blob: 97a8d5fc9ebb6572e666cb46aaec478894f4a02f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
* Copyright (C) 2016-2017 Milan Broz
* Copyright (C) 2016-2017 Mikulas Patocka
*
* This file is released under the GPL.
*/
#include "dm-bio-record.h"
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/device-mapper.h>
#include <linux/dm-io.h>
#include <linux/vmalloc.h>
#include <linux/sort.h>
#include <linux/rbtree.h>
#include <linux/delay.h>
#include <linux/random.h>
#include <linux/reboot.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/async_tx.h>
#include <linux/dm-bufio.h>
#include "dm-audit.h"
#define DM_MSG_PREFIX "integrity"
#define DEFAULT_INTERLEAVE_SECTORS 32768
#define DEFAULT_JOURNAL_SIZE_FACTOR 7
#define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
#define DEFAULT_BUFFER_SECTORS 128
#define DEFAULT_JOURNAL_WATERMARK 50
#define DEFAULT_SYNC_MSEC 10000
#define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
#define MIN_LOG2_INTERLEAVE_SECTORS 3
#define MAX_LOG2_INTERLEAVE_SECTORS 31
#define METADATA_WORKQUEUE_MAX_ACTIVE 16
#define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
#define RECALC_WRITE_SUPER 16
#define BITMAP_BLOCK_SIZE 4096 /* don't change it */
#define BITMAP_FLUSH_INTERVAL (10 * HZ)
#define DISCARD_FILLER 0xf6
#define SALT_SIZE 16
/*
* Warning - DEBUG_PRINT prints security-sensitive data to the log,
* so it should not be enabled in the official kernel
*/
//#define DEBUG_PRINT
//#define INTERNAL_VERIFY
/*
* On disk structures
*/
#define SB_MAGIC "integrt"
#define SB_VERSION_1 1
#define SB_VERSION_2 2
#define SB_VERSION_3 3
#define SB_VERSION_4 4
#define SB_VERSION_5 5
#define SB_SECTORS 8
#define MAX_SECTORS_PER_BLOCK 8
struct superblock {
__u8 magic[8];
__u8 version;
__u8 log2_interleave_sectors;
__le16 integrity_tag_size;
__le32 journal_sections;
__le64 provided_data_sectors; /* userspace uses this value */
__le32 flags;
__u8 log2_sectors_per_block;
__u8 log2_blocks_per_bitmap_bit;
__u8 pad[2];
__le64 recalc_sector;
__u8 pad2[8];
__u8 salt[SALT_SIZE];
};
#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
#define SB_FLAG_RECALCULATING 0x2
#define SB_FLAG_DIRTY_BITMAP 0x4
#define SB_FLAG_FIXED_PADDING 0x8
#define SB_FLAG_FIXED_HMAC 0x10
#define JOURNAL_ENTRY_ROUNDUP 8
typedef __le64 commit_id_t;
#define JOURNAL_MAC_PER_SECTOR 8
struct journal_entry {
union {
struct {
__le32 sector_lo;
__le32 sector_hi;
} s;
__le64 sector;
} u;
commit_id_t last_bytes[];
/* __u8 tag[0]; */
};
#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
#if BITS_PER_LONG == 64
#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
#else
#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
#endif
#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
#define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
#define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
#define JOURNAL_BLOCK_SECTORS 8
#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
struct journal_sector {
struct_group(sectors,
__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
__u8 mac[JOURNAL_MAC_PER_SECTOR];
);
commit_id_t commit_id;
};
#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
#define METADATA_PADDING_SECTORS 8
#define N_COMMIT_IDS 4
static unsigned char prev_commit_seq(unsigned char seq)
{
return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
}
static unsigned char next_commit_seq(unsigned char seq)
{
return (seq + 1) % N_COMMIT_IDS;
}
/*
* In-memory structures
*/
struct journal_node {
struct rb_node node;
sector_t sector;
};
struct alg_spec {
char *alg_string;
char *key_string;
__u8 *key;
unsigned int key_size;
};
struct dm_integrity_c {
struct dm_dev *dev;
struct dm_dev *meta_dev;
unsigned int tag_size;
__s8 log2_tag_size;
sector_t start;
mempool_t journal_io_mempool;
struct dm_io_client *io;
struct dm_bufio_client *bufio;
struct workqueue_struct *metadata_wq;
struct superblock *sb;
unsigned int journal_pages;
unsigned int n_bitmap_blocks;
struct page_list *journal;
struct page_list *journal_io;
struct page_list *journal_xor;
struct page_list *recalc_bitmap;
struct page_list *may_write_bitmap;
struct bitmap_block_status *bbs;
unsigned int bitmap_flush_interval;
int synchronous_mode;
struct bio_list synchronous_bios;
struct delayed_work bitmap_flush_work;
struct crypto_skcipher *journal_crypt;
struct scatterlist **journal_scatterlist;
struct scatterlist **journal_io_scatterlist;
struct skcipher_request **sk_requests;
struct crypto_shash *journal_mac;
struct journal_node *journal_tree;
struct rb_root journal_tree_root;
sector_t provided_data_sectors;
unsigned short journal_entry_size;
unsigned char journal_entries_per_sector;
unsigned char journal_section_entries;
unsigned short journal_section_sectors;
unsigned int journal_sections;
unsigned int journal_entries;
sector_t data_device_sectors;
sector_t meta_device_sectors;
unsigned int initial_sectors;
unsigned int metadata_run;
__s8 log2_metadata_run;
__u8 log2_buffer_sectors;
__u8 sectors_per_block;
__u8 log2_blocks_per_bitmap_bit;
unsigned char mode;
int failed;
struct crypto_shash *internal_hash;
struct dm_target *ti;
/* these variables are locked with endio_wait.lock */
struct rb_root in_progress;
struct list_head wait_list;
wait_queue_head_t endio_wait;
struct workqueue_struct *wait_wq;
struct workqueue_struct *offload_wq;
unsigned char commit_seq;
commit_id_t commit_ids[N_COMMIT_IDS];
unsigned int committed_section;
unsigned int n_committed_sections;
unsigned int uncommitted_section;
unsigned int n_uncommitted_sections;
unsigned int free_section;
unsigned char free_section_entry;
unsigned int free_sectors;
unsigned int free_sectors_threshold;
struct workqueue_struct *commit_wq;
struct work_struct commit_work;
struct workqueue_struct *writer_wq;
struct work_struct writer_work;
struct workqueue_struct *recalc_wq;
struct work_struct recalc_work;
struct bio_list flush_bio_list;
unsigned long autocommit_jiffies;
struct timer_list autocommit_timer;
unsigned int autocommit_msec;
wait_queue_head_t copy_to_journal_wait;
struct completion crypto_backoff;
bool wrote_to_journal;
bool journal_uptodate;
bool just_formatted;
bool recalculate_flag;
bool reset_recalculate_flag;
bool discard;
bool fix_padding;
bool fix_hmac;
bool legacy_recalculate;
struct alg_spec internal_hash_alg;
struct alg_spec journal_crypt_alg;
struct alg_spec journal_mac_alg;
atomic64_t number_of_mismatches;
struct notifier_block reboot_notifier;
};
struct dm_integrity_range {
sector_t logical_sector;
sector_t n_sectors;
bool waiting;
union {
struct rb_node node;
struct {
struct task_struct *task;
struct list_head wait_entry;
};
};
};
struct dm_integrity_io {
struct work_struct work;
struct dm_integrity_c *ic;
enum req_op op;
bool fua;
struct dm_integrity_range range;
sector_t metadata_block;
unsigned int metadata_offset;
atomic_t in_flight;
blk_status_t bi_status;
struct completion *completion;
struct dm_bio_details bio_details;
};
struct journal_completion {
struct dm_integrity_c *ic;
atomic_t in_flight;
struct completion comp;
};
struct journal_io {
struct dm_integrity_range range;
struct journal_completion *comp;
};
struct bitmap_block_status {
struct work_struct work;
struct dm_integrity_c *ic;
unsigned int idx;
unsigned long *bitmap;
struct bio_list bio_queue;
spinlock_t bio_queue_lock;
};
static struct kmem_cache *journal_io_cache;
#define JOURNAL_IO_MEMPOOL 32
#ifdef DEBUG_PRINT
#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
#define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
len ? ": " : "", len, bytes)
#else
#define DEBUG_print(x, ...) do { } while (0)
#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
#endif
static void dm_integrity_prepare(struct request *rq)
{
}
static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
{
}
/*
* DM Integrity profile, protection is performed layer above (dm-crypt)
*/
static const struct blk_integrity_profile dm_integrity_profile = {
.name = "DM-DIF-EXT-TAG",
.generate_fn = NULL,
.verify_fn = NULL,
.prepare_fn = dm_integrity_prepare,
.complete_fn = dm_integrity_complete,
};
static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
static void integrity_bio_wait(struct work_struct *w);
static void dm_integrity_dtr(struct dm_target *ti);
static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
{
if (err == -EILSEQ)
atomic64_inc(&ic->number_of_mismatches);
if (!cmpxchg(&ic->failed, 0, err))
DMERR("Error on %s: %d", msg, err);
}
static int dm_integrity_failed(struct dm_integrity_c *ic)
{
return READ_ONCE(ic->failed);
}
static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
{
if (ic->legacy_recalculate)
return false;
if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
ic->internal_hash_alg.key || ic->journal_mac_alg.key :
ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
return true;
return false;
}
static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
unsigned int j, unsigned char seq)
{
/*
* Xor the number with section and sector, so that if a piece of
* journal is written at wrong place, it is detected.
