blob: 4b004c6c9c9e1e985260f3556e89a81f2e6efd08 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 Google LLC
* Author: Quentin Perret <qperret@google.com>
*/
#include <linux/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_pgtable.h>
#include <asm/kvm_pkvm.h>
#include <asm/stage2_pgtable.h>
#include <hyp/fault.h>
#include <nvhe/gfp.h>
#include <nvhe/memory.h>
#include <nvhe/mem_protect.h>
#include <nvhe/mm.h>
#define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
/* Replace this with something more structured once day */
#define MMIO_NOTE (('M' << 24 | 'M' << 16 | 'I' << 8 | 'O') << 1)
struct host_mmu host_mmu;
static struct hyp_pool host_s2_pool;
static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
#define current_vm (*this_cpu_ptr(&__current_vm))
static void guest_lock_component(struct pkvm_hyp_vm *vm)
{
hyp_spin_lock(&vm->pgtable_lock);
current_vm = vm;
}
static void guest_unlock_component(struct pkvm_hyp_vm *vm)
{
current_vm = NULL;
hyp_spin_unlock(&vm->pgtable_lock);
}
static void host_lock_component(void)
{
hyp_spin_lock(&host_mmu.lock);
}
static void host_unlock_component(void)
{
hyp_spin_unlock(&host_mmu.lock);
}
static void hyp_lock_component(void)
{
hyp_spin_lock(&pkvm_pgd_lock);
}
static void hyp_unlock_component(void)
{
hyp_spin_unlock(&pkvm_pgd_lock);
}
static void *host_s2_zalloc_pages_exact(size_t size)
{
void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
hyp_split_page(hyp_virt_to_page(addr));
/*
* The size of concatenated PGDs is always a power of two of PAGE_SIZE,
* so there should be no need to free any of the tail pages to make the
* allocation exact.
*/
WARN_ON(size != (PAGE_SIZE << get_order(size)));
return addr;
}
static void *host_s2_zalloc_page(void *pool)
{
return hyp_alloc_pages(pool, 0);
}
static void host_s2_get_page(void *addr)
{
hyp_get_page(&host_s2_pool, addr);
}
static void host_s2_put_page(void *addr)
{
hyp_put_page(&host_s2_pool, addr);
}
static void host_s2_free_unlinked_table(void *addr, u32 level)
{
kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level);
}
static int prepare_s2_pool(void *pgt_pool_base)
{
unsigned long nr_pages, pfn;
int ret;
pfn = hyp_virt_to_pfn(pgt_pool_base);
nr_pages = host_s2_pgtable_pages();
ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
if (ret)
return ret;
host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
.zalloc_pages_exact = host_s2_zalloc_pages_exact,
.zalloc_page = host_s2_zalloc_page,
.free_unlinked_table = host_s2_free_unlinked_table,
.phys_to_virt = hyp_phys_to_virt,
.virt_to_phys = hyp_virt_to_phys,
.page_count = hyp_page_count,
.get_page = host_s2_get_page,
.put_page = host_s2_put_page,
};
return 0;
}
static void prepare_host_vtcr(void)
{
u32 parange, phys_shift;
/* The host stage 2 is id-mapped, so use parange for T0SZ */
parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
host_mmu.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
id_aa64mmfr1_el1_sys_val, phys_shift);
}
static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
int kvm_host_prepare_stage2(void *pgt_pool_base)
{
struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
int ret;
prepare_host_vtcr();
hyp_spin_lock_init(&host_mmu.lock);
mmu->arch = &host_mmu.arch;
ret = prepare_s2_pool(pgt_pool_base);
if (ret)
return ret;
ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
&host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
host_stage2_force_pte_cb);
if (ret)
return ret;
mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
mmu->pgt = &host_mmu.pgt;
atomic64_set(&mmu->vmid.id, 0);
return 0;
}
static bool guest_stage2_force_pte_cb(u64 addr, u64 end,
enum kvm_pgtable_prot prot)
{
return false;
}
static void *guest_s2_zalloc_pages_exact(size_t size)
{
void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
WARN_ON(size != (PAGE_SIZE << get_order(size)));
hyp_split_page(hyp_virt_to_page(addr));
return addr;
}
static void guest_s2_free_pages_exact(void *addr, unsigned long size)
{
u8 order = get_order(size);
unsigned int i;
for (i = 0; i < (1 << order); i++)
hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
}
static void *guest_s2_zalloc_page(void *mc)
{
struct hyp_page *p;
void *addr;
addr = hyp_alloc_pages(&current_vm->pool, 0);
if (addr)
return addr;
addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
if (!addr)
return addr;
memset(addr, 0, PAGE_SIZE);
p = hyp_virt_to_page(addr);
memset(p, 0, sizeof(*p));
hyp_set_page_refcounted(p);
return addr;
}
static void guest_s2_get_page(void *addr)
{
hyp_get_page(&current_vm->pool, addr);
}
static void guest_s2_put_page(void *addr)
{
hyp_put_page(&current_vm->pool, addr);
}
static void clean_dcache_guest_page(void *va, size_t size)
{
while (size) {
__clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)),
PAGE_SIZE);
hyp_fixmap_unmap();
va += PAGE_SIZE;
size -= PAGE_SIZE;
}
}
static void invalidate_icache_guest_page(void *va, size_t size)
{
while (size) {
__invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)),
PAGE_SIZE);
hyp_fixmap_unmap();
va += PAGE_SIZE;
size -= PAGE_SIZE;
}
}
int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
{
struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
unsigned long nr_pages;
int ret;
nr_pages = kvm_pgtable_stage2_pgd_size(vm->kvm.arch.vtcr) >> PAGE_SHIFT;
ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
if (ret)
return ret;
hyp_spin_lock_init(&vm->pgtable_lock);
vm->mm_ops = (struct kvm_pgtable_mm_ops) {
.zalloc_pages_exact = guest_s2_zalloc_pages_exact,
.free_pages_exact = guest_s2_free_pages_exact,
.zalloc_page = guest_s2_zalloc_page,
.phys_to_virt = hyp_phys_to_virt,
.virt_to_phys = hyp_virt_to_phys,
.page_count = hyp_page_count,
.get_page = guest_s2_get_page,
.put_page = guest_s2_put_page,
.dcache_clean_inval_poc = clean_dcache_guest_page,
.icache_inval_pou = invalidate_icache_guest_page,
};
guest_lock_component(vm);
ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0,
guest_stage2_force_pte_cb);
guest_unlock_component(vm);
if (ret)
return ret;
vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
mmu->pgt->lazy = false;
return 0;
}
struct relinquish_data {
enum pkvm_page_state expected_state;
u64 pa;
};
static int relinquish_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
u64 addr = ALIGN_DOWN(ctx->addr, kvm_granule_size(ctx->level));
kvm_pte_t pte = *ctx->ptep;
struct relinquish_data *data = ctx->arg;
enum pkvm_page_state state;
phys_addr_t phys;
if (!kvm_pte_valid(pte))
return 0;
state = pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
if (state != data->expected_state)
return -EPERM;
phys = kvm_pte_to_phys(pte);
phys += ctx->addr - addr;
if (state == PKVM_PAGE_OWNED) {
hyp_poison_page(phys);
psci_mem_protect_dec(PAGE_SIZE);
}
data->pa = phys;
return 0;
}
int __pkvm_guest_relinquish_to_host(struct pkvm_hyp_vcpu *vcpu,
u64 ipa, u64 *ppa)
{
struct relinquish_data data;
struct kvm_pgtable_walker walker = {
.cb = relinquish_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = &data,
};
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
int ret;
host_lock_component();
guest_lock_component(vm);
/* Expected page state depends on VM type. */
data.expected_state = pkvm_hyp_vcpu_is_protected(vcpu) ?
