| // SPDX-License-Identifier: GPL-2.0-only |
| // Copyright (c) 2018-2021 Intel Corporation |
| |
| #include <linux/auxiliary_bus.h> |
| #include <linux/bitfield.h> |
| #include <linux/bitops.h> |
| #include <linux/devm-helpers.h> |
| #include <linux/hwmon.h> |
| #include <linux/jiffies.h> |
| #include <linux/module.h> |
| #include <linux/peci.h> |
| #include <linux/peci-cpu.h> |
| #include <linux/units.h> |
| #include <linux/workqueue.h> |
| |
| #include "common.h" |
| |
| #define DIMM_MASK_CHECK_DELAY_JIFFIES msecs_to_jiffies(5000) |
| |
| /* Max number of channel ranks and DIMM index per channel */ |
| #define CHAN_RANK_MAX_ON_HSX 8 |
| #define DIMM_IDX_MAX_ON_HSX 3 |
| #define CHAN_RANK_MAX_ON_BDX 4 |
| #define DIMM_IDX_MAX_ON_BDX 3 |
| #define CHAN_RANK_MAX_ON_BDXD 2 |
| #define DIMM_IDX_MAX_ON_BDXD 2 |
| #define CHAN_RANK_MAX_ON_SKX 6 |
| #define DIMM_IDX_MAX_ON_SKX 2 |
| #define CHAN_RANK_MAX_ON_ICX 8 |
| #define DIMM_IDX_MAX_ON_ICX 2 |
| #define CHAN_RANK_MAX_ON_ICXD 4 |
| #define DIMM_IDX_MAX_ON_ICXD 2 |
| #define CHAN_RANK_MAX_ON_SPR 8 |
| #define DIMM_IDX_MAX_ON_SPR 2 |
| |
| #define CHAN_RANK_MAX CHAN_RANK_MAX_ON_HSX |
| #define DIMM_IDX_MAX DIMM_IDX_MAX_ON_HSX |
| #define DIMM_NUMS_MAX (CHAN_RANK_MAX * DIMM_IDX_MAX) |
| |
| #define CPU_SEG_MASK GENMASK(23, 16) |
| #define GET_CPU_SEG(x) (((x) & CPU_SEG_MASK) >> 16) |
| #define CPU_BUS_MASK GENMASK(7, 0) |
| #define GET_CPU_BUS(x) ((x) & CPU_BUS_MASK) |
| |
| #define DIMM_TEMP_MAX GENMASK(15, 8) |
| #define DIMM_TEMP_CRIT GENMASK(23, 16) |
| #define GET_TEMP_MAX(x) (((x) & DIMM_TEMP_MAX) >> 8) |
| #define GET_TEMP_CRIT(x) (((x) & DIMM_TEMP_CRIT) >> 16) |
| |
| #define NO_DIMM_RETRY_COUNT_MAX 5 |
| |
| struct peci_dimmtemp; |
| |
| struct dimm_info { |
| int chan_rank_max; |
| int dimm_idx_max; |
| u8 min_peci_revision; |
| int (*read_thresholds)(struct peci_dimmtemp *priv, int dimm_order, |
| int chan_rank, u32 *data); |
| }; |
| |
| struct peci_dimm_thresholds { |
| long temp_max; |
| long temp_crit; |
| struct peci_sensor_state state; |
| }; |
| |
| enum peci_dimm_threshold_type { |
| temp_max_type, |
| temp_crit_type, |
| }; |
| |
| struct peci_dimmtemp { |
| struct peci_device *peci_dev; |
| struct device *dev; |
| const char *name; |
| const struct dimm_info *gen_info; |
| struct delayed_work detect_work; |
| struct { |
| struct peci_sensor_data temp; |
| struct peci_dimm_thresholds thresholds; |
| } dimm[DIMM_NUMS_MAX]; |
| char **dimmtemp_label; |
| DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX); |
| u8 no_dimm_retry_count; |
| }; |
| |
| static u8 __dimm_temp(u32 reg, int dimm_order) |
| { |
| return (reg >> (dimm_order * 8)) & 0xff; |
| } |
| |
| static int get_dimm_temp(struct peci_dimmtemp *priv, int dimm_no, long *val) |
| { |
| int dimm_order = dimm_no % priv->gen_info->dimm_idx_max; |
| int chan_rank = dimm_no / priv->gen_info->dimm_idx_max; |
| int ret = 0; |
| u32 data; |
| |
| mutex_lock(&priv->dimm[dimm_no].temp.state.lock); |
| if (!peci_sensor_need_update(&priv->dimm[dimm_no].temp.state)) |
| goto skip_update; |
| |
| ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &data); |
| if (ret) |
| goto unlock; |
| |
| priv->dimm[dimm_no].temp.value = __dimm_temp(data, dimm_order) * MILLIDEGREE_PER_DEGREE; |
| |
| peci_sensor_mark_updated(&priv->dimm[dimm_no].temp.state); |
