blob: 23c50ed7d4b590d9802ba15c9f9b2d263ac86753 [file] [log] [blame]
// SPDX-License-Identifier: LGPL-2.1
/*
*
* Copyright (C) International Business Machines Corp., 2002, 2011
* Etersoft, 2012
* Author(s): Steve French (sfrench@us.ibm.com)
* Jeremy Allison (jra@samba.org) 2006
* Pavel Shilovsky (pshilovsky@samba.org) 2012
*
*/
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/net.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <asm/processor.h>
#include <linux/mempool.h>
#include <linux/highmem.h>
#include <crypto/aead.h>
#include "cifsglob.h"
#include "cifsproto.h"
#include "smb2proto.h"
#include "cifs_debug.h"
#include "smb2status.h"
#include "smb2glob.h"
static int
smb3_crypto_shash_allocate(struct TCP_Server_Info *server)
{
struct cifs_secmech *p = &server->secmech;
int rc;
rc = cifs_alloc_hash("hmac(sha256)", &p->hmacsha256);
if (rc)
goto err;
rc = cifs_alloc_hash("cmac(aes)", &p->aes_cmac);
if (rc)
goto err;
return 0;
err:
cifs_free_hash(&p->hmacsha256);
return rc;
}
int
smb311_crypto_shash_allocate(struct TCP_Server_Info *server)
{
struct cifs_secmech *p = &server->secmech;
int rc = 0;
rc = cifs_alloc_hash("hmac(sha256)", &p->hmacsha256);
if (rc)
return rc;
rc = cifs_alloc_hash("cmac(aes)", &p->aes_cmac);
if (rc)
goto err;
rc = cifs_alloc_hash("sha512", &p->sha512);
if (rc)
goto err;
return 0;
err:
cifs_free_hash(&p->aes_cmac);
cifs_free_hash(&p->hmacsha256);
return rc;
}
static
int smb2_get_sign_key(__u64 ses_id, struct TCP_Server_Info *server, u8 *key)
{
struct cifs_chan *chan;
struct TCP_Server_Info *pserver;
struct cifs_ses *ses = NULL;
int i;
int rc = 0;
bool is_binding = false;
spin_lock(&cifs_tcp_ses_lock);
/* If server is a channel, select the primary channel */
pserver = SERVER_IS_CHAN(server) ? server->primary_server : server;
list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
if (ses->Suid == ses_id)
goto found;
}
trace_smb3_ses_not_found(ses_id);
cifs_server_dbg(FYI, "%s: Could not find session 0x%llx\n",
__func__, ses_id);
rc = -ENOENT;
goto out;
found:
spin_lock(&ses->ses_lock);
spin_lock(&ses->chan_lock);
is_binding = (cifs_chan_needs_reconnect(ses, server) &&
ses->ses_status == SES_GOOD);
if (is_binding) {
/*
* If we are in the process of binding a new channel
* to an existing session, use the master connection
* session key
*/
memcpy(key, ses->smb3signingkey, SMB3_SIGN_KEY_SIZE);
spin_unlock(&ses->chan_lock);
spin_unlock(&ses->ses_lock);
goto out;
}
/*
* Otherwise, use the channel key.
