| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * fs/libfs.c |
| * Library for filesystems writers. |
| */ |
| |
| #include <linux/blkdev.h> |
| #include <linux/export.h> |
| #include <linux/pagemap.h> |
| #include <linux/slab.h> |
| #include <linux/cred.h> |
| #include <linux/mount.h> |
| #include <linux/vfs.h> |
| #include <linux/quotaops.h> |
| #include <linux/mutex.h> |
| #include <linux/namei.h> |
| #include <linux/exportfs.h> |
| #include <linux/iversion.h> |
| #include <linux/writeback.h> |
| #include <linux/buffer_head.h> /* sync_mapping_buffers */ |
| #include <linux/fs_context.h> |
| #include <linux/pseudo_fs.h> |
| #include <linux/fsnotify.h> |
| #include <linux/unicode.h> |
| #include <linux/fscrypt.h> |
| |
| #include <linux/uaccess.h> |
| |
| #include "internal.h" |
| |
| int simple_getattr(struct mnt_idmap *idmap, const struct path *path, |
| struct kstat *stat, u32 request_mask, |
| unsigned int query_flags) |
| { |
| struct inode *inode = d_inode(path->dentry); |
| generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); |
| stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_getattr); |
| |
| int simple_statfs(struct dentry *dentry, struct kstatfs *buf) |
| { |
| buf->f_type = dentry->d_sb->s_magic; |
| buf->f_bsize = PAGE_SIZE; |
| buf->f_namelen = NAME_MAX; |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_statfs); |
| |
| /* |
| * Retaining negative dentries for an in-memory filesystem just wastes |
| * memory and lookup time: arrange for them to be deleted immediately. |
| */ |
| int always_delete_dentry(const struct dentry *dentry) |
| { |
| return 1; |
| } |
| EXPORT_SYMBOL(always_delete_dentry); |
| |
| const struct dentry_operations simple_dentry_operations = { |
| .d_delete = always_delete_dentry, |
| }; |
| EXPORT_SYMBOL(simple_dentry_operations); |
| |
| /* |
| * Lookup the data. This is trivial - if the dentry didn't already |
| * exist, we know it is negative. Set d_op to delete negative dentries. |
| */ |
| struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) |
| { |
| if (dentry->d_name.len > NAME_MAX) |
| return ERR_PTR(-ENAMETOOLONG); |
| if (!dentry->d_sb->s_d_op) |
| d_set_d_op(dentry, &simple_dentry_operations); |
| d_add(dentry, NULL); |
| return NULL; |
| } |
| EXPORT_SYMBOL(simple_lookup); |
| |
| int dcache_dir_open(struct inode *inode, struct file *file) |
| { |
| file->private_data = d_alloc_cursor(file->f_path.dentry); |
| |
| return file->private_data ? 0 : -ENOMEM; |
| } |
| EXPORT_SYMBOL(dcache_dir_open); |
| |
| int dcache_dir_close(struct inode *inode, struct file *file) |
| { |
| dput(file->private_data); |
| return 0; |
| } |
| EXPORT_SYMBOL(dcache_dir_close); |
| |
| /* parent is locked at least shared */ |
| /* |
| * Returns an element of siblings' list. |
| * We are looking for <count>th positive after <p>; if |
| * found, dentry is grabbed and returned to caller. |
| * If no such element exists, NULL is returned. |
| */ |
| static struct dentry *scan_positives(struct dentry *cursor, |
| struct list_head *p, |
| loff_t count, |
| struct dentry *last) |
| { |
| struct dentry *dentry = cursor->d_parent, *found = NULL; |
| |
| spin_lock(&dentry->d_lock); |
| while ((p = p->next) != &dentry->d_subdirs) { |
| struct dentry *d = list_entry(p, struct dentry, d_child); |
| // we must at least skip cursors, to avoid livelocks |
| if (d->d_flags & DCACHE_DENTRY_CURSOR) |
| continue; |
| if (simple_positive(d) && !--count) { |
| spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); |
| if (simple_positive(d)) |
| found = dget_dlock(d); |
| spin_unlock(&d->d_lock); |
| if (likely(found)) |
| break; |
| count = 1; |
| } |
| if (need_resched()) { |
| list_move(&cursor->d_child, p); |
| p = &cursor->d_child; |
| spin_unlock(&dentry->d_lock); |
| cond_resched(); |
| spin_lock(&dentry->d_lock); |
| } |
| } |
| spin_unlock(&dentry->d_lock); |
| dput(last); |
| return found; |
| } |
| |
| loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) |
| { |
| struct dentry *dentry = file->f_path.dentry; |
| switch (whence) { |
| case 1: |
| offset += file->f_pos; |
| fallthrough; |
| case 0: |
| if (offset >= 0) |
| break; |
| fallthrough; |
| default: |
| return -EINVAL; |
| } |
| if (offset != file->f_pos) { |
| struct dentry *cursor = file->private_data; |
| struct dentry *to = NULL; |
| |
| inode_lock_shared(dentry->d_inode); |
| |
| if (offset > 2) |
| to = scan_positives(cursor, &dentry->d_subdirs, |
| offset - 2, NULL); |
| spin_lock(&dentry->d_lock); |
| if (to) |
| list_move(&cursor->d_child, &to->d_child); |
| else |
| list_del_init(&cursor->d_child); |
| spin_unlock(&dentry->d_lock); |
| dput(to); |
| |
| file->f_pos = offset; |
| |
| inode_unlock_shared(dentry->d_inode); |
| } |
| return offset; |
| } |
| EXPORT_SYMBOL(dcache_dir_lseek); |
| |
| /* |
| * Directory is locked and all positive dentries in it are safe, since |
| * for ramfs-type trees they can't go away without unlink() or rmdir(), |
| * both impossible due to the lock on directory. |
| */ |
| |
| int dcache_readdir(struct file *file, struct dir_context *ctx) |
| { |
| struct dentry *dentry = file->f_path.dentry; |
| struct dentry *cursor = file->private_data; |
| struct list_head *anchor = &dentry->d_subdirs; |
| struct dentry *next = NULL; |
| struct list_head *p; |
| |
| if (!dir_emit_dots(file, ctx)) |
| return 0; |
| |
| if (ctx->pos == 2) |
| p = anchor; |
| else if (!list_empty(&cursor->d_child)) |
| p = &cursor->d_child; |
| else |
| return 0; |
| |
| while ((next = scan_positives(cursor, p, 1, next)) != NULL) { |
| if (!dir_emit(ctx, next->d_name.name, next->d_name.len, |
| d_inode(next)->i_ino, |
| fs_umode_to_dtype(d_inode(next)->i_mode))) |
| break; |
| ctx->pos++; |
| p = &next->d_child; |
| } |
| spin_lock(&dentry->d_lock); |
| if (next) |
| list_move_tail(&cursor->d_child, &next->d_child); |
| else |
| list_del_init(&cursor->d_child); |
| spin_unlock(&dentry->d_lock); |
| dput(next); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(dcache_readdir); |
| |
| ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) |
| { |
| return -EISDIR; |
| } |
| EXPORT_SYMBOL(generic_read_dir); |
| |
| const struct file_operations simple_dir_operations = { |
| .open = dcache_dir_open, |
| .release = dcache_dir_close, |
| .llseek = dcache_dir_lseek, |
| .read = generic_read_dir, |
| .iterate_shared = dcache_readdir, |
| .fsync = noop_fsync, |
| }; |
| EXPORT_SYMBOL(simple_dir_operations); |
| |
| const struct inode_operations simple_dir_inode_operations = { |
| .lookup = simple_lookup, |
| }; |
| EXPORT_SYMBOL(simple_dir_inode_operations); |
| |
| static void offset_set(struct dentry *dentry, u32 offset) |
| { |
| dentry->d_fsdata = (void *)((uintptr_t)(offset)); |
| } |
| |
| static u32 dentry2offset(struct dentry *dentry) |
| { |
| return (u32)((uintptr_t)(dentry->d_fsdata)); |
| } |
| |
| static struct lock_class_key simple_offset_xa_lock; |
| |
| /** |
| * simple_offset_init - initialize an offset_ctx |
| * @octx: directory offset map to be initialized |