| |
| skip_update: |
| *val = priv->dimm[dimm_no].temp.value; |
| unlock: |
| mutex_unlock(&priv->dimm[dimm_no].temp.state.lock); |
| return ret; |
| } |
| |
| static int update_thresholds(struct peci_dimmtemp *priv, int dimm_no) |
| { |
| int dimm_order = dimm_no % priv->gen_info->dimm_idx_max; |
| int chan_rank = dimm_no / priv->gen_info->dimm_idx_max; |
| u32 data; |
| int ret; |
| |
| if (!peci_sensor_need_update(&priv->dimm[dimm_no].thresholds.state)) |
| return 0; |
| |
| ret = priv->gen_info->read_thresholds(priv, dimm_order, chan_rank, &data); |
| if (ret == -ENODATA) /* Use default or previous value */ |
| return 0; |
| if (ret) |
| return ret; |
| |
| priv->dimm[dimm_no].thresholds.temp_max = GET_TEMP_MAX(data) * MILLIDEGREE_PER_DEGREE; |
| priv->dimm[dimm_no].thresholds.temp_crit = GET_TEMP_CRIT(data) * MILLIDEGREE_PER_DEGREE; |
| |
| peci_sensor_mark_updated(&priv->dimm[dimm_no].thresholds.state); |
| |
| return 0; |
| } |
| |
| static int get_dimm_thresholds(struct peci_dimmtemp *priv, enum peci_dimm_threshold_type type, |
| int dimm_no, long *val) |
| { |
| int ret; |
| |
| mutex_lock(&priv->dimm[dimm_no].thresholds.state.lock); |
| ret = update_thresholds(priv, dimm_no); |
| if (ret) |
| goto unlock; |
| |
| switch (type) { |
| case temp_max_type: |
| *val = priv->dimm[dimm_no].thresholds.temp_max; |
| break; |
| case temp_crit_type: |
| *val = priv->dimm[dimm_no].thresholds.temp_crit; |
| break; |
| default: |
| ret = -EOPNOTSUPP; |
| break; |
| } |
| unlock: |
| mutex_unlock(&priv->dimm[dimm_no].thresholds.state.lock); |
| |
| return ret; |
| } |
| |
| static int dimmtemp_read_string(struct device *dev, |
| enum hwmon_sensor_types type, |
| u32 attr, int channel, const char **str) |
| { |
| struct peci_dimmtemp *priv = dev_get_drvdata(dev); |
| |
| if (attr != hwmon_temp_label) |
| return -EOPNOTSUPP; |
| |
| *str = (const char *)priv->dimmtemp_label[channel]; |
| |
| return 0; |
| } |
| |
| static int dimmtemp_read(struct device *dev, enum hwmon_sensor_types type, |
| u32 attr, int channel, long *val) |
| { |
| struct peci_dimmtemp *priv = dev_get_drvdata(dev); |
| |
| switch (attr) { |
| case hwmon_temp_input: |
| return get_dimm_temp(priv, channel, val); |
| case hwmon_temp_max: |
| return get_dimm_thresholds(priv, temp_max_type, channel, val); |
| case hwmon_temp_crit: |
| return get_dimm_thresholds(priv, temp_crit_type, channel, val); |
| default: |
| break; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static umode_t dimmtemp_is_visible(const void *data, enum hwmon_sensor_types type, |
| u32 attr, int channel) |
| { |
| const struct peci_dimmtemp *priv = data; |
| |
| if (test_bit(channel, priv->dimm_mask)) |
| return 0444; |
| |
| return 0; |
| } |
| |
| static const struct hwmon_ops peci_dimmtemp_ops = { |
| .is_visible = dimmtemp_is_visible, |
| .read_string = dimmtemp_read_string, |
| .read = dimmtemp_read, |
| }; |
| |
| static int check_populated_dimms(struct peci_dimmtemp *priv) |
| { |
| int chan_rank_max = priv->gen_info->chan_rank_max; |
| int dimm_idx_max = priv->gen_info->dimm_idx_max; |
| DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX); |
| DECLARE_BITMAP(chan_rank_empty, CHAN_RANK_MAX); |
| |
| int chan_rank, dimm_idx, ret, i; |
| u32 pcs; |
| |