PKVM_PAGE_OWNED :
PKVM_PAGE_SHARED_BORROWED;
/* Set default pa value to "not found". */
data.pa = 0;
/* If ipa is mapped: poisons the page, and gets the pa. */
ret = kvm_pgtable_walk(&vm->pgt, ipa, PAGE_SIZE, &walker);
if (ret || !data.pa)
goto end;
/* Zap the guest stage2 pte and return ownership to the host */
ret = __kvm_pgtable_stage2_unmap(&vm->pgt, ipa, PAGE_SIZE,
&vcpu->vcpu.arch.pkvm_memcache);
if (ret)
goto end;
WARN_ON(host_stage2_set_owner_locked(data.pa, PAGE_SIZE, PKVM_ID_HOST));
end:
guest_unlock_component(vm);
host_unlock_component();
*ppa = data.pa;
return ret;
}
int __pkvm_prot_finalize(void)
{
struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
if (params->hcr_el2 & HCR_VM)
return -EPERM;
params->vttbr = kvm_get_vttbr(mmu);
params->vtcr = host_mmu.arch.vtcr;
params->hcr_el2 |= HCR_VM;
/*
* The CMO below not only cleans the updated params to the
* PoC, but also provides the DSB that ensures ongoing
* page-table walks that have started before we trapped to EL2
* have completed.
*/
kvm_flush_dcache_to_poc(params, sizeof(*params));
write_sysreg(params->hcr_el2, hcr_el2);
__load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
/*
* Make sure to have an ISB before the TLB maintenance below but only
* when __load_stage2() doesn't include one already.
*/
asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
/* Invalidate stale HCR bits that may be cached in TLBs */
__tlbi(vmalls12e1);
dsb(nsh);
isb();
return 0;
}
static int host_stage2_unmap_dev_all(void)
{
struct kvm_pgtable *pgt = &host_mmu.pgt;
struct memblock_region *reg;
u64 addr = 0;
int i, ret;
/* Unmap all non-memory regions to recycle the pages */
for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
reg = &hyp_memory[i];
ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
if (ret)
return ret;
}
return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
}
struct kvm_mem_range {
u64 start;
u64 end;
};
static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
{
int cur, left = 0, right = hyp_memblock_nr;
struct memblock_region *reg;
phys_addr_t end;
range->start = 0;
range->end = ULONG_MAX;
/* The list of memblock regions is sorted, binary search it */
while (left < right) {
cur = (left + right) >> 1;
reg = &hyp_memory[cur];
end = reg->base + reg->size;
if (addr < reg->base) {
right = cur;
range->end = reg->base;
} else if (addr >= end) {
left = cur + 1;
range->start = end;
} else {
range->start = reg->base;
range->end = end;
return reg;
}
}
return NULL;
}
bool addr_is_memory(phys_addr_t phys)
{
struct kvm_mem_range range;
return !!find_mem_range(phys, &range);
}
static bool addr_is_allowed_memory(phys_addr_t phys)
{
struct memblock_region *reg;
struct kvm_mem_range range;
reg = find_mem_range(phys, &range);
return reg && !(reg->flags & MEMBLOCK_NOMAP);
}
static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
{
return range->start <= addr && addr < range->end;
}
static bool range_is_memory(u64 start, u64 end)
{
struct kvm_mem_range r;
if (!find_mem_range(start, &r))
return false;
return is_in_mem_range(end - 1, &r);
}
static inline int __host_stage2_idmap(u64 start, u64 end,
enum kvm_pgtable_prot prot)
{
return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
prot, &host_s2_pool, 0);
}
/*
* The pool has been provided with enough pages to cover all of memory with
* page granularity, but it is difficult to know how much of the MMIO range
* we will need to cover upfront, so we may need to 'recycle' the pages if we
* run out.
*/
#define host_stage2_try(fn, ...) \
({ \
int __ret; \
hyp_assert_lock_held(&host_mmu.lock); \
__ret = fn(__VA_ARGS__); \
if (__ret == -ENOMEM) { \
__ret = host_stage2_unmap_dev_all(); \
if (!__ret) \
__ret = fn(__VA_ARGS__); \
} \
__ret; \
})
static inline bool range_included(struct kvm_mem_range *child,
struct kvm_mem_range *parent)
{
return parent->start <= child->start && child->end <= parent->end;
}
static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
{
struct kvm_mem_range cur;
kvm_pte_t pte;
u32 level;
int ret;
hyp_assert_lock_held(&host_mmu.lock);
ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
if (ret)
return ret;
if (kvm_pte_valid(pte))
return -EAGAIN;
if (pte)
return -EPERM;
do {
u64 granule = kvm_granule_size(level);
cur.start = ALIGN_DOWN(addr, granule);
cur.end = cur.start + granule;
level++;
} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
!(kvm_level_supports_block_mapping(level) &&
range_included(&cur, range)));
*range = cur;
return 0;
}
int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
enum kvm_pgtable_prot prot)
{
return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
}
#define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
#define KVM_MAX_OWNER_ID FIELD_MAX(KVM_INVALID_PTE_OWNER_MASK)
static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
{
return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
}
int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
{
kvm_pte_t annotation;
if (owner_id > KVM_MAX_OWNER_ID)
return -EINVAL;
annotation = kvm_init_invalid_leaf_owner(owner_id);
return host_stage2_try(kvm_pgtable_stage2_annotate, &host_mmu.pgt,
addr, size, &host_s2_pool, annotation);
}
static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
{
/*
* Block mappings must be used with care in the host stage-2 as a
* kvm_pgtable_stage2_map() operation targeting a page in the range of
* an existing block will delete the block under the assumption that
* mappings in the rest of the block range can always be rebuilt lazily.