| * |
| */ |
| void simple_offset_init(struct offset_ctx *octx) |
| { |
| xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1); |
| lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock); |
| |
| /* 0 is '.', 1 is '..', so always start with offset 2 */ |
| octx->next_offset = 2; |
| } |
| |
| /** |
| * simple_offset_add - Add an entry to a directory's offset map |
| * @octx: directory offset ctx to be updated |
| * @dentry: new dentry being added |
| * |
| * Returns zero on success. @so_ctx and the dentry offset are updated. |
| * Otherwise, a negative errno value is returned. |
| */ |
| int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) |
| { |
| static const struct xa_limit limit = XA_LIMIT(2, U32_MAX); |
| u32 offset; |
| int ret; |
| |
| if (dentry2offset(dentry) != 0) |
| return -EBUSY; |
| |
| ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit, |
| &octx->next_offset, GFP_KERNEL); |
| if (ret < 0) |
| return ret; |
| |
| offset_set(dentry, offset); |
| return 0; |
| } |
| |
| /** |
| * simple_offset_remove - Remove an entry to a directory's offset map |
| * @octx: directory offset ctx to be updated |
| * @dentry: dentry being removed |
| * |
| */ |
| void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) |
| { |
| u32 offset; |
| |
| offset = dentry2offset(dentry); |
| if (offset == 0) |
| return; |
| |
| xa_erase(&octx->xa, offset); |
| offset_set(dentry, 0); |
| } |
| |
| /** |
| * simple_offset_rename_exchange - exchange rename with directory offsets |
| * @old_dir: parent of dentry being moved |
| * @old_dentry: dentry being moved |
| * @new_dir: destination parent |
| * @new_dentry: destination dentry |
| * |
| * Returns zero on success. Otherwise a negative errno is returned and the |
| * rename is rolled back. |
| */ |
| int simple_offset_rename_exchange(struct inode *old_dir, |
| struct dentry *old_dentry, |
| struct inode *new_dir, |
| struct dentry *new_dentry) |
| { |
| struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); |
| struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); |
| u32 old_index = dentry2offset(old_dentry); |
| u32 new_index = dentry2offset(new_dentry); |
| int ret; |
| |
| simple_offset_remove(old_ctx, old_dentry); |
| simple_offset_remove(new_ctx, new_dentry); |
| |
| ret = simple_offset_add(new_ctx, old_dentry); |
| if (ret) |
| goto out_restore; |
| |
| ret = simple_offset_add(old_ctx, new_dentry); |
| if (ret) { |
| simple_offset_remove(new_ctx, old_dentry); |
| goto out_restore; |
| } |
| |
| ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); |
| if (ret) { |
| simple_offset_remove(new_ctx, old_dentry); |
| simple_offset_remove(old_ctx, new_dentry); |
| goto out_restore; |
| } |
| return 0; |
| |
| out_restore: |
| offset_set(old_dentry, old_index); |
| xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL); |
| offset_set(new_dentry, new_index); |
| xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL); |
| return ret; |
| } |
| |
| /** |
| * simple_offset_destroy - Release offset map |
| * @octx: directory offset ctx that is about to be destroyed |
| * |
| * During fs teardown (eg. umount), a directory's offset map might still |
| * contain entries. xa_destroy() cleans out anything that remains. |
| */ |
| void simple_offset_destroy(struct offset_ctx *octx) |
| { |
| xa_destroy(&octx->xa); |
| } |
| |
| /** |
| * offset_dir_llseek - Advance the read position of a directory descriptor |
| * @file: an open directory whose position is to be updated |
| * @offset: a byte offset |
| * @whence: enumerator describing the starting position for this update |
| * |
| * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. |
| * |
| * Returns the updated read position if successful; otherwise a |
| * negative errno is returned and the read position remains unchanged. |
| */ |
| static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) |
| { |
| switch (whence) { |
| case SEEK_CUR: |
| offset += file->f_pos; |
| fallthrough; |
| case SEEK_SET: |
| if (offset >= 0) |
| break; |
| fallthrough; |
| default: |
| return -EINVAL; |
| } |
| |
| return vfs_setpos(file, offset, U32_MAX); |
| } |
| |
| static struct dentry *offset_find_next(struct xa_state *xas) |
| { |
| struct dentry *child, *found = NULL; |
| |
| rcu_read_lock(); |
| child = xas_next_entry(xas, U32_MAX); |
| if (!child) |
| goto out; |
| spin_lock(&child->d_lock); |
| if (simple_positive(child)) |
| found = dget_dlock(child); |
| spin_unlock(&child->d_lock); |
| out: |
| rcu_read_unlock(); |
| return found; |
| } |
| |
| static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) |
| { |
| u32 offset = dentry2offset(dentry); |
| struct inode *inode = d_inode(dentry); |
| |
| return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, |
| inode->i_ino, fs_umode_to_dtype(inode->i_mode)); |
| } |
| |
| static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx) |
| { |
| struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode); |
| XA_STATE(xas, &so_ctx->xa, ctx->pos); |
| struct dentry *dentry; |
| |
| while (true) { |
| dentry = offset_find_next(&xas); |
| if (!dentry) |
| break; |
| |
| if (!offset_dir_emit(ctx, dentry)) { |
| dput(dentry); |
| break; |
| } |
| |
| dput(dentry); |
| ctx->pos = xas.xa_index + 1; |
| } |
| } |
| |
| /** |
| * offset_readdir - Emit entries starting at offset @ctx->pos |
| * @file: an open directory to iterate over |
| * @ctx: directory iteration context |
| * |
| * Caller must hold @file's i_rwsem to prevent insertion or removal of |
| * entries during this call. |
| * |
| * On entry, @ctx->pos contains an offset that represents the first entry |
| * to be read from the directory. |
| * |
| * The operation continues until there are no more entries to read, or |
| * until the ctx->actor indicates there is no more space in the caller's |
| * output buffer. |
| * |
| * On return, @ctx->pos contains an offset that will read the next entry |
| * in this directory when offset_readdir() is called again with @ctx. |
| * |
| * Return values: |
| * %0 - Complete |
| */ |
| static int offset_readdir(struct file *file, struct dir_context *ctx) |
| { |
| struct dentry *dir = file->f_path.dentry; |
| |
| lockdep_assert_held(&d_inode(dir)->i_rwsem); |
| |
| if (!dir_emit_dots(file, ctx)) |
| return 0; |
| |
| offset_iterate_dir(d_inode(dir), ctx); |
| return 0; |
| } |
| |
| const struct file_operations simple_offset_dir_operations = { |
| .llseek = offset_dir_llseek, |
| .iterate_shared = offset_readdir, |
| .read = generic_read_dir, |
| .fsync = noop_fsync, |
| }; |
| |
| static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) |
| { |
| struct dentry *child = NULL; |
| struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; |
| |
| spin_lock(&parent->d_lock); |
| while ((p = p->next) != &parent->d_subdirs) { |
| struct dentry *d = container_of(p, struct dentry, d_child); |
| if (simple_positive(d)) { |
| spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); |
