| /* |
| * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. |
| * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. |
| * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. |
| * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. |
| * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. |
| * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/sched/signal.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/splice.h> |
| #include <crypto/aead.h> |
| |
| #include <net/strparser.h> |
| #include <net/tls.h> |
| #include <trace/events/sock.h> |
| |
| #include "tls.h" |
| |
| struct tls_decrypt_arg { |
| struct_group(inargs, |
| bool zc; |
| bool async; |
| u8 tail; |
| ); |
| |
| struct sk_buff *skb; |
| }; |
| |
| struct tls_decrypt_ctx { |
| struct sock *sk; |
| u8 iv[MAX_IV_SIZE]; |
| u8 aad[TLS_MAX_AAD_SIZE]; |
| u8 tail; |
| struct scatterlist sg[]; |
| }; |
| |
| noinline void tls_err_abort(struct sock *sk, int err) |
| { |
| WARN_ON_ONCE(err >= 0); |
| /* sk->sk_err should contain a positive error code. */ |
| WRITE_ONCE(sk->sk_err, -err); |
| /* Paired with smp_rmb() in tcp_poll() */ |
| smp_wmb(); |
| sk_error_report(sk); |
| } |
| |
| static int __skb_nsg(struct sk_buff *skb, int offset, int len, |
| unsigned int recursion_level) |
| { |
| int start = skb_headlen(skb); |
| int i, chunk = start - offset; |
| struct sk_buff *frag_iter; |
| int elt = 0; |
| |
| if (unlikely(recursion_level >= 24)) |
| return -EMSGSIZE; |
| |
| if (chunk > 0) { |
| if (chunk > len) |
| chunk = len; |
| elt++; |
| len -= chunk; |
| if (len == 0) |
| return elt; |
| offset += chunk; |
| } |
| |
| for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
| int end; |
| |
| WARN_ON(start > offset + len); |
| |
| end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); |
| chunk = end - offset; |
| if (chunk > 0) { |
| if (chunk > len) |
| chunk = len; |
| elt++; |
| len -= chunk; |
| if (len == 0) |
| return elt; |
| offset += chunk; |
| } |
| start = end; |
| } |
| |
| if (unlikely(skb_has_frag_list(skb))) { |
| skb_walk_frags(skb, frag_iter) { |
| int end, ret; |
| |
| WARN_ON(start > offset + len); |
| |
| end = start + frag_iter->len; |
| chunk = end - offset; |
| if (chunk > 0) { |
| if (chunk > len) |
| chunk = len; |
| ret = __skb_nsg(frag_iter, offset - start, chunk, |
| recursion_level + 1); |
| if (unlikely(ret < 0)) |
| return ret; |
| elt += ret; |
| len -= chunk; |
| if (len == 0) |
| return elt; |
| offset += chunk; |
| } |
| start = end; |
| } |
| } |
| BUG_ON(len); |
| return elt; |
| } |
| |
| /* Return the number of scatterlist elements required to completely map the |
| * skb, or -EMSGSIZE if the recursion depth is exceeded. |
| */ |
| static int skb_nsg(struct sk_buff *skb, int offset, int len) |
| { |
| return __skb_nsg(skb, offset, len, 0); |
| } |
| |
| static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, |
| struct tls_decrypt_arg *darg) |
| { |
| struct strp_msg *rxm = strp_msg(skb); |
| struct tls_msg *tlm = tls_msg(skb); |
| int sub = 0; |
| |
| /* Determine zero-padding length */ |
| if (prot->version == TLS_1_3_VERSION) { |
| int offset = rxm->full_len - TLS_TAG_SIZE - 1; |
| char content_type = darg->zc ? darg->tail : 0; |
| int err; |
| |
| while (content_type == 0) { |
| if (offset < prot->prepend_size) |
| return -EBADMSG; |
| err = skb_copy_bits(skb, rxm->offset + offset, |
| &content_type, 1); |
| if (err) |
| return err; |
| if (content_type) |
| break; |
| sub++; |
| offset--; |
| } |
| tlm->control = content_type; |
| } |
| return sub; |
| } |
| |
| static void tls_decrypt_done(void *data, int err) |
| { |
| struct aead_request *aead_req = data; |
| struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); |
| struct scatterlist *sgout = aead_req->dst; |
| struct scatterlist *sgin = aead_req->src; |
| struct tls_sw_context_rx *ctx; |
| struct tls_decrypt_ctx *dctx; |
| struct tls_context *tls_ctx; |
| struct scatterlist *sg; |
| unsigned int pages; |