| if (chan_rank_max * dimm_idx_max > DIMM_NUMS_MAX) { |
| WARN_ONCE(1, "Unsupported number of DIMMs - chan_rank_max: %d, dimm_idx_max: %d", |
| chan_rank_max, dimm_idx_max); |
| return -EINVAL; |
| } |
| |
| bitmap_zero(dimm_mask, DIMM_NUMS_MAX); |
| bitmap_zero(chan_rank_empty, CHAN_RANK_MAX); |
| |
| for (chan_rank = 0; chan_rank < chan_rank_max; chan_rank++) { |
| ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &pcs); |
| if (ret) { |
| /* |
| * Overall, we expect either success or -EINVAL in |
| * order to determine whether DIMM is populated or not. |
| * For anything else we fall back to deferring the |
| * detection to be performed at a later point in time. |
| */ |
| if (ret == -EINVAL) { |
| bitmap_set(chan_rank_empty, chan_rank, 1); |
| continue; |
| } |
| |
| return -EAGAIN; |
| } |
| |
| for (dimm_idx = 0; dimm_idx < dimm_idx_max; dimm_idx++) |
| if (__dimm_temp(pcs, dimm_idx)) |
| bitmap_set(dimm_mask, chan_rank * dimm_idx_max + dimm_idx, 1); |
| } |
| |
| /* |
| * If we got all -EINVALs, it means that the CPU doesn't have any |
| * DIMMs. Unfortunately, it may also happen at the very start of |
| * host platform boot. Retrying a couple of times lets us make sure |
| * that the state is persistent. |
| */ |
| if (bitmap_full(chan_rank_empty, chan_rank_max)) { |
| if (priv->no_dimm_retry_count < NO_DIMM_RETRY_COUNT_MAX) { |
| priv->no_dimm_retry_count++; |
| |
| return -EAGAIN; |
| } |
| |
| return -ENODEV; |
| } |
| |
| /* |
| * It's possible that memory training is not done yet. In this case we |
| * defer the detection to be performed at a later point in time. |
| */ |
| if (bitmap_empty(dimm_mask, DIMM_NUMS_MAX)) { |
| priv->no_dimm_retry_count = 0; |
| return -EAGAIN; |
| } |
| |
| for_each_set_bit(i, dimm_mask, DIMM_NUMS_MAX) { |
| dev_dbg(priv->dev, "Found DIMM%#x\n", i); |
| } |
| |
| bitmap_copy(priv->dimm_mask, dimm_mask, DIMM_NUMS_MAX); |
| |
| return 0; |
| } |
| |
| static int create_dimm_temp_label(struct peci_dimmtemp *priv, int chan) |
| { |
| int rank = chan / priv->gen_info->dimm_idx_max; |
| int idx = chan % priv->gen_info->dimm_idx_max; |
| |
| priv->dimmtemp_label[chan] = devm_kasprintf(priv->dev, GFP_KERNEL, |
| "DIMM %c%d", 'A' + rank, |
| idx + 1); |
| if (!priv->dimmtemp_label[chan]) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static const struct hwmon_channel_info * const peci_dimmtemp_temp_info[] = { |
| HWMON_CHANNEL_INFO(temp, |
| [0 ... DIMM_NUMS_MAX - 1] = HWMON_T_LABEL | |
| HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT), |
| NULL |
| }; |
| |
| static const struct hwmon_chip_info peci_dimmtemp_chip_info = { |
| .ops = &peci_dimmtemp_ops, |
| .info = peci_dimmtemp_temp_info, |
| }; |
| |
| static int create_dimm_temp_info(struct peci_dimmtemp *priv) |
| { |
| int ret, i, channels; |
| struct device *dev; |
| |
| /* |
| * We expect to either find populated DIMMs and carry on with creating |
| * sensors, or find out that there are no DIMMs populated. |
| * All other states mean that the platform never reached the state that |
| * allows to check DIMM state - causing us to retry later on. |
| */ |
| ret = check_populated_dimms(priv); |
| if (ret == -ENODEV) { |
| dev_dbg(priv->dev, "No DIMMs found\n"); |
| return 0; |
| } else if (ret) { |
