (!(sci->sc_flush_request & BIT(bn))) { |
| unsigned long prev_req = sci->sc_flush_request; |
| |
| sci->sc_flush_request |= BIT(bn); |
| if (!prev_req) |
| wake_up(&sci->sc_wait_daemon); |
| } |
| spin_unlock(&sci->sc_state_lock); |
| } |
| |
| /** |
| * nilfs_flush_segment - trigger a segment construction for resource control |
| * @sb: super block |
| * @ino: inode number of the file to be flushed out. |
| */ |
| void nilfs_flush_segment(struct super_block *sb, ino_t ino) |
| { |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| struct nilfs_sc_info *sci = nilfs->ns_writer; |
| |
| if (!sci || nilfs_doing_construction()) |
| return; |
| nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0); |
| /* assign bit 0 to data files */ |
| } |
| |
| struct nilfs_segctor_wait_request { |
| wait_queue_entry_t wq; |
| __u32 seq; |
| int err; |
| atomic_t done; |
| }; |
| |
| static int nilfs_segctor_sync(struct nilfs_sc_info *sci) |
| { |
| struct nilfs_segctor_wait_request wait_req; |
| int err = 0; |
| |
| init_wait(&wait_req.wq); |
| wait_req.err = 0; |
| atomic_set(&wait_req.done, 0); |
| init_waitqueue_entry(&wait_req.wq, current); |
| |
| /* |
| * To prevent a race issue where completion notifications from the |
| * log writer thread are missed, increment the request sequence count |
| * "sc_seq_request" and insert a wait queue entry using the current |
| * sequence number into the "sc_wait_request" queue at the same time |
| * within the lock section of "sc_state_lock". |
| */ |
| spin_lock(&sci->sc_state_lock); |
| wait_req.seq = ++sci->sc_seq_request; |
| add_wait_queue(&sci->sc_wait_request, &wait_req.wq); |
| spin_unlock(&sci->sc_state_lock); |
| |
| wake_up(&sci->sc_wait_daemon); |
| |
| for (;;) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| /* |
| * Synchronize only while the log writer thread is alive. |
| * Leave flushing out after the log writer thread exits to |
| * the cleanup work in nilfs_segctor_destroy(). |
| */ |
| if (!sci->sc_task) |
| break; |
| |
| if (atomic_read(&wait_req.done)) { |
| err = wait_req.err; |
| break; |
| } |
| if (!signal_pending(current)) { |
| schedule(); |
| continue; |
| } |
| err = -ERESTARTSYS; |
| break; |
| } |
| finish_wait(&sci->sc_wait_request, &wait_req.wq); |
| return err; |
| } |
| |
| static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err, bool force) |
| { |
| struct nilfs_segctor_wait_request *wrq, *n; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sci->sc_wait_request.lock, flags); |
| list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) { |
| if (!atomic_read(&wrq->done) && |
| (force || nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq))) { |
| wrq->err = err; |
| atomic_set(&wrq->done, 1); |
| } |
| if (atomic_read(&wrq->done)) { |
| wrq->wq.func(&wrq->wq, |
| TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, |
| 0, NULL); |
| } |
| } |
| spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags); |
| } |
| |
| /** |
| * nilfs_construct_segment - construct a logical segment |
| * @sb: super block |
| * |
| * Return Value: On success, 0 is returned. On errors, one of the following |
| * negative error code is returned. |
| * |
| * %-EROFS - Read only filesystem. |
| * |
| * %-EIO - I/O error |
| * |
| * %-ENOSPC - No space left on device (only in a panic state). |
| * |
| * %-ERESTARTSYS - Interrupted. |
| * |
| * %-ENOMEM - Insufficient memory available. |
| */ |
| int nilfs_construct_segment(struct super_block *sb) |
| { |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| struct nilfs_sc_info *sci = nilfs->ns_writer; |
| struct nilfs_transaction_info *ti; |
| |
| if (sb_rdonly(sb) || unlikely(!sci)) |
| return -EROFS; |
| |
| /* A call inside transactions causes a deadlock. */ |
| BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC); |
| |
| return nilfs_segctor_sync(sci); |
| } |
| |
| /** |
| * nilfs_construct_dsync_segment - construct a data-only logical segment |
| * @sb: super block |
| * @inode: inode whose data blocks should be written out |
| * @start: start byte offset |
| * @end: end byte offset (inclusive) |
| * |
| * Return Value: On success, 0 is returned. On errors, one of the following |