| struct sock *sk; |
| int aead_size; |
| |
| aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); |
| aead_size = ALIGN(aead_size, __alignof__(*dctx)); |
| dctx = (void *)((u8 *)aead_req + aead_size); |
| |
| sk = dctx->sk; |
| tls_ctx = tls_get_ctx(sk); |
| ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| /* Propagate if there was an err */ |
| if (err) { |
| if (err == -EBADMSG) |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); |
| ctx->async_wait.err = err; |
| tls_err_abort(sk, err); |
| } |
| |
| /* Free the destination pages if skb was not decrypted inplace */ |
| if (sgout != sgin) { |
| /* Skip the first S/G entry as it points to AAD */ |
| for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { |
| if (!sg) |
| break; |
| put_page(sg_page(sg)); |
| } |
| } |
| |
| kfree(aead_req); |
| |
| spin_lock_bh(&ctx->decrypt_compl_lock); |
| if (!atomic_dec_return(&ctx->decrypt_pending)) |
| complete(&ctx->async_wait.completion); |
| spin_unlock_bh(&ctx->decrypt_compl_lock); |
| } |
| |
| static int tls_do_decryption(struct sock *sk, |
| struct scatterlist *sgin, |
| struct scatterlist *sgout, |
| char *iv_recv, |
| size_t data_len, |
| struct aead_request *aead_req, |
| struct tls_decrypt_arg *darg) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| int ret; |
| |
| aead_request_set_tfm(aead_req, ctx->aead_recv); |
| aead_request_set_ad(aead_req, prot->aad_size); |
| aead_request_set_crypt(aead_req, sgin, sgout, |
| data_len + prot->tag_size, |
| (u8 *)iv_recv); |
| |
| if (darg->async) { |
| aead_request_set_callback(aead_req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG, |
| tls_decrypt_done, aead_req); |
| atomic_inc(&ctx->decrypt_pending); |
| } else { |
| aead_request_set_callback(aead_req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &ctx->async_wait); |
| } |
| |
| ret = crypto_aead_decrypt(aead_req); |
| if (ret == -EINPROGRESS) { |
| if (darg->async) |
| return 0; |
| |
| ret = crypto_wait_req(ret, &ctx->async_wait); |
| } |
| darg->async = false; |
| |
| return ret; |
| } |
| |
| static void tls_trim_both_msgs(struct sock *sk, int target_size) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| |
| sk_msg_trim(sk, &rec->msg_plaintext, target_size); |
| if (target_size > 0) |
| target_size += prot->overhead_size; |
| sk_msg_trim(sk, &rec->msg_encrypted, target_size); |
| } |
| |
| static int tls_alloc_encrypted_msg(struct sock *sk, int len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| struct sk_msg *msg_en = &rec->msg_encrypted; |
| |
| return sk_msg_alloc(sk, msg_en, len, 0); |
| } |
| |
| static int tls_clone_plaintext_msg(struct sock *sk, int required) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| struct sk_msg *msg_pl = &rec->msg_plaintext; |
| struct sk_msg *msg_en = &rec->msg_encrypted; |
| int skip, len; |
| |
| /* We add page references worth len bytes from encrypted sg |
| * at the end of plaintext sg. It is guaranteed that msg_en |
| * has enough required room (ensured by caller). |
| */ |
| len = required - msg_pl->sg.size; |
| |
| /* Skip initial bytes in msg_en's data to be able to use |
| * same offset of both plain and encrypted data. |
| */ |
| skip = prot->prepend_size + msg_pl->sg.size; |
| |
| return sk_msg_clone(sk, msg_pl, msg_en, skip, len); |
| } |
| |
| static struct tls_rec *tls_get_rec(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct sk_msg *msg_pl, *msg_en; |
| struct tls_rec *rec; |
| int mem_size; |
| |
| mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); |
| |
| rec = kzalloc(mem_size, sk->sk_allocation); |
| if (!rec) |
| return NULL; |
| |
| msg_pl = &rec->msg_plaintext; |
| msg_en = &rec->msg_encrypted; |
| |
| sk_msg_init(msg_pl); |
| sk_msg_init(msg_en); |
| |
| sg_init_table(rec->sg_aead_in, 2); |
| sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); |
| sg_unmark_end(&rec->sg_aead_in[1]); |
| |
| sg_init_table(rec->sg_aead_out, 2); |
| sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); |