*/
return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
}
static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
sector_t *area, sector_t *offset)
{
if (!ic->meta_dev) {
__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
*area = data_sector >> log2_interleave_sectors;
*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
} else {
*area = 0;
*offset = data_sector;
}
}
#define sector_to_block(ic, n) \
do { \
BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
(n) >>= (ic)->sb->log2_sectors_per_block; \
} while (0)
static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
sector_t offset, unsigned int *metadata_offset)
{
__u64 ms;
unsigned int mo;
ms = area << ic->sb->log2_interleave_sectors;
if (likely(ic->log2_metadata_run >= 0))
ms += area << ic->log2_metadata_run;
else
ms += area * ic->metadata_run;
ms >>= ic->log2_buffer_sectors;
sector_to_block(ic, offset);
if (likely(ic->log2_tag_size >= 0)) {
ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
} else {
ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
}
*metadata_offset = mo;
return ms;
}
static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
{
sector_t result;
if (ic->meta_dev)
return offset;
result = area << ic->sb->log2_interleave_sectors;
if (likely(ic->log2_metadata_run >= 0))
result += (area + 1) << ic->log2_metadata_run;
else
result += (area + 1) * ic->metadata_run;
result += (sector_t)ic->initial_sectors + offset;
result += ic->start;
return result;
}
static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
{
if (unlikely(*sec_ptr >= ic->journal_sections))
*sec_ptr -= ic->journal_sections;
}
static void sb_set_version(struct dm_integrity_c *ic)
{
if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
ic->sb->version = SB_VERSION_5;
else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
ic->sb->version = SB_VERSION_4;
else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
ic->sb->version = SB_VERSION_3;
else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
ic->sb->version = SB_VERSION_2;
else
ic->sb->version = SB_VERSION_1;
}
static int sb_mac(struct dm_integrity_c *ic, bool wr)
{
SHASH_DESC_ON_STACK(desc, ic->journal_mac);
int r;
unsigned int size = crypto_shash_digestsize(ic->journal_mac);
if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
dm_integrity_io_error(ic, "digest is too long", -EINVAL);
return -EINVAL;
}
desc->tfm = ic->journal_mac;
r = crypto_shash_init(desc);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_init", r);
return r;
}
r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
return r;
}
if (likely(wr)) {
r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_final", r);
return r;
}
} else {
__u8 result[HASH_MAX_DIGESTSIZE];
r = crypto_shash_final(desc, result);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_final", r);
return r;
}
if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
return -EILSEQ;
}
}
return 0;
}
static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
{
struct dm_io_request io_req;
struct dm_io_region io_loc;
const enum req_op op = opf & REQ_OP_MASK;
int r;
io_req.bi_opf = opf;
io_req.mem.type = DM_IO_KMEM;
io_req.mem.ptr.addr = ic->sb;
io_req.notify.fn = NULL;
io_req.client = ic->io;
io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
io_loc.sector = ic->start;
io_loc.count = SB_SECTORS;
if (op == REQ_OP_WRITE) {
sb_set_version(ic);
if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
r = sb_mac(ic, true);
if (unlikely(r))
return r;
}
}
r = dm_io(&io_req, 1, &io_loc, NULL);
if (unlikely(r))
return r;
if (op == REQ_OP_READ) {
if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
r = sb_mac(ic, false);
if (unlikely(r))
return r;
}
}
return 0;
}
#define BITMAP_OP_TEST_ALL_SET 0
#define BITMAP_OP_TEST_ALL_CLEAR 1
#define BITMAP_OP_SET 2
#define BITMAP_OP_CLEAR 3
static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
sector_t sector, sector_t n_sectors, int mode)
{
unsigned long bit, end_bit, this_end_bit, page, end_page;
unsigned long *data;
if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
sector,
n_sectors,
ic->sb->log2_sectors_per_block,
ic->log2_blocks_per_bitmap_bit,
mode);
BUG();
}
if (unlikely(!n_sectors))
return true;
bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
end_bit = (sector + n_sectors - 1) >>
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
page = bit / (PAGE_SIZE * 8);
bit %= PAGE_SIZE * 8;
end_page = end_bit / (PAGE_SIZE * 8);
end_bit %= PAGE_SIZE * 8;
repeat:
if (page < end_page)
this_end_bit = PAGE_SIZE * 8 - 1;
else
this_end_bit = end_bit;
data = lowmem_page_address(bitmap[page].page);
if (mode == BITMAP_OP_TEST_ALL_SET) {
while (bit <= this_end_bit) {
if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
do {
if (data[bit / BITS_PER_LONG] != -1)
return false;
bit += BITS_PER_LONG;
} while (this_end_bit >= bit + BITS_PER_LONG - 1);
continue;
}
if (!test_bit(bit, data))
return false;
bit++;
}
} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
while (bit <= this_end_bit) {
if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
do {
if (data[bit / BITS_PER_LONG] != 0)
return false;
bit += BITS_PER_LONG;
} while (this_end_bit >= bit + BITS_PER_LONG - 1);
continue;
}
if (test_bit(bit, data))
return false;
bit++;
}
} else if (mode == BITMAP_OP_SET) {
while (bit <= this_end_bit) {
if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
do {
data[bit / BITS_PER_LONG] = -1;
bit += BITS_PER_LONG;
} while (this_end_bit >= bit + BITS_PER_LONG - 1);
continue;
}
__set_bit(bit, data);
bit++;
}
} else if (mode == BITMAP_OP_CLEAR) {
if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
clear_page(data);
else {
while (bit <= this_end_bit) {
if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
do {
data[bit / BITS_PER_LONG] = 0;
bit += BITS_PER_LONG;
} while (this_end_bit >= bit + BITS_PER_LONG - 1);
continue;
}
__clear_bit(bit, data);
bit++;
}
}
} else {
BUG();
}
if (unlikely(page < end_page)) {
bit = 0;
page++;
goto repeat;
}
return true;
}
static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
{
unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
unsigned int i;
for (i = 0; i < n_bitmap_pages; i++) {
unsigned long *dst_data = lowmem_page_address(dst[i].page);
unsigned long *src_data = lowmem_page_address(src[i].page);
copy_page(dst_data, src_data);
}
}
static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
{
unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
return &ic->bbs[bitmap_block];
}
static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
bool e, const char *function)
{
#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
if (unlikely(section >= ic->journal_sections) ||
unlikely(offset >= limit)) {
DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
function, section, offset, ic->journal_sections, limit);
BUG();
}
#endif
}
static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
unsigned int *pl_index, unsigned int *pl_offset)
{
unsigned int sector;
access_journal_check(ic, section, offset, false, "page_list_location");
sector = section * ic->journal_section_sectors + offset;
*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
}
static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
unsigned int section, unsigned int offset, unsigned int *n_sectors)
{
unsigned int pl_index, pl_offset;
char *va;
page_list_location(ic, section, offset, &pl_index, &pl_offset);
if (n_sectors)
*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
va = lowmem_page_address(pl[pl_index].page);
return (struct journal_sector *)(va + pl_offset);
}
static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
{
return access_page_list(ic, ic->journal, section, offset, NULL);
}
static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
{
unsigned int rel_sector, offset;
struct journal_sector *js;
access_journal_check(ic, section, n, true, "access_journal_entry");
rel_sector = n % JOURNAL_BLOCK_SECTORS;
offset = n / JOURNAL_BLOCK_SECTORS;
js = access_journal(ic, section, rel_sector);
return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
}
static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
{
n <<= ic->sb->log2_sectors_per_block;
n += JOURNAL_BLOCK_SECTORS;
access_journal_check(ic, section, n, false, "access_journal_data");
return access_journal(ic, section, n);
}
static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
{
SHASH_DESC_ON_STACK(desc, ic->journal_mac);
int r;
unsigned int j, size;
desc->tfm = ic->journal_mac;
r = crypto_shash_init(desc);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_init", r);
goto err;
}
if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
__le64 section_le;
r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
goto err;
}
section_le = cpu_to_le64(section);
r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
goto err;
}
}
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je = access_journal_entry(ic, section, j);
r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
goto err;
}
}
size = crypto_shash_digestsize(ic->journal_mac);
if (likely(size <= JOURNAL_MAC_SIZE)) {
r = crypto_shash_final(desc, result);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_final", r);
goto err;
}
memset(result + size, 0, JOURNAL_MAC_SIZE - size);
} else {
__u8 digest[HASH_MAX_DIGESTSIZE];
if (WARN_ON(size > sizeof(digest))) {
dm_integrity_io_error(ic, "digest_size", -EINVAL);
goto err;
}
r = crypto_shash_final(desc, digest);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_final", r);
goto err;
}
memcpy(result, digest, JOURNAL_MAC_SIZE);
}
return;
err:
memset(result, 0, JOURNAL_MAC_SIZE);
}
static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
{
__u8 result[JOURNAL_MAC_SIZE];
unsigned int j;
if (!ic->journal_mac)
return;
section_mac(ic, section, result);
for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
struct journal_sector *js = access_journal(ic, section, j);
if (likely(wr))
memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
else {
if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
dm_integrity_io_error(ic, "journal mac", -EILSEQ);
dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
}
}
}
}
static void complete_journal_op(void *context)
{
struct journal_completion *comp = context;
BUG_ON(!atomic_read(&comp->in_flight));
if (likely(atomic_dec_and_test(&comp->in_flight)))
complete(&comp->comp);
}
static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
unsigned int n_sections, struct journal_completion *comp)
{
struct async_submit_ctl submit;
size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
unsigned int pl_index, pl_offset, section_index;
struct page_list *source_pl, *target_pl;
if (likely(encrypt)) {
source_pl = ic->journal;
target_pl = ic->journal_io;
} else {
source_pl = ic->journal_io;
target_pl = ic->journal;
}
page_list_location(ic, section, 0, &pl_index, &pl_offset);
atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
section_index = pl_index;
do {
size_t this_step;
struct page *src_pages[2];
struct page *dst_page;
while (unlikely(pl_index == section_index)) {
unsigned int dummy;
if (likely(encrypt))
rw_section_mac(ic, section, true);
section++;
n_sections--;
if (!n_sections)
break;
page_list_location(ic, section, 0, &section_index, &dummy);
}
this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
dst_page = target_pl[pl_index].page;
src_pages[0] = source_pl[pl_index].page;
src_pages[1] = ic->journal_xor[pl_index].page;
async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
pl_index++;
pl_offset = 0;
n_bytes -= this_step;
} while (n_bytes);
BUG_ON(n_sections);
async_tx_issue_pending_all();
}
static void complete_journal_encrypt(void *data, int err)
{
struct journal_completion *comp = data;
if (unlikely(err)) {
if (likely(err == -EINPROGRESS)) {
complete(&comp->ic->crypto_backoff);
return;
}
dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
}
complete_journal_op(comp);
}
static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
{
int r;
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
complete_journal_encrypt, comp);
if (likely(encrypt))
r = crypto_skcipher_encrypt(req);
else
r = crypto_skcipher_decrypt(req);
if (likely(!r))
return false;
if (likely(r == -EINPROGRESS))
return true;
if (likely(r == -EBUSY)) {
wait_for_completion(&comp->ic->crypto_backoff);
reinit_completion(&comp->ic->crypto_backoff);
return true;
}
dm_integrity_io_error(comp->ic, "encrypt", r);
return false;
}
static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
unsigned int n_sections, struct journal_completion *comp)
{
struct scatterlist **source_sg;
struct scatterlist **target_sg;
atomic_add(2, &comp->in_flight);
if (likely(encrypt)) {
source_sg = ic->journal_scatterlist;
target_sg = ic->journal_io_scatterlist;
} else {
source_sg = ic->journal_io_scatterlist;
target_sg = ic->journal_scatterlist;
}
do {
struct skcipher_request *req;
unsigned int ivsize;
char *iv;
if (likely(encrypt))
rw_section_mac(ic, section, true);
req = ic->sk_requests[section];
ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
iv = req->iv;
memcpy(iv, iv + ivsize, ivsize);
req->src = source_sg[section];
req->dst = target_sg[section];
if (unlikely(do_crypt(encrypt, req, comp)))
atomic_inc(&comp->in_flight);
section++;
n_sections--;
} while (n_sections);
atomic_dec(&comp->in_flight);
complete_journal_op(comp);
}
static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
unsigned int n_sections, struct journal_completion *comp)
{
if (ic->journal_xor)
return xor_journal(ic, encrypt, section, n_sections, comp);
else
return crypt_journal(ic, encrypt, section, n_sections, comp);
}
static void complete_journal_io(unsigned long error, void *context)
{
struct journal_completion *comp = context;
if (unlikely(error != 0))
dm_integrity_io_error(comp->ic, "writing journal", -EIO);
complete_journal_op(comp);
}
static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
unsigned int sector, unsigned int n_sectors,
struct journal_completion *comp)
{
struct dm_io_request io_req;
struct dm_io_region io_loc;
unsigned int pl_index, pl_offset;
int r;
if (unlikely(dm_integrity_failed(ic))) {
if (comp)
complete_journal_io(-1UL, comp);
return;
}
pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
io_req.bi_opf = opf;
io_req.mem.type = DM_IO_PAGE_LIST;
if (ic->journal_io)
io_req.mem.ptr.pl = &ic->journal_io[pl_index];
else
io_req.mem.ptr.pl = &ic->journal[pl_index];
io_req.mem.offset = pl_offset;
if (likely(comp != NULL)) {
io_req.notify.fn = complete_journal_io;
io_req.notify.context = comp;
} else {
io_req.notify.fn = NULL;
}
io_req.client = ic->io;
io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
io_loc.sector = ic->start + SB_SECTORS + sector;
io_loc.count = n_sectors;
r = dm_io(&io_req, 1, &io_loc, NULL);
if (unlikely(r)) {
dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
"reading journal" : "writing journal", r);
if (comp) {
WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
complete_journal_io(-1UL, comp);
}
}
}
static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
unsigned int section, unsigned int n_sections,
struct journal_completion *comp)
{
unsigned int sector, n_sectors;
sector = section * ic->journal_section_sectors;
n_sectors = n_sections * ic->journal_section_sectors;
rw_journal_sectors(ic, opf, sector, n_sectors, comp);
}
static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
{
struct journal_completion io_comp;
struct journal_completion crypt_comp_1;
struct journal_completion crypt_comp_2;
unsigned int i;
io_comp.ic = ic;
init_completion(&io_comp.comp);
if (commit_start + commit_sections <= ic->journal_sections) {
io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
if (ic->journal_io) {
crypt_comp_1.ic = ic;
init_completion(&crypt_comp_1.comp);
crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
wait_for_completion_io(&crypt_comp_1.comp);
} else {
for (i = 0; i < commit_sections; i++)
rw_section_mac(ic, commit_start + i, true);
}
rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
commit_sections, &io_comp);
} else {
unsigned int to_end;
io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
to_end = ic->journal_sections - commit_start;
if (ic->journal_io) {
crypt_comp_1.ic = ic;
init_completion(&crypt_comp_1.comp);
crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
if (try_wait_for_completion(&crypt_comp_1.comp)) {
rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
commit_start, to_end, &io_comp);
reinit_completion(&crypt_comp_1.comp);
crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
wait_for_completion_io(&crypt_comp_1.comp);
} else {
crypt_comp_2.ic = ic;