| * negative error code is returned. |
| * |
| * %-EROFS - Read only filesystem. |
| * |
| * %-EIO - I/O error |
| * |
| * %-ENOSPC - No space left on device (only in a panic state). |
| * |
| * %-ERESTARTSYS - Interrupted. |
| * |
| * %-ENOMEM - Insufficient memory available. |
| */ |
| int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode, |
| loff_t start, loff_t end) |
| { |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| struct nilfs_sc_info *sci = nilfs->ns_writer; |
| struct nilfs_inode_info *ii; |
| struct nilfs_transaction_info ti; |
| int err = 0; |
| |
| if (sb_rdonly(sb) || unlikely(!sci)) |
| return -EROFS; |
| |
| nilfs_transaction_lock(sb, &ti, 0); |
| |
| ii = NILFS_I(inode); |
| if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) || |
| nilfs_test_opt(nilfs, STRICT_ORDER) || |
| test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || |
| nilfs_discontinued(nilfs)) { |
| nilfs_transaction_unlock(sb); |
| err = nilfs_segctor_sync(sci); |
| return err; |
| } |
| |
| spin_lock(&nilfs->ns_inode_lock); |
| if (!test_bit(NILFS_I_QUEUED, &ii->i_state) && |
| !test_bit(NILFS_I_BUSY, &ii->i_state)) { |
| spin_unlock(&nilfs->ns_inode_lock); |
| nilfs_transaction_unlock(sb); |
| return 0; |
| } |
| spin_unlock(&nilfs->ns_inode_lock); |
| sci->sc_dsync_inode = ii; |
| sci->sc_dsync_start = start; |
| sci->sc_dsync_end = end; |
| |
| err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC); |
| if (!err) |
| nilfs->ns_flushed_device = 0; |
| |
| nilfs_transaction_unlock(sb); |
| return err; |
| } |
| |
| #define FLUSH_FILE_BIT (0x1) /* data file only */ |
| #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */ |
| |
| /** |
| * nilfs_segctor_accept - record accepted sequence count of log-write requests |
| * @sci: segment constructor object |
| */ |
| static void nilfs_segctor_accept(struct nilfs_sc_info *sci) |
| { |
| bool thread_is_alive; |
| |
| spin_lock(&sci->sc_state_lock); |
| sci->sc_seq_accepted = sci->sc_seq_request; |
| thread_is_alive = (bool)sci->sc_task; |
| spin_unlock(&sci->sc_state_lock); |
| |
| /* |
| * This function does not race with the log writer thread's |
| * termination. Therefore, deleting sc_timer, which should not be |
| * done after the log writer thread exits, can be done safely outside |
| * the area protected by sc_state_lock. |
| */ |
| if (thread_is_alive) |
| del_timer_sync(&sci->sc_timer); |
| } |
| |
| /** |
| * nilfs_segctor_notify - notify the result of request to caller threads |
| * @sci: segment constructor object |
| * @mode: mode of log forming |
| * @err: error code to be notified |
| */ |
| static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err) |
| { |
| /* Clear requests (even when the construction failed) */ |
| spin_lock(&sci->sc_state_lock); |
| |
| if (mode == SC_LSEG_SR) { |
| sci->sc_state &= ~NILFS_SEGCTOR_COMMIT; |
| sci->sc_seq_done = sci->sc_seq_accepted; |
| nilfs_segctor_wakeup(sci, err, false); |
| sci->sc_flush_request = 0; |
| } else { |
| if (mode == SC_FLUSH_FILE) |
| sci->sc_flush_request &= ~FLUSH_FILE_BIT; |
| else if (mode == SC_FLUSH_DAT) |
| sci->sc_flush_request &= ~FLUSH_DAT_BIT; |
| |
| /* re-enable timer if checkpoint creation was not done */ |
| if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && sci->sc_task && |
| time_before(jiffies, sci->sc_timer.expires)) |
| add_timer(&sci->sc_timer); |
| } |
| spin_unlock(&sci->sc_state_lock); |
| } |
| |
| /** |
| * nilfs_segctor_construct - form logs and write them to disk |
| * @sci: segment constructor object |
| * @mode: mode of log forming |
| */ |
| static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode) |
| { |
| struct the_nilfs *nilfs = sci->sc_super->s_fs_info; |
| struct nilfs_super_block **sbp; |
| int err = 0; |
| |
| nilfs_segctor_accept(sci); |
| |
| if (nilfs_discontinued(nilfs)) |
| mode = SC_LSEG_SR; |
| if (!nilfs_segctor_confirm(sci)) |
| err = nilfs_segctor_do_construct(sci, mode); |
| |
| if (likely(!err)) { |
| if (mode != SC_FLUSH_DAT) |
| atomic_set(&nilfs->ns_ndirtyblks, 0); |
| if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) && |
| nilfs_discontinued(nilfs)) { |