| sg_unmark_end(&rec->sg_aead_out[1]); |
| |
| rec->sk = sk; |
| |
| return rec; |
| } |
| |
| static void tls_free_rec(struct sock *sk, struct tls_rec *rec) |
| { |
| sk_msg_free(sk, &rec->msg_encrypted); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } |
| |
| static void tls_free_open_rec(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| |
| if (rec) { |
| tls_free_rec(sk, rec); |
| ctx->open_rec = NULL; |
| } |
| } |
| |
| int tls_tx_records(struct sock *sk, int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec, *tmp; |
| struct sk_msg *msg_en; |
| int tx_flags, rc = 0; |
| |
| if (tls_is_partially_sent_record(tls_ctx)) { |
| rec = list_first_entry(&ctx->tx_list, |
| struct tls_rec, list); |
| |
| if (flags == -1) |
| tx_flags = rec->tx_flags; |
| else |
| tx_flags = flags; |
| |
| rc = tls_push_partial_record(sk, tls_ctx, tx_flags); |
| if (rc) |
| goto tx_err; |
| |
| /* Full record has been transmitted. |
| * Remove the head of tx_list |
| */ |
| list_del(&rec->list); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } |
| |
| /* Tx all ready records */ |
| list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { |
| if (READ_ONCE(rec->tx_ready)) { |
| if (flags == -1) |
| tx_flags = rec->tx_flags; |
| else |
| tx_flags = flags; |
| |
| msg_en = &rec->msg_encrypted; |
| rc = tls_push_sg(sk, tls_ctx, |
| &msg_en->sg.data[msg_en->sg.curr], |
| 0, tx_flags); |
| if (rc) |
| goto tx_err; |
| |
| list_del(&rec->list); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } else { |
| break; |
| } |
| } |
| |
| tx_err: |
| if (rc < 0 && rc != -EAGAIN) |
| tls_err_abort(sk, -EBADMSG); |
| |
| return rc; |
| } |
| |
| static void tls_encrypt_done(void *data, int err) |
| { |
| struct tls_sw_context_tx *ctx; |
| struct tls_context *tls_ctx; |
| struct tls_prot_info *prot; |
| struct tls_rec *rec = data; |
| struct scatterlist *sge; |
| struct sk_msg *msg_en; |
| bool ready = false; |
| struct sock *sk; |
| int pending; |
| |
| msg_en = &rec->msg_encrypted; |
| |
| sk = rec->sk; |
| tls_ctx = tls_get_ctx(sk); |
| prot = &tls_ctx->prot_info; |
| ctx = tls_sw_ctx_tx(tls_ctx); |
| |
| sge = sk_msg_elem(msg_en, msg_en->sg.curr); |
| sge->offset -= prot->prepend_size; |
| sge->length += prot->prepend_size; |
| |
| /* Check if error is previously set on socket */ |
| if (err || sk->sk_err) { |
| rec = NULL; |
| |
| /* If err is already set on socket, return the same code */ |
| if (sk->sk_err) { |
| ctx->async_wait.err = -sk->sk_err; |
| } else { |
| ctx->async_wait.err = err; |
| tls_err_abort(sk, err); |
| } |
| } |
| |
| if (rec) { |
| struct tls_rec *first_rec; |
| |
| /* Mark the record as ready for transmission */ |
| smp_store_mb(rec->tx_ready, true); |
| |
| /* If received record is at head of tx_list, schedule tx */ |
| first_rec = list_first_entry(&ctx->tx_list, |
| struct tls_rec, list); |
| if (rec == first_rec) |
| ready = true; |
| } |
| |
| spin_lock_bh(&ctx->encrypt_compl_lock); |
| pending = atomic_dec_return(&ctx->encrypt_pending); |
| |
| if (!pending && ctx->async_notify) |
| complete(&ctx->async_wait.completion); |
| spin_unlock_bh(&ctx->encrypt_compl_lock); |
| |
| if (!ready) |
| return; |
| |
| /* Schedule the transmission */ |
| if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) |
| schedule_delayed_work(&ctx->tx_work.work, 1); |
| } |
| |
| static int tls_do_encryption(struct sock *sk, |
| struct tls_context *tls_ctx, |
| struct tls_sw_context_tx *ctx, |
| struct aead_request *aead_req, |
| size_t data_len, u32 start) |
| { |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_rec *rec = ctx->open_rec; |
| struct sk_msg *msg_en = &rec->msg_encrypted; |
| struct scatterlist *sge = sk_msg_elem(msg_en, start); |
| int rc, iv_offset = 0; |
| |
| /* For CCM based ciphers, first byte of IV is a constant */ |
| switch (prot->cipher_type) { |
| case TLS_CIPHER_AES_CCM_128: |
| rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; |