| if (simple_positive(d)) |
| child = dget_dlock(d); |
| spin_unlock(&d->d_lock); |
| if (likely(child)) |
| break; |
| } |
| } |
| spin_unlock(&parent->d_lock); |
| dput(prev); |
| return child; |
| } |
| |
| void simple_recursive_removal(struct dentry *dentry, |
| void (*callback)(struct dentry *)) |
| { |
| struct dentry *this = dget(dentry); |
| while (true) { |
| struct dentry *victim = NULL, *child; |
| struct inode *inode = this->d_inode; |
| |
| inode_lock(inode); |
| if (d_is_dir(this)) |
| inode->i_flags |= S_DEAD; |
| while ((child = find_next_child(this, victim)) == NULL) { |
| // kill and ascend |
| // update metadata while it's still locked |
| inode_set_ctime_current(inode); |
| clear_nlink(inode); |
| inode_unlock(inode); |
| victim = this; |
| this = this->d_parent; |
| inode = this->d_inode; |
| inode_lock(inode); |
| if (simple_positive(victim)) { |
| d_invalidate(victim); // avoid lost mounts |
| if (d_is_dir(victim)) |
| fsnotify_rmdir(inode, victim); |
| else |
| fsnotify_unlink(inode, victim); |
| if (callback) |
| callback(victim); |
| dput(victim); // unpin it |
| } |
| if (victim == dentry) { |
| inode->i_mtime = inode_set_ctime_current(inode); |
| if (d_is_dir(dentry)) |
| drop_nlink(inode); |
| inode_unlock(inode); |
| dput(dentry); |
| return; |
| } |
| } |
| inode_unlock(inode); |
| this = child; |
| } |
| } |
| EXPORT_SYMBOL(simple_recursive_removal); |
| |
| static const struct super_operations simple_super_operations = { |
| .statfs = simple_statfs, |
| }; |
| |
| static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) |
| { |
| struct pseudo_fs_context *ctx = fc->fs_private; |
| struct inode *root; |
| |
| s->s_maxbytes = MAX_LFS_FILESIZE; |
| s->s_blocksize = PAGE_SIZE; |
| s->s_blocksize_bits = PAGE_SHIFT; |
| s->s_magic = ctx->magic; |
| s->s_op = ctx->ops ?: &simple_super_operations; |
| s->s_xattr = ctx->xattr; |
| s->s_time_gran = 1; |
| root = new_inode(s); |
| if (!root) |
| return -ENOMEM; |
| |
| /* |
| * since this is the first inode, make it number 1. New inodes created |
| * after this must take care not to collide with it (by passing |
| * max_reserved of 1 to iunique). |
| */ |
| root->i_ino = 1; |
| root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; |
| root->i_atime = root->i_mtime = inode_set_ctime_current(root); |
| s->s_root = d_make_root(root); |
| if (!s->s_root) |
| return -ENOMEM; |
| s->s_d_op = ctx->dops; |
| return 0; |
| } |
| |
| static int pseudo_fs_get_tree(struct fs_context *fc) |
| { |
| return get_tree_nodev(fc, pseudo_fs_fill_super); |
| } |
| |
| static void pseudo_fs_free(struct fs_context *fc) |
| { |
| kfree(fc->fs_private); |
| } |
| |
| static const struct fs_context_operations pseudo_fs_context_ops = { |
| .free = pseudo_fs_free, |
| .get_tree = pseudo_fs_get_tree, |
| }; |
| |
| /* |
| * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that |
| * will never be mountable) |
| */ |
| struct pseudo_fs_context *init_pseudo(struct fs_context *fc, |
| unsigned long magic) |
| { |
| struct pseudo_fs_context *ctx; |
| |
| ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); |
| if (likely(ctx)) { |
| ctx->magic = magic; |
| fc->fs_private = ctx; |
| fc->ops = &pseudo_fs_context_ops; |
| fc->sb_flags |= SB_NOUSER; |
| fc->global = true; |
| } |
| return ctx; |
| } |
| EXPORT_SYMBOL(init_pseudo); |
| |
| int simple_open(struct inode *inode, struct file *file) |
| { |
| if (inode->i_private) |
| file->private_data = inode->i_private; |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_open); |
| |
| int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) |
| { |
| struct inode *inode = d_inode(old_dentry); |
| |
| dir->i_mtime = inode_set_ctime_to_ts(dir, |
| inode_set_ctime_current(inode)); |
| inc_nlink(inode); |
| ihold(inode); |
| dget(dentry); |
| d_instantiate(dentry, inode); |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_link); |
| |
| int simple_empty(struct dentry *dentry) |
| { |
| struct dentry *child; |
| int ret = 0; |
| |
| spin_lock(&dentry->d_lock); |
| list_for_each_entry(child, &dentry->d_subdirs, d_child) { |
| spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); |
| if (simple_positive(child)) { |
| spin_unlock(&child->d_lock); |
| goto out; |
| } |
| spin_unlock(&child->d_lock); |
| } |
| ret = 1; |
| out: |
| spin_unlock(&dentry->d_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(simple_empty); |
| |
| int simple_unlink(struct inode *dir, struct dentry *dentry) |
| { |
| struct inode *inode = d_inode(dentry); |
| |
| dir->i_mtime = inode_set_ctime_to_ts(dir, |
| inode_set_ctime_current(inode)); |
| drop_nlink(inode); |
| dput(dentry); |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_unlink); |
| |
| int simple_rmdir(struct inode *dir, struct dentry *dentry) |
| { |
| if (!simple_empty(dentry)) |
| return -ENOTEMPTY; |
| |
| drop_nlink(d_inode(dentry)); |
| simple_unlink(dir, dentry); |
| drop_nlink(dir); |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_rmdir); |
| |
| /** |
| * simple_rename_timestamp - update the various inode timestamps for rename |
| * @old_dir: old parent directory |
| * @old_dentry: dentry that is being renamed |
| * @new_dir: new parent directory |
| * @new_dentry: target for rename |
| * |
| * POSIX mandates that the old and new parent directories have their ctime and |
| * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have |
| * their ctime updated. |
| */ |
| void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry) |
| { |
| struct inode *newino = d_inode(new_dentry); |
| |
| old_dir->i_mtime = inode_set_ctime_current(old_dir); |
| if (new_dir != old_dir) |
| new_dir->i_mtime = inode_set_ctime_current(new_dir); |
| inode_set_ctime_current(d_inode(old_dentry)); |
| if (newino) |
| inode_set_ctime_current(newino); |
| } |
| EXPORT_SYMBOL_GPL(simple_rename_timestamp); |
| |
| int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry) |
| { |
| bool old_is_dir = d_is_dir(old_dentry); |
| bool new_is_dir = d_is_dir(new_dentry); |
| |
| if (old_dir != new_dir && old_is_dir != new_is_dir) { |
| if (old_is_dir) { |
| drop_nlink(old_dir); |
| inc_nlink(new_dir); |
| } else { |
| drop_nlink(new_dir); |
| inc_nlink(old_dir); |
| } |
| } |
| simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(simple_rename_exchange); |
| |
| int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, |
| struct dentry *old_dentry, struct inode *new_dir, |
| struct dentry *new_dentry, unsigned int flags) |
| { |
| int they_are_dirs = d_is_dir(old_dentry); |
| |
| if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) |
| return -EINVAL; |
| |
| if (flags & RENAME_EXCHANGE) |
| return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); |
| |
| if (!simple_empty(new_dentry)) |
| return -ENOTEMPTY; |
| |
| if (d_really_is_positive(new_dentry)) { |
| simple_unlink(new_dir, new_dentry); |
| if (they_are_dirs) { |
| drop_nlink(d_inode(new_dentry)); |
| drop_nlink(old_dir); |
| } |
| } else if (they_are_dirs) { |
| drop_nlink(old_dir); |