*/
for (i = 0; i < ses->chan_count; i++) {
chan = ses->chans + i;
if (chan->server == server) {
memcpy(key, chan->signkey, SMB3_SIGN_KEY_SIZE);
spin_unlock(&ses->chan_lock);
spin_unlock(&ses->ses_lock);
goto out;
}
}
spin_unlock(&ses->chan_lock);
spin_unlock(&ses->ses_lock);
cifs_dbg(VFS,
"%s: Could not find channel signing key for session 0x%llx\n",
__func__, ses_id);
rc = -ENOENT;
out:
spin_unlock(&cifs_tcp_ses_lock);
return rc;
}
static struct cifs_ses *
smb2_find_smb_ses_unlocked(struct TCP_Server_Info *server, __u64 ses_id)
{
struct TCP_Server_Info *pserver;
struct cifs_ses *ses;
/* If server is a channel, select the primary channel */
pserver = SERVER_IS_CHAN(server) ? server->primary_server : server;
list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
if (ses->Suid != ses_id)
continue;
spin_lock(&ses->ses_lock);
if (ses->ses_status == SES_EXITING) {
spin_unlock(&ses->ses_lock);
continue;
}
cifs_smb_ses_inc_refcount(ses);
spin_unlock(&ses->ses_lock);
return ses;
}
return NULL;
}
struct cifs_ses *
smb2_find_smb_ses(struct TCP_Server_Info *server, __u64 ses_id)
{
struct cifs_ses *ses;
spin_lock(&cifs_tcp_ses_lock);
ses = smb2_find_smb_ses_unlocked(server, ses_id);
spin_unlock(&cifs_tcp_ses_lock);
return ses;
}
static struct cifs_tcon *
smb2_find_smb_sess_tcon_unlocked(struct cifs_ses *ses, __u32 tid)
{
struct cifs_tcon *tcon;
list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
if (tcon->tid != tid)
continue;
++tcon->tc_count;
return tcon;
}
return NULL;
}
/*
* Obtain tcon corresponding to the tid in the given
* cifs_ses
*/
struct cifs_tcon *
smb2_find_smb_tcon(struct TCP_Server_Info *server, __u64 ses_id, __u32 tid)
{
struct cifs_ses *ses;
struct cifs_tcon *tcon;
spin_lock(&cifs_tcp_ses_lock);
ses = smb2_find_smb_ses_unlocked(server, ses_id);
if (!ses) {
spin_unlock(&cifs_tcp_ses_lock);
return NULL;
}
tcon = smb2_find_smb_sess_tcon_unlocked(ses, tid);
if (!tcon) {
cifs_put_smb_ses(ses);
spin_unlock(&cifs_tcp_ses_lock);
return NULL;
}
spin_unlock(&cifs_tcp_ses_lock);
/* tcon already has a ref to ses, so we don't need ses anymore */
cifs_put_smb_ses(ses);
return tcon;
}
int
smb2_calc_signature(struct smb_rqst *rqst, struct TCP_Server_Info *server,
bool allocate_crypto)
{
int rc;
unsigned char smb2_signature[SMB2_HMACSHA256_SIZE];
unsigned char *sigptr = smb2_signature;
struct kvec *iov = rqst->rq_iov;
struct smb2_hdr *shdr = (struct smb2_hdr *)iov[0].iov_base;
struct cifs_ses *ses;
struct shash_desc *shash = NULL;
struct smb_rqst drqst;
ses = smb2_find_smb_ses(server, le64_to_cpu(shdr->SessionId));
if (unlikely(!ses)) {
cifs_server_dbg(VFS, "%s: Could not find session\n", __func__);
return -ENOENT;
}
memset(smb2_signature, 0x0, SMB2_HMACSHA256_SIZE);
memset(shdr->Signature, 0x0, SMB2_SIGNATURE_SIZE);
if (allocate_crypto) {
rc = cifs_alloc_hash("hmac(sha256)", &shash);
if (rc) {
cifs_server_dbg(VFS,
"%s: sha256 alloc failed\n", __func__);
goto out;
}
} else {
shash = server->secmech.hmacsha256;
}
rc = crypto_shash_setkey(shash->tfm, ses->auth_key.response,
SMB2_NTLMV2_SESSKEY_SIZE);
if (rc) {
cifs_server_dbg(VFS,
"%s: Could not update with response\n",
__func__);
goto out;
}
rc = crypto_shash_init(shash);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not init sha256", __func__);
goto out;
}
/*
* For SMB2+, __cifs_calc_signature() expects to sign only the actual
* data, that is, iov[0] should not contain a rfc1002 length.
*
* Sign the rfc1002 length prior to passing the data (iov[1-N]) down to
* __cifs_calc_signature().