| down_write(&nilfs->ns_sem); |
| err = -EIO; |
| sbp = nilfs_prepare_super(sci->sc_super, |
| nilfs_sb_will_flip(nilfs)); |
| if (likely(sbp)) { |
| nilfs_set_log_cursor(sbp[0], nilfs); |
| err = nilfs_commit_super(sci->sc_super, |
| NILFS_SB_COMMIT); |
| } |
| up_write(&nilfs->ns_sem); |
| } |
| } |
| |
| nilfs_segctor_notify(sci, mode, err); |
| return err; |
| } |
| |
| static void nilfs_construction_timeout(struct timer_list *t) |
| { |
| struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer); |
| |
| wake_up_process(sci->sc_task); |
| } |
| |
| static void |
| nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head) |
| { |
| struct nilfs_inode_info *ii, *n; |
| |
| list_for_each_entry_safe(ii, n, head, i_dirty) { |
| if (!test_bit(NILFS_I_UPDATED, &ii->i_state)) |
| continue; |
| list_del_init(&ii->i_dirty); |
| truncate_inode_pages(&ii->vfs_inode.i_data, 0); |
| nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping); |
| iput(&ii->vfs_inode); |
| } |
| } |
| |
| int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv, |
| void **kbufs) |
| { |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| struct nilfs_sc_info *sci = nilfs->ns_writer; |
| struct nilfs_transaction_info ti; |
| int err; |
| |
| if (unlikely(!sci)) |
| return -EROFS; |
| |
| nilfs_transaction_lock(sb, &ti, 1); |
| |
| err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat); |
| if (unlikely(err)) |
| goto out_unlock; |
| |
| err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs); |
| if (unlikely(err)) { |
| nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat); |
| goto out_unlock; |
| } |
| |
| sci->sc_freesegs = kbufs[4]; |
| sci->sc_nfreesegs = argv[4].v_nmembs; |
| list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes); |
| |
| for (;;) { |
| err = nilfs_segctor_construct(sci, SC_LSEG_SR); |
| nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes); |
| |
| if (likely(!err)) |
| break; |
| |
| nilfs_warn(sb, "error %d cleaning segments", err); |
| set_current_state(TASK_INTERRUPTIBLE); |
| schedule_timeout(sci->sc_interval); |
| } |
| if (nilfs_test_opt(nilfs, DISCARD)) { |
| int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs, |
| sci->sc_nfreesegs); |
| if (ret) { |
| nilfs_warn(sb, |
| "error %d on discard request, turning discards off for the device", |
| ret); |
| nilfs_clear_opt(nilfs, DISCARD); |
| } |
| } |
| |
| out_unlock: |
| sci->sc_freesegs = NULL; |
| sci->sc_nfreesegs = 0; |
| nilfs_mdt_clear_shadow_map(nilfs->ns_dat); |
| nilfs_transaction_unlock(sb); |
| return err; |
| } |
| |
| static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode) |
| { |
| struct nilfs_transaction_info ti; |
| |
| nilfs_transaction_lock(sci->sc_super, &ti, 0); |
| nilfs_segctor_construct(sci, mode); |
| |
| /* |
| * Unclosed segment should be retried. We do this using sc_timer. |
| * Timeout of sc_timer will invoke complete construction which leads |
| * to close the current logical segment. |
| */ |
| if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) |
| nilfs_segctor_start_timer(sci); |
| |
| nilfs_transaction_unlock(sci->sc_super); |
| } |
| |
| static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci) |
| { |
| int mode = 0; |
| |
| spin_lock(&sci->sc_state_lock); |
| mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ? |
| SC_FLUSH_DAT : SC_FLUSH_FILE; |
| spin_unlock(&sci->sc_state_lock); |
| |
| if (mode) { |
| nilfs_segctor_do_construct(sci, mode); |
| |
| spin_lock(&sci->sc_state_lock); |
| sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ? |
| ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT; |
| spin_unlock(&sci->sc_state_lock); |
| } |
| clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags); |
| } |
| |
| static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci) |
| { |
| if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) || |
| time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) { |
| if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT)) |
| return SC_FLUSH_FILE; |
| else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT)) |
| return SC_FLUSH_DAT; |
| } |
| return SC_LSEG_SR; |
