| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2020 Google LLC |
| * Author: Quentin Perret <qperret@google.com> |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_pgtable.h> |
| #include <asm/kvm_pkvm.h> |
| #include <asm/spectre.h> |
| |
| #include <nvhe/early_alloc.h> |
| #include <nvhe/gfp.h> |
| #include <nvhe/memory.h> |
| #include <nvhe/mem_protect.h> |
| #include <nvhe/mm.h> |
| #include <nvhe/spinlock.h> |
| |
| struct kvm_pgtable pkvm_pgtable; |
| hyp_spinlock_t pkvm_pgd_lock; |
| |
| struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS]; |
| unsigned int hyp_memblock_nr; |
| |
| static u64 __io_map_base; |
| |
| struct hyp_fixmap_slot { |
| u64 addr; |
| kvm_pte_t *ptep; |
| }; |
| static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots); |
| |
| int __pkvm_create_mappings(unsigned long start, unsigned long size, |
| unsigned long phys, enum kvm_pgtable_prot prot) |
| { |
| int err; |
| |
| hyp_spin_lock(&pkvm_pgd_lock); |
| err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot); |
| hyp_spin_unlock(&pkvm_pgd_lock); |
| |
| return err; |
| } |
| |
| int __pkvm_remove_mappings(unsigned long start, unsigned long size) |
| { |
| u64 unmapped; |
| |
| hyp_spin_lock(&pkvm_pgd_lock); |
| unmapped = kvm_pgtable_hyp_unmap(&pkvm_pgtable, start, size); |
| hyp_spin_unlock(&pkvm_pgd_lock); |
| |
| return unmapped == size ? 0 : -EFAULT; |
| } |
| |
| static int __pkvm_alloc_private_va_range(unsigned long start, size_t size) |
| { |
| unsigned long cur; |
| |
| hyp_assert_lock_held(&pkvm_pgd_lock); |
| |
| if (!start || start < __io_map_base) |
| return -EINVAL; |
| |
| /* The allocated size is always a multiple of PAGE_SIZE */ |
| cur = start + PAGE_ALIGN(size); |
| |
| /* Are we overflowing on the vmemmap ? */ |
| if (cur > __hyp_vmemmap) |
| return -ENOMEM; |
| |
| __io_map_base = cur; |
| |
| return 0; |
| } |
| |
| /** |
| * pkvm_alloc_private_va_range - Allocates a private VA range. |
| * @size: The size of the VA range to reserve. |
| * @haddr: The hypervisor virtual start address of the allocation. |
| * |
| * The private virtual address (VA) range is allocated above __io_map_base |
| * and aligned based on the order of @size. |
| * |
| * Return: 0 on success or negative error code on failure. |
| */ |
| int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr) |
| { |
| unsigned long addr; |
| int ret; |
| |
| hyp_spin_lock(&pkvm_pgd_lock); |
| addr = __io_map_base; |
| ret = __pkvm_alloc_private_va_range(addr, size); |
| hyp_spin_unlock(&pkvm_pgd_lock); |
| |
| *haddr = addr; |
| |
| return ret; |
| } |
| |
| int __pkvm_create_private_mapping(phys_addr_t phys, size_t size, |
| enum kvm_pgtable_prot prot, |
| unsigned long *haddr) |
| { |
| unsigned long addr; |
| int err; |
| |
| size = PAGE_ALIGN(size + offset_in_page(phys)); |
| err = pkvm_alloc_private_va_range(size, &addr); |
| if (err) |
| return err; |
| |
| err = __pkvm_create_mappings(addr, size, phys, prot); |
| if (err) |
| return err; |
| |
| *haddr = addr + offset_in_page(phys); |
| return err; |
| } |
| |
| int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot) |
| { |
| unsigned long start = (unsigned long)from; |
| unsigned long end = (unsigned long)to; |
| unsigned long virt_addr; |
| phys_addr_t phys; |
| |
| hyp_assert_lock_held(&pkvm_pgd_lock); |
| |
| start = start & PAGE_MASK; |
| end = PAGE_ALIGN(end); |
| |
| for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { |
| int err; |
| |
| phys = hyp_virt_to_phys((void *)virt_addr); |
| err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE, |
| phys, prot); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot) |
| { |
| int ret; |
| |
| hyp_spin_lock(&pkvm_pgd_lock); |
| ret = pkvm_create_mappings_locked(from, to, prot); |
| hyp_spin_unlock(&pkvm_pgd_lock); |
| |
| return ret; |
| } |
| |
| int hyp_back_vmemmap(phys_addr_t back) |
| { |