*/
drqst = *rqst;
if (drqst.rq_nvec >= 2 && iov[0].iov_len == 4) {
rc = crypto_shash_update(shash, iov[0].iov_base,
iov[0].iov_len);
if (rc) {
cifs_server_dbg(VFS,
"%s: Could not update with payload\n",
__func__);
goto out;
}
drqst.rq_iov++;
drqst.rq_nvec--;
}
rc = __cifs_calc_signature(&drqst, server, sigptr, shash);
if (!rc)
memcpy(shdr->Signature, sigptr, SMB2_SIGNATURE_SIZE);
out:
if (allocate_crypto)
cifs_free_hash(&shash);
if (ses)
cifs_put_smb_ses(ses);
return rc;
}
static int generate_key(struct cifs_ses *ses, struct kvec label,
struct kvec context, __u8 *key, unsigned int key_size)
{
unsigned char zero = 0x0;
__u8 i[4] = {0, 0, 0, 1};
__u8 L128[4] = {0, 0, 0, 128};
__u8 L256[4] = {0, 0, 1, 0};
int rc = 0;
unsigned char prfhash[SMB2_HMACSHA256_SIZE];
unsigned char *hashptr = prfhash;
struct TCP_Server_Info *server = ses->server;
memset(prfhash, 0x0, SMB2_HMACSHA256_SIZE);
memset(key, 0x0, key_size);
rc = smb3_crypto_shash_allocate(server);
if (rc) {
cifs_server_dbg(VFS, "%s: crypto alloc failed\n", __func__);
goto smb3signkey_ret;
}
rc = crypto_shash_setkey(server->secmech.hmacsha256->tfm,
ses->auth_key.response, SMB2_NTLMV2_SESSKEY_SIZE);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not set with session key\n", __func__);
goto smb3signkey_ret;
}
rc = crypto_shash_init(server->secmech.hmacsha256);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not init sign hmac\n", __func__);
goto smb3signkey_ret;
}
rc = crypto_shash_update(server->secmech.hmacsha256, i, 4);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not update with n\n", __func__);
goto smb3signkey_ret;
}
rc = crypto_shash_update(server->secmech.hmacsha256, label.iov_base, label.iov_len);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not update with label\n", __func__);
goto smb3signkey_ret;
}
rc = crypto_shash_update(server->secmech.hmacsha256, &zero, 1);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not update with zero\n", __func__);
goto smb3signkey_ret;
}
rc = crypto_shash_update(server->secmech.hmacsha256, context.iov_base, context.iov_len);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not update with context\n", __func__);
goto smb3signkey_ret;
}
if ((server->cipher_type == SMB2_ENCRYPTION_AES256_CCM) ||
(server->cipher_type == SMB2_ENCRYPTION_AES256_GCM)) {
rc = crypto_shash_update(server->secmech.hmacsha256, L256, 4);
} else {
rc = crypto_shash_update(server->secmech.hmacsha256, L128, 4);
}
if (rc) {
cifs_server_dbg(VFS, "%s: Could not update with L\n", __func__);
goto smb3signkey_ret;
}
rc = crypto_shash_final(server->secmech.hmacsha256, hashptr);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not generate sha256 hash\n", __func__);
goto smb3signkey_ret;
}
memcpy(key, hashptr, key_size);
smb3signkey_ret:
return rc;
}
struct derivation {
struct kvec label;
struct kvec context;
};
struct derivation_triplet {
struct derivation signing;
struct derivation encryption;
struct derivation decryption;
};
static int
generate_smb3signingkey(struct cifs_ses *ses,
struct TCP_Server_Info *server,
const struct derivation_triplet *ptriplet)
{
int rc;
bool is_binding = false;
int chan_index = 0;
spin_lock(&ses->ses_lock);
spin_lock(&ses->chan_lock);
is_binding = (cifs_chan_needs_reconnect(ses, server) &&
ses->ses_status == SES_GOOD);
chan_index = cifs_ses_get_chan_index(ses, server);
/* TODO: introduce ref counting for channels when the can be freed */
spin_unlock(&ses->chan_lock);
spin_unlock(&ses->ses_lock);
/*
* All channels use the same encryption/decryption keys but
* they have their own signing key.