init_completion(&crypt_comp_2.comp);
crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
wait_for_completion_io(&crypt_comp_1.comp);
rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
wait_for_completion_io(&crypt_comp_2.comp);
}
} else {
for (i = 0; i < to_end; i++)
rw_section_mac(ic, commit_start + i, true);
rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
for (i = 0; i < commit_sections - to_end; i++)
rw_section_mac(ic, i, true);
}
rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
}
wait_for_completion_io(&io_comp.comp);
}
static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
{
struct dm_io_request io_req;
struct dm_io_region io_loc;
int r;
unsigned int sector, pl_index, pl_offset;
BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
if (unlikely(dm_integrity_failed(ic))) {
fn(-1UL, data);
return;
}
sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
io_req.bi_opf = REQ_OP_WRITE;
io_req.mem.type = DM_IO_PAGE_LIST;
io_req.mem.ptr.pl = &ic->journal[pl_index];
io_req.mem.offset = pl_offset;
io_req.notify.fn = fn;
io_req.notify.context = data;
io_req.client = ic->io;
io_loc.bdev = ic->dev->bdev;
io_loc.sector = target;
io_loc.count = n_sectors;
r = dm_io(&io_req, 1, &io_loc, NULL);
if (unlikely(r)) {
WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
fn(-1UL, data);
}
}
static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
{
return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
range1->logical_sector + range1->n_sectors > range2->logical_sector;
}
static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
{
struct rb_node **n = &ic->in_progress.rb_node;
struct rb_node *parent;
BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
if (likely(check_waiting)) {
struct dm_integrity_range *range;
list_for_each_entry(range, &ic->wait_list, wait_entry) {
if (unlikely(ranges_overlap(range, new_range)))
return false;
}
}
parent = NULL;
while (*n) {
struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
parent = *n;
if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
n = &range->node.rb_left;
else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
n = &range->node.rb_right;
else
return false;
}
rb_link_node(&new_range->node, parent, n);
rb_insert_color(&new_range->node, &ic->in_progress);
return true;
}
static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
{
rb_erase(&range->node, &ic->in_progress);
while (unlikely(!list_empty(&ic->wait_list))) {
struct dm_integrity_range *last_range =
list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
struct task_struct *last_range_task;
last_range_task = last_range->task;
list_del(&last_range->wait_entry);
if (!add_new_range(ic, last_range, false)) {
last_range->task = last_range_task;
list_add(&last_range->wait_entry, &ic->wait_list);
break;
}
last_range->waiting = false;
wake_up_process(last_range_task);
}
}
static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
{
unsigned long flags;
spin_lock_irqsave(&ic->endio_wait.lock, flags);
remove_range_unlocked(ic, range);
spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
}
static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
{
new_range->waiting = true;
list_add_tail(&new_range->wait_entry, &ic->wait_list);
new_range->task = current;
do {
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&ic->endio_wait.lock);
io_schedule();
spin_lock_irq(&ic->endio_wait.lock);
} while (unlikely(new_range->waiting));
}
static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
{
if (unlikely(!add_new_range(ic, new_range, true)))
wait_and_add_new_range(ic, new_range);
}
static void init_journal_node(struct journal_node *node)
{
RB_CLEAR_NODE(&node->node);
node->sector = (sector_t)-1;
}
static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
{
struct rb_node **link;
struct rb_node *parent;
node->sector = sector;
BUG_ON(!RB_EMPTY_NODE(&node->node));
link = &ic->journal_tree_root.rb_node;
parent = NULL;
while (*link) {
struct journal_node *j;
parent = *link;
j = container_of(parent, struct journal_node, node);
if (sector < j->sector)
link = &j->node.rb_left;
else
link = &j->node.rb_right;
}
rb_link_node(&node->node, parent, link);
rb_insert_color(&node->node, &ic->journal_tree_root);
}
static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
{
BUG_ON(RB_EMPTY_NODE(&node->node));
rb_erase(&node->node, &ic->journal_tree_root);
init_journal_node(node);
}
#define NOT_FOUND (-1U)
static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
{
struct rb_node *n = ic->journal_tree_root.rb_node;
unsigned int found = NOT_FOUND;
*next_sector = (sector_t)-1;
while (n) {
struct journal_node *j = container_of(n, struct journal_node, node);
if (sector == j->sector)
found = j - ic->journal_tree;
if (sector < j->sector) {
*next_sector = j->sector;
n = j->node.rb_left;
} else
n = j->node.rb_right;
}
return found;
}
static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
{
struct journal_node *node, *next_node;
struct rb_node *next;
if (unlikely(pos >= ic->journal_entries))
return false;
node = &ic->journal_tree[pos];
if (unlikely(RB_EMPTY_NODE(&node->node)))
return false;
if (unlikely(node->sector != sector))
return false;
next = rb_next(&node->node);
if (unlikely(!next))
return true;
next_node = container_of(next, struct journal_node, node);
return next_node->sector != sector;
}
static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
{
struct rb_node *next;
struct journal_node *next_node;
unsigned int next_section;
BUG_ON(RB_EMPTY_NODE(&node->node));
next = rb_next(&node->node);
if (unlikely(!next))
return false;
next_node = container_of(next, struct journal_node, node);
if (next_node->sector != node->sector)
return false;
next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
if (next_section >= ic->committed_section &&
next_section < ic->committed_section + ic->n_committed_sections)
return true;
if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
return true;
return false;
}
#define TAG_READ 0
#define TAG_WRITE 1
#define TAG_CMP 2
static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
unsigned int *metadata_offset, unsigned int total_size, int op)
{
#define MAY_BE_FILLER 1
#define MAY_BE_HASH 2
unsigned int hash_offset = 0;
unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
do {
unsigned char *data, *dp;
struct dm_buffer *b;
unsigned int to_copy;
int r;
r = dm_integrity_failed(ic);
if (unlikely(r))
return r;
data = dm_bufio_read(ic->bufio, *metadata_block, &b);
if (IS_ERR(data))
return PTR_ERR(data);
to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
dp = data + *metadata_offset;
if (op == TAG_READ) {
memcpy(tag, dp, to_copy);
} else if (op == TAG_WRITE) {
if (memcmp(dp, tag, to_copy)) {
memcpy(dp, tag, to_copy);
dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
}
} else {
/* e.g.: op == TAG_CMP */
if (likely(is_power_of_2(ic->tag_size))) {
if (unlikely(memcmp(dp, tag, to_copy)))
if (unlikely(!ic->discard) ||
unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
goto thorough_test;
}
} else {
unsigned int i, ts;
thorough_test:
ts = total_size;
for (i = 0; i < to_copy; i++, ts--) {
if (unlikely(dp[i] != tag[i]))
may_be &= ~MAY_BE_HASH;
if (likely(dp[i] != DISCARD_FILLER))
may_be &= ~MAY_BE_FILLER;
hash_offset++;
if (unlikely(hash_offset == ic->tag_size)) {
if (unlikely(!may_be)) {
dm_bufio_release(b);
return ts;
}
hash_offset = 0;
may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
}
}
}
}
dm_bufio_release(b);
tag += to_copy;
*metadata_offset += to_copy;
if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
(*metadata_block)++;
*metadata_offset = 0;
}
if (unlikely(!is_power_of_2(ic->tag_size)))
hash_offset = (hash_offset + to_copy) % ic->tag_size;
total_size -= to_copy;
} while (unlikely(total_size));
return 0;
#undef MAY_BE_FILLER
#undef MAY_BE_HASH
}
struct flush_request {
struct dm_io_request io_req;
struct dm_io_region io_reg;
struct dm_integrity_c *ic;
struct completion comp;
};
static void flush_notify(unsigned long error, void *fr_)
{
struct flush_request *fr = fr_;
if (unlikely(error != 0))
dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
complete(&fr->comp);
}
static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
{
int r;
struct flush_request fr;
if (!ic->meta_dev)
flush_data = false;
if (flush_data) {
fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
fr.io_req.mem.type = DM_IO_KMEM,
fr.io_req.mem.ptr.addr = NULL,
fr.io_req.notify.fn = flush_notify,
fr.io_req.notify.context = &fr;
fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
fr.io_reg.bdev = ic->dev->bdev,
fr.io_reg.sector = 0,
fr.io_reg.count = 0,
fr.ic = ic;
init_completion(&fr.comp);
r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
BUG_ON(r);
}
r = dm_bufio_write_dirty_buffers(ic->bufio);
if (unlikely(r))
dm_integrity_io_error(ic, "writing tags", r);
if (flush_data)
wait_for_completion(&fr.comp);
}
static void sleep_on_endio_wait(struct dm_integrity_c *ic)
{
DECLARE_WAITQUEUE(wait, current);
__add_wait_queue(&ic->endio_wait, &wait);
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&ic->endio_wait.lock);
io_schedule();
spin_lock_irq(&ic->endio_wait.lock);
__remove_wait_queue(&ic->endio_wait, &wait);
}
static void autocommit_fn(struct timer_list *t)
{
struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
if (likely(!dm_integrity_failed(ic)))
queue_work(ic->commit_wq, &ic->commit_work);
}
static void schedule_autocommit(struct dm_integrity_c *ic)
{
if (!timer_pending(&ic->autocommit_timer))
mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
}
static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
{
struct bio *bio;
unsigned long flags;
spin_lock_irqsave(&ic->endio_wait.lock, flags);
bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
bio_list_add(&ic->flush_bio_list, bio);
spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
queue_work(ic->commit_wq, &ic->commit_work);
}
static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
{
int r;
r = dm_integrity_failed(ic);
if (unlikely(r) && !bio->bi_status)
bio->bi_status = errno_to_blk_status(r);
if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
unsigned long flags;
spin_lock_irqsave(&ic->endio_wait.lock, flags);
bio_list_add(&ic->synchronous_bios, bio);
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
return;
}
bio_endio(bio);
}
static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
{
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
submit_flush_bio(ic, dio);
else
do_endio(ic, bio);
}
static void dec_in_flight(struct dm_integrity_io *dio)
{
if (atomic_dec_and_test(&dio->in_flight)) {
struct dm_integrity_c *ic = dio->ic;
struct bio *bio;
remove_range(ic, &dio->range);
if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
schedule_autocommit(ic);
bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
if (unlikely(dio->bi_status) && !bio->bi_status)
bio->bi_status = dio->bi_status;
if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
dio->range.logical_sector += dio->range.n_sectors;
bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
INIT_WORK(&dio->work, integrity_bio_wait);
queue_work(ic->offload_wq, &dio->work);
return;
}
do_endio_flush(ic, dio);
}
}
static void integrity_end_io(struct bio *bio)
{
struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
dm_bio_restore(&dio->bio_details, bio);
if (bio->bi_integrity)
bio->bi_opf |= REQ_INTEGRITY;
if (dio->completion)
complete(dio->completion);
dec_in_flight(dio);
}
static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
const char *data, char *result)
{
__le64 sector_le = cpu_to_le64(sector);
SHASH_DESC_ON_STACK(req, ic->internal_hash);
int r;
unsigned int digest_size;
req->tfm = ic->internal_hash;
r = crypto_shash_init(req);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_init", r);
goto failed;
}
if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
goto failed;
}
}
r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
goto failed;
}
r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_update", r);
goto failed;
}
r = crypto_shash_final(req, result);
if (unlikely(r < 0)) {
dm_integrity_io_error(ic, "crypto_shash_final", r);
goto failed;
}
digest_size = crypto_shash_digestsize(ic->internal_hash);
if (unlikely(digest_size < ic->tag_size))
memset(result + digest_size, 0, ic->tag_size - digest_size);
return;
failed:
/* this shouldn't happen anyway, the hash functions have no reason to fail */
get_random_bytes(result, ic->tag_size);
}
static void integrity_metadata(struct work_struct *w)
{
struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
struct dm_integrity_c *ic = dio->ic;
int r;
if (ic->internal_hash) {
struct bvec_iter iter;
struct bio_vec bv;
unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
char *checksums;
unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
sector_t sector;
unsigned int sectors_to_process;
if (unlikely(ic->mode == 'R'))
goto skip_io;
if (likely(dio->op != REQ_OP_DISCARD))
checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
else
checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
if (!checksums) {
checksums = checksums_onstack;
if (WARN_ON(extra_space &&
digest_size > sizeof(checksums_onstack))) {
r = -EINVAL;
goto error;
}
}
if (unlikely(dio->op == REQ_OP_DISCARD)) {
unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
unsigned int max_blocks = max_size / ic->tag_size;
memset(checksums, DISCARD_FILLER, max_size);
while (bi_size) {
unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
this_step_blocks = min(this_step_blocks, max_blocks);
r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
this_step_blocks * ic->tag_size, TAG_WRITE);
if (unlikely(r)) {
if (likely(checksums != checksums_onstack))
kfree(checksums);
goto error;
}
bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
}
if (likely(checksums != checksums_onstack))
kfree(checksums);
goto skip_io;
}
sector = dio->range.logical_sector;
sectors_to_process = dio->range.n_sectors;
__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
unsigned int pos;
char *mem, *checksums_ptr;
again:
mem = bvec_kmap_local(&bv);
pos = 0;
checksums_ptr = checksums;
do {
integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
checksums_ptr += ic->tag_size;
sectors_to_process -= ic->sectors_per_block;
pos += ic->sectors_per_block << SECTOR_SHIFT;
sector += ic->sectors_per_block;
} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
kunmap_local(mem);
r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
if (unlikely(r)) {
if (r > 0) {
sector_t s;
s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
bio->bi_bdev, s);
r = -EILSEQ;
atomic64_inc(&ic->number_of_mismatches);
dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
bio, s, 0);
}
if (likely(checksums != checksums_onstack))
kfree(checksums);
goto error;
}
if (!sectors_to_process)
break;
if (unlikely(pos < bv.bv_len)) {
bv.bv_offset += pos;
bv.bv_len -= pos;
goto again;
}
}
if (likely(checksums != checksums_onstack))
kfree(checksums);
} else {
struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
if (bip) {
struct bio_vec biv;
struct bvec_iter iter;
unsigned int data_to_process = dio->range.n_sectors;
sector_to_block(ic, data_to_process);
data_to_process *= ic->tag_size;
bip_for_each_vec(biv, bip, iter) {
unsigned char *tag;
unsigned int this_len;
BUG_ON(PageHighMem(biv.bv_page));
tag = bvec_virt(&biv);
this_len = min(biv.bv_len, data_to_process);
r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
if (unlikely(r))
goto error;
data_to_process -= this_len;
if (!data_to_process)
break;
}
}
}
skip_io:
dec_in_flight(dio);
return;
error:
dio->bi_status = errno_to_blk_status(r);
dec_in_flight(dio);
}
static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
{
struct dm_integrity_c *ic = ti->private;
struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
struct bio_integrity_payload *bip;
sector_t area, offset;
dio->ic = ic;
dio->bi_status = 0;
dio->op = bio_op(bio);
if (unlikely(dio->op == REQ_OP_DISCARD)) {
if (ti->max_io_len) {
sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
unsigned int log2_max_io_len = __fls(ti->max_io_len);
sector_t start_boundary = sec >> log2_max_io_len;
sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
if (start_boundary < end_boundary) {
sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
dm_accept_partial_bio(bio, len);
}
}
}
if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
submit_flush_bio(ic, dio);
return DM_MAPIO_SUBMITTED;
}
dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
if (unlikely(dio->fua)) {
/*
* Don't pass down the FUA flag because we have to flush
* disk cache anyway.