* That assumption is correct for the host stage-2 with RWX mappings
* targeting memory or RW mappings targeting MMIO ranges (see
* host_stage2_idmap() below which implements some of the host memory
* abort logic). However, this is not safe for any other mappings where
* the host stage-2 page-table is in fact the only place where this
* state is stored. In all those cases, it is safer to use page-level
* mappings, hence avoiding to lose the state because of side-effects in
* kvm_pgtable_stage2_map().
*/
if (range_is_memory(addr, end))
return prot != PKVM_HOST_MEM_PROT;
else
return prot != PKVM_HOST_MMIO_PROT;
}
static int host_stage2_idmap(u64 addr)
{
struct kvm_mem_range range;
bool is_memory = !!find_mem_range(addr, &range);
enum kvm_pgtable_prot prot;
int ret;
prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
host_lock_component();
ret = host_stage2_adjust_range(addr, &range);
if (ret)
goto unlock;
ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
unlock:
host_unlock_component();
return ret;
}
static void host_inject_abort(struct kvm_cpu_context *host_ctxt)
{
u64 spsr = read_sysreg_el2(SYS_SPSR);
u64 esr = read_sysreg_el2(SYS_ESR);
u64 ventry, ec;
/* Repaint the ESR to report a same-level fault if taken from EL1 */
if ((spsr & PSR_MODE_MASK) != PSR_MODE_EL0t) {
ec = ESR_ELx_EC(esr);
if (ec == ESR_ELx_EC_DABT_LOW)
ec = ESR_ELx_EC_DABT_CUR;
else if (ec == ESR_ELx_EC_IABT_LOW)
ec = ESR_ELx_EC_IABT_CUR;
else
WARN_ON(1);
esr &= ~ESR_ELx_EC_MASK;
esr |= ec << ESR_ELx_EC_SHIFT;
}
/*
* Since S1PTW should only ever be set for stage-2 faults, we're pretty
* much guaranteed that it won't be set in ESR_EL1 by the hardware. So,
* let's use that bit to allow the host abort handler to differentiate
* this abort from normal userspace faults.
*
* Note: although S1PTW is RES0 at EL1, it is guaranteed by the
* architecture to be backed by flops, so it should be safe to use.
*/
esr |= ESR_ELx_S1PTW;
write_sysreg_el1(esr, SYS_ESR);
write_sysreg_el1(spsr, SYS_SPSR);
write_sysreg_el1(read_sysreg_el2(SYS_ELR), SYS_ELR);
write_sysreg_el1(read_sysreg_el2(SYS_FAR), SYS_FAR);
ventry = read_sysreg_el1(SYS_VBAR);
ventry += get_except64_offset(spsr, PSR_MODE_EL1h, except_type_sync);
write_sysreg_el2(ventry, SYS_ELR);
spsr = get_except64_cpsr(spsr, system_supports_mte(),
read_sysreg_el1(SYS_SCTLR), PSR_MODE_EL1h);
write_sysreg_el2(spsr, SYS_SPSR);
}
void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
{
struct kvm_vcpu_fault_info fault;
u64 esr, addr;
int ret = 0;
esr = read_sysreg_el2(SYS_ESR);
BUG_ON(!__get_fault_info(esr, &fault));
addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
ret = host_stage2_idmap(addr);
if (ret == -EPERM)
host_inject_abort(host_ctxt);
else
BUG_ON(ret && ret != -EAGAIN);
}
struct pkvm_mem_transition {
u64 size;
struct {
enum pkvm_component_id id;
/* Address in the initiator's address space */
u64 addr;
union {
struct {
/* Address in the completer's address space */
u64 completer_addr;
} host;
struct {
u64 completer_addr;
} hyp;
struct {
struct pkvm_hyp_vcpu *hyp_vcpu;
} guest;
};
} initiator;
struct {
enum pkvm_component_id id;
union {
struct {
struct pkvm_hyp_vcpu *hyp_vcpu;
phys_addr_t phys;
} guest;
};
} completer;
};
struct pkvm_checked_mem_transition {
const struct pkvm_mem_transition *tx;
u64 completer_addr;
/* Size of physically contiguous memory */
u64 size;
};
struct pkvm_mem_share {
const struct pkvm_mem_transition tx;
const enum kvm_pgtable_prot completer_prot;
};
struct pkvm_mem_donation {
const struct pkvm_mem_transition tx;
};
struct check_walk_data {
enum pkvm_page_state desired;
enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr);
};
static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct check_walk_data *d = ctx->arg;
return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM;
}
static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
struct check_walk_data *data)
{
struct kvm_pgtable_walker walker = {
.cb = __check_page_state_visitor,
.arg = data,
.flags = KVM_PGTABLE_WALK_LEAF,
};
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr)
{
if (!addr_is_allowed_memory(addr))
return PKVM_NOPAGE;
if (!kvm_pte_valid(pte) && pte)
return PKVM_NOPAGE;
return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
}
static int __host_check_page_state_range(u64 addr, u64 size,
enum pkvm_page_state state)
{
struct check_walk_data d = {
.desired = state,
.get_page_state = host_get_page_state,
};
hyp_assert_lock_held(&host_mmu.lock);
return check_page_state_range(&host_mmu.pgt, addr, size, &d);
}
static int __host_set_page_state_range(u64 addr, u64 size,
enum pkvm_page_state state)
{
enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
return host_stage2_idmap_locked(addr, size, prot);
}
static int host_request_owned_transition(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u64 addr = tx->initiator.addr;
*completer_addr = tx->initiator.host.completer_addr;
return __host_check_page_state_range(addr, tx->size, PKVM_PAGE_OWNED);
}
static int host_request_unshare(struct pkvm_checked_mem_transition *checked_tx)
{
const struct pkvm_mem_transition *tx = checked_tx->tx;
u64 addr = tx->initiator.addr;
checked_tx->completer_addr = tx->initiator.host.completer_addr;
checked_tx->size = tx->size;