| inc_nlink(new_dir); |
| } |
| |
| simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_rename); |
| |
| /** |
| * simple_setattr - setattr for simple filesystem |
| * @idmap: idmap of the target mount |
| * @dentry: dentry |
| * @iattr: iattr structure |
| * |
| * Returns 0 on success, -error on failure. |
| * |
| * simple_setattr is a simple ->setattr implementation without a proper |
| * implementation of size changes. |
| * |
| * It can either be used for in-memory filesystems or special files |
| * on simple regular filesystems. Anything that needs to change on-disk |
| * or wire state on size changes needs its own setattr method. |
| */ |
| int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, |
| struct iattr *iattr) |
| { |
| struct inode *inode = d_inode(dentry); |
| int error; |
| |
| error = setattr_prepare(idmap, dentry, iattr); |
| if (error) |
| return error; |
| |
| if (iattr->ia_valid & ATTR_SIZE) |
| truncate_setsize(inode, iattr->ia_size); |
| setattr_copy(idmap, inode, iattr); |
| mark_inode_dirty(inode); |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_setattr); |
| |
| static int simple_read_folio(struct file *file, struct folio *folio) |
| { |
| folio_zero_range(folio, 0, folio_size(folio)); |
| flush_dcache_folio(folio); |
| folio_mark_uptodate(folio); |
| folio_unlock(folio); |
| return 0; |
| } |
| |
| int simple_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, |
| struct page **pagep, void **fsdata) |
| { |
| struct folio *folio; |
| |
| folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, |
| mapping_gfp_mask(mapping)); |
| if (IS_ERR(folio)) |
| return PTR_ERR(folio); |
| |
| *pagep = &folio->page; |
| |
| if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { |
| size_t from = offset_in_folio(folio, pos); |
| |
| folio_zero_segments(folio, 0, from, |
| from + len, folio_size(folio)); |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_write_begin); |
| |
| /** |
| * simple_write_end - .write_end helper for non-block-device FSes |
| * @file: See .write_end of address_space_operations |
| * @mapping: " |
| * @pos: " |
| * @len: " |
| * @copied: " |
| * @page: " |
| * @fsdata: " |
| * |
| * simple_write_end does the minimum needed for updating a page after writing is |
| * done. It has the same API signature as the .write_end of |
| * address_space_operations vector. So it can just be set onto .write_end for |
| * FSes that don't need any other processing. i_mutex is assumed to be held. |
| * Block based filesystems should use generic_write_end(). |
| * NOTE: Even though i_size might get updated by this function, mark_inode_dirty |
| * is not called, so a filesystem that actually does store data in .write_inode |
| * should extend on what's done here with a call to mark_inode_dirty() in the |
| * case that i_size has changed. |
| * |
| * Use *ONLY* with simple_read_folio() |
| */ |
| static int simple_write_end(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| struct folio *folio = page_folio(page); |
| struct inode *inode = folio->mapping->host; |
| loff_t last_pos = pos + copied; |
| |
| /* zero the stale part of the folio if we did a short copy */ |
| if (!folio_test_uptodate(folio)) { |
| if (copied < len) { |
| size_t from = offset_in_folio(folio, pos); |
| |
| folio_zero_range(folio, from + copied, len - copied); |
| } |
| folio_mark_uptodate(folio); |
| } |
| /* |
| * No need to use i_size_read() here, the i_size |
| * cannot change under us because we hold the i_mutex. |
| */ |
| if (last_pos > inode->i_size) |
| i_size_write(inode, last_pos); |
| |
| folio_mark_dirty(folio); |
| folio_unlock(folio); |
| folio_put(folio); |
| |
| return copied; |
| } |
| |
| /* |
| * Provides ramfs-style behavior: data in the pagecache, but no writeback. |
| */ |
| const struct address_space_operations ram_aops = { |
| .read_folio = simple_read_folio, |
| .write_begin = simple_write_begin, |
| .write_end = simple_write_end, |
| .dirty_folio = noop_dirty_folio, |
| }; |
| EXPORT_SYMBOL(ram_aops); |
| |
| /* |
| * the inodes created here are not hashed. If you use iunique to generate |
| * unique inode values later for this filesystem, then you must take care |
| * to pass it an appropriate max_reserved value to avoid collisions. |
| */ |
| int simple_fill_super(struct super_block *s, unsigned long magic, |
| const struct tree_descr *files) |
| { |
| struct inode *inode; |
| struct dentry *root; |
| struct dentry *dentry; |
| int i; |
| |
| s->s_blocksize = PAGE_SIZE; |
| s->s_blocksize_bits = PAGE_SHIFT; |
| s->s_magic = magic; |
| s->s_op = &simple_super_operations; |
| s->s_time_gran = 1; |
| |
| inode = new_inode(s); |
| if (!inode) |
| return -ENOMEM; |
| /* |
| * because the root inode is 1, the files array must not contain an |
| * entry at index 1 |
| */ |
| inode->i_ino = 1; |
| inode->i_mode = S_IFDIR | 0755; |
| inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); |
| inode->i_op = &simple_dir_inode_operations; |
| inode->i_fop = &simple_dir_operations; |
| set_nlink(inode, 2); |
| root = d_make_root(inode); |
| if (!root) |
| return -ENOMEM; |
| for (i = 0; !files->name || files->name[0]; i++, files++) { |
| if (!files->name) |
| continue; |
| |
| /* warn if it tries to conflict with the root inode */ |
| if (unlikely(i == 1)) |
| printk(KERN_WARNING "%s: %s passed in a files array" |
| "with an index of 1!\n", __func__, |
| s->s_type->name); |
| |
| dentry = d_alloc_name(root, files->name); |
| if (!dentry) |
| goto out; |
| inode = new_inode(s); |
| if (!inode) { |
| dput(dentry); |
| goto out; |
| } |
| inode->i_mode = S_IFREG | files->mode; |
| inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); |
| inode->i_fop = files->ops; |
| inode->i_ino = i; |
| d_add(dentry, inode); |
| } |
| s->s_root = root; |
| return 0; |
| out: |
| d_genocide(root); |
| shrink_dcache_parent(root); |
| dput(root); |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL(simple_fill_super); |
| |
| static DEFINE_SPINLOCK(pin_fs_lock); |
| |
| int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) |
| { |
| struct vfsmount *mnt = NULL; |
| spin_lock(&pin_fs_lock); |
| if (unlikely(!*mount)) { |
| spin_unlock(&pin_fs_lock); |
| mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); |
| if (IS_ERR(mnt)) |
| return PTR_ERR(mnt); |
| spin_lock(&pin_fs_lock); |
| if (!*mount) |
| *mount = mnt; |
| } |
| mntget(*mount); |
| ++*count; |
| spin_unlock(&pin_fs_lock); |
| mntput(mnt); |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_pin_fs); |
| |
| void simple_release_fs(struct vfsmount **mount, int *count) |
| { |
| struct vfsmount *mnt; |
| spin_lock(&pin_fs_lock); |
| mnt = *mount; |
| if (!--*count) |
| *mount = NULL; |
| spin_unlock(&pin_fs_lock); |
| mntput(mnt); |
| } |
| EXPORT_SYMBOL(simple_release_fs); |
| |
| /** |
| * simple_read_from_buffer - copy data from the buffer to user space |
| * @to: the user space buffer to read to |
| * @count: the maximum number of bytes to read |
| * @ppos: the current position in the buffer |