*
* When we generate the keys, check if it is for a new channel
* (binding) in which case we only need to generate a signing
* key and store it in the channel as to not overwrite the
* master connection signing key stored in the session
*/
if (is_binding) {
rc = generate_key(ses, ptriplet->signing.label,
ptriplet->signing.context,
ses->chans[chan_index].signkey,
SMB3_SIGN_KEY_SIZE);
if (rc)
return rc;
} else {
rc = generate_key(ses, ptriplet->signing.label,
ptriplet->signing.context,
ses->smb3signingkey,
SMB3_SIGN_KEY_SIZE);
if (rc)
return rc;
/* safe to access primary channel, since it will never go away */
spin_lock(&ses->chan_lock);
memcpy(ses->chans[chan_index].signkey, ses->smb3signingkey,
SMB3_SIGN_KEY_SIZE);
spin_unlock(&ses->chan_lock);
rc = generate_key(ses, ptriplet->encryption.label,
ptriplet->encryption.context,
ses->smb3encryptionkey,
SMB3_ENC_DEC_KEY_SIZE);
rc = generate_key(ses, ptriplet->decryption.label,
ptriplet->decryption.context,
ses->smb3decryptionkey,
SMB3_ENC_DEC_KEY_SIZE);
if (rc)
return rc;
}
if (rc)
return rc;
#ifdef CONFIG_CIFS_DEBUG_DUMP_KEYS
cifs_dbg(VFS, "%s: dumping generated AES session keys\n", __func__);
/*
* The session id is opaque in terms of endianness, so we can't
* print it as a long long. we dump it as we got it on the wire
*/
cifs_dbg(VFS, "Session Id %*ph\n", (int)sizeof(ses->Suid),
&ses->Suid);
cifs_dbg(VFS, "Cipher type %d\n", server->cipher_type);
cifs_dbg(VFS, "Session Key %*ph\n",
SMB2_NTLMV2_SESSKEY_SIZE, ses->auth_key.response);
cifs_dbg(VFS, "Signing Key %*ph\n",
SMB3_SIGN_KEY_SIZE, ses->smb3signingkey);
if ((server->cipher_type == SMB2_ENCRYPTION_AES256_CCM) ||
(server->cipher_type == SMB2_ENCRYPTION_AES256_GCM)) {
cifs_dbg(VFS, "ServerIn Key %*ph\n",
SMB3_GCM256_CRYPTKEY_SIZE, ses->smb3encryptionkey);
cifs_dbg(VFS, "ServerOut Key %*ph\n",
SMB3_GCM256_CRYPTKEY_SIZE, ses->smb3decryptionkey);
} else {
cifs_dbg(VFS, "ServerIn Key %*ph\n",
SMB3_GCM128_CRYPTKEY_SIZE, ses->smb3encryptionkey);
cifs_dbg(VFS, "ServerOut Key %*ph\n",
SMB3_GCM128_CRYPTKEY_SIZE, ses->smb3decryptionkey);
}
#endif
return rc;
}
int
generate_smb30signingkey(struct cifs_ses *ses,
struct TCP_Server_Info *server)
{
struct derivation_triplet triplet;
struct derivation *d;
d = &triplet.signing;
d->label.iov_base = "SMB2AESCMAC";
d->label.iov_len = 12;
d->context.iov_base = "SmbSign";
d->context.iov_len = 8;
d = &triplet.encryption;
d->label.iov_base = "SMB2AESCCM";
d->label.iov_len = 11;
d->context.iov_base = "ServerIn ";
d->context.iov_len = 10;
d = &triplet.decryption;
d->label.iov_base = "SMB2AESCCM";
d->label.iov_len = 11;
d->context.iov_base = "ServerOut";
d->context.iov_len = 10;
return generate_smb3signingkey(ses, server, &triplet);
}
int
generate_smb311signingkey(struct cifs_ses *ses,
struct TCP_Server_Info *server)
{
struct derivation_triplet triplet;
struct derivation *d;
d = &triplet.signing;
d->label.iov_base = "SMBSigningKey";
d->label.iov_len = 14;
d->context.iov_base = ses->preauth_sha_hash;
d->context.iov_len = 64;
d = &triplet.encryption;
d->label.iov_base = "SMBC2SCipherKey";
d->label.iov_len = 16;
d->context.iov_base = ses->preauth_sha_hash;
d->context.iov_len = 64;
d = &triplet.decryption;
d->label.iov_base = "SMBS2CCipherKey";
d->label.iov_len = 16;
d->context.iov_base = ses->preauth_sha_hash;
d->context.iov_len = 64;
return generate_smb3signingkey(ses, server, &triplet);
}
int
smb3_calc_signature(struct smb_rqst *rqst, struct TCP_Server_Info *server,
bool allocate_crypto)