return __host_check_page_state_range(addr, tx->size, PKVM_PAGE_SHARED_OWNED);
}
static int host_initiate_share(const struct pkvm_checked_mem_transition *checked_tx)
{
const struct pkvm_mem_transition *tx = checked_tx->tx;
u64 addr = tx->initiator.addr;
return __host_set_page_state_range(addr, checked_tx->size, PKVM_PAGE_SHARED_OWNED);
}
static int host_initiate_unshare(const struct pkvm_checked_mem_transition *checked_tx)
{
const struct pkvm_mem_transition *tx = checked_tx->tx;
u64 addr = tx->initiator.addr;
return __host_set_page_state_range(addr, checked_tx->size, PKVM_PAGE_OWNED);
}
static int host_initiate_donation(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u8 owner_id = tx->completer.id;
*completer_addr = tx->initiator.host.completer_addr;
return host_stage2_set_owner_locked(tx->initiator.addr, tx->size, owner_id);
}
static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
{
return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
tx->initiator.id != PKVM_ID_HYP);
}
static int __host_ack_transition(u64 addr, u64 size,
const struct pkvm_mem_transition *tx,
enum pkvm_page_state state)
{
if (__host_ack_skip_pgtable_check(tx))
return 0;
return __host_check_page_state_range(addr, size, state);
}
static int host_ack_share(const struct pkvm_checked_mem_transition *checked_tx,
enum kvm_pgtable_prot perms)
{
const struct pkvm_mem_transition *tx = checked_tx->tx;
if (perms != PKVM_HOST_MEM_PROT)
return -EPERM;
return __host_ack_transition(checked_tx->completer_addr, checked_tx->size,
tx, PKVM_NOPAGE);
}
static int host_ack_donation(u64 addr,
const struct pkvm_mem_transition *tx)
{
return __host_ack_transition(addr, tx->size, tx, PKVM_NOPAGE);
}
static int host_ack_unshare(const struct pkvm_checked_mem_transition *checked_tx)
{
return __host_ack_transition(checked_tx->completer_addr, checked_tx->size,
checked_tx->tx, PKVM_PAGE_SHARED_BORROWED);
}
static int host_complete_share(const struct pkvm_checked_mem_transition *checked_tx,
enum kvm_pgtable_prot perms)
{
int err;
err = __host_set_page_state_range(checked_tx->completer_addr,
checked_tx->size, PKVM_PAGE_SHARED_BORROWED);
if (err)
return err;
if (checked_tx->tx->initiator.id == PKVM_ID_GUEST)
psci_mem_protect_dec(checked_tx->size);
return 0;
}
static int host_complete_unshare(const struct pkvm_checked_mem_transition *checked_tx)
{
u8 owner_id = checked_tx->tx->initiator.id;
if (checked_tx->tx->initiator.id == PKVM_ID_GUEST)
psci_mem_protect_inc(checked_tx->size);
return host_stage2_set_owner_locked(checked_tx->completer_addr,
checked_tx->size, owner_id);
}
static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
{
u8 host_id = tx->completer.id;
return host_stage2_set_owner_locked(addr, tx->size, host_id);
}
static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr)
{
if (!kvm_pte_valid(pte))
return PKVM_NOPAGE;
return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte));
}
static int __hyp_check_page_state_range(u64 addr, u64 size,
enum pkvm_page_state state)
{
struct check_walk_data d = {
.desired = state,
.get_page_state = hyp_get_page_state,
};
hyp_assert_lock_held(&pkvm_pgd_lock);
return check_page_state_range(&pkvm_pgtable, addr, size, &d);
}
static int hyp_request_donation(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u64 addr = tx->initiator.addr;
*completer_addr = tx->initiator.hyp.completer_addr;
return __hyp_check_page_state_range(addr, tx->size, PKVM_PAGE_OWNED);
}
static int hyp_initiate_donation(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u64 unmapped;
*completer_addr = tx->initiator.hyp.completer_addr;
unmapped = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, tx->size);
return (unmapped != tx->size) ? -EFAULT : 0;
}
static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
{
return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
tx->initiator.id != PKVM_ID_HOST);
}
static int hyp_ack_share(const struct pkvm_checked_mem_transition *checked_tx,
enum kvm_pgtable_prot perms)
{
const struct pkvm_mem_transition *tx = checked_tx->tx;
if (perms != PAGE_HYP)
return -EPERM;
if (__hyp_ack_skip_pgtable_check(tx))
return 0;
return __hyp_check_page_state_range(checked_tx->completer_addr,
checked_tx->size, PKVM_NOPAGE);
}
static int hyp_ack_unshare(const struct pkvm_checked_mem_transition *checked_tx)
{
const struct pkvm_mem_transition *tx = checked_tx->tx;
u64 addr = checked_tx->completer_addr;
if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr))
return -EBUSY;
if (__hyp_ack_skip_pgtable_check(tx))
return 0;
return __hyp_check_page_state_range(addr, checked_tx->size,
PKVM_PAGE_SHARED_BORROWED);
}
static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
{
if (__hyp_ack_skip_pgtable_check(tx))
return 0;
return __hyp_check_page_state_range(addr, tx->size, PKVM_NOPAGE);
}
static int hyp_complete_share(const struct pkvm_checked_mem_transition *checked_tx,
enum kvm_pgtable_prot perms)
{
void *start = (void *)checked_tx->completer_addr, *end = start + checked_tx->size;
enum kvm_pgtable_prot prot;
prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
return pkvm_create_mappings_locked(start, end, prot);
}
static int hyp_complete_unshare(const struct pkvm_checked_mem_transition *checked_tx)
{
u64 unmapped = kvm_pgtable_hyp_unmap(&pkvm_pgtable, checked_tx->completer_addr,