| * @from: the buffer to read from |
| * @available: the size of the buffer |
| * |
| * The simple_read_from_buffer() function reads up to @count bytes from the |
| * buffer @from at offset @ppos into the user space address starting at @to. |
| * |
| * On success, the number of bytes read is returned and the offset @ppos is |
| * advanced by this number, or negative value is returned on error. |
| **/ |
| ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, |
| const void *from, size_t available) |
| { |
| loff_t pos = *ppos; |
| size_t ret; |
| |
| if (pos < 0) |
| return -EINVAL; |
| if (pos >= available || !count) |
| return 0; |
| if (count > available - pos) |
| count = available - pos; |
| ret = copy_to_user(to, from + pos, count); |
| if (ret == count) |
| return -EFAULT; |
| count -= ret; |
| *ppos = pos + count; |
| return count; |
| } |
| EXPORT_SYMBOL(simple_read_from_buffer); |
| |
| /** |
| * simple_write_to_buffer - copy data from user space to the buffer |
| * @to: the buffer to write to |
| * @available: the size of the buffer |
| * @ppos: the current position in the buffer |
| * @from: the user space buffer to read from |
| * @count: the maximum number of bytes to read |
| * |
| * The simple_write_to_buffer() function reads up to @count bytes from the user |
| * space address starting at @from into the buffer @to at offset @ppos. |
| * |
| * On success, the number of bytes written is returned and the offset @ppos is |
| * advanced by this number, or negative value is returned on error. |
| **/ |
| ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, |
| const void __user *from, size_t count) |
| { |
| loff_t pos = *ppos; |
| size_t res; |
| |
| if (pos < 0) |
| return -EINVAL; |
| if (pos >= available || !count) |
| return 0; |
| if (count > available - pos) |
| count = available - pos; |
| res = copy_from_user(to + pos, from, count); |
| if (res == count) |
| return -EFAULT; |
| count -= res; |
| *ppos = pos + count; |
| return count; |
| } |
| EXPORT_SYMBOL(simple_write_to_buffer); |
| |
| /** |
| * memory_read_from_buffer - copy data from the buffer |
| * @to: the kernel space buffer to read to |
| * @count: the maximum number of bytes to read |
| * @ppos: the current position in the buffer |
| * @from: the buffer to read from |
| * @available: the size of the buffer |
| * |
| * The memory_read_from_buffer() function reads up to @count bytes from the |
| * buffer @from at offset @ppos into the kernel space address starting at @to. |
| * |
| * On success, the number of bytes read is returned and the offset @ppos is |
| * advanced by this number, or negative value is returned on error. |
| **/ |
| ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, |
| const void *from, size_t available) |
| { |
| loff_t pos = *ppos; |
| |
| if (pos < 0) |
| return -EINVAL; |
| if (pos >= available) |
| return 0; |
| if (count > available - pos) |
| count = available - pos; |
| memcpy(to, from + pos, count); |
| *ppos = pos + count; |
| |
| return count; |
| } |
| EXPORT_SYMBOL(memory_read_from_buffer); |
| |
| /* |
| * Transaction based IO. |
| * The file expects a single write which triggers the transaction, and then |
| * possibly a read which collects the result - which is stored in a |
| * file-local buffer. |
| */ |
| |
| void simple_transaction_set(struct file *file, size_t n) |
| { |
| struct simple_transaction_argresp *ar = file->private_data; |
| |
| BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); |
| |
| /* |
| * The barrier ensures that ar->size will really remain zero until |
| * ar->data is ready for reading. |
| */ |
| smp_mb(); |
| ar->size = n; |
| } |
| EXPORT_SYMBOL(simple_transaction_set); |
| |
| char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) |
| { |
| struct simple_transaction_argresp *ar; |
| static DEFINE_SPINLOCK(simple_transaction_lock); |
| |
| if (size > SIMPLE_TRANSACTION_LIMIT - 1) |
| return ERR_PTR(-EFBIG); |
| |
| ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); |
| if (!ar) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock(&simple_transaction_lock); |
| |
| /* only one write allowed per open */ |
| if (file->private_data) { |
| spin_unlock(&simple_transaction_lock); |
| free_page((unsigned long)ar); |
| return ERR_PTR(-EBUSY); |
| } |
| |
| file->private_data = ar; |
| |
| spin_unlock(&simple_transaction_lock); |
| |
| if (copy_from_user(ar->data, buf, size)) |
| return ERR_PTR(-EFAULT); |
| |
| return ar->data; |
| } |
| EXPORT_SYMBOL(simple_transaction_get); |
| |
| ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) |
| { |
| struct simple_transaction_argresp *ar = file->private_data; |
| |
| if (!ar) |
| return 0; |
| return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); |
| } |
| EXPORT_SYMBOL(simple_transaction_read); |
| |
| int simple_transaction_release(struct inode *inode, struct file *file) |
| { |
| free_page((unsigned long)file->private_data); |
| return 0; |
| } |
| EXPORT_SYMBOL(simple_transaction_release); |
| |
| /* Simple attribute files */ |
| |
| struct simple_attr { |
| int (*get)(void *, u64 *); |
| int (*set)(void *, u64); |
| char get_buf[24]; /* enough to store a u64 and "\n\0" */ |
| char set_buf[24]; |
| void *data; |
| const char *fmt; /* format for read operation */ |
| struct mutex mutex; /* protects access to these buffers */ |
| }; |
| |
| /* simple_attr_open is called by an actual attribute open file operation |
| * to set the attribute specific access operations. */ |
| int simple_attr_open(struct inode *inode, struct file *file, |
| int (*get)(void *, u64 *), int (*set)(void *, u64), |
| const char *fmt) |
| { |
| struct simple_attr *attr; |
| |
| attr = kzalloc(sizeof(*attr), GFP_KERNEL); |
| if (!attr) |
| return -ENOMEM; |
| |
| attr->get = get; |
| attr->set = set; |
| attr->data = inode->i_private; |
| attr->fmt = fmt; |
| mutex_init(&attr->mutex); |
| |
| file->private_data = attr; |
| |
| return nonseekable_open(inode, file); |
| } |
| EXPORT_SYMBOL_GPL(simple_attr_open); |
| |
| int simple_attr_release(struct inode *inode, struct file *file) |
| { |
| kfree(file->private_data); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ |
| |
| /* read from the buffer that is filled with the get function */ |
| ssize_t simple_attr_read(struct file *file, char __user *buf, |
| size_t len, loff_t *ppos) |
| { |
| struct simple_attr *attr; |
| size_t size; |
| ssize_t ret; |
| |
| attr = file->private_data; |
| |
| if (!attr->get) |
| return -EACCES; |
| |
| ret = mutex_lock_interruptible(&attr->mutex); |
| if (ret) |
| return ret; |
| |
| if (*ppos && attr->get_buf[0]) { |
| /* continued read */ |
| size = strlen(attr->get_buf); |
| } else { |
| /* first read */ |
| u64 val; |
| ret = attr->get(attr->data, &val); |
| if (ret) |
| goto out; |
| |
| size = scnprintf(attr->get_buf, sizeof(attr->get_buf), |
| attr->fmt, (unsigned long long)val); |
| } |
| |
| ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); |
| out: |