| } |
| |
| /** |
| * nilfs_log_write_required - determine whether log writing is required |
| * @sci: nilfs_sc_info struct |
| * @modep: location for storing log writing mode |
| * |
| * Return: true if log writing is required, false otherwise. If log writing |
| * is required, the mode is stored in the location pointed to by @modep. |
| */ |
| static bool nilfs_log_write_required(struct nilfs_sc_info *sci, int *modep) |
| { |
| bool timedout, ret = true; |
| |
| spin_lock(&sci->sc_state_lock); |
| timedout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && |
| time_after_eq(jiffies, sci->sc_timer.expires)); |
| if (timedout || sci->sc_seq_request != sci->sc_seq_done) |
| *modep = SC_LSEG_SR; |
| else if (sci->sc_flush_request) |
| *modep = nilfs_segctor_flush_mode(sci); |
| else |
| ret = false; |
| |
| spin_unlock(&sci->sc_state_lock); |
| return ret; |
| } |
| |
| /** |
| * nilfs_segctor_thread - main loop of the log writer thread |
| * @arg: pointer to a struct nilfs_sc_info. |
| * |
| * nilfs_segctor_thread() is the main loop function of the log writer kernel |
| * thread, which determines whether log writing is necessary, and if so, |
| * performs the log write in the background, or waits if not. It is also |
| * used to decide the background writeback of the superblock. |
| * |
| * Return: Always 0. |
| */ |
| static int nilfs_segctor_thread(void *arg) |
| { |
| struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg; |
| struct the_nilfs *nilfs = sci->sc_super->s_fs_info; |
| |
| nilfs_info(sci->sc_super, |
| "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds", |
| sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ); |
| |
| set_freezable(); |
| |
| while (!kthread_should_stop()) { |
| DEFINE_WAIT(wait); |
| bool should_write; |
| int mode; |
| |
| if (freezing(current)) { |
| try_to_freeze(); |
| continue; |
| } |
| |
| prepare_to_wait(&sci->sc_wait_daemon, &wait, |
| TASK_INTERRUPTIBLE); |
| should_write = nilfs_log_write_required(sci, &mode); |
| if (!should_write) |
| schedule(); |
| finish_wait(&sci->sc_wait_daemon, &wait); |
| |
| if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs)) |
| set_nilfs_discontinued(nilfs); |
| |
| if (should_write) |
| nilfs_segctor_thread_construct(sci, mode); |
| } |
| |
| /* end sync. */ |
| spin_lock(&sci->sc_state_lock); |
| sci->sc_task = NULL; |
| timer_shutdown_sync(&sci->sc_timer); |
| spin_unlock(&sci->sc_state_lock); |
| return 0; |
| } |
| |
| /* |
| * Setup & clean-up functions |
| */ |
| static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb, |
| struct nilfs_root *root) |
| { |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| struct nilfs_sc_info *sci; |
| |
| sci = kzalloc(sizeof(*sci), GFP_KERNEL); |
| if (!sci) |
| return NULL; |
| |
| sci->sc_super = sb; |
| |
| nilfs_get_root(root); |
| sci->sc_root = root; |
| |
| init_waitqueue_head(&sci->sc_wait_request); |
| init_waitqueue_head(&sci->sc_wait_daemon); |
| spin_lock_init(&sci->sc_state_lock); |
| INIT_LIST_HEAD(&sci->sc_dirty_files); |
| INIT_LIST_HEAD(&sci->sc_segbufs); |
| INIT_LIST_HEAD(&sci->sc_write_logs); |
| INIT_LIST_HEAD(&sci->sc_gc_inodes); |
| INIT_LIST_HEAD(&sci->sc_iput_queue); |
| INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func); |
| |
| sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT; |
| sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ; |
| sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK; |
| |
| if (nilfs->ns_interval) |
| sci->sc_interval = HZ * nilfs->ns_interval; |
| if (nilfs->ns_watermark) |
| sci->sc_watermark = nilfs->ns_watermark; |
| return sci; |
| } |
| |
| static void nilfs_segctor_write_out(struct nilfs_sc_info *sci) |
| { |
| int ret, retrycount = NILFS_SC_CLEANUP_RETRY; |
| |
| /* |
| * The segctord thread was stopped and its timer was removed. |
| * But some tasks remain. |
| */ |
| do { |
| struct nilfs_transaction_info ti; |
| |
| nilfs_transaction_lock(sci->sc_super, &ti, 0); |
| ret = nilfs_segctor_construct(sci, SC_LSEG_SR); |
| nilfs_transaction_unlock(sci->sc_super); |
| |
| flush_work(&sci->sc_iput_work); |
| |
| } while (ret && ret != -EROFS && retrycount-- > 0); |