checked_tx->size);
return (unmapped != checked_tx->size) ? -EFAULT : 0;
}
static int hyp_complete_donation(u64 addr,
const struct pkvm_mem_transition *tx)
{
void *start = (void *)addr, *end = start + tx->size;
enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED);
return pkvm_create_mappings_locked(start, end, prot);
}
static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte, u64 addr)
{
if (!kvm_pte_valid(pte)) {
enum pkvm_page_state state = PKVM_NOPAGE;
if (pte == MMIO_NOTE)
state |= PKVM_MMIO;
return state;
}
return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
}
static int __guest_check_page_state_range(struct pkvm_hyp_vcpu *vcpu, u64 addr,
u64 size, enum pkvm_page_state state)
{
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct check_walk_data d = {
.desired = state,
.get_page_state = guest_get_page_state,
};
hyp_assert_lock_held(&vm->pgtable_lock);
return check_page_state_range(&vm->pgt, addr, size, &d);
}
static int guest_ack_share(const struct pkvm_checked_mem_transition *checked_tx,
enum kvm_pgtable_prot perms)
{
const struct pkvm_mem_transition *tx = checked_tx->tx;
if (perms != KVM_PGTABLE_PROT_RWX)
return -EPERM;
return __guest_check_page_state_range(tx->completer.guest.hyp_vcpu,
checked_tx->completer_addr,
checked_tx->size, PKVM_NOPAGE);
}
static int guest_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
{
return __guest_check_page_state_range(tx->completer.guest.hyp_vcpu,
addr, tx->size, PKVM_NOPAGE);
}
static int guest_complete_share(const struct pkvm_checked_mem_transition *checked_tx,
enum kvm_pgtable_prot perms)
{
const struct pkvm_mem_transition *tx = checked_tx->tx;
struct pkvm_hyp_vcpu *vcpu = tx->completer.guest.hyp_vcpu;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
enum kvm_pgtable_prot prot;
prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
return kvm_pgtable_stage2_map(&vm->pgt, checked_tx->completer_addr, checked_tx->size,
tx->completer.guest.phys,
prot, &vcpu->vcpu.arch.pkvm_memcache, 0);
}
static int guest_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
{
enum kvm_pgtable_prot prot = pkvm_mkstate(KVM_PGTABLE_PROT_RWX, PKVM_PAGE_OWNED);
struct pkvm_hyp_vcpu *vcpu = tx->completer.guest.hyp_vcpu;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
phys_addr_t phys = tx->completer.guest.phys;
int err;
if (tx->initiator.id == PKVM_ID_HOST)
psci_mem_protect_inc(tx->size);
if (pkvm_ipa_range_has_pvmfw(vm, addr, addr + tx->size)) {
if (WARN_ON(!pkvm_hyp_vcpu_is_protected(vcpu))) {
err = -EPERM;
goto err_undo_psci;
}
WARN_ON(tx->initiator.id != PKVM_ID_HOST);
err = pkvm_load_pvmfw_pages(vm, addr, phys, tx->size);
if (err)
goto err_undo_psci;
}
/*
* If this fails, we effectively leak the pages since they're now
* owned by the guest but not mapped into its stage-2 page-table.
*/
return kvm_pgtable_stage2_map(&vm->pgt, addr, tx->size, phys, prot,
&vcpu->vcpu.arch.pkvm_memcache, 0);
err_undo_psci:
if (tx->initiator.id == PKVM_ID_HOST)
psci_mem_protect_dec(tx->size);
return err;
}
struct guest_request_walker_data {
unsigned long ipa_start;
phys_addr_t phys_start;
size_t size;
enum pkvm_page_state desired;
enum pkvm_page_state desired_mask;
int max_ptes;
};
#define GUEST_WALKER_DATA_INIT(__state) \
{ \
.size = 0, \
.desired = __state, \
.desired_mask = ~0, \
/* \
* Arbitrary limit of walked PTEs to restrict \
* the time spent at EL2 \
*/ \
.max_ptes = 512, \
}
static int guest_request_walker(const struct kvm_pgtable_visit_ctx *ctx,
enum kvm_pgtable_walk_flags visit)
{
struct guest_request_walker_data *data = (struct guest_request_walker_data *)ctx->arg;
enum pkvm_page_state state;
kvm_pte_t pte = *ctx->ptep;
u32 level = ctx->level;
phys_addr_t phys;
state = guest_get_page_state(pte, 0);
if ((data->desired & data->desired_mask) != state)
return state == PKVM_NOPAGE ? -EFAULT : -EINVAL;
if (state != PKVM_NOPAGE) {
phys = kvm_pte_to_phys(pte);
if (!addr_is_allowed_memory(phys))
return -EINVAL;
} else {
phys = 0;
}
data->max_ptes--;
if (!data->size) {
data->ipa_start = ~(kvm_granule_size(level) - 1) & ctx->addr;
data->phys_start = phys;
data->size = kvm_granule_size(level);
goto end;
}
/* Can only describe physically contiguous mappings */
if (data->phys_start && phys != data->phys_start + data->size)
return -E2BIG;
data->size += kvm_granule_size(level);
end:
return data->max_ptes > 0 ? 0 : -E2BIG;
}
static int __guest_request_page_transition(struct pkvm_checked_mem_transition *checked_tx,
enum pkvm_page_state desired)
{
struct guest_request_walker_data data = GUEST_WALKER_DATA_INIT(desired);
const struct pkvm_mem_transition *tx = checked_tx->tx;
struct pkvm_hyp_vcpu *hyp_vcpu = tx->initiator.guest.hyp_vcpu;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
struct kvm_pgtable_walker walker = {
.cb = guest_request_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = (void *)&data,
};
int ret, min_pages, broken_blocks = 0;
u64 phys_offset;
ret = kvm_pgtable_walk(&vm->pgt, tx->initiator.addr, tx->size, &walker);
if (ret == -E2BIG)
ret = 0;
else if (ret)
return ret;
if (data.ipa_start > tx->initiator.addr)
return -EINVAL;
phys_offset = tx->initiator.addr - data.ipa_start;
/*
* transition not aligned with block memory mapping. They'll be broken
* down and memory donation will be needed.