*/
bio->bi_opf &= ~REQ_FUA;
}
if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
dio->range.logical_sector, bio_sectors(bio),
ic->provided_data_sectors);
return DM_MAPIO_KILL;
}
if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
ic->sectors_per_block,
dio->range.logical_sector, bio_sectors(bio));
return DM_MAPIO_KILL;
}
if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
struct bvec_iter iter;
struct bio_vec bv;
bio_for_each_segment(bv, bio, iter) {
if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
bv.bv_offset, bv.bv_len, ic->sectors_per_block);
return DM_MAPIO_KILL;
}
}
}
bip = bio_integrity(bio);
if (!ic->internal_hash) {
if (bip) {
unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
if (ic->log2_tag_size >= 0)
wanted_tag_size <<= ic->log2_tag_size;
else
wanted_tag_size *= ic->tag_size;
if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
DMERR("Invalid integrity data size %u, expected %u",
bip->bip_iter.bi_size, wanted_tag_size);
return DM_MAPIO_KILL;
}
}
} else {
if (unlikely(bip != NULL)) {
DMERR("Unexpected integrity data when using internal hash");
return DM_MAPIO_KILL;
}
}
if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
return DM_MAPIO_KILL;
get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
dm_integrity_map_continue(dio, true);
return DM_MAPIO_SUBMITTED;
}
static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
unsigned int journal_section, unsigned int journal_entry)
{
struct dm_integrity_c *ic = dio->ic;
sector_t logical_sector;
unsigned int n_sectors;
logical_sector = dio->range.logical_sector;
n_sectors = dio->range.n_sectors;
do {
struct bio_vec bv = bio_iovec(bio);
char *mem;
if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
bv.bv_len = n_sectors << SECTOR_SHIFT;
n_sectors -= bv.bv_len >> SECTOR_SHIFT;
bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
retry_kmap:
mem = kmap_local_page(bv.bv_page);
if (likely(dio->op == REQ_OP_WRITE))
flush_dcache_page(bv.bv_page);
do {
struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
if (unlikely(dio->op == REQ_OP_READ)) {
struct journal_sector *js;
char *mem_ptr;
unsigned int s;
if (unlikely(journal_entry_is_inprogress(je))) {
flush_dcache_page(bv.bv_page);
kunmap_local(mem);
__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
goto retry_kmap;
}
smp_rmb();
BUG_ON(journal_entry_get_sector(je) != logical_sector);
js = access_journal_data(ic, journal_section, journal_entry);
mem_ptr = mem + bv.bv_offset;
s = 0;
do {
memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
js++;
mem_ptr += 1 << SECTOR_SHIFT;
} while (++s < ic->sectors_per_block);
#ifdef INTERNAL_VERIFY
if (ic->internal_hash) {
char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
logical_sector);
dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
bio, logical_sector, 0);
}
}
#endif
}
if (!ic->internal_hash) {
struct bio_integrity_payload *bip = bio_integrity(bio);
unsigned int tag_todo = ic->tag_size;
char *tag_ptr = journal_entry_tag(ic, je);
if (bip) {
do {
struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
unsigned int tag_now = min(biv.bv_len, tag_todo);
char *tag_addr;
BUG_ON(PageHighMem(biv.bv_page));
tag_addr = bvec_virt(&biv);
if (likely(dio->op == REQ_OP_WRITE))
memcpy(tag_ptr, tag_addr, tag_now);
else
memcpy(tag_addr, tag_ptr, tag_now);
bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
tag_ptr += tag_now;
tag_todo -= tag_now;
} while (unlikely(tag_todo));
} else if (likely(dio->op == REQ_OP_WRITE))
memset(tag_ptr, 0, tag_todo);
}
if (likely(dio->op == REQ_OP_WRITE)) {
struct journal_sector *js;
unsigned int s;
js = access_journal_data(ic, journal_section, journal_entry);
memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
s = 0;
do {
je->last_bytes[s] = js[s].commit_id;
} while (++s < ic->sectors_per_block);
if (ic->internal_hash) {
unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
if (unlikely(digest_size > ic->tag_size)) {
char checksums_onstack[HASH_MAX_DIGESTSIZE];
integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
} else
integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
}
journal_entry_set_sector(je, logical_sector);
}
logical_sector += ic->sectors_per_block;
journal_entry++;
if (unlikely(journal_entry == ic->journal_section_entries)) {
journal_entry = 0;
journal_section++;
wraparound_section(ic, &journal_section);
}
bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
if (unlikely(dio->op == REQ_OP_READ))
flush_dcache_page(bv.bv_page);
kunmap_local(mem);
} while (n_sectors);
if (likely(dio->op == REQ_OP_WRITE)) {
smp_mb();
if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
wake_up(&ic->copy_to_journal_wait);
if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
queue_work(ic->commit_wq, &ic->commit_work);
else
schedule_autocommit(ic);
} else
remove_range(ic, &dio->range);
if (unlikely(bio->bi_iter.bi_size)) {
sector_t area, offset;
dio->range.logical_sector = logical_sector;
get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
return true;
}
return false;
}
static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
{
struct dm_integrity_c *ic = dio->ic;
struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
unsigned int journal_section, journal_entry;
unsigned int journal_read_pos;
struct completion read_comp;
bool discard_retried = false;
bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
need_sync_io = true;
if (need_sync_io && from_map) {
INIT_WORK(&dio->work, integrity_bio_wait);
queue_work(ic->offload_wq, &dio->work);
return;
}
lock_retry:
spin_lock_irq(&ic->endio_wait.lock);
retry:
if (unlikely(dm_integrity_failed(ic))) {
spin_unlock_irq(&ic->endio_wait.lock);
do_endio(ic, bio);
return;
}
dio->range.n_sectors = bio_sectors(bio);
journal_read_pos = NOT_FOUND;
if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
if (dio->op == REQ_OP_WRITE) {
unsigned int next_entry, i, pos;
unsigned int ws, we, range_sectors;
dio->range.n_sectors = min(dio->range.n_sectors,
(sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
if (unlikely(!dio->range.n_sectors)) {
if (from_map)
goto offload_to_thread;
sleep_on_endio_wait(ic);
goto retry;
}
range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
ic->free_sectors -= range_sectors;
journal_section = ic->free_section;
journal_entry = ic->free_section_entry;
next_entry = ic->free_section_entry + range_sectors;
ic->free_section_entry = next_entry % ic->journal_section_entries;
ic->free_section += next_entry / ic->journal_section_entries;
ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
wraparound_section(ic, &ic->free_section);
pos = journal_section * ic->journal_section_entries + journal_entry;
ws = journal_section;
we = journal_entry;
i = 0;
do {
struct journal_entry *je;
add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
pos++;
if (unlikely(pos >= ic->journal_entries))
pos = 0;
je = access_journal_entry(ic, ws, we);
BUG_ON(!journal_entry_is_unused(je));
journal_entry_set_inprogress(je);
we++;
if (unlikely(we == ic->journal_section_entries)) {
we = 0;
ws++;
wraparound_section(ic, &ws);
}
} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
spin_unlock_irq(&ic->endio_wait.lock);
goto journal_read_write;
} else {
sector_t next_sector;
journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
if (likely(journal_read_pos == NOT_FOUND)) {
if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
dio->range.n_sectors = next_sector - dio->range.logical_sector;
} else {
unsigned int i;
unsigned int jp = journal_read_pos + 1;
for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
break;
}
dio->range.n_sectors = i;
}
}
}
if (unlikely(!add_new_range(ic, &dio->range, true))) {
/*
* We must not sleep in the request routine because it could
* stall bios on current->bio_list.
* So, we offload the bio to a workqueue if we have to sleep.
*/
if (from_map) {
offload_to_thread:
spin_unlock_irq(&ic->endio_wait.lock);
INIT_WORK(&dio->work, integrity_bio_wait);
queue_work(ic->wait_wq, &dio->work);
return;
}
if (journal_read_pos != NOT_FOUND)
dio->range.n_sectors = ic->sectors_per_block;
wait_and_add_new_range(ic, &dio->range);
/*
* wait_and_add_new_range drops the spinlock, so the journal
* may have been changed arbitrarily. We need to recheck.
* To simplify the code, we restrict I/O size to just one block.