| mutex_unlock(&attr->mutex); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(simple_attr_read); |
| |
| /* interpret the buffer as a number to call the set function with */ |
| static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, |
| size_t len, loff_t *ppos, bool is_signed) |
| { |
| struct simple_attr *attr; |
| unsigned long long val; |
| size_t size; |
| ssize_t ret; |
| |
| attr = file->private_data; |
| if (!attr->set) |
| return -EACCES; |
| |
| ret = mutex_lock_interruptible(&attr->mutex); |
| if (ret) |
| return ret; |
| |
| ret = -EFAULT; |
| size = min(sizeof(attr->set_buf) - 1, len); |
| if (copy_from_user(attr->set_buf, buf, size)) |
| goto out; |
| |
| attr->set_buf[size] = '\0'; |
| if (is_signed) |
| ret = kstrtoll(attr->set_buf, 0, &val); |
| else |
| ret = kstrtoull(attr->set_buf, 0, &val); |
| if (ret) |
| goto out; |
| ret = attr->set(attr->data, val); |
| if (ret == 0) |
| ret = len; /* on success, claim we got the whole input */ |
| out: |
| mutex_unlock(&attr->mutex); |
| return ret; |
| } |
| |
| ssize_t simple_attr_write(struct file *file, const char __user *buf, |
| size_t len, loff_t *ppos) |
| { |
| return simple_attr_write_xsigned(file, buf, len, ppos, false); |
| } |
| EXPORT_SYMBOL_GPL(simple_attr_write); |
| |
| ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, |
| size_t len, loff_t *ppos) |
| { |
| return simple_attr_write_xsigned(file, buf, len, ppos, true); |
| } |
| EXPORT_SYMBOL_GPL(simple_attr_write_signed); |
| |
| /** |
| * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation |
| * @sb: filesystem to do the file handle conversion on |
| * @fid: file handle to convert |
| * @fh_len: length of the file handle in bytes |
| * @fh_type: type of file handle |
| * @get_inode: filesystem callback to retrieve inode |
| * |
| * This function decodes @fid as long as it has one of the well-known |
| * Linux filehandle types and calls @get_inode on it to retrieve the |
| * inode for the object specified in the file handle. |
| */ |
| struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, |
| int fh_len, int fh_type, struct inode *(*get_inode) |
| (struct super_block *sb, u64 ino, u32 gen)) |
| { |
| struct inode *inode = NULL; |
| |
| if (fh_len < 2) |
| return NULL; |
| |
| switch (fh_type) { |
| case FILEID_INO32_GEN: |
| case FILEID_INO32_GEN_PARENT: |
| inode = get_inode(sb, fid->i32.ino, fid->i32.gen); |
| break; |
| } |
| |
| return d_obtain_alias(inode); |
| } |
| EXPORT_SYMBOL_GPL(generic_fh_to_dentry); |
| |
| /** |
| * generic_fh_to_parent - generic helper for the fh_to_parent export operation |
| * @sb: filesystem to do the file handle conversion on |
| * @fid: file handle to convert |
| * @fh_len: length of the file handle in bytes |
| * @fh_type: type of file handle |
| * @get_inode: filesystem callback to retrieve inode |
| * |
| * This function decodes @fid as long as it has one of the well-known |
| * Linux filehandle types and calls @get_inode on it to retrieve the |
| * inode for the _parent_ object specified in the file handle if it |
| * is specified in the file handle, or NULL otherwise. |
| */ |
| struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, |
| int fh_len, int fh_type, struct inode *(*get_inode) |
| (struct super_block *sb, u64 ino, u32 gen)) |
| { |
| struct inode *inode = NULL; |
| |
| if (fh_len <= 2) |
| return NULL; |
| |
| switch (fh_type) { |
| case FILEID_INO32_GEN_PARENT: |
| inode = get_inode(sb, fid->i32.parent_ino, |
| (fh_len > 3 ? fid->i32.parent_gen : 0)); |
| break; |
| } |
| |
| return d_obtain_alias(inode); |
| } |
| EXPORT_SYMBOL_GPL(generic_fh_to_parent); |
| |
| /** |
| * __generic_file_fsync - generic fsync implementation for simple filesystems |
| * |
| * @file: file to synchronize |
| * @start: start offset in bytes |
| * @end: end offset in bytes (inclusive) |
| * @datasync: only synchronize essential metadata if true |
| * |
| * This is a generic implementation of the fsync method for simple |
| * filesystems which track all non-inode metadata in the buffers list |
| * hanging off the address_space structure. |
| */ |
| int __generic_file_fsync(struct file *file, loff_t start, loff_t end, |
| int datasync) |
| { |
| struct inode *inode = file->f_mapping->host; |
| int err; |
| int ret; |
| |
| err = file_write_and_wait_range(file, start, end); |
| if (err) |
| return err; |
| |
| inode_lock(inode); |
| ret = sync_mapping_buffers(inode->i_mapping); |
| if (!(inode->i_state & I_DIRTY_ALL)) |
| goto out; |
| if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) |
| goto out; |
| |
| err = sync_inode_metadata(inode, 1); |
| if (ret == 0) |
| ret = err; |
| |
| out: |
| inode_unlock(inode); |
| /* check and advance again to catch errors after syncing out buffers */ |
| err = file_check_and_advance_wb_err(file); |
| if (ret == 0) |
| ret = err; |
| return ret; |
| } |
| EXPORT_SYMBOL(__generic_file_fsync); |
| |
| /** |
| * generic_file_fsync - generic fsync implementation for simple filesystems |
| * with flush |
| * @file: file to synchronize |
| * @start: start offset in bytes |
| * @end: end offset in bytes (inclusive) |
| * @datasync: only synchronize essential metadata if true |
| * |
| */ |
| |
| int generic_file_fsync(struct file *file, loff_t start, loff_t end, |
| int datasync) |
| { |
| struct inode *inode = file->f_mapping->host; |
| int err; |
| |
| err = __generic_file_fsync(file, start, end, datasync); |
| if (err) |
| return err; |
| return blkdev_issue_flush(inode->i_sb->s_bdev); |
| } |
| EXPORT_SYMBOL(generic_file_fsync); |
| |
| /** |
| * generic_check_addressable - Check addressability of file system |
| * @blocksize_bits: log of file system block size |
| * @num_blocks: number of blocks in file system |
| * |
| * Determine whether a file system with @num_blocks blocks (and a |
| * block size of 2**@blocksize_bits) is addressable by the sector_t |
| * and page cache of the system. Return 0 if so and -EFBIG otherwise. |
| */ |
| int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) |
| { |
| u64 last_fs_block = num_blocks - 1; |
| u64 last_fs_page = |
| last_fs_block >> (PAGE_SHIFT - blocksize_bits); |
| |
| if (unlikely(num_blocks == 0)) |
| return 0; |
| |
| if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) |
| return -EINVAL; |
| |
| if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || |
| (last_fs_page > (pgoff_t)(~0ULL))) { |
| return -EFBIG; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(generic_check_addressable); |
| |
| /* |
| * No-op implementation of ->fsync for in-memory filesystems. |
| */ |
| int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) |
| { |
| return 0; |
| } |
| EXPORT_SYMBOL(noop_fsync); |
| |
| ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| /* |
| * iomap based filesystems support direct I/O without need for |
| * this callback. However, it still needs to be set in |
| * inode->a_ops so that open/fcntl know that direct I/O is |
| * generally supported. |