*/
if (phys_offset)
broken_blocks++;
if (tx->size < data.size)
broken_blocks++;
min_pages = broken_blocks * kvm_mmu_cache_min_pages(hyp_vcpu->vcpu.kvm);
if (hyp_vcpu->vcpu.arch.pkvm_memcache.nr_pages < min_pages)
return -ENOMEM;
checked_tx->completer_addr = data.phys_start + phys_offset;
checked_tx->size = min_t(u64, data.size - phys_offset, tx->size);
return 0;
}
static int guest_request_share(struct pkvm_checked_mem_transition *checked_tx)
{
return __guest_request_page_transition(checked_tx, PKVM_PAGE_OWNED);
}
static int guest_request_unshare(struct pkvm_checked_mem_transition *checked_tx)
{
return __guest_request_page_transition(checked_tx, PKVM_PAGE_SHARED_OWNED);
}
static int __guest_initiate_page_transition(const struct pkvm_checked_mem_transition *checked_tx,
enum pkvm_page_state state)
{
struct pkvm_hyp_vcpu *vcpu = checked_tx->tx->initiator.guest.hyp_vcpu;
struct kvm_hyp_memcache *mc = &vcpu->vcpu.arch.pkvm_memcache;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
u64 offset, addr = checked_tx->tx->initiator.addr;
enum kvm_pgtable_prot prot;
phys_addr_t phys;
kvm_pte_t pte;
u32 level;
int ret;
ret = kvm_pgtable_get_leaf(&vm->pgt, addr, &pte, &level);
if (ret)
return ret;
offset = addr - ALIGN_DOWN(addr, kvm_granule_size(level));
phys = kvm_pte_to_phys(pte) + offset;
prot = pkvm_mkstate(kvm_pgtable_stage2_pte_prot(pte), state);
return kvm_pgtable_stage2_map(&vm->pgt, addr, checked_tx->size, phys, prot, mc, 0);
}
static int guest_initiate_share(const struct pkvm_checked_mem_transition *checked_tx)
{
return __guest_initiate_page_transition(checked_tx, PKVM_PAGE_SHARED_OWNED);
}
static int guest_initiate_unshare(const struct pkvm_checked_mem_transition *checked_tx)
{
return __guest_initiate_page_transition(checked_tx, PKVM_PAGE_OWNED);
}
static int check_share(const struct pkvm_mem_share *share,
struct pkvm_checked_mem_transition *checked_tx)
{
const struct pkvm_mem_transition *tx = &share->tx;
int ret;
if (!tx->size)
return -EINVAL;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_request_owned_transition(&checked_tx->completer_addr, tx);
checked_tx->size = tx->size;
break;
case PKVM_ID_GUEST:
ret = guest_request_share(checked_tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_ack_share(checked_tx, share->completer_prot);
break;
case PKVM_ID_HYP:
ret = hyp_ack_share(checked_tx, share->completer_prot);
break;
case PKVM_ID_FFA:
/*
* We only check the host; the secure side will check the other
* end when we forward the FFA call.
*/
ret = 0;
break;
case PKVM_ID_GUEST:
ret = guest_ack_share(checked_tx, share->completer_prot);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int __do_share(const struct pkvm_mem_share *share,
const struct pkvm_checked_mem_transition *checked_tx)
{
const struct pkvm_mem_transition *tx = &share->tx;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_initiate_share(checked_tx);
break;
case PKVM_ID_GUEST:
ret = guest_initiate_share(checked_tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_complete_share(checked_tx, share->completer_prot);
break;
case PKVM_ID_HYP:
ret = hyp_complete_share(checked_tx, share->completer_prot);
break;
case PKVM_ID_FFA:
/*
* We're not responsible for any secure page-tables, so there's
* nothing to do here.
*/
ret = 0;
break;
case PKVM_ID_GUEST:
ret = guest_complete_share(checked_tx, share->completer_prot);
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* do_share():
*
* The page owner grants access to another component with a given set
* of permissions.
*
* Initiator: OWNED => SHARED_OWNED
* Completer: NOPAGE => SHARED_BORROWED
*/
static int do_share(struct pkvm_mem_share *share,
u64 *shared)
{
struct pkvm_checked_mem_transition checked_tx = {
.tx = &share->tx,
.size = 0,
};
int ret;
ret = check_share(share, &checked_tx);
if (ret)
return ret;
ret = __do_share(share, &checked_tx);
if (WARN_ON(ret))
return ret;
*shared = checked_tx.size;
return ret;
}
static int check_unshare(struct pkvm_mem_share *share,
struct pkvm_checked_mem_transition *checked_tx)
{
const struct pkvm_mem_transition *tx = &share->tx;
int ret;
if (!tx->size)
return -EINVAL;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_request_unshare(checked_tx);
break;
case PKVM_ID_GUEST:
ret = guest_request_unshare(checked_tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_ack_unshare(checked_tx);
break;
case PKVM_ID_HYP:
ret = hyp_ack_unshare(checked_tx);
break;
case PKVM_ID_FFA:
/* See check_share() */
ret = 0;
break;
default:
ret = -EINVAL;
}
return ret;
}
static int __do_unshare(struct pkvm_mem_share *share,
const struct pkvm_checked_mem_transition *checked_tx)
{
const struct pkvm_mem_transition *tx = &share->tx;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_initiate_unshare(checked_tx);
break;
case PKVM_ID_GUEST:
ret = guest_initiate_unshare(checked_tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_complete_unshare(checked_tx);
break;
case PKVM_ID_HYP:
ret = hyp_complete_unshare(checked_tx);
break;
case PKVM_ID_FFA:
/* See __do_share() */
ret = 0;
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* do_unshare():
*
* The page owner revokes access from another component for a range of
* pages which were previously shared using do_share().
*
* Initiator: SHARED_OWNED => OWNED
* Completer: SHARED_BORROWED => NOPAGE
*/
static int do_unshare(struct pkvm_mem_share *share,
u64 *unshared)
{
struct pkvm_checked_mem_transition checked_tx = {
.tx = &share->tx,
.size = 0,
};
int ret;
ret = check_unshare(share, &checked_tx);
if (ret)
return ret;
ret = __do_unshare(share, &checked_tx);
if (WARN_ON(ret))
return ret;
*unshared = checked_tx.size;
return 0;
}
static int check_donation(struct pkvm_mem_donation *donation)
{
const struct pkvm_mem_transition *tx = &donation->tx;
u64 completer_addr;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_request_owned_transition(&completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_request_donation(&completer_addr, tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_ack_donation(completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_ack_donation(completer_addr, tx);
break;
case PKVM_ID_GUEST:
ret = guest_ack_donation(completer_addr, tx);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int __do_donate(struct pkvm_mem_donation *donation)
{
const struct pkvm_mem_transition *tx = &donation->tx;
u64 completer_addr;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_initiate_donation(&completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_initiate_donation(&completer_addr, tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_complete_donation(completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_complete_donation(completer_addr, tx);
break;
case PKVM_ID_GUEST:
ret = guest_complete_donation(completer_addr, tx);
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* do_donate():
*
* The page owner transfers ownership to another component, losing access
* as a consequence.