*/
if (journal_read_pos != NOT_FOUND) {
sector_t next_sector;
unsigned int new_pos;
new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
if (unlikely(new_pos != journal_read_pos)) {
remove_range_unlocked(ic, &dio->range);
goto retry;
}
}
}
if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
sector_t next_sector;
unsigned int new_pos;
new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
if (unlikely(new_pos != NOT_FOUND) ||
unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
remove_range_unlocked(ic, &dio->range);
spin_unlock_irq(&ic->endio_wait.lock);
queue_work(ic->commit_wq, &ic->commit_work);
flush_workqueue(ic->commit_wq);
queue_work(ic->writer_wq, &ic->writer_work);
flush_workqueue(ic->writer_wq);
discard_retried = true;
goto lock_retry;
}
}
spin_unlock_irq(&ic->endio_wait.lock);
if (unlikely(journal_read_pos != NOT_FOUND)) {
journal_section = journal_read_pos / ic->journal_section_entries;
journal_entry = journal_read_pos % ic->journal_section_entries;
goto journal_read_write;
}
if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
struct bitmap_block_status *bbs;
bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
spin_lock(&bbs->bio_queue_lock);
bio_list_add(&bbs->bio_queue, bio);
spin_unlock(&bbs->bio_queue_lock);
queue_work(ic->writer_wq, &bbs->work);
return;
}
}
dio->in_flight = (atomic_t)ATOMIC_INIT(2);
if (need_sync_io) {
init_completion(&read_comp);
dio->completion = &read_comp;
} else
dio->completion = NULL;
dm_bio_record(&dio->bio_details, bio);
bio_set_dev(bio, ic->dev->bdev);
bio->bi_integrity = NULL;
bio->bi_opf &= ~REQ_INTEGRITY;
bio->bi_end_io = integrity_end_io;
bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
integrity_metadata(&dio->work);
dm_integrity_flush_buffers(ic, false);
dio->in_flight = (atomic_t)ATOMIC_INIT(1);
dio->completion = NULL;
submit_bio_noacct(bio);
return;
}
submit_bio_noacct(bio);
if (need_sync_io) {
wait_for_completion_io(&read_comp);
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
goto skip_check;
if (ic->mode == 'B') {
if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
goto skip_check;
}
if (likely(!bio->bi_status))
integrity_metadata(&dio->work);
else
skip_check:
dec_in_flight(dio);
} else {
INIT_WORK(&dio->work, integrity_metadata);
queue_work(ic->metadata_wq, &dio->work);
}
return;
journal_read_write:
if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
goto lock_retry;
do_endio_flush(ic, dio);
}
static void integrity_bio_wait(struct work_struct *w)
{
struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
dm_integrity_map_continue(dio, false);
}
static void pad_uncommitted(struct dm_integrity_c *ic)
{
if (ic->free_section_entry) {
ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
ic->free_section_entry = 0;
ic->free_section++;
wraparound_section(ic, &ic->free_section);
ic->n_uncommitted_sections++;
}
if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
(ic->n_uncommitted_sections + ic->n_committed_sections) *
ic->journal_section_entries + ic->free_sectors)) {
DMCRIT("journal_sections %u, journal_section_entries %u, "
"n_uncommitted_sections %u, n_committed_sections %u, "
"journal_section_entries %u, free_sectors %u",
ic->journal_sections, ic->journal_section_entries,
ic->n_uncommitted_sections, ic->n_committed_sections,
ic->journal_section_entries, ic->free_sectors);
}
}
static void integrity_commit(struct work_struct *w)
{
struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
unsigned int commit_start, commit_sections;
unsigned int i, j, n;
struct bio *flushes;
del_timer(&ic->autocommit_timer);
spin_lock_irq(&ic->endio_wait.lock);
flushes = bio_list_get(&ic->flush_bio_list);
if (unlikely(ic->mode != 'J')) {
spin_unlock_irq(&ic->endio_wait.lock);
dm_integrity_flush_buffers(ic, true);
goto release_flush_bios;
}
pad_uncommitted(ic);
commit_start = ic->uncommitted_section;
commit_sections = ic->n_uncommitted_sections;
spin_unlock_irq(&ic->endio_wait.lock);
if (!commit_sections)
goto release_flush_bios;
ic->wrote_to_journal = true;
i = commit_start;
for (n = 0; n < commit_sections; n++) {
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je;
je = access_journal_entry(ic, i, j);
io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
}
for (j = 0; j < ic->journal_section_sectors; j++) {
struct journal_sector *js;
js = access_journal(ic, i, j);
js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
}
i++;
if (unlikely(i >= ic->journal_sections))
ic->commit_seq = next_commit_seq(ic->commit_seq);
wraparound_section(ic, &i);
}
smp_rmb();
write_journal(ic, commit_start, commit_sections);
spin_lock_irq(&ic->endio_wait.lock);
ic->uncommitted_section += commit_sections;
wraparound_section(ic, &ic->uncommitted_section);
ic->n_uncommitted_sections -= commit_sections;
ic->n_committed_sections += commit_sections;
spin_unlock_irq(&ic->endio_wait.lock);
if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
queue_work(ic->writer_wq, &ic->writer_work);
release_flush_bios:
while (flushes) {
struct bio *next = flushes->bi_next;
flushes->bi_next = NULL;
do_endio(ic, flushes);
flushes = next;
}
}
static void complete_copy_from_journal(unsigned long error, void *context)
{
struct journal_io *io = context;
struct journal_completion *comp = io->comp;
struct dm_integrity_c *ic = comp->ic;
remove_range(ic, &io->range);
mempool_free(io, &ic->journal_io_mempool);
if (unlikely(error != 0))
dm_integrity_io_error(ic, "copying from journal", -EIO);
complete_journal_op(comp);
}
static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
struct journal_entry *je)
{
unsigned int s = 0;
do {
js->commit_id = je->last_bytes[s];
js++;
} while (++s < ic->sectors_per_block);
}
static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
unsigned int write_sections, bool from_replay)
{
unsigned int i, j, n;
struct journal_completion comp;
struct blk_plug plug;
blk_start_plug(&plug);
comp.ic = ic;
comp.in_flight = (atomic_t)ATOMIC_INIT(1);
init_completion(&comp.comp);
i = write_start;
for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
#ifndef INTERNAL_VERIFY
if (unlikely(from_replay))
#endif
rw_section_mac(ic, i, false);
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je = access_journal_entry(ic, i, j);
sector_t sec, area, offset;
unsigned int k, l, next_loop;
sector_t metadata_block;
unsigned int metadata_offset;
struct journal_io *io;
if (journal_entry_is_unused(je))
continue;
BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
sec = journal_entry_get_sector(je);
if (unlikely(from_replay)) {
if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
sec &= ~(sector_t)(ic->sectors_per_block - 1);
}
if (unlikely(sec >= ic->provided_data_sectors)) {
journal_entry_set_unused(je);
continue;
}
}
get_area_and_offset(ic, sec, &area, &offset);
restore_last_bytes(ic, access_journal_data(ic, i, j), je);
for (k = j + 1; k < ic->journal_section_entries; k++) {
struct journal_entry *je2 = access_journal_entry(ic, i, k);
sector_t sec2, area2, offset2;
if (journal_entry_is_unused(je2))
break;
BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
sec2 = journal_entry_get_sector(je2);
if (unlikely(sec2 >= ic->provided_data_sectors))
break;
get_area_and_offset(ic, sec2, &area2, &offset2);
if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
break;
restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
}
next_loop = k - 1;
io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
io->comp = &comp;
io->range.logical_sector = sec;
io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
spin_lock_irq(&ic->endio_wait.lock);
add_new_range_and_wait(ic, &io->range);
if (likely(!from_replay)) {
struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
/* don't write if there is newer committed sector */
while (j < k && find_newer_committed_node(ic, &section_node[j])) {
struct journal_entry *je2 = access_journal_entry(ic, i, j);
journal_entry_set_unused(je2);
remove_journal_node(ic, &section_node[j]);
j++;
sec += ic->sectors_per_block;
offset += ic->sectors_per_block;
}
while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
journal_entry_set_unused(je2);
remove_journal_node(ic, &section_node[k - 1]);
k--;
}
if (j == k) {
remove_range_unlocked(ic, &io->range);
spin_unlock_irq(&ic->endio_wait.lock);
mempool_free(io, &ic->journal_io_mempool);
goto skip_io;
}
for (l = j; l < k; l++)
remove_journal_node(ic, &section_node[l]);
}
spin_unlock_irq(&ic->endio_wait.lock);
metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
for (l = j; l < k; l++) {
int r;
struct journal_entry *je2 = access_journal_entry(ic, i, l);
if (
#ifndef INTERNAL_VERIFY
unlikely(from_replay) &&
#endif
ic->internal_hash) {
char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
(char *)access_journal_data(ic, i, l), test_tag);
if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
}
}
journal_entry_set_unused(je2);
r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
ic->tag_size, TAG_WRITE);
if (unlikely(r))
dm_integrity_io_error(ic, "reading tags", r);
}
atomic_inc(&comp.in_flight);
copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
(k - j) << ic->sb->log2_sectors_per_block,
get_data_sector(ic, area, offset),
complete_copy_from_journal, io);
skip_io:
j = next_loop;
}
}
dm_bufio_write_dirty_buffers_async(ic->bufio);
blk_finish_plug(&plug);
complete_journal_op(&comp);
wait_for_completion_io(&comp.comp);
dm_integrity_flush_buffers(ic, true);
}
static void integrity_writer(struct work_struct *w)
{
struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
unsigned int write_start, write_sections;
unsigned int prev_free_sectors;
spin_lock_irq(&ic->endio_wait.lock);
write_start = ic->committed_section;
write_sections = ic->n_committed_sections;
spin_unlock_irq(&ic->endio_wait.lock);
if (!write_sections)
return;
do_journal_write(ic, write_start, write_sections, false);
spin_lock_irq(&ic->endio_wait.lock);
ic->committed_section += write_sections;
wraparound_section(ic, &ic->committed_section);
ic->n_committed_sections -= write_sections;
prev_free_sectors = ic->free_sectors;
ic->free_sectors += write_sections * ic->journal_section_entries;
if (unlikely(!prev_free_sectors))
wake_up_locked(&ic->endio_wait);
spin_unlock_irq(&ic->endio_wait.lock);
}
static void recalc_write_super(struct dm_integrity_c *ic)
{
int r;
dm_integrity_flush_buffers(ic, false);
if (dm_integrity_failed(ic))
return;
r = sync_rw_sb(ic, REQ_OP_WRITE);
if (unlikely(r))
dm_integrity_io_error(ic, "writing superblock", r);
}
static void integrity_recalc(struct work_struct *w)
{
struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
size_t recalc_tags_size;
u8 *recalc_buffer = NULL;
u8 *recalc_tags = NULL;
struct dm_integrity_range range;
struct dm_io_request io_req;
struct dm_io_region io_loc;
sector_t area, offset;
sector_t metadata_block;
unsigned int metadata_offset;
sector_t logical_sector, n_sectors;
__u8 *t;
unsigned int i;
int r;
unsigned int super_counter = 0;
unsigned recalc_sectors = RECALC_SECTORS;
retry:
recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
if (!recalc_buffer) {
oom:
recalc_sectors >>= 1;
if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
goto retry;
DMCRIT("out of memory for recalculate buffer - recalculation disabled");
goto free_ret;
}
recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
if (!recalc_tags) {
vfree(recalc_buffer);
recalc_buffer = NULL;
goto oom;
}
DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
spin_lock_irq(&ic->endio_wait.lock);
next_chunk:
if (unlikely(dm_post_suspending(ic->ti)))
goto unlock_ret;
range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
if (ic->mode == 'B') {
block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
}
goto unlock_ret;
}
get_area_and_offset(ic, range.logical_sector, &area, &offset);
range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
if (!ic->meta_dev)
range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
add_new_range_and_wait(ic, &range);
spin_unlock_irq(&ic->endio_wait.lock);
logical_sector = range.logical_sector;
n_sectors = range.n_sectors;
if (ic->mode == 'B') {
if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
goto advance_and_next;
while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
logical_sector += ic->sectors_per_block;
n_sectors -= ic->sectors_per_block;
cond_resched();
}
while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
n_sectors -= ic->sectors_per_block;
cond_resched();
}
get_area_and_offset(ic, logical_sector, &area, &offset);
}
DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
recalc_write_super(ic);
if (ic->mode == 'B')
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
super_counter = 0;
}
if (unlikely(dm_integrity_failed(ic)))
goto err;
io_req.bi_opf = REQ_OP_READ;
io_req.mem.type = DM_IO_VMA;
io_req.mem.ptr.addr = recalc_buffer;
io_req.notify.fn = NULL;
io_req.client = ic->io;
io_loc.bdev = ic->dev->bdev;
io_loc.sector = get_data_sector(ic, area, offset);
io_loc.count = n_sectors;
r = dm_io(&io_req, 1, &io_loc, NULL);
if (unlikely(r)) {
dm_integrity_io_error(ic, "reading data", r);
goto err;
}
t = recalc_tags;
for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
t += ic->tag_size;
}
metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
if (unlikely(r)) {
dm_integrity_io_error(ic, "writing tags", r);
goto err;
}
if (ic->mode == 'B') {
sector_t start, end;
start = (range.logical_sector >>
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
end = ((range.logical_sector + range.n_sectors) >>
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
}
advance_and_next:
cond_resched();
spin_lock_irq(&ic->endio_wait.lock);
remove_range_unlocked(ic, &range);
ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
goto next_chunk;
err:
remove_range(ic, &range);
goto free_ret;
unlock_ret:
spin_unlock_irq(&ic->endio_wait.lock);
recalc_write_super(ic);
free_ret:
vfree(recalc_buffer);
kvfree(recalc_tags);
}
static void bitmap_block_work(struct work_struct *w)
{
struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
struct dm_integrity_c *ic = bbs->ic;
struct bio *bio;
struct bio_list bio_queue;
struct bio_list waiting;
bio_list_init(&waiting);
spin_lock(&bbs->bio_queue_lock);
bio_queue = bbs->bio_queue;
bio_list_init(&bbs->bio_queue);
spin_unlock(&bbs->bio_queue_lock);
while ((bio = bio_list_pop(&bio_queue))) {
struct dm_integrity_io *dio;
dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
remove_range(ic, &dio->range);
INIT_WORK(&dio->work, integrity_bio_wait);
queue_work(ic->offload_wq, &dio->work);
} else {
block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
dio->range.n_sectors, BITMAP_OP_SET);
bio_list_add(&waiting, bio);
}
}
if (bio_list_empty(&waiting))
return;
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
while ((bio = bio_list_pop(&waiting))) {
struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
dio->range.n_sectors, BITMAP_OP_SET);
remove_range(ic, &dio->range);
INIT_WORK(&dio->work, integrity_bio_wait);
queue_work(ic->offload_wq, &dio->work);
}
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
}
static void bitmap_flush_work(struct work_struct *work)
{
struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
struct dm_integrity_range range;
unsigned long limit;
struct bio *bio;
dm_integrity_flush_buffers(ic, false);
range.logical_sector = 0;
range.n_sectors = ic->provided_data_sectors;
spin_lock_irq(&ic->endio_wait.lock);
add_new_range_and_wait(ic, &range);
spin_unlock_irq(&ic->endio_wait.lock);
dm_integrity_flush_buffers(ic, true);
limit = ic->provided_data_sectors;
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
limit = le64_to_cpu(ic->sb->recalc_sector)
>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
}
/*DEBUG_print("zeroing journal\n");*/
block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
spin_lock_irq(&ic->endio_wait.lock);
remove_range_unlocked(ic, &range);
while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
bio_endio(bio);
spin_unlock_irq(&ic->endio_wait.lock);
spin_lock_irq(&ic->endio_wait.lock);
}
spin_unlock_irq(&ic->endio_wait.lock);
}
static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
unsigned int n_sections, unsigned char commit_seq)
{
unsigned int i, j, n;
if (!n_sections)
return;
for (n = 0; n < n_sections; n++) {
i = start_section + n;
wraparound_section(ic, &i);
for (j = 0; j < ic->journal_section_sectors; j++) {
struct journal_sector *js = access_journal(ic, i, j);
BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
memset(&js->sectors, 0, sizeof(js->sectors));
js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
}
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je = access_journal_entry(ic, i, j);
journal_entry_set_unused(je);
}
}
write_journal(ic, start_section, n_sections);
}
static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
{
unsigned char k;
for (k = 0; k < N_COMMIT_IDS; k++) {
if (dm_integrity_commit_id(ic, i, j, k) == id)
return k;
}
dm_integrity_io_error(ic, "journal commit id", -EIO);
return -EIO;
}
static void replay_journal(struct dm_integrity_c *ic)
{
unsigned int i, j;
bool used_commit_ids[N_COMMIT_IDS];
unsigned int max_commit_id_sections[N_COMMIT_IDS];
unsigned int write_start, write_sections;
unsigned int continue_section;
bool journal_empty;
unsigned char unused, last_used, want_commit_seq;
if (ic->mode == 'R')
return;
if (ic->journal_uptodate)
return;
last_used = 0;
write_start = 0;
if (!ic->just_formatted) {
DEBUG_print("reading journal\n");
rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
if (ic->journal_io)
DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
if (ic->journal_io) {
struct journal_completion crypt_comp;
crypt_comp.ic = ic;
init_completion(&crypt_comp.comp);
crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
wait_for_completion(&crypt_comp.comp);
}
DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
}
if (dm_integrity_failed(ic))
goto clear_journal;
journal_empty = true;
memset(used_commit_ids, 0, sizeof(used_commit_ids));
memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
for (i = 0; i < ic->journal_sections; i++) {
for (j = 0; j < ic->journal_section_sectors; j++) {
int k;
struct journal_sector *js = access_journal(ic, i, j);
k = find_commit_seq(ic, i, j, js->commit_id);
if (k < 0)
goto clear_journal;
used_commit_ids[k] = true;
max_commit_id_sections[k] = i;
}
if (journal_empty) {
for (j = 0; j < ic->journal_section_entries; j++) {
struct journal_entry *je = access_journal_entry(ic, i, j);
if (!journal_entry_is_unused(je)) {
journal_empty = false;
break;
}
}
}
}
if (!used_commit_ids[N_COMMIT_IDS - 1]) {
unused = N_COMMIT_IDS - 1;
while (unused && !used_commit_ids[unused - 1])
unused--;
} else {
for (unused = 0; unused < N_COMMIT_IDS; unused++)
if (!used_commit_ids[unused])
break;
if (unused == N_COMMIT_IDS) {
dm_integrity_io_error(ic, "journal commit ids", -EIO);
goto clear_journal;
}
}
DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
unused, used_commit_ids[0], used_commit_ids[1],
used_commit_ids[2], used_commit_ids[3]);
last_used = prev_commit_seq(unused);
want_commit_seq = prev_commit_seq(last_used);
if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
journal_empty = true;
write_start = max_commit_id_sections[last_used] + 1;
if (unlikely(write_start >= ic->journal_sections))
want_commit_seq = next_commit_seq(want_commit_seq);
wraparound_section(ic, &write_start);
i = write_start;
for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
for (j = 0; j < ic->journal_section_sectors; j++) {
struct journal_sector *js = access_journal(ic, i, j);
if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
/*
* This could be caused by crash during writing.