| schedule_delayed_work(&priv->detect_work, DIMM_MASK_CHECK_DELAY_JIFFIES); |
| dev_dbg(priv->dev, "Deferred populating DIMM temp info\n"); |
| return ret; |
| } |
| |
| channels = priv->gen_info->chan_rank_max * priv->gen_info->dimm_idx_max; |
| |
| priv->dimmtemp_label = devm_kzalloc(priv->dev, channels * sizeof(char *), GFP_KERNEL); |
| if (!priv->dimmtemp_label) |
| return -ENOMEM; |
| |
| for_each_set_bit(i, priv->dimm_mask, DIMM_NUMS_MAX) { |
| ret = create_dimm_temp_label(priv, i); |
| if (ret) |
| return ret; |
| mutex_init(&priv->dimm[i].thresholds.state.lock); |
| mutex_init(&priv->dimm[i].temp.state.lock); |
| } |
| |
| dev = devm_hwmon_device_register_with_info(priv->dev, priv->name, priv, |
| &peci_dimmtemp_chip_info, NULL); |
| if (IS_ERR(dev)) { |
| dev_err(priv->dev, "Failed to register hwmon device\n"); |
| return PTR_ERR(dev); |
| } |
| |
| dev_dbg(priv->dev, "%s: sensor '%s'\n", dev_name(dev), priv->name); |
| |
| return 0; |
| } |
| |
| static void create_dimm_temp_info_delayed(struct work_struct *work) |
| { |
| struct peci_dimmtemp *priv = container_of(to_delayed_work(work), |
| struct peci_dimmtemp, |
| detect_work); |
| int ret; |
| |
| ret = create_dimm_temp_info(priv); |
| if (ret && ret != -EAGAIN) |
| dev_err(priv->dev, "Failed to populate DIMM temp info\n"); |
| } |
| |
| static int peci_dimmtemp_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) |
| { |
| struct device *dev = &adev->dev; |
| struct peci_device *peci_dev = to_peci_device(dev->parent); |
| struct peci_dimmtemp *priv; |
| int ret; |
| |
| priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); |
| if (!priv) |
| return -ENOMEM; |
| |
| priv->name = devm_kasprintf(dev, GFP_KERNEL, "peci_dimmtemp.cpu%d", |
| peci_dev->info.socket_id); |
| if (!priv->name) |
| return -ENOMEM; |
| |
| priv->dev = dev; |
| priv->peci_dev = peci_dev; |
| priv->gen_info = (const struct dimm_info *)id->driver_data; |
| |
| /* |
| * This is just a sanity check. Since we're using commands that are |
| * guaranteed to be supported on a given platform, we should never see |
| * revision lower than expected. |
| */ |
| if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision) |
| dev_warn(priv->dev, |
| "Unexpected PECI revision %#x, some features may be unavailable\n", |
| peci_dev->info.peci_revision); |
| |
| ret = devm_delayed_work_autocancel(priv->dev, &priv->detect_work, |
| create_dimm_temp_info_delayed); |
| if (ret) |
| return ret; |
| |
| ret = create_dimm_temp_info(priv); |
| if (ret && ret != -EAGAIN) { |
| dev_err(dev, "Failed to populate DIMM temp info\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| read_thresholds_hsx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) |
| { |
| u8 dev, func; |
| u16 reg; |
| int ret; |
| |
| /* |
| * Device 20, Function 0: IMC 0 channel 0 -> rank 0 |
| * Device 20, Function 1: IMC 0 channel 1 -> rank 1 |
| * Device 21, Function 0: IMC 0 channel 2 -> rank 2 |
| * Device 21, Function 1: IMC 0 channel 3 -> rank 3 |
| * Device 23, Function 0: IMC 1 channel 0 -> rank 4 |
| * Device 23, Function 1: IMC 1 channel 1 -> rank 5 |
| * Device 24, Function 0: IMC 1 channel 2 -> rank 6 |
| * Device 24, Function 1: IMC 1 channel 3 -> rank 7 |
| */ |
| dev = 20 + chan_rank / 2 + chan_rank / 4; |
| func = chan_rank % 2; |
| reg = 0x120 + dimm_order * 4; |