*
* Initiator: OWNED => NOPAGE
* Completer: NOPAGE => OWNED
*/
static int do_donate(struct pkvm_mem_donation *donation)
{
int ret;
ret = check_donation(donation);
if (ret)
return ret;
return WARN_ON(__do_donate(donation));
}
int __pkvm_host_share_hyp(u64 pfn)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 hyp_addr = (u64)__hyp_va(host_addr);
struct pkvm_mem_share share = {
.tx = {
.size = PAGE_SIZE,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = hyp_addr,
},
},
.completer = {
.id = PKVM_ID_HYP,
},
},
.completer_prot = PAGE_HYP,
};
u64 shared;
host_lock_component();
hyp_lock_component();
ret = do_share(&share, &shared);
hyp_unlock_component();
host_unlock_component();
return ret;
}
int __pkvm_guest_share_host(struct pkvm_hyp_vcpu *vcpu, u64 ipa, u64 size,
u64 *shared)
{
int ret;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct pkvm_mem_share share = {
.tx = {
.size = size,
.initiator = {
.id = PKVM_ID_GUEST,
.addr = ipa,
.guest = {
.hyp_vcpu = vcpu,
},
},
.completer = {
.id = PKVM_ID_HOST,
},
},
.completer_prot = PKVM_HOST_MEM_PROT,
};
host_lock_component();
guest_lock_component(vm);
ret = do_share(&share, shared);
guest_unlock_component(vm);
host_unlock_component();
return ret;
}
int __pkvm_guest_unshare_host(struct pkvm_hyp_vcpu *vcpu, u64 ipa, u64 size,
u64 *unshared)
{
int ret;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct pkvm_mem_share share = {
.tx = {
.size = size,
.initiator = {
.id = PKVM_ID_GUEST,
.addr = ipa,
.guest = {
.hyp_vcpu = vcpu,
},
},
.completer = {
.id = PKVM_ID_HOST,
},
},
.completer_prot = PKVM_HOST_MEM_PROT,
};
host_lock_component();
guest_lock_component(vm);
ret = do_unshare(&share, unshared);
guest_unlock_component(vm);
host_unlock_component();
return ret;
}
int __pkvm_host_unshare_hyp(u64 pfn)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 hyp_addr = (u64)__hyp_va(host_addr);
struct pkvm_mem_share share = {
.tx = {
.size = PAGE_SIZE,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = hyp_addr,
},
},
.completer = {
.id = PKVM_ID_HYP,
},
},
.completer_prot = PAGE_HYP,
};
u64 unshared;
host_lock_component();
hyp_lock_component();
ret = do_unshare(&share, &unshared);
hyp_unlock_component();
host_unlock_component();
return ret;
}
int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 hyp_addr = (u64)__hyp_va(host_addr);
struct pkvm_mem_donation donation = {
.tx = {
.size = nr_pages << PAGE_SHIFT,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = hyp_addr,
},
},
.completer = {
.id = PKVM_ID_HYP,
},
},
};
host_lock_component();
hyp_lock_component();
ret = do_donate(&donation);
hyp_unlock_component();
host_unlock_component();
return ret;
}
int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 hyp_addr = (u64)__hyp_va(host_addr);
struct pkvm_mem_donation donation = {
.tx = {
.size = nr_pages << PAGE_SHIFT,
.initiator = {
.id = PKVM_ID_HYP,
.addr = hyp_addr,
.hyp = {
.completer_addr = host_addr,
},
},
.completer = {
.id = PKVM_ID_HOST,
},
},
};
host_lock_component();
hyp_lock_component();
ret = do_donate(&donation);
hyp_unlock_component();
host_unlock_component();
return ret;
}
int hyp_pin_shared_mem(void *from, void *to)
{
u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
u64 end = PAGE_ALIGN((u64)to);
u64 size = end - start;
int ret;
host_lock_component();
hyp_lock_component();
ret = __host_check_page_state_range(__hyp_pa(start), size,
PKVM_PAGE_SHARED_OWNED);
if (ret)
goto unlock;
ret = __hyp_check_page_state_range(start, size,
PKVM_PAGE_SHARED_BORROWED);
if (ret)
goto unlock;
for (cur = start; cur < end; cur += PAGE_SIZE)
hyp_page_ref_inc(hyp_virt_to_page(cur));
unlock:
hyp_unlock_component();
host_unlock_component();
return ret;
}
void hyp_unpin_shared_mem(void *from, void *to)
{
u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
u64 end = PAGE_ALIGN((u64)to);
host_lock_component();
hyp_lock_component();
for (cur = start; cur < end; cur += PAGE_SIZE)
hyp_page_ref_dec(hyp_virt_to_page(cur));
hyp_unlock_component();
host_unlock_component();
}
int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages)
{
int ret;
struct pkvm_mem_share share = {
.tx = {
.size = nr_pages << PAGE_SHIFT,
.initiator = {
.id = PKVM_ID_HOST,
.addr = hyp_pfn_to_phys(pfn),
},
.completer = {
.id = PKVM_ID_FFA,
},
},
};
u64 shared;
host_lock_component();
ret = do_share(&share, &shared);
host_unlock_component();
return ret;
}
int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages)
{
int ret;
struct pkvm_mem_share share = {
.tx = {
.size = nr_pages << PAGE_SHIFT,
.initiator = {
.id = PKVM_ID_HOST,
.addr = hyp_pfn_to_phys(pfn),
},
.completer = {
.id = PKVM_ID_FFA,
},
},
};
u64 unshared;
host_lock_component();
ret = do_unshare(&share, &unshared);
host_unlock_component();
return ret;
}
int __pkvm_host_share_guest(struct pkvm_hyp_vcpu *vcpu, u64 pfn, u64 gfn,
size_t size)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 guest_addr = hyp_pfn_to_phys(gfn);
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct pkvm_mem_share share = {
.tx = {
.size = size,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = guest_addr,
},
},
.completer = {
.id = PKVM_ID_GUEST,
.guest = {
.hyp_vcpu = vcpu,
.phys = host_addr,
},
},
},
.completer_prot = KVM_PGTABLE_PROT_RWX,
};
u64 shared;
host_lock_component();
guest_lock_component(vm);
ret = do_share(&share, &shared);
guest_unlock_component(vm);
host_unlock_component();
WARN_ON(!ret && shared != share.tx.size);
return ret;
}
int __pkvm_host_donate_guest(struct pkvm_hyp_vcpu *vcpu, u64 pfn, u64 gfn,
size_t size)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 guest_addr = hyp_pfn_to_phys(gfn);
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct pkvm_mem_donation donation = {
.tx = {
.size = size,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = guest_addr,
},
},
.completer = {
.id = PKVM_ID_GUEST,
.guest = {
.hyp_vcpu = vcpu,
.phys = host_addr,
},
},
},
};
host_lock_component();
guest_lock_component(vm);
ret = do_donate(&donation);
guest_unlock_component(vm);
host_unlock_component();
return ret;
}
void hyp_poison_page(phys_addr_t phys)
{
void *addr = hyp_fixmap_map(phys);
memset(addr, 0, PAGE_SIZE);
/*
* Prefer kvm_flush_dcache_to_poc() over __clean_dcache_guest_page()
* here as the latter may elide the CMO under the assumption that FWB
* will be enabled on CPUs that support it. This is incorrect for the
* host stage-2 and would otherwise lead to a malicious host potentially
* being able to read the contents of newly reclaimed guest pages.