| unsigned long i, start, size, end = 0; |
| int ret; |
| |
| for (i = 0; i < hyp_memblock_nr; i++) { |
| start = hyp_memory[i].base; |
| start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE); |
| /* |
| * The begining of the hyp_vmemmap region for the current |
| * memblock may already be backed by the page backing the end |
| * the previous region, so avoid mapping it twice. |
| */ |
| start = max(start, end); |
| |
| end = hyp_memory[i].base + hyp_memory[i].size; |
| end = PAGE_ALIGN((u64)hyp_phys_to_page(end)); |
| if (start >= end) |
| continue; |
| |
| size = end - start; |
| ret = __pkvm_create_mappings(start, size, back, PAGE_HYP); |
| if (ret) |
| return ret; |
| |
| memset(hyp_phys_to_virt(back), 0, size); |
| back += size; |
| } |
| |
| return 0; |
| } |
| |
| static void *__hyp_bp_vect_base; |
| int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot) |
| { |
| void *vector; |
| |
| switch (slot) { |
| case HYP_VECTOR_DIRECT: { |
| vector = __kvm_hyp_vector; |
| break; |
| } |
| case HYP_VECTOR_SPECTRE_DIRECT: { |
| vector = __bp_harden_hyp_vecs; |
| break; |
| } |
| case HYP_VECTOR_INDIRECT: |
| case HYP_VECTOR_SPECTRE_INDIRECT: { |
| vector = (void *)__hyp_bp_vect_base; |
| break; |
| } |
| default: |
| return -EINVAL; |
| } |
| |
| vector = __kvm_vector_slot2addr(vector, slot); |
| *this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector; |
| |
| return 0; |
| } |
| |
| int hyp_map_vectors(void) |
| { |
| phys_addr_t phys; |
| unsigned long bp_base; |
| int ret; |
| |
| if (!kvm_system_needs_idmapped_vectors()) { |
| __hyp_bp_vect_base = __bp_harden_hyp_vecs; |
| return 0; |
| } |
| |
| phys = __hyp_pa(__bp_harden_hyp_vecs); |
| ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ, |
| PAGE_HYP_EXEC, &bp_base); |
| if (ret) |
| return ret; |
| |
| __hyp_bp_vect_base = (void *)bp_base; |
| |
| return 0; |
| } |
| |
| void *hyp_fixmap_map(phys_addr_t phys) |
| { |
| struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots); |
| kvm_pte_t pte, *ptep = slot->ptep; |
| |
| pte = *ptep; |
| pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID); |
| pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID; |
| WRITE_ONCE(*ptep, pte); |
| dsb(ishst); |
| |
| return (void *)slot->addr + offset_in_page(phys); |
| } |
| |
| static void fixmap_clear_slot(struct hyp_fixmap_slot *slot) |
| { |
| kvm_pte_t *ptep = slot->ptep; |
| u64 addr = slot->addr; |
| |
| WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID); |
| |
| /* |
| * Irritatingly, the architecture requires that we use inner-shareable |
| * broadcast TLB invalidation here in case another CPU speculates |
| * through our fixmap and decides to create an "amalagamation of the |
| * values held in the TLB" due to the apparent lack of a |
| * break-before-make sequence. |
| * |
| * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03 |
| */ |
| dsb(ishst); |
| __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), (KVM_PGTABLE_MAX_LEVELS - 1)); |
| dsb(ish); |
| isb(); |
| } |
| |
| void hyp_fixmap_unmap(void) |
| { |
| fixmap_clear_slot(this_cpu_ptr(&fixmap_slots)); |
| } |
| |
| static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx, |
| enum kvm_pgtable_walk_flags visit) |
| { |
| struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg); |
| |
| if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_MAX_LEVELS - 1) |
| return -EINVAL; |
| |
| slot->addr = ctx->addr; |
| slot->ptep = ctx->ptep; |
| |
| /* |
| * Clear the PTE, but keep the page-table page refcount elevated to |
| * prevent it from ever being freed. This lets us manipulate the PTEs |
| * by hand safely without ever needing to allocate memory. |
| */ |
| fixmap_clear_slot(slot); |
| |
| return 0; |
| } |
| |
| static int create_fixmap_slot(u64 addr, u64 cpu) |
| { |
| struct kvm_pgtable_walker walker = { |
| .cb = __create_fixmap_slot_cb, |