| } |
| |
| /** |
| * nilfs_segctor_destroy - destroy the segment constructor. |
| * @sci: nilfs_sc_info |
| * |
| * nilfs_segctor_destroy() kills the segctord thread and frees |
| * the nilfs_sc_info struct. |
| * Caller must hold the segment semaphore. |
| */ |
| static void nilfs_segctor_destroy(struct nilfs_sc_info *sci) |
| { |
| struct the_nilfs *nilfs = sci->sc_super->s_fs_info; |
| int flag; |
| |
| up_write(&nilfs->ns_segctor_sem); |
| |
| if (sci->sc_task) { |
| wake_up(&sci->sc_wait_daemon); |
| kthread_stop(sci->sc_task); |
| } |
| |
| spin_lock(&sci->sc_state_lock); |
| flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request |
| || sci->sc_seq_request != sci->sc_seq_done); |
| spin_unlock(&sci->sc_state_lock); |
| |
| /* |
| * Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can |
| * be called from delayed iput() via nilfs_evict_inode() and can race |
| * with the above log writer thread termination. |
| */ |
| nilfs_segctor_wakeup(sci, 0, true); |
| |
| if (flush_work(&sci->sc_iput_work)) |
| flag = true; |
| |
| if (flag || !nilfs_segctor_confirm(sci)) |
| nilfs_segctor_write_out(sci); |
| |
| if (!list_empty(&sci->sc_dirty_files)) { |
| nilfs_warn(sci->sc_super, |
| "disposed unprocessed dirty file(s) when stopping log writer"); |
| nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1); |
| } |
| |
| if (!list_empty(&sci->sc_iput_queue)) { |
| nilfs_warn(sci->sc_super, |
| "disposed unprocessed inode(s) in iput queue when stopping log writer"); |
| nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1); |
| } |
| |
| WARN_ON(!list_empty(&sci->sc_segbufs)); |
| WARN_ON(!list_empty(&sci->sc_write_logs)); |
| |
| nilfs_put_root(sci->sc_root); |
| |
| down_write(&nilfs->ns_segctor_sem); |
| |
| kfree(sci); |
| } |
| |
| /** |
| * nilfs_attach_log_writer - attach log writer |
| * @sb: super block instance |
| * @root: root object of the current filesystem tree |
| * |
| * This allocates a log writer object, initializes it, and starts the |
| * log writer. |
| * |
| * Return: 0 on success, or the following negative error code on failure. |
| * * %-EINTR - Log writer thread creation failed due to interruption. |
| * * %-ENOMEM - Insufficient memory available. |
| */ |
| int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root) |
| { |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| struct nilfs_sc_info *sci; |
| struct task_struct *t; |
| int err; |
| |
| if (nilfs->ns_writer) { |
| /* |
| * This happens if the filesystem is made read-only by |
| * __nilfs_error or nilfs_remount and then remounted |
| * read/write. In these cases, reuse the existing |
| * writer. |
| */ |
| return 0; |
| } |
| |
| sci = nilfs_segctor_new(sb, root); |
| if (unlikely(!sci)) |
| return -ENOMEM; |
| |
| nilfs->ns_writer = sci; |
| t = kthread_create(nilfs_segctor_thread, sci, "segctord"); |
| if (IS_ERR(t)) { |
| err = PTR_ERR(t); |
| nilfs_err(sb, "error %d creating segctord thread", err); |
| nilfs_detach_log_writer(sb); |
| return err; |
| } |
| sci->sc_task = t; |
| timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0); |
| |
| wake_up_process(sci->sc_task); |
| return 0; |
| } |
| |
| /** |
| * nilfs_detach_log_writer - destroy log writer |
| * @sb: super block instance |
| * |
| * This kills log writer daemon, frees the log writer object, and |
| * destroys list of dirty files. |
| */ |
| void nilfs_detach_log_writer(struct super_block *sb) |
| { |
| struct the_nilfs *nilfs = sb->s_fs_info; |
| LIST_HEAD(garbage_list); |
| |
| down_write(&nilfs->ns_segctor_sem); |
| if (nilfs->ns_writer) { |
| nilfs_segctor_destroy(nilfs->ns_writer); |
| nilfs->ns_writer = NULL; |
| } |
| set_nilfs_purging(nilfs); |
| |
| /* Force to free the list of dirty files */ |
| spin_lock(&nilfs->ns_inode_lock); |
| if (!list_empty(&nilfs->ns_dirty_files)) { |
| list_splice_init(&nilfs->ns_dirty_files, &garbage_list); |
| nilfs_warn(sb, |
| "disposed unprocessed dirty file(s) when detaching log writer"); |
| } |
| spin_unlock(&nilfs->ns_inode_lock); |
| up_write(&nilfs->ns_segctor_sem); |
| |
| nilfs_dispose_list(nilfs, &garbage_list, 1); |
| clear_nilfs_purging(nilfs); |
| } |