| |
| ret = peci_pci_local_read(priv->peci_dev, 1, dev, func, reg, data); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int |
| read_thresholds_bdxd(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) |
| { |
| u8 dev, func; |
| u16 reg; |
| int ret; |
| |
| /* |
| * Device 10, Function 2: IMC 0 channel 0 -> rank 0 |
| * Device 10, Function 6: IMC 0 channel 1 -> rank 1 |
| * Device 12, Function 2: IMC 1 channel 0 -> rank 2 |
| * Device 12, Function 6: IMC 1 channel 1 -> rank 3 |
| */ |
| dev = 10 + chan_rank / 2 * 2; |
| func = (chan_rank % 2) ? 6 : 2; |
| reg = 0x120 + dimm_order * 4; |
| |
| ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int |
| read_thresholds_skx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) |
| { |
| u8 dev, func; |
| u16 reg; |
| int ret; |
| |
| /* |
| * Device 10, Function 2: IMC 0 channel 0 -> rank 0 |
| * Device 10, Function 6: IMC 0 channel 1 -> rank 1 |
| * Device 11, Function 2: IMC 0 channel 2 -> rank 2 |
| * Device 12, Function 2: IMC 1 channel 0 -> rank 3 |
| * Device 12, Function 6: IMC 1 channel 1 -> rank 4 |
| * Device 13, Function 2: IMC 1 channel 2 -> rank 5 |
| */ |
| dev = 10 + chan_rank / 3 * 2 + (chan_rank % 3 == 2 ? 1 : 0); |
| func = chan_rank % 3 == 1 ? 6 : 2; |
| reg = 0x120 + dimm_order * 4; |
| |
| ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int |
| read_thresholds_icx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) |
| { |
| u32 reg_val; |
| u64 offset; |
| int ret; |
| u8 dev; |
| |
| ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd4, ®_val); |
| if (ret || !(reg_val & BIT(31))) |
| return -ENODATA; /* Use default or previous value */ |
| |
| ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd0, ®_val); |
| if (ret) |
| return -ENODATA; /* Use default or previous value */ |
| |
| /* |
| * Device 26, Offset 224e0: IMC 0 channel 0 -> rank 0 |
| * Device 26, Offset 264e0: IMC 0 channel 1 -> rank 1 |
| * Device 27, Offset 224e0: IMC 1 channel 0 -> rank 2 |
| * Device 27, Offset 264e0: IMC 1 channel 1 -> rank 3 |
| * Device 28, Offset 224e0: IMC 2 channel 0 -> rank 4 |
| * Device 28, Offset 264e0: IMC 2 channel 1 -> rank 5 |
| * Device 29, Offset 224e0: IMC 3 channel 0 -> rank 6 |
| * Device 29, Offset 264e0: IMC 3 channel 1 -> rank 7 |
| */ |
| dev = 26 + chan_rank / 2; |
| offset = 0x224e0 + dimm_order * 4 + (chan_rank % 2) * 0x4000; |
| |
| ret = peci_mmio_read(priv->peci_dev, 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val), |
| dev, 0, offset, data); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int |
| read_thresholds_spr(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) |
| { |
| u32 reg_val; |
| u64 offset; |
| int ret; |
| u8 dev; |
| |
| ret = peci_ep_pci_local_read(priv->peci_dev, 0, 30, 0, 2, 0xd4, ®_val); |
| if (ret || !(reg_val & BIT(31))) |
| return -ENODATA; /* Use default or previous value */ |
| |
| ret = peci_ep_pci_local_read(priv->peci_dev, 0, 30, 0, 2, 0xd0, ®_val); |
| if (ret) |
| return -ENODATA; /* Use default or previous value */ |
| |
| /* |
| * Device 26, Offset 219a8: IMC 0 channel 0 -> rank 0 |
| * Device 26, Offset 299a8: IMC 0 channel 1 -> rank 1 |
| * Device 27, Offset 219a8: IMC 1 channel 0 -> rank 2 |
| * Device 27, Offset 299a8: IMC 1 channel 1 -> rank 3 |