| .flags = KVM_PGTABLE_WALK_LEAF, |
| .arg = (void *)cpu, |
| }; |
| |
| return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker); |
| } |
| |
| int hyp_create_pcpu_fixmap(void) |
| { |
| unsigned long addr, i; |
| int ret; |
| |
| for (i = 0; i < hyp_nr_cpus; i++) { |
| ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr); |
| if (ret) |
| return ret; |
| |
| ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE, |
| __hyp_pa(__hyp_bss_start), PAGE_HYP); |
| if (ret) |
| return ret; |
| |
| ret = create_fixmap_slot(addr, i); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int hyp_create_idmap(u32 hyp_va_bits) |
| { |
| unsigned long start, end; |
| |
| start = hyp_virt_to_phys((void *)__hyp_idmap_text_start); |
| start = ALIGN_DOWN(start, PAGE_SIZE); |
| |
| end = hyp_virt_to_phys((void *)__hyp_idmap_text_end); |
| end = ALIGN(end, PAGE_SIZE); |
| |
| /* |
| * One half of the VA space is reserved to linearly map portions of |
| * memory -- see va_layout.c for more details. The other half of the VA |
| * space contains the trampoline page, and needs some care. Split that |
| * second half in two and find the quarter of VA space not conflicting |
| * with the idmap to place the IOs and the vmemmap. IOs use the lower |
| * half of the quarter and the vmemmap the upper half. |
| */ |
| __io_map_base = start & BIT(hyp_va_bits - 2); |
| __io_map_base ^= BIT(hyp_va_bits - 2); |
| __hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3); |
| |
| return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC); |
| } |
| |
| int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr) |
| { |
| unsigned long addr, prev_base; |
| size_t size; |
| int ret; |
| |
| hyp_spin_lock(&pkvm_pgd_lock); |
| |
| prev_base = __io_map_base; |
| /* |
| * Efficient stack verification using the PAGE_SHIFT bit implies |
| * an alignment of our allocation on the order of the size. |
| */ |
| size = PAGE_SIZE * 2; |
| addr = ALIGN(__io_map_base, size); |
| |
| ret = __pkvm_alloc_private_va_range(addr, size); |
| if (!ret) { |
| /* |
| * Since the stack grows downwards, map the stack to the page |
| * at the higher address and leave the lower guard page |
| * unbacked. |
| * |
| * Any valid stack address now has the PAGE_SHIFT bit as 1 |
| * and addresses corresponding to the guard page have the |
| * PAGE_SHIFT bit as 0 - this is used for overflow detection. |
| */ |
| ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE, |
| PAGE_SIZE, phys, PAGE_HYP); |
| if (ret) |
| __io_map_base = prev_base; |
| } |
| hyp_spin_unlock(&pkvm_pgd_lock); |
| |
| *haddr = addr + size; |
| |
| return ret; |
| } |
| |
| static void *admit_host_page(void *arg) |
| { |
| struct kvm_hyp_memcache *host_mc = arg; |
| |
| if (!host_mc->nr_pages) |
| return NULL; |
| |
| /* |
| * The host still owns the pages in its memcache, so we need to go |
| * through a full host-to-hyp donation cycle to change it. Fortunately, |
| * __pkvm_host_donate_hyp() takes care of races for us, so if it |
| * succeeds we're good to go. |
| */ |
| if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1)) |
| return NULL; |
| |
| return pop_hyp_memcache(host_mc, hyp_phys_to_virt); |
| } |
| |
| /* Refill our local memcache by poping pages from the one provided by the host. */ |
| int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages, |
| struct kvm_hyp_memcache *host_mc) |
| { |
| struct kvm_hyp_memcache tmp = *host_mc; |
| int ret; |
| |
| ret = __topup_hyp_memcache(mc, min_pages, admit_host_page, |
| hyp_virt_to_phys, &tmp); |
| *host_mc = tmp; |
| |
| return ret; |
| } |
| |
| phys_addr_t __pkvm_private_range_pa(void *va) |
| { |
| kvm_pte_t pte; |
| u32 level; |
| |
| hyp_spin_lock(&pkvm_pgd_lock); |
| WARN_ON(kvm_pgtable_get_leaf(&pkvm_pgtable, (u64)va, &pte, &level)); |
| hyp_spin_unlock(&pkvm_pgd_lock); |
| |
| return kvm_pte_to_phys(pte) + offset_in_page(va); |
| } |