* We won't replay the inconsistent part of the
* journal.
*/
DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
goto brk;
}
}
i++;
if (unlikely(i >= ic->journal_sections))
want_commit_seq = next_commit_seq(want_commit_seq);
wraparound_section(ic, &i);
}
brk:
if (!journal_empty) {
DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
write_sections, write_start, want_commit_seq);
do_journal_write(ic, write_start, write_sections, true);
}
if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
continue_section = write_start;
ic->commit_seq = want_commit_seq;
DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
} else {
unsigned int s;
unsigned char erase_seq;
clear_journal:
DEBUG_print("clearing journal\n");
erase_seq = prev_commit_seq(prev_commit_seq(last_used));
s = write_start;
init_journal(ic, s, 1, erase_seq);
s++;
wraparound_section(ic, &s);
if (ic->journal_sections >= 2) {
init_journal(ic, s, ic->journal_sections - 2, erase_seq);
s += ic->journal_sections - 2;
wraparound_section(ic, &s);
init_journal(ic, s, 1, erase_seq);
}
continue_section = 0;
ic->commit_seq = next_commit_seq(erase_seq);
}
ic->committed_section = continue_section;
ic->n_committed_sections = 0;
ic->uncommitted_section = continue_section;
ic->n_uncommitted_sections = 0;
ic->free_section = continue_section;
ic->free_section_entry = 0;
ic->free_sectors = ic->journal_entries;
ic->journal_tree_root = RB_ROOT;
for (i = 0; i < ic->journal_entries; i++)
init_journal_node(&ic->journal_tree[i]);
}
static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
{
DEBUG_print("%s\n", __func__);
if (ic->mode == 'B') {
ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
ic->synchronous_mode = 1;
cancel_delayed_work_sync(&ic->bitmap_flush_work);
queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
flush_workqueue(ic->commit_wq);
}
}
static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
{
struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
DEBUG_print("%s\n", __func__);
dm_integrity_enter_synchronous_mode(ic);
return NOTIFY_DONE;
}
static void dm_integrity_postsuspend(struct dm_target *ti)
{
struct dm_integrity_c *ic = ti->private;
int r;
WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
del_timer_sync(&ic->autocommit_timer);
if (ic->recalc_wq)
drain_workqueue(ic->recalc_wq);
if (ic->mode == 'B')
cancel_delayed_work_sync(&ic->bitmap_flush_work);
queue_work(ic->commit_wq, &ic->commit_work);
drain_workqueue(ic->commit_wq);
if (ic->mode == 'J') {
queue_work(ic->writer_wq, &ic->writer_work);
drain_workqueue(ic->writer_wq);
dm_integrity_flush_buffers(ic, true);
if (ic->wrote_to_journal) {
init_journal(ic, ic->free_section,
ic->journal_sections - ic->free_section, ic->commit_seq);
if (ic->free_section) {
init_journal(ic, 0, ic->free_section,
next_commit_seq(ic->commit_seq));
}
}
}
if (ic->mode == 'B') {
dm_integrity_flush_buffers(ic, true);
#if 1
/* set to 0 to test bitmap replay code */
init_journal(ic, 0, ic->journal_sections, 0);
ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
if (unlikely(r))
dm_integrity_io_error(ic, "writing superblock", r);
#endif
}
BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
ic->journal_uptodate = true;
}
static void dm_integrity_resume(struct dm_target *ti)
{
struct dm_integrity_c *ic = ti->private;
__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
int r;
DEBUG_print("resume\n");
ic->wrote_to_journal = false;
if (ic->provided_data_sectors != old_provided_data_sectors) {
if (ic->provided_data_sectors > old_provided_data_sectors &&
ic->mode == 'B' &&
ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
rw_journal_sectors(ic, REQ_OP_READ, 0,
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
}
ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
if (unlikely(r))
dm_integrity_io_error(ic, "writing superblock", r);
}
if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
DEBUG_print("resume dirty_bitmap\n");
rw_journal_sectors(ic, REQ_OP_READ, 0,
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
if (ic->mode == 'B') {
if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
!ic->reset_recalculate_flag) {
block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
BITMAP_OP_TEST_ALL_CLEAR)) {
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
ic->sb->recalc_sector = cpu_to_le64(0);
}
} else {
DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
ic->sb->recalc_sector = cpu_to_le64(0);
}
} else {
if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
ic->reset_recalculate_flag) {
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
ic->sb->recalc_sector = cpu_to_le64(0);
}
init_journal(ic, 0, ic->journal_sections, 0);
replay_journal(ic);
ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
}
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
if (unlikely(r))
dm_integrity_io_error(ic, "writing superblock", r);
} else {
replay_journal(ic);
if (ic->reset_recalculate_flag) {
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
ic->sb->recalc_sector = cpu_to_le64(0);
}
if (ic->mode == 'B') {
ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
if (unlikely(r))
dm_integrity_io_error(ic, "writing superblock", r);
block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
}
rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
}
}
DEBUG_print("testing recalc: %x\n", ic->sb->flags);
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
if (recalc_pos < ic->provided_data_sectors) {
queue_work(ic->recalc_wq, &ic->recalc_work);
} else if (recalc_pos > ic->provided_data_sectors) {
ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
recalc_write_super(ic);
}
}
ic->reboot_notifier.notifier_call = dm_integrity_reboot;
ic->reboot_notifier.next = NULL;
ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
#if 0
/* set to 1 to stress test synchronous mode */
dm_integrity_enter_synchronous_mode(ic);
#endif
}
static void dm_integrity_status(struct dm_target *ti, status_type_t type,
unsigned int status_flags, char *result, unsigned int maxlen)
{
struct dm_integrity_c *ic = ti->private;
unsigned int arg_count;
size_t sz = 0;
switch (type) {
case STATUSTYPE_INFO:
DMEMIT("%llu %llu",
(unsigned long long)atomic64_read(&ic->number_of_mismatches),
ic->provided_data_sectors);
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
else
DMEMIT(" -");
break;
case STATUSTYPE_TABLE: {
__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
watermark_percentage += ic->journal_entries / 2;
do_div(watermark_percentage, ic->journal_entries);
arg_count = 3;
arg_count += !!ic->meta_dev;
arg_count += ic->sectors_per_block != 1;
arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
arg_count += ic->reset_recalculate_flag;
arg_count += ic->discard;
arg_count += ic->mode == 'J';
arg_count += ic->mode == 'J';
arg_count += ic->mode == 'B';
arg_count += ic->mode == 'B';
arg_count += !!ic->internal_hash_alg.alg_string;
arg_count += !!ic->journal_crypt_alg.alg_string;
arg_count += !!ic->journal_mac_alg.alg_string;
arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
arg_count += ic->legacy_recalculate;
DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
ic->tag_size, ic->mode, arg_count);
if (ic->meta_dev)
DMEMIT(" meta_device:%s", ic->meta_dev->name);
if (ic->sectors_per_block != 1)
DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
DMEMIT(" recalculate");
if (ic->reset_recalculate_flag)
DMEMIT(" reset_recalculate");
if (ic->discard)
DMEMIT(" allow_discards");
DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
if (ic->mode == 'J') {
DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
DMEMIT(" commit_time:%u", ic->autocommit_msec);
}
if (ic->mode == 'B') {
DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
}
if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
DMEMIT(" fix_padding");
if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
DMEMIT(" fix_hmac");
if (ic->legacy_recalculate)
DMEMIT(" legacy_recalculate");
#define EMIT_ALG(a, n) \
do { \
if (ic->a.alg_string) { \
DMEMIT(" %s:%s", n, ic->a.alg_string); \
if (ic->a.key_string) \
DMEMIT(":%s", ic->a.key_string);\
} \
} while (0)
EMIT_ALG(internal_hash_alg, "internal_hash");
EMIT_ALG(journal_crypt_alg, "journal_crypt");
EMIT_ALG(journal_mac_alg, "journal_mac");
break;
}
case STATUSTYPE_IMA:
DMEMIT_TARGET_NAME_VERSION(ti->type);
DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
ic->dev->name, ic->start, ic->tag_size, ic->mode);
if (ic->meta_dev)
DMEMIT(",meta_device=%s", ic->meta_dev->name);
if (ic->sectors_per_block != 1)
DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
'y' : 'n');
DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
DMEMIT(",fix_padding=%c",
((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
DMEMIT(",fix_hmac=%c",
((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
DMEMIT(";");
break;
}
}
static int dm_integrity_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn, void *data)
{
struct dm_integrity_c *ic = ti->private;
if (!ic->meta_dev)
return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
else
return fn(ti, ic->dev, 0, ti->len, data);
}
static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
struct dm_integrity_c *ic = ti->private;
if (ic->sectors_per_block > 1) {
limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
limits->dma_alignment = limits->logical_block_size - 1;
}
}
static void calculate_journal_section_size(struct dm_integrity_c *ic)
{
unsigned int sector_space = JOURNAL_SECTOR_DATA;
ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
JOURNAL_ENTRY_ROUNDUP);
if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
sector_space -= JOURNAL_MAC_PER_SECTOR;
ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
}
static int calculate_device_limits(struct dm_integrity_c *ic)
{
__u64 initial_sectors;
calculate_journal_section_size(ic);
initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
return -EINVAL;
ic->initial_sectors = initial_sectors;
if (!ic->meta_dev) {
sector_t last_sector, last_area, last_offset;
/* we have to maintain excessive padding for compatibility with existing volumes */
__u64 metadata_run_padding =
ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
metadata_run_padding) >> SECTOR_SHIFT;
if (!(ic->metadata_run & (ic->metadata_run - 1)))
ic->log2_metadata_run = __ffs(ic->metadata_run);
else
ic->log2_metadata_run = -1;
get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
last_sector = get_data_sector(ic, last_area, last_offset);
if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
return -EINVAL;
} else {
__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
meta_size <<= ic->log2_buffer_sectors;
if (ic->initial_sectors + meta_size < ic->initial_sectors ||
ic->initial_sectors + meta_size > ic->meta_device_sectors)
return -EINVAL;
ic->metadata_run = 1;
ic->log2_metadata_run = 0;
}
return 0;
}
static void get_provided_data_sectors(struct dm_integrity_c *ic)
{
if (!ic->meta_dev) {
int test_bit;
ic->provided_data_sectors = 0;
for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
__u64 prev_data_sectors = ic->provided_data_sectors;
ic->provided_data_sectors |= (sector_t)1 << test_bit;
if (calculate_device_limits(ic))
ic->provided_data_sectors = prev_data_sectors;
}
} else {
ic->provided_data_sectors = ic->data_device_sectors;
ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
}
}
static int initialize_superblock(struct dm_integrity_c *ic,
unsigned int journal_sectors, unsigned int interleave_sectors)
{
unsigned int journal_sections;
int test_bit;
memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
memcpy(ic->sb->magic, SB_MAGIC, 8);
ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
if (ic->journal_mac_alg.alg_string)
ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
calculate_journal_section_size(ic);
journal_sections = journal_sectors / ic->journal_section_sectors;
if (!journal_sections)
journal_sections = 1;
if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
get_random_bytes(ic->sb->salt, SALT_SIZE);
}
if (!ic->meta_dev) {
if (ic->fix_padding)
ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
ic->sb->journal_sections = cpu_to_le32(journal_sections);
if (!interleave_sectors)
interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
get_provided_data_sectors(ic);
if (!ic->provided_data_sectors)
return -EINVAL;
} else {
ic->sb->log2_interleave_sectors = 0;
get_provided_data_sectors(ic);
if (!ic->provided_data_sectors)
return -EINVAL;
try_smaller_buffer:
ic->sb->journal_sections = cpu_to_le32(0);
for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
if (test_journal_sections > journal_sections)
continue;
ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
if (calculate_device_limits(ic))
ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
}
if (!le32_to_cpu(ic->sb->journal_sections)) {
if (ic->log2_buffer_sectors > 3) {
ic->log2_buffer_sectors--;
goto try_smaller_buffer;
}
return -EINVAL;
}
}
ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
sb_set_version(ic);
return 0;
}
static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
{
struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
struct blk_integrity bi;
memset(&bi, 0, sizeof(bi));
bi.profile = &dm_integrity_profile;
bi.tuple_size = ic->tag_size;
bi.tag_size = bi.tuple_size;
bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
blk_integrity_register(disk, &bi);
blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
}
static void dm_integrity_free_page_list(struct page_list *pl)
{
unsigned int i;
if (!pl)
return;
for (i = 0; pl[i].page; i++)
__free_page(pl[i].page);
kvfree(pl);
}
static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
{
struct page_list *pl;
unsigned int i;
pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
if (!pl)
return NULL;
for (i = 0; i < n_pages; i++) {
pl[i].page = alloc_page(GFP_KERNEL);
if (!pl[i].page) {
dm_integrity_free_page_list(pl);
return NULL;
}
if (i)
pl[i - 1].next = &pl[i];
}
pl[i].page = NULL;
pl[i].next = NULL;
return pl;
}
static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
{
unsigned int i;
for (i = 0; i < ic->journal_sections; i++)
kvfree(sl[i]);
kvfree(sl);
}
static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
struct page_list *pl)
{
struct scatterlist **sl;
unsigned int i;
sl = kvmalloc_array(ic->journal_sections,
sizeof(struct scatterlist *),