*/
kvm_flush_dcache_to_poc(addr, PAGE_SIZE);
hyp_fixmap_unmap();
}
void destroy_hyp_vm_pgt(struct pkvm_hyp_vm *vm)
{
guest_lock_component(vm);
kvm_pgtable_stage2_destroy(&vm->pgt);
guest_unlock_component(vm);
}
void drain_hyp_pool(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
{
void *addr = hyp_alloc_pages(&vm->pool, 0);
while (addr) {
memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page));
push_hyp_memcache(mc, addr, hyp_virt_to_phys);
WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
addr = hyp_alloc_pages(&vm->pool, 0);
}
}
int __pkvm_host_reclaim_page(struct pkvm_hyp_vm *vm, u64 pfn, u64 ipa, u8 order)
{
struct kvm_hyp_memcache mc = { .nr_pages = 0 };
phys_addr_t phys = hyp_pfn_to_phys(pfn);
size_t page_size = PAGE_SIZE << order;
kvm_pte_t pte;
int ret = 0;
u32 level;
host_lock_component();
guest_lock_component(vm);
WARN_ON(kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level));
if (kvm_granule_size(level) != page_size) {
ret = -E2BIG;
goto unlock;
} else if (!kvm_pte_valid(pte)) {
ret = -EINVAL;
goto unlock;
} else if (phys != kvm_pte_to_phys(pte)) {
ret = -EPERM;
goto unlock;
}
/* We could avoid TLB inval, it is done per VMID on the finalize path */
WARN_ON(__kvm_pgtable_stage2_unmap(&vm->pgt, ipa, page_size, &mc));
switch(guest_get_page_state(pte, ipa)) {
case PKVM_PAGE_OWNED:
WARN_ON(__host_check_page_state_range(phys, page_size, PKVM_NOPAGE));
hyp_poison_page(phys);
psci_mem_protect_dec(page_size);
break;
case PKVM_PAGE_SHARED_BORROWED:
WARN_ON(__host_check_page_state_range(phys, page_size, PKVM_PAGE_SHARED_OWNED));
break;
case PKVM_PAGE_SHARED_OWNED:
WARN_ON(__host_check_page_state_range(phys, page_size, PKVM_PAGE_SHARED_BORROWED));
break;
default:
BUG_ON(1);
}
WARN_ON(host_stage2_set_owner_locked(phys, page_size, PKVM_ID_HOST));
unlock:
guest_unlock_component(vm);
host_unlock_component();
return ret;
}
static bool __check_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa)
{
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
kvm_pte_t pte;
u32 level;
int ret;
ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level);
if (ret)
return false;
/* Must be a PAGE_SIZE mapping with our annotation */
return (BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)) == PAGE_SIZE &&
pte == MMIO_NOTE);
}
int __pkvm_install_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa,
size_t size, size_t *guarded)
{
struct guest_request_walker_data data = GUEST_WALKER_DATA_INIT(PKVM_NOPAGE);
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
struct kvm_pgtable_walker walker = {
.cb = guest_request_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = (void *)&data,
};
int ret;
if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->kvm.arch.flags))
return -EINVAL;
if (!PAGE_ALIGNED(ipa) || !PAGE_ALIGNED(size))
return -EINVAL;
guest_lock_component(vm);
/*
* Check we either have NOMAP or NOMAP|MMIO in this range.
*/
data.desired_mask = ~PKVM_MMIO;
ret = kvm_pgtable_walk(&vm->pgt, ipa, size, &walker);
if (ret == -E2BIG)
ret = 0;
else if (ret)
goto unlock;
/*
* Intersection between the requested region and what has been verified
*/
size = min(data.size - (size_t)(ipa - data.ipa_start), size);
ret = kvm_pgtable_stage2_annotate(&vm->pgt, ipa, size,
&hyp_vcpu->vcpu.arch.pkvm_memcache,
MMIO_NOTE);
if (guarded)
*guarded = size;
unlock:
guest_unlock_component(vm);
return ret;
}
int __pkvm_remove_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa,
size_t size, size_t *unguarded)
{
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->kvm.arch.flags))
return -EINVAL;
guest_lock_component(vm);
if (__check_ioguard_page(hyp_vcpu, ipa))
WARN_ON(__kvm_pgtable_stage2_unmap(&vm->pgt,
ALIGN_DOWN(ipa, PAGE_SIZE), PAGE_SIZE,
&hyp_vcpu->vcpu.arch.pkvm_memcache));
guest_unlock_component(vm);
if (unguarded)
*unguarded = PAGE_SIZE;
return 0;
}
bool __pkvm_check_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
u64 ipa, end;
bool ret;
if (!kvm_vcpu_dabt_isvalid(&hyp_vcpu->vcpu))
return false;
if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->kvm.arch.flags))
return true;
ipa = kvm_vcpu_get_fault_ipa(&hyp_vcpu->vcpu);
ipa |= kvm_vcpu_get_hfar(&hyp_vcpu->vcpu) & FAR_MASK;
end = ipa + kvm_vcpu_dabt_get_as(&hyp_vcpu->vcpu) - 1;
guest_lock_component(vm);
ret = __check_ioguard_page(hyp_vcpu, ipa);
if ((end & PAGE_MASK) != (ipa & PAGE_MASK))
ret &= __check_ioguard_page(hyp_vcpu, end);
guest_unlock_component(vm);
return ret;
}