| */ |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(noop_direct_IO); |
| |
| /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ |
| void kfree_link(void *p) |
| { |
| kfree(p); |
| } |
| EXPORT_SYMBOL(kfree_link); |
| |
| struct inode *alloc_anon_inode(struct super_block *s) |
| { |
| static const struct address_space_operations anon_aops = { |
| .dirty_folio = noop_dirty_folio, |
| }; |
| struct inode *inode = new_inode_pseudo(s); |
| |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| inode->i_ino = get_next_ino(); |
| inode->i_mapping->a_ops = &anon_aops; |
| |
| /* |
| * Mark the inode dirty from the very beginning, |
| * that way it will never be moved to the dirty |
| * list because mark_inode_dirty() will think |
| * that it already _is_ on the dirty list. |
| */ |
| inode->i_state = I_DIRTY; |
| inode->i_mode = S_IRUSR | S_IWUSR; |
| inode->i_uid = current_fsuid(); |
| inode->i_gid = current_fsgid(); |
| inode->i_flags |= S_PRIVATE; |
| inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); |
| return inode; |
| } |
| EXPORT_SYMBOL(alloc_anon_inode); |
| |
| /** |
| * simple_nosetlease - generic helper for prohibiting leases |
| * @filp: file pointer |
| * @arg: type of lease to obtain |
| * @flp: new lease supplied for insertion |
| * @priv: private data for lm_setup operation |
| * |
| * Generic helper for filesystems that do not wish to allow leases to be set. |
| * All arguments are ignored and it just returns -EINVAL. |
| */ |
| int |
| simple_nosetlease(struct file *filp, int arg, struct file_lock **flp, |
| void **priv) |
| { |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL(simple_nosetlease); |
| |
| /** |
| * simple_get_link - generic helper to get the target of "fast" symlinks |
| * @dentry: not used here |
| * @inode: the symlink inode |
| * @done: not used here |
| * |
| * Generic helper for filesystems to use for symlink inodes where a pointer to |
| * the symlink target is stored in ->i_link. NOTE: this isn't normally called, |
| * since as an optimization the path lookup code uses any non-NULL ->i_link |
| * directly, without calling ->get_link(). But ->get_link() still must be set, |
| * to mark the inode_operations as being for a symlink. |
| * |
| * Return: the symlink target |
| */ |
| const char *simple_get_link(struct dentry *dentry, struct inode *inode, |
| struct delayed_call *done) |
| { |
| return inode->i_link; |
| } |
| EXPORT_SYMBOL(simple_get_link); |
| |
| const struct inode_operations simple_symlink_inode_operations = { |
| .get_link = simple_get_link, |
| }; |
| EXPORT_SYMBOL(simple_symlink_inode_operations); |
| |
| /* |
| * Operations for a permanently empty directory. |
| */ |
| static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) |
| { |
| return ERR_PTR(-ENOENT); |
| } |
| |
| static int empty_dir_getattr(struct mnt_idmap *idmap, |
| const struct path *path, struct kstat *stat, |
| u32 request_mask, unsigned int query_flags) |
| { |
| struct inode *inode = d_inode(path->dentry); |
| generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); |
| return 0; |
| } |
| |
| static int empty_dir_setattr(struct mnt_idmap *idmap, |
| struct dentry *dentry, struct iattr *attr) |
| { |
| return -EPERM; |
| } |
| |
| static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static const struct inode_operations empty_dir_inode_operations = { |
| .lookup = empty_dir_lookup, |
| .permission = generic_permission, |
| .setattr = empty_dir_setattr, |
| .getattr = empty_dir_getattr, |
| .listxattr = empty_dir_listxattr, |
| }; |
| |
| static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) |
| { |
| /* An empty directory has two entries . and .. at offsets 0 and 1 */ |
| return generic_file_llseek_size(file, offset, whence, 2, 2); |
| } |
| |
| static int empty_dir_readdir(struct file *file, struct dir_context *ctx) |
| { |
| dir_emit_dots(file, ctx); |
| return 0; |
| } |
| |
| static const struct file_operations empty_dir_operations = { |
| .llseek = empty_dir_llseek, |
| .read = generic_read_dir, |
| .iterate_shared = empty_dir_readdir, |
| .fsync = noop_fsync, |
| }; |
| |
| |
| void make_empty_dir_inode(struct inode *inode) |
| { |
| set_nlink(inode, 2); |
| inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; |
| inode->i_uid = GLOBAL_ROOT_UID; |
| inode->i_gid = GLOBAL_ROOT_GID; |
| inode->i_rdev = 0; |
| inode->i_size = 0; |
| inode->i_blkbits = PAGE_SHIFT; |
| inode->i_blocks = 0; |
| |
| inode->i_op = &empty_dir_inode_operations; |
| inode->i_opflags &= ~IOP_XATTR; |
| inode->i_fop = &empty_dir_operations; |
| } |
| |
| bool is_empty_dir_inode(struct inode *inode) |
| { |
| return (inode->i_fop == &empty_dir_operations) && |
| (inode->i_op == &empty_dir_inode_operations); |
| } |
| |
| #if IS_ENABLED(CONFIG_UNICODE) |
| /** |
| * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems |
| * @dentry: dentry whose name we are checking against |
| * @len: len of name of dentry |
| * @str: str pointer to name of dentry |
| * @name: Name to compare against |
| * |
| * Return: 0 if names match, 1 if mismatch, or -ERRNO |
| */ |
| static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, |
| const char *str, const struct qstr *name) |
| { |
| const struct dentry *parent = READ_ONCE(dentry->d_parent); |
| const struct inode *dir = READ_ONCE(parent->d_inode); |
| const struct super_block *sb = dentry->d_sb; |
| const struct unicode_map *um = sb->s_encoding; |
| struct qstr qstr = QSTR_INIT(str, len); |
| char strbuf[DNAME_INLINE_LEN]; |
| int ret; |
| |
| if (!dir || !IS_CASEFOLDED(dir)) |
| goto fallback; |
| /* |
| * If the dentry name is stored in-line, then it may be concurrently |
| * modified by a rename. If this happens, the VFS will eventually retry |
| * the lookup, so it doesn't matter what ->d_compare() returns. |
| * However, it's unsafe to call utf8_strncasecmp() with an unstable |
| * string. Therefore, we have to copy the name into a temporary buffer. |
| */ |
| if (len <= DNAME_INLINE_LEN - 1) { |
| memcpy(strbuf, str, len); |
| strbuf[len] = 0; |
| qstr.name = strbuf; |
| /* prevent compiler from optimizing out the temporary buffer */ |
| barrier(); |
| } |
| ret = utf8_strncasecmp(um, name, &qstr); |
| if (ret >= 0) |
| return ret; |
| |
| if (sb_has_strict_encoding(sb)) |
| return -EINVAL; |
| fallback: |
| if (len != name->len) |
| return 1; |
| return !!memcmp(str, name->name, len); |
| } |
| |
| /** |
| * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems |
| * @dentry: dentry of the parent directory |
| * @str: qstr of name whose hash we should fill in |
| * |
| * Return: 0 if hash was successful or unchanged, and -EINVAL on error |
| */ |
| static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) |
| { |
| const struct inode *dir = READ_ONCE(dentry->d_inode); |
| struct super_block *sb = dentry->d_sb; |
| const struct unicode_map *um = sb->s_encoding; |
| int ret = 0; |
| |
| if (!dir || !IS_CASEFOLDED(dir)) |
| return 0; |
| |
| ret = utf8_casefold_hash(um, dentry, str); |