{
int rc;
unsigned char smb3_signature[SMB2_CMACAES_SIZE];
unsigned char *sigptr = smb3_signature;
struct kvec *iov = rqst->rq_iov;
struct smb2_hdr *shdr = (struct smb2_hdr *)iov[0].iov_base;
struct shash_desc *shash = NULL;
struct smb_rqst drqst;
u8 key[SMB3_SIGN_KEY_SIZE];
rc = smb2_get_sign_key(le64_to_cpu(shdr->SessionId), server, key);
if (unlikely(rc)) {
cifs_server_dbg(FYI, "%s: Could not get signing key\n", __func__);
return rc;
}
if (allocate_crypto) {
rc = cifs_alloc_hash("cmac(aes)", &shash);
if (rc)
return rc;
} else {
shash = server->secmech.aes_cmac;
}
memset(smb3_signature, 0x0, SMB2_CMACAES_SIZE);
memset(shdr->Signature, 0x0, SMB2_SIGNATURE_SIZE);
rc = crypto_shash_setkey(shash->tfm, key, SMB2_CMACAES_SIZE);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not set key for cmac aes\n", __func__);
goto out;
}
/*
* we already allocate aes_cmac when we init smb3 signing key,
* so unlike smb2 case we do not have to check here if secmech are
* initialized
*/
rc = crypto_shash_init(shash);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not init cmac aes\n", __func__);
goto out;
}
/*
* For SMB2+, __cifs_calc_signature() expects to sign only the actual
* data, that is, iov[0] should not contain a rfc1002 length.
*
* Sign the rfc1002 length prior to passing the data (iov[1-N]) down to
* __cifs_calc_signature().
*/
drqst = *rqst;
if (drqst.rq_nvec >= 2 && iov[0].iov_len == 4) {
rc = crypto_shash_update(shash, iov[0].iov_base,
iov[0].iov_len);
if (rc) {
cifs_server_dbg(VFS, "%s: Could not update with payload\n",
__func__);
goto out;
}
drqst.rq_iov++;
drqst.rq_nvec--;
}
rc = __cifs_calc_signature(&drqst, server, sigptr, shash);
if (!rc)
memcpy(shdr->Signature, sigptr, SMB2_SIGNATURE_SIZE);
out:
if (allocate_crypto)
cifs_free_hash(&shash);
return rc;
}
/* must be called with server->srv_mutex held */
static int
smb2_sign_rqst(struct smb_rqst *rqst, struct TCP_Server_Info *server)
{
int rc = 0;
struct smb2_hdr *shdr;
struct smb2_sess_setup_req *ssr;
bool is_binding;
bool is_signed;
shdr = (struct smb2_hdr *)rqst->rq_iov[0].iov_base;
ssr = (struct smb2_sess_setup_req *)shdr;
is_binding = shdr->Command == SMB2_SESSION_SETUP &&
(ssr->Flags & SMB2_SESSION_REQ_FLAG_BINDING);
is_signed = shdr->Flags & SMB2_FLAGS_SIGNED;
if (!is_signed)
return 0;
spin_lock(&server->srv_lock);
if (server->ops->need_neg &&
server->ops->need_neg(server)) {
spin_unlock(&server->srv_lock);
return 0;
}
spin_unlock(&server->srv_lock);
if (!is_binding && !server->session_estab) {
strncpy(shdr->Signature, "BSRSPYL", 8);
return 0;
}
rc = server->ops->calc_signature(rqst, server, false);
return rc;
}
int
smb2_verify_signature(struct smb_rqst *rqst, struct TCP_Server_Info *server)
{
unsigned int rc;
char server_response_sig[SMB2_SIGNATURE_SIZE];
struct smb2_hdr *shdr =
(struct smb2_hdr *)rqst->rq_iov[0].iov_base;
if ((shdr->Command == SMB2_NEGOTIATE) ||
(shdr->Command == SMB2_SESSION_SETUP) ||
(shdr->Command == SMB2_OPLOCK_BREAK) ||
server->ignore_signature ||
(!server->session_estab))
return 0;
/*
* BB what if signatures are supposed to be on for session but
* server does not send one? BB
*/
/* Do not need to verify session setups with signature "BSRSPYL " */
if (memcmp(shdr->Signature, "BSRSPYL ", 8) == 0)
cifs_dbg(FYI, "dummy signature received for smb command 0x%x\n",
shdr->Command);
/*
* Save off the origiginal signature so we can modify the smb and check
* our calculated signature against what the server sent.