GFP_KERNEL | __GFP_ZERO);
if (!sl)
return NULL;
for (i = 0; i < ic->journal_sections; i++) {
struct scatterlist *s;
unsigned int start_index, start_offset;
unsigned int end_index, end_offset;
unsigned int n_pages;
unsigned int idx;
page_list_location(ic, i, 0, &start_index, &start_offset);
page_list_location(ic, i, ic->journal_section_sectors - 1,
&end_index, &end_offset);
n_pages = (end_index - start_index + 1);
s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
GFP_KERNEL);
if (!s) {
dm_integrity_free_journal_scatterlist(ic, sl);
return NULL;
}
sg_init_table(s, n_pages);
for (idx = start_index; idx <= end_index; idx++) {
char *va = lowmem_page_address(pl[idx].page);
unsigned int start = 0, end = PAGE_SIZE;
if (idx == start_index)
start = start_offset;
if (idx == end_index)
end = end_offset + (1 << SECTOR_SHIFT);
sg_set_buf(&s[idx - start_index], va + start, end - start);
}
sl[i] = s;
}
return sl;
}
static void free_alg(struct alg_spec *a)
{
kfree_sensitive(a->alg_string);
kfree_sensitive(a->key);
memset(a, 0, sizeof(*a));
}
static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
{
char *k;
free_alg(a);
a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
if (!a->alg_string)
goto nomem;
k = strchr(a->alg_string, ':');
if (k) {
*k = 0;
a->key_string = k + 1;
if (strlen(a->key_string) & 1)
goto inval;
a->key_size = strlen(a->key_string) / 2;
a->key = kmalloc(a->key_size, GFP_KERNEL);
if (!a->key)
goto nomem;
if (hex2bin(a->key, a->key_string, a->key_size))
goto inval;
}
return 0;
inval:
*error = error_inval;
return -EINVAL;
nomem:
*error = "Out of memory for an argument";
return -ENOMEM;
}
static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
char *error_alg, char *error_key)
{
int r;
if (a->alg_string) {
*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
if (IS_ERR(*hash)) {
*error = error_alg;
r = PTR_ERR(*hash);
*hash = NULL;
return r;
}
if (a->key) {
r = crypto_shash_setkey(*hash, a->key, a->key_size);
if (r) {
*error = error_key;
return r;
}
} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
*error = error_key;
return -ENOKEY;
}
}
return 0;
}
static int create_journal(struct dm_integrity_c *ic, char **error)
{
int r = 0;
unsigned int i;
__u64 journal_pages, journal_desc_size, journal_tree_size;
unsigned char *crypt_data = NULL, *crypt_iv = NULL;
struct skcipher_request *req = NULL;
ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
journal_desc_size = journal_pages * sizeof(struct page_list);
if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
*error = "Journal doesn't fit into memory";
r = -ENOMEM;
goto bad;
}
ic->journal_pages = journal_pages;
ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
if (!ic->journal) {
*error = "Could not allocate memory for journal";
r = -ENOMEM;
goto bad;
}
if (ic->journal_crypt_alg.alg_string) {
unsigned int ivsize, blocksize;
struct journal_completion comp;
comp.ic = ic;
ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
if (IS_ERR(ic->journal_crypt)) {
*error = "Invalid journal cipher";
r = PTR_ERR(ic->journal_crypt);
ic->journal_crypt = NULL;
goto bad;
}
ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
if (ic->journal_crypt_alg.key) {
r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
ic->journal_crypt_alg.key_size);
if (r) {
*error = "Error setting encryption key";
goto bad;
}
}
DEBUG_print("cipher %s, block size %u iv size %u\n",
ic->journal_crypt_alg.alg_string, blocksize, ivsize);
ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
if (!ic->journal_io) {
*error = "Could not allocate memory for journal io";
r = -ENOMEM;
goto bad;
}
if (blocksize == 1) {
struct scatterlist *sg;
req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
if (!req) {
*error = "Could not allocate crypt request";
r = -ENOMEM;
goto bad;
}
crypt_iv = kzalloc(ivsize, GFP_KERNEL);
if (!crypt_iv) {
*error = "Could not allocate iv";
r = -ENOMEM;
goto bad;
}
ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
if (!ic->journal_xor) {
*error = "Could not allocate memory for journal xor";
r = -ENOMEM;
goto bad;
}
sg = kvmalloc_array(ic->journal_pages + 1,
sizeof(struct scatterlist),
GFP_KERNEL);
if (!sg) {
*error = "Unable to allocate sg list";
r = -ENOMEM;
goto bad;
}
sg_init_table(sg, ic->journal_pages + 1);
for (i = 0; i < ic->journal_pages; i++) {
char *va = lowmem_page_address(ic->journal_xor[i].page);
clear_page(va);
sg_set_buf(&sg[i], va, PAGE_SIZE);
}
sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
skcipher_request_set_crypt(req, sg, sg,
PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
init_completion(&comp.comp);
comp.in_flight = (atomic_t)ATOMIC_INIT(1);
if (do_crypt(true, req, &comp))
wait_for_completion(&comp.comp);
kvfree(sg);
r = dm_integrity_failed(ic);
if (r) {
*error = "Unable to encrypt journal";
goto bad;
}
DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
crypto_free_skcipher(ic->journal_crypt);
ic->journal_crypt = NULL;
} else {
unsigned int crypt_len = roundup(ivsize, blocksize);
req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
if (!req) {
*error = "Could not allocate crypt request";
r = -ENOMEM;
goto bad;
}
crypt_iv = kmalloc(ivsize, GFP_KERNEL);
if (!crypt_iv) {
*error = "Could not allocate iv";
r = -ENOMEM;
goto bad;
}
crypt_data = kmalloc(crypt_len, GFP_KERNEL);
if (!crypt_data) {
*error = "Unable to allocate crypt data";
r = -ENOMEM;
goto bad;
}
ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
if (!ic->journal_scatterlist) {
*error = "Unable to allocate sg list";
r = -ENOMEM;
goto bad;
}
ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
if (!ic->journal_io_scatterlist) {
*error = "Unable to allocate sg list";
r = -ENOMEM;
goto bad;
}
ic->sk_requests = kvmalloc_array(ic->journal_sections,
sizeof(struct skcipher_request *),
GFP_KERNEL | __GFP_ZERO);
if (!ic->sk_requests) {
*error = "Unable to allocate sk requests";
r = -ENOMEM;
goto bad;
}
for (i = 0; i < ic->journal_sections; i++) {
struct scatterlist sg;
struct skcipher_request *section_req;
__le32 section_le = cpu_to_le32(i);
memset(crypt_iv, 0x00, ivsize);
memset(crypt_data, 0x00, crypt_len);
memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
sg_init_one(&sg, crypt_data, crypt_len);
skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
init_completion(&comp.comp);
comp.in_flight = (atomic_t)ATOMIC_INIT(1);
if (do_crypt(true, req, &comp))
wait_for_completion(&comp.comp);
r = dm_integrity_failed(ic);
if (r) {
*error = "Unable to generate iv";
goto bad;
}
section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
if (!section_req) {
*error = "Unable to allocate crypt request";
r = -ENOMEM;
goto bad;
}
section_req->iv = kmalloc_array(ivsize, 2,
GFP_KERNEL);
if (!section_req->iv) {
skcipher_request_free(section_req);
*error = "Unable to allocate iv";
r = -ENOMEM;
goto bad;
}
memcpy(section_req->iv + ivsize, crypt_data, ivsize);
section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
ic->sk_requests[i] = section_req;
DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
}
}
}
for (i = 0; i < N_COMMIT_IDS; i++) {
unsigned int j;
retest_commit_id:
for (j = 0; j < i; j++) {
if (ic->commit_ids[j] == ic->commit_ids[i]) {
ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
goto retest_commit_id;
}
}
DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
}
journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
if (journal_tree_size > ULONG_MAX) {
*error = "Journal doesn't fit into memory";
r = -ENOMEM;
goto bad;
}
ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
if (!ic->journal_tree) {
*error = "Could not allocate memory for journal tree";
r = -ENOMEM;
}
bad:
kfree(crypt_data);
kfree(crypt_iv);
skcipher_request_free(req);
return r;
}
/*
* Construct a integrity mapping
*
* Arguments:
* device
* offset from the start of the device
* tag size
* D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
* number of optional arguments
* optional arguments:
* journal_sectors
* interleave_sectors
* buffer_sectors
* journal_watermark
* commit_time
* meta_device
* block_size
* sectors_per_bit
* bitmap_flush_interval
* internal_hash
* journal_crypt
* journal_mac
* recalculate
*/
static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{
struct dm_integrity_c *ic;
char dummy;
int r;
unsigned int extra_args;
struct dm_arg_set as;
static const struct dm_arg _args[] = {
{0, 18, "Invalid number of feature args"},
};
unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
bool should_write_sb;
__u64 threshold;
unsigned long long start;
__s8 log2_sectors_per_bitmap_bit = -1;
__s8 log2_blocks_per_bitmap_bit;
__u64 bits_in_journal;
__u64 n_bitmap_bits;
#define DIRECT_ARGUMENTS 4
if (argc <= DIRECT_ARGUMENTS) {
ti->error = "Invalid argument count";
return -EINVAL;
}
ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
if (!ic) {
ti->error = "Cannot allocate integrity context";
return -ENOMEM;
}
ti->private = ic;
ti->per_io_data_size = sizeof(struct dm_integrity_io);
ic->ti = ti;
ic->in_progress = RB_ROOT;
INIT_LIST_HEAD(&ic->wait_list);
init_waitqueue_head(&ic->endio_wait);
bio_list_init(&ic->flush_bio_list);
init_waitqueue_head(&ic->copy_to_journal_wait);
init_completion(&ic->crypto_backoff);
atomic64_set(&ic->number_of_mismatches, 0);
ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
if (r) {
ti->error = "Device lookup failed";
goto bad;
}
if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
ti->error = "Invalid starting offset";
r = -EINVAL;
goto bad;
}
ic->start = start;
if (strcmp(argv[2], "-")) {
if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
ti->error = "Invalid tag size";
r = -EINVAL;
goto bad;
}
}
if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
!strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
ic->mode = argv[3][0];
} else {
ti->error = "Invalid mode (expecting J, B, D, R)";
r = -EINVAL;
goto bad;
}
journal_sectors = 0;
interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
buffer_sectors = DEFAULT_BUFFER_SECTORS;
journal_watermark = DEFAULT_JOURNAL_WATERMARK;
sync_msec = DEFAULT_SYNC_MSEC;
ic->sectors_per_block = 1;
as.argc = argc - DIRECT_ARGUMENTS;
as.argv = argv + DIRECT_ARGUMENTS;
r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
if (r)
goto bad;
while (extra_args--) {
const char *opt_string;
unsigned int val;
unsigned long long llval;
opt_string = dm_shift_arg(&as);
if (!opt_string) {
r = -EINVAL;
ti->error = "Not enough feature arguments";
goto bad;
}
if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
journal_sectors = val ? val : 1;
else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
interleave_sectors = val;
else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
buffer_sectors = val;
else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
journal_watermark = val;
else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
sync_msec = val;
else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
if (ic->meta_dev) {
dm_put_device(ti, ic->meta_dev);
ic->meta_dev = NULL;
}
r = dm_get_device(ti, strchr(opt_string, ':') + 1,
dm_table_get_mode(ti->table), &ic->meta_dev);
if (r) {
ti->error = "Device lookup failed";
goto bad;
}
} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
if (val < 1 << SECTOR_SHIFT ||
val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
(val & (val - 1))) {
r = -EINVAL;
ti->error = "Invalid block_size argument";
goto bad;
}
ic->sectors_per_block = val >> SECTOR_SHIFT;
} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
r = -EINVAL;
ti->error = "Invalid bitmap_flush_interval argument";
goto bad;
}
ic->bitmap_flush_interval = msecs_to_jiffies(val);
} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
"Invalid internal_hash argument");
if (r)
goto bad;
} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
"Invalid journal_crypt argument");
if (r)
goto bad;
} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
"Invalid journal_mac argument");
if (r)
goto bad;
} else if (!strcmp(opt_string, "recalculate")) {
ic->recalculate_flag = true;
} else if (!strcmp(opt_string, "reset_recalculate")) {
ic->recalculate_flag = true;
ic->reset_recalculate_flag = true;
} else if (!strcmp(opt_string, "allow_discards")) {
ic->discard = true;
} else if (!strcmp(opt_string, "fix_padding")) {
ic->fix_padding = true;
} else if (!strcmp(opt_string, "fix_hmac")) {
ic->fix_hmac = true;
} else if (!strcmp(opt_string, "legacy_recalculate")) {
ic->legacy_recalculate = true;
} else {
r = -EINVAL;
ti->error = "Invalid argument";
goto bad;
}
}
ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
if (!ic->meta_dev)
ic->meta_device_sectors = ic->data_device_sectors;
else
ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
if (!journal_sectors) {
journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
}
if (!buffer_sectors)
buffer_sectors = 1;
ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
"Invalid internal hash", "Error setting internal hash key");
if (r)
goto bad;
r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
"Invalid journal mac", "Error setting journal mac key");
if (r)
goto bad;
if (!ic->tag_size) {
if (!ic->internal_hash) {
ti->error = "Unknown tag size";
r = -EINVAL;
goto bad;
}
ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
}
if (ic->tag_size > MAX_TAG_SIZE) {
ti->error = "Too big tag size";
r = -EINVAL;
goto bad;
}
if (!(ic->tag_size & (ic->tag_size - 1)))
ic->log2_tag_size = __ffs(ic->tag_size);
else
ic->log2_tag_size = -1;
if (ic->mode == 'B' && !ic->internal_hash) {
r = -EINVAL;
ti->error = "Bitmap mode can be only used with internal hash";
goto bad;
}
if (ic->discard && !ic->internal_hash) {
r = -EINVAL;
ti->error = "Discard can be only used with internal hash";
goto bad;
}
ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
ic->autocommit_msec = sync_msec;
timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
ic->io = dm_io_client_create();
if (IS_ERR(ic->io)) {
r = PTR_ERR(ic->io);
ic->io = NULL;
ti->error = "Cannot allocate dm io";
goto bad;
}
r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
if (r) {
ti->error = "Cannot allocate mempool";
goto bad;
}
ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
if (!ic->metadata_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
/*
* If this workqueue weren't ordered, it would cause bio reordering
* and reduced performance.