| * Device 28, Offset 219a8: IMC 2 channel 0 -> rank 4 |
| * Device 28, Offset 299a8: IMC 2 channel 1 -> rank 5 |
| * Device 29, Offset 219a8: IMC 3 channel 0 -> rank 6 |
| * Device 29, Offset 299a8: IMC 3 channel 1 -> rank 7 |
| */ |
| dev = 26 + chan_rank / 2; |
| offset = 0x219a8 + dimm_order * 4 + (chan_rank % 2) * 0x8000; |
| |
| ret = peci_mmio_read(priv->peci_dev, 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val), |
| dev, 0, offset, data); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static const struct dimm_info dimm_hsx = { |
| .chan_rank_max = CHAN_RANK_MAX_ON_HSX, |
| .dimm_idx_max = DIMM_IDX_MAX_ON_HSX, |
| .min_peci_revision = 0x33, |
| .read_thresholds = &read_thresholds_hsx, |
| }; |
| |
| static const struct dimm_info dimm_bdx = { |
| .chan_rank_max = CHAN_RANK_MAX_ON_BDX, |
| .dimm_idx_max = DIMM_IDX_MAX_ON_BDX, |
| .min_peci_revision = 0x33, |
| .read_thresholds = &read_thresholds_hsx, |
| }; |
| |
| static const struct dimm_info dimm_bdxd = { |
| .chan_rank_max = CHAN_RANK_MAX_ON_BDXD, |
| .dimm_idx_max = DIMM_IDX_MAX_ON_BDXD, |
| .min_peci_revision = 0x33, |
| .read_thresholds = &read_thresholds_bdxd, |
| }; |
| |
| static const struct dimm_info dimm_skx = { |
| .chan_rank_max = CHAN_RANK_MAX_ON_SKX, |
| .dimm_idx_max = DIMM_IDX_MAX_ON_SKX, |
| .min_peci_revision = 0x33, |
| .read_thresholds = &read_thresholds_skx, |
| }; |
| |
| static const struct dimm_info dimm_icx = { |
| .chan_rank_max = CHAN_RANK_MAX_ON_ICX, |
| .dimm_idx_max = DIMM_IDX_MAX_ON_ICX, |
| .min_peci_revision = 0x40, |
| .read_thresholds = &read_thresholds_icx, |
| }; |
| |
| static const struct dimm_info dimm_icxd = { |
| .chan_rank_max = CHAN_RANK_MAX_ON_ICXD, |
| .dimm_idx_max = DIMM_IDX_MAX_ON_ICXD, |
| .min_peci_revision = 0x40, |
| .read_thresholds = &read_thresholds_icx, |
| }; |
| |
| static const struct dimm_info dimm_spr = { |
| .chan_rank_max = CHAN_RANK_MAX_ON_SPR, |
| .dimm_idx_max = DIMM_IDX_MAX_ON_SPR, |
| .min_peci_revision = 0x40, |
| .read_thresholds = &read_thresholds_spr, |
| }; |
| |
| static const struct auxiliary_device_id peci_dimmtemp_ids[] = { |
| { |
| .name = "peci_cpu.dimmtemp.hsx", |
| .driver_data = (kernel_ulong_t)&dimm_hsx, |
| }, |
| { |
| .name = "peci_cpu.dimmtemp.bdx", |
| .driver_data = (kernel_ulong_t)&dimm_bdx, |
| }, |
| { |
| .name = "peci_cpu.dimmtemp.bdxd", |
| .driver_data = (kernel_ulong_t)&dimm_bdxd, |
| }, |
| { |
| .name = "peci_cpu.dimmtemp.skx", |
| .driver_data = (kernel_ulong_t)&dimm_skx, |
| }, |
| { |
| .name = "peci_cpu.dimmtemp.icx", |
| .driver_data = (kernel_ulong_t)&dimm_icx, |
| }, |
| { |
| .name = "peci_cpu.dimmtemp.icxd", |
| .driver_data = (kernel_ulong_t)&dimm_icxd, |
| }, |
| { |
| .name = "peci_cpu.dimmtemp.spr", |
| .driver_data = (kernel_ulong_t)&dimm_spr, |
| }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(auxiliary, peci_dimmtemp_ids); |
| |
| static struct auxiliary_driver peci_dimmtemp_driver = { |
| .probe = peci_dimmtemp_probe, |
| .id_table = peci_dimmtemp_ids, |
| }; |
| |
| module_auxiliary_driver(peci_dimmtemp_driver); |
| |
| MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>"); |
| MODULE_AUTHOR("Iwona Winiarska <iwona.winiarska@intel.com>"); |
| MODULE_DESCRIPTION("PECI dimmtemp driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_IMPORT_NS(PECI_CPU); |