*/
memcpy(server_response_sig, shdr->Signature, SMB2_SIGNATURE_SIZE);
memset(shdr->Signature, 0, SMB2_SIGNATURE_SIZE);
rc = server->ops->calc_signature(rqst, server, true);
if (rc)
return rc;
if (memcmp(server_response_sig, shdr->Signature, SMB2_SIGNATURE_SIZE)) {
cifs_dbg(VFS, "sign fail cmd 0x%x message id 0x%llx\n",
shdr->Command, shdr->MessageId);
return -EACCES;
} else
return 0;
}
/*
* Set message id for the request. Should be called after wait_for_free_request
* and when srv_mutex is held.
*/
static inline void
smb2_seq_num_into_buf(struct TCP_Server_Info *server,
struct smb2_hdr *shdr)
{
unsigned int i, num = le16_to_cpu(shdr->CreditCharge);
shdr->MessageId = get_next_mid64(server);
/* skip message numbers according to CreditCharge field */
for (i = 1; i < num; i++)
get_next_mid(server);
}
static struct mid_q_entry *
smb2_mid_entry_alloc(const struct smb2_hdr *shdr,
struct TCP_Server_Info *server)
{
struct mid_q_entry *temp;
unsigned int credits = le16_to_cpu(shdr->CreditCharge);
if (server == NULL) {
cifs_dbg(VFS, "Null TCP session in smb2_mid_entry_alloc\n");
return NULL;
}
temp = mempool_alloc(cifs_mid_poolp, GFP_NOFS);
memset(temp, 0, sizeof(struct mid_q_entry));
kref_init(&temp->refcount);
temp->mid = le64_to_cpu(shdr->MessageId);
temp->credits = credits > 0 ? credits : 1;
temp->pid = current->pid;
temp->command = shdr->Command; /* Always LE */
temp->when_alloc = jiffies;
temp->server = server;
/*
* The default is for the mid to be synchronous, so the
* default callback just wakes up the current task.
*/
get_task_struct(current);
temp->creator = current;
temp->callback = cifs_wake_up_task;
temp->callback_data = current;
atomic_inc(&mid_count);
temp->mid_state = MID_REQUEST_ALLOCATED;
trace_smb3_cmd_enter(le32_to_cpu(shdr->Id.SyncId.TreeId),
le64_to_cpu(shdr->SessionId),
le16_to_cpu(shdr->Command), temp->mid);
return temp;
}
static int
smb2_get_mid_entry(struct cifs_ses *ses, struct TCP_Server_Info *server,
struct smb2_hdr *shdr, struct mid_q_entry **mid)
{
spin_lock(&server->srv_lock);
if (server->tcpStatus == CifsExiting) {
spin_unlock(&server->srv_lock);
return -ENOENT;
}
if (server->tcpStatus == CifsNeedReconnect) {
spin_unlock(&server->srv_lock);
cifs_dbg(FYI, "tcp session dead - return to caller to retry\n");
return -EAGAIN;
}
if (server->tcpStatus == CifsNeedNegotiate &&
shdr->Command != SMB2_NEGOTIATE) {
spin_unlock(&server->srv_lock);
return -EAGAIN;
}
spin_unlock(&server->srv_lock);
spin_lock(&ses->ses_lock);
if (ses->ses_status == SES_NEW) {
if ((shdr->Command != SMB2_SESSION_SETUP) &&
(shdr->Command != SMB2_NEGOTIATE)) {
spin_unlock(&ses->ses_lock);
return -EAGAIN;
}
/* else ok - we are setting up session */
}
if (ses->ses_status == SES_EXITING) {
if (shdr->Command != SMB2_LOGOFF) {
spin_unlock(&ses->ses_lock);
return -EAGAIN;
}
/* else ok - we are shutting down the session */
}
spin_unlock(&ses->ses_lock);
*mid = smb2_mid_entry_alloc(shdr, server);