*/
ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
if (!ic->wait_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
METADATA_WORKQUEUE_MAX_ACTIVE);
if (!ic->offload_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
if (!ic->commit_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
INIT_WORK(&ic->commit_work, integrity_commit);
if (ic->mode == 'J' || ic->mode == 'B') {
ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
if (!ic->writer_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
INIT_WORK(&ic->writer_work, integrity_writer);
}
ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
if (!ic->sb) {
r = -ENOMEM;
ti->error = "Cannot allocate superblock area";
goto bad;
}
r = sync_rw_sb(ic, REQ_OP_READ);
if (r) {
ti->error = "Error reading superblock";
goto bad;
}
should_write_sb = false;
if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
if (ic->mode != 'R') {
if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
r = -EINVAL;
ti->error = "The device is not initialized";
goto bad;
}
}
r = initialize_superblock(ic, journal_sectors, interleave_sectors);
if (r) {
ti->error = "Could not initialize superblock";
goto bad;
}
if (ic->mode != 'R')
should_write_sb = true;
}
if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
r = -EINVAL;
ti->error = "Unknown version";
goto bad;
}
if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
r = -EINVAL;
ti->error = "Tag size doesn't match the information in superblock";
goto bad;
}
if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
r = -EINVAL;
ti->error = "Block size doesn't match the information in superblock";
goto bad;
}
if (!le32_to_cpu(ic->sb->journal_sections)) {
r = -EINVAL;
ti->error = "Corrupted superblock, journal_sections is 0";
goto bad;
}
/* make sure that ti->max_io_len doesn't overflow */
if (!ic->meta_dev) {
if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
r = -EINVAL;
ti->error = "Invalid interleave_sectors in the superblock";
goto bad;
}
} else {
if (ic->sb->log2_interleave_sectors) {
r = -EINVAL;
ti->error = "Invalid interleave_sectors in the superblock";
goto bad;
}
}
if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
r = -EINVAL;
ti->error = "Journal mac mismatch";
goto bad;
}
get_provided_data_sectors(ic);
if (!ic->provided_data_sectors) {
r = -EINVAL;
ti->error = "The device is too small";
goto bad;
}
try_smaller_buffer:
r = calculate_device_limits(ic);
if (r) {
if (ic->meta_dev) {
if (ic->log2_buffer_sectors > 3) {
ic->log2_buffer_sectors--;
goto try_smaller_buffer;
}
}
ti->error = "The device is too small";
goto bad;
}
if (log2_sectors_per_bitmap_bit < 0)
log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
if (bits_in_journal > UINT_MAX)
bits_in_journal = UINT_MAX;
while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
log2_sectors_per_bitmap_bit++;
log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
if (should_write_sb)
ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
if (!ic->meta_dev)
ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
if (ti->len > ic->provided_data_sectors) {
r = -EINVAL;
ti->error = "Not enough provided sectors for requested mapping size";
goto bad;
}
threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
threshold += 50;
do_div(threshold, 100);
ic->free_sectors_threshold = threshold;
DEBUG_print("initialized:\n");
DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
DEBUG_print(" journal_entries %u\n", ic->journal_entries);
DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
ic->sb->recalc_sector = cpu_to_le64(0);
}
if (ic->internal_hash) {
ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
if (!ic->recalc_wq) {
ti->error = "Cannot allocate workqueue";
r = -ENOMEM;
goto bad;
}
INIT_WORK(&ic->recalc_work, integrity_recalc);
} else {
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
ti->error = "Recalculate can only be specified with internal_hash";
r = -EINVAL;
goto bad;
}
}
if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
dm_integrity_disable_recalculate(ic)) {
ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
r = -EOPNOTSUPP;
goto bad;
}
ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
if (IS_ERR(ic->bufio)) {
r = PTR_ERR(ic->bufio);
ti->error = "Cannot initialize dm-bufio";
ic->bufio = NULL;
goto bad;
}
dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
if (ic->mode != 'R') {
r = create_journal(ic, &ti->error);
if (r)
goto bad;
}
if (ic->mode == 'B') {
unsigned int i;
unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
if (!ic->recalc_bitmap) {
r = -ENOMEM;
goto bad;
}
ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
if (!ic->may_write_bitmap) {
r = -ENOMEM;
goto bad;
}
ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
if (!ic->bbs) {
r = -ENOMEM;
goto bad;
}
INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
for (i = 0; i < ic->n_bitmap_blocks; i++) {
struct bitmap_block_status *bbs = &ic->bbs[i];
unsigned int sector, pl_index, pl_offset;
INIT_WORK(&bbs->work, bitmap_block_work);
bbs->ic = ic;
bbs->idx = i;
bio_list_init(&bbs->bio_queue);
spin_lock_init(&bbs->bio_queue_lock);
sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
}
}
if (should_write_sb) {
init_journal(ic, 0, ic->journal_sections, 0);
r = dm_integrity_failed(ic);
if (unlikely(r)) {
ti->error = "Error initializing journal";
goto bad;
}
r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
if (r) {
ti->error = "Error initializing superblock";
goto bad;
}
ic->just_formatted = true;
}
if (!ic->meta_dev) {
r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
if (r)
goto bad;
}
if (ic->mode == 'B') {
unsigned int max_io_len;
max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
if (!max_io_len)
max_io_len = 1U << 31;
DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
if (!ti->max_io_len || ti->max_io_len > max_io_len) {
r = dm_set_target_max_io_len(ti, max_io_len);
if (r)
goto bad;
}
}
if (!ic->internal_hash)
dm_integrity_set(ti, ic);
ti->num_flush_bios = 1;
ti->flush_supported = true;
if (ic->discard)
ti->num_discard_bios = 1;
dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
return 0;
bad:
dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
dm_integrity_dtr(ti);
return r;
}
static void dm_integrity_dtr(struct dm_target *ti)
{
struct dm_integrity_c *ic = ti->private;
BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
BUG_ON(!list_empty(&ic->wait_list));
if (ic->mode == 'B')
cancel_delayed_work_sync(&ic->bitmap_flush_work);
if (ic->metadata_wq)
destroy_workqueue(ic->metadata_wq);
if (ic->wait_wq)
destroy_workqueue(ic->wait_wq);
if (ic->offload_wq)
destroy_workqueue(ic->offload_wq);
if (ic->commit_wq)
destroy_workqueue(ic->commit_wq);
if (ic->writer_wq)
destroy_workqueue(ic->writer_wq);
if (ic->recalc_wq)
destroy_workqueue(ic->recalc_wq);
kvfree(ic->bbs);
if (ic->bufio)
dm_bufio_client_destroy(ic->bufio);
mempool_exit(&ic->journal_io_mempool);
if (ic->io)
dm_io_client_destroy(ic->io);
if (ic->dev)
dm_put_device(ti, ic->dev);
if (ic->meta_dev)
dm_put_device(ti, ic->meta_dev);
dm_integrity_free_page_list(ic->journal);
dm_integrity_free_page_list(ic->journal_io);
dm_integrity_free_page_list(ic->journal_xor);
dm_integrity_free_page_list(ic->recalc_bitmap);
dm_integrity_free_page_list(ic->may_write_bitmap);
if (ic->journal_scatterlist)
dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
if (ic->journal_io_scatterlist)
dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
if (ic->sk_requests) {
unsigned int i;
for (i = 0; i < ic->journal_sections; i++) {
struct skcipher_request *req;
req = ic->sk_requests[i];
if (req) {
kfree_sensitive(req->iv);
skcipher_request_free(req);
}
}
kvfree(ic->sk_requests);
}
kvfree(ic->journal_tree);
if (ic->sb)
free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
if (ic->internal_hash)
crypto_free_shash(ic->internal_hash);
free_alg(&ic->internal_hash_alg);
if (ic->journal_crypt)
crypto_free_skcipher(ic->journal_crypt);
free_alg(&ic->journal_crypt_alg);
if (ic->journal_mac)
crypto_free_shash(ic->journal_mac);
free_alg(&ic->journal_mac_alg);
kfree(ic);
dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
}
static struct target_type integrity_target = {
.name = "integrity",
.version = {1, 10, 0},
.module = THIS_MODULE,
.features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
.ctr = dm_integrity_ctr,
.dtr = dm_integrity_dtr,
.map = dm_integrity_map,
.postsuspend = dm_integrity_postsuspend,
.resume = dm_integrity_resume,
.status = dm_integrity_status,
.iterate_devices = dm_integrity_iterate_devices,
.io_hints = dm_integrity_io_hints,
};
static int __init dm_integrity_init(void)
{
int r;
journal_io_cache = kmem_cache_create("integrity_journal_io",
sizeof(struct journal_io), 0, 0, NULL);
if (!journal_io_cache) {
DMERR("can't allocate journal io cache");
return -ENOMEM;
}
r = dm_register_target(&integrity_target);
if (r < 0) {
kmem_cache_destroy(journal_io_cache);
return r;
}
return 0;
}
static void __exit dm_integrity_exit(void)
{
dm_unregister_target(&integrity_target);
kmem_cache_destroy(journal_io_cache);
}
module_init(dm_integrity_init);
module_exit(dm_integrity_exit);
MODULE_AUTHOR("Milan Broz");
MODULE_AUTHOR("Mikulas Patocka");
MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
MODULE_LICENSE("GPL");