| if (ret < 0 && sb_has_strict_encoding(sb)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static const struct dentry_operations generic_ci_dentry_ops = { |
| .d_hash = generic_ci_d_hash, |
| .d_compare = generic_ci_d_compare, |
| }; |
| #endif |
| |
| #ifdef CONFIG_FS_ENCRYPTION |
| static const struct dentry_operations generic_encrypted_dentry_ops = { |
| .d_revalidate = fscrypt_d_revalidate, |
| }; |
| #endif |
| |
| #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) |
| static const struct dentry_operations generic_encrypted_ci_dentry_ops = { |
| .d_hash = generic_ci_d_hash, |
| .d_compare = generic_ci_d_compare, |
| .d_revalidate = fscrypt_d_revalidate, |
| }; |
| #endif |
| |
| /** |
| * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry |
| * @dentry: dentry to set ops on |
| * |
| * Casefolded directories need d_hash and d_compare set, so that the dentries |
| * contained in them are handled case-insensitively. Note that these operations |
| * are needed on the parent directory rather than on the dentries in it, and |
| * while the casefolding flag can be toggled on and off on an empty directory, |
| * dentry_operations can't be changed later. As a result, if the filesystem has |
| * casefolding support enabled at all, we have to give all dentries the |
| * casefolding operations even if their inode doesn't have the casefolding flag |
| * currently (and thus the casefolding ops would be no-ops for now). |
| * |
| * Encryption works differently in that the only dentry operation it needs is |
| * d_revalidate, which it only needs on dentries that have the no-key name flag. |
| * The no-key flag can't be set "later", so we don't have to worry about that. |
| * |
| * Finally, to maximize compatibility with overlayfs (which isn't compatible |
| * with certain dentry operations) and to avoid taking an unnecessary |
| * performance hit, we use custom dentry_operations for each possible |
| * combination rather than always installing all operations. |
| */ |
| void generic_set_encrypted_ci_d_ops(struct dentry *dentry) |
| { |
| #ifdef CONFIG_FS_ENCRYPTION |
| bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; |
| #endif |
| #if IS_ENABLED(CONFIG_UNICODE) |
| bool needs_ci_ops = dentry->d_sb->s_encoding; |
| #endif |
| #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) |
| if (needs_encrypt_ops && needs_ci_ops) { |
| d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); |
| return; |
| } |
| #endif |
| #ifdef CONFIG_FS_ENCRYPTION |
| if (needs_encrypt_ops) { |
| d_set_d_op(dentry, &generic_encrypted_dentry_ops); |
| return; |
| } |
| #endif |
| #if IS_ENABLED(CONFIG_UNICODE) |
| if (needs_ci_ops) { |
| d_set_d_op(dentry, &generic_ci_dentry_ops); |
| return; |
| } |
| #endif |
| } |
| EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); |
| |
| /** |
| * inode_maybe_inc_iversion - increments i_version |
| * @inode: inode with the i_version that should be updated |
| * @force: increment the counter even if it's not necessary? |
| * |
| * Every time the inode is modified, the i_version field must be seen to have |
| * changed by any observer. |
| * |
| * If "force" is set or the QUERIED flag is set, then ensure that we increment |
| * the value, and clear the queried flag. |
| * |
| * In the common case where neither is set, then we can return "false" without |
| * updating i_version. |
| * |
| * If this function returns false, and no other metadata has changed, then we |
| * can avoid logging the metadata. |
| */ |
| bool inode_maybe_inc_iversion(struct inode *inode, bool force) |
| { |
| u64 cur, new; |
| |
| /* |
| * The i_version field is not strictly ordered with any other inode |
| * information, but the legacy inode_inc_iversion code used a spinlock |
| * to serialize increments. |
| * |
| * Here, we add full memory barriers to ensure that any de-facto |
| * ordering with other info is preserved. |
| * |
| * This barrier pairs with the barrier in inode_query_iversion() |
| */ |
| smp_mb(); |
| cur = inode_peek_iversion_raw(inode); |
| do { |
| /* If flag is clear then we needn't do anything */ |
| if (!force && !(cur & I_VERSION_QUERIED)) |
| return false; |
| |
| /* Since lowest bit is flag, add 2 to avoid it */ |
| new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; |
| } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); |
| return true; |
| } |
| EXPORT_SYMBOL(inode_maybe_inc_iversion); |
| |
| /** |
| * inode_query_iversion - read i_version for later use |
| * @inode: inode from which i_version should be read |
| * |
| * Read the inode i_version counter. This should be used by callers that wish |
| * to store the returned i_version for later comparison. This will guarantee |
| * that a later query of the i_version will result in a different value if |
| * anything has changed. |
| * |
| * In this implementation, we fetch the current value, set the QUERIED flag and |
| * then try to swap it into place with a cmpxchg, if it wasn't already set. If |
| * that fails, we try again with the newly fetched value from the cmpxchg. |
| */ |
| u64 inode_query_iversion(struct inode *inode) |
| { |
| u64 cur, new; |
| |
| cur = inode_peek_iversion_raw(inode); |
| do { |
| /* If flag is already set, then no need to swap */ |
| if (cur & I_VERSION_QUERIED) { |
| /* |
| * This barrier (and the implicit barrier in the |
| * cmpxchg below) pairs with the barrier in |
| * inode_maybe_inc_iversion(). |
| */ |
| smp_mb(); |
| break; |
| } |
| |
| new = cur | I_VERSION_QUERIED; |
| } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); |
| return cur >> I_VERSION_QUERIED_SHIFT; |
| } |
| EXPORT_SYMBOL(inode_query_iversion); |
| |
| ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, |
| ssize_t direct_written, ssize_t buffered_written) |
| { |
| struct address_space *mapping = iocb->ki_filp->f_mapping; |
| loff_t pos = iocb->ki_pos - buffered_written; |
| loff_t end = iocb->ki_pos - 1; |
| int err; |
| |
| /* |
| * If the buffered write fallback returned an error, we want to return |
| * the number of bytes which were written by direct I/O, or the error |
| * code if that was zero. |
| * |
| * Note that this differs from normal direct-io semantics, which will |
| * return -EFOO even if some bytes were written. |
| */ |
| if (unlikely(buffered_written < 0)) { |
| if (direct_written) |
| return direct_written; |
| return buffered_written; |
| } |
| |
| /* |
| * We need to ensure that the page cache pages are written to disk and |
| * invalidated to preserve the expected O_DIRECT semantics. |
| */ |
| err = filemap_write_and_wait_range(mapping, pos, end); |
| if (err < 0) { |
| /* |
| * We don't know how much we wrote, so just return the number of |
| * bytes which were direct-written |
| */ |
| iocb->ki_pos -= buffered_written; |
| if (direct_written) |
| return direct_written; |
| return err; |
| } |
| invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); |
| return direct_written + buffered_written; |
| } |
| EXPORT_SYMBOL_GPL(direct_write_fallback); |