if (*mid == NULL)
return -ENOMEM;
spin_lock(&server->mid_lock);
list_add_tail(&(*mid)->qhead, &server->pending_mid_q);
spin_unlock(&server->mid_lock);
return 0;
}
int
smb2_check_receive(struct mid_q_entry *mid, struct TCP_Server_Info *server,
bool log_error)
{
unsigned int len = mid->resp_buf_size;
struct kvec iov[1];
struct smb_rqst rqst = { .rq_iov = iov,
.rq_nvec = 1 };
iov[0].iov_base = (char *)mid->resp_buf;
iov[0].iov_len = len;
dump_smb(mid->resp_buf, min_t(u32, 80, len));
/* convert the length into a more usable form */
if (len > 24 && server->sign && !mid->decrypted) {
int rc;
rc = smb2_verify_signature(&rqst, server);
if (rc)
cifs_server_dbg(VFS, "SMB signature verification returned error = %d\n",
rc);
}
return map_smb2_to_linux_error(mid->resp_buf, log_error);
}
struct mid_q_entry *
smb2_setup_request(struct cifs_ses *ses, struct TCP_Server_Info *server,
struct smb_rqst *rqst)
{
int rc;
struct smb2_hdr *shdr =
(struct smb2_hdr *)rqst->rq_iov[0].iov_base;
struct mid_q_entry *mid;
smb2_seq_num_into_buf(server, shdr);
rc = smb2_get_mid_entry(ses, server, shdr, &mid);
if (rc) {
revert_current_mid_from_hdr(server, shdr);
return ERR_PTR(rc);
}
rc = smb2_sign_rqst(rqst, server);
if (rc) {
revert_current_mid_from_hdr(server, shdr);
delete_mid(mid);
return ERR_PTR(rc);
}
return mid;
}
struct mid_q_entry *
smb2_setup_async_request(struct TCP_Server_Info *server, struct smb_rqst *rqst)
{
int rc;
struct smb2_hdr *shdr =
(struct smb2_hdr *)rqst->rq_iov[0].iov_base;
struct mid_q_entry *mid;
spin_lock(&server->srv_lock);
if (server->tcpStatus == CifsNeedNegotiate &&
shdr->Command != SMB2_NEGOTIATE) {
spin_unlock(&server->srv_lock);
return ERR_PTR(-EAGAIN);
}
spin_unlock(&server->srv_lock);
smb2_seq_num_into_buf(server, shdr);
mid = smb2_mid_entry_alloc(shdr, server);
if (mid == NULL) {
revert_current_mid_from_hdr(server, shdr);
return ERR_PTR(-ENOMEM);
}
rc = smb2_sign_rqst(rqst, server);
if (rc) {
revert_current_mid_from_hdr(server, shdr);
release_mid(mid);
return ERR_PTR(rc);
}
return mid;
}
int
smb3_crypto_aead_allocate(struct TCP_Server_Info *server)
{
struct crypto_aead *tfm;
if (!server->secmech.enc) {
if ((server->cipher_type == SMB2_ENCRYPTION_AES128_GCM) ||
(server->cipher_type == SMB2_ENCRYPTION_AES256_GCM))
tfm = crypto_alloc_aead("gcm(aes)", 0, 0);
else
tfm = crypto_alloc_aead("ccm(aes)", 0, 0);
if (IS_ERR(tfm)) {
cifs_server_dbg(VFS, "%s: Failed alloc encrypt aead\n",
__func__);
return PTR_ERR(tfm);
}
server->secmech.enc = tfm;
}
if (!server->secmech.dec) {
if ((server->cipher_type == SMB2_ENCRYPTION_AES128_GCM) ||
(server->cipher_type == SMB2_ENCRYPTION_AES256_GCM))
tfm = crypto_alloc_aead("gcm(aes)", 0, 0);
else
tfm = crypto_alloc_aead("ccm(aes)", 0, 0);
if (IS_ERR(tfm)) {
crypto_free_aead(server->secmech.enc);
server->secmech.enc = NULL;
cifs_server_dbg(VFS, "%s: Failed to alloc decrypt aead\n",
__func__);
return PTR_ERR(tfm);
}
server->secmech.dec = tfm;
}
return 0;
}