| iv_offset = 1; |
| break; |
| case TLS_CIPHER_SM4_CCM: |
| rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; |
| iv_offset = 1; |
| break; |
| } |
| |
| memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, |
| prot->iv_size + prot->salt_size); |
| |
| tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, |
| tls_ctx->tx.rec_seq); |
| |
| sge->offset += prot->prepend_size; |
| sge->length -= prot->prepend_size; |
| |
| msg_en->sg.curr = start; |
| |
| aead_request_set_tfm(aead_req, ctx->aead_send); |
| aead_request_set_ad(aead_req, prot->aad_size); |
| aead_request_set_crypt(aead_req, rec->sg_aead_in, |
| rec->sg_aead_out, |
| data_len, rec->iv_data); |
| |
| aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, |
| tls_encrypt_done, rec); |
| |
| /* Add the record in tx_list */ |
| list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); |
| atomic_inc(&ctx->encrypt_pending); |
| |
| rc = crypto_aead_encrypt(aead_req); |
| if (!rc || rc != -EINPROGRESS) { |
| atomic_dec(&ctx->encrypt_pending); |
| sge->offset -= prot->prepend_size; |
| sge->length += prot->prepend_size; |
| } |
| |
| if (!rc) { |
| WRITE_ONCE(rec->tx_ready, true); |
| } else if (rc != -EINPROGRESS) { |
| list_del(&rec->list); |
| return rc; |
| } |
| |
| /* Unhook the record from context if encryption is not failure */ |
| ctx->open_rec = NULL; |
| tls_advance_record_sn(sk, prot, &tls_ctx->tx); |
| return rc; |
| } |
| |
| static int tls_split_open_record(struct sock *sk, struct tls_rec *from, |
| struct tls_rec **to, struct sk_msg *msg_opl, |
| struct sk_msg *msg_oen, u32 split_point, |
| u32 tx_overhead_size, u32 *orig_end) |
| { |
| u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; |
| struct scatterlist *sge, *osge, *nsge; |
| u32 orig_size = msg_opl->sg.size; |
| struct scatterlist tmp = { }; |
| struct sk_msg *msg_npl; |
| struct tls_rec *new; |
| int ret; |
| |
| new = tls_get_rec(sk); |
| if (!new) |
| return -ENOMEM; |
| ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + |
| tx_overhead_size, 0); |
| if (ret < 0) { |
| tls_free_rec(sk, new); |
| return ret; |
| } |
| |
| *orig_end = msg_opl->sg.end; |
| i = msg_opl->sg.start; |
| sge = sk_msg_elem(msg_opl, i); |
| while (apply && sge->length) { |
| if (sge->length > apply) { |
| u32 len = sge->length - apply; |
| |
| get_page(sg_page(sge)); |
| sg_set_page(&tmp, sg_page(sge), len, |
| sge->offset + apply); |
| sge->length = apply; |
| bytes += apply; |
| apply = 0; |
| } else { |
| apply -= sge->length; |
| bytes += sge->length; |
| } |
| |
| sk_msg_iter_var_next(i); |
| if (i == msg_opl->sg.end) |
| break; |
| sge = sk_msg_elem(msg_opl, i); |
| } |
| |
| msg_opl->sg.end = i; |
| msg_opl->sg.curr = i; |
| msg_opl->sg.copybreak = 0; |
| msg_opl->apply_bytes = 0; |
| msg_opl->sg.size = bytes; |
| |
| msg_npl = &new->msg_plaintext; |
| msg_npl->apply_bytes = apply; |
| msg_npl->sg.size = orig_size - bytes; |
| |
| j = msg_npl->sg.start; |
| nsge = sk_msg_elem(msg_npl, j); |
| if (tmp.length) { |
| memcpy(nsge, &tmp, sizeof(*nsge)); |
| sk_msg_iter_var_next(j); |
| nsge = sk_msg_elem(msg_npl, j); |
| } |
| |
| osge = sk_msg_elem(msg_opl, i); |
| while (osge->length) { |
| memcpy(nsge, osge, sizeof(*nsge)); |
| sg_unmark_end(nsge); |
| sk_msg_iter_var_next(i); |
| sk_msg_iter_var_next(j); |
| if (i == *orig_end) |
| break; |
| osge = sk_msg_elem(msg_opl, i); |
| nsge = sk_msg_elem(msg_npl, j); |
| } |
| |
| msg_npl->sg.end = j; |
| msg_npl->sg.curr = j; |
| msg_npl->sg.copybreak = 0; |
| |
| *to = new; |
| return 0; |
| } |
| |
| static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, |
| struct tls_rec *from, u32 orig_end) |
| { |
| struct sk_msg *msg_npl = &from->msg_plaintext; |
| struct sk_msg *msg_opl = &to->msg_plaintext; |
| struct scatterlist *osge, *nsge; |
| u32 i, j; |
| |
| i = msg_opl->sg.end; |
| sk_msg_iter_var_prev(i); |
| j = msg_npl->sg.start; |
| |
| osge = sk_msg_elem(msg_opl, i); |
| nsge = sk_msg_elem(msg_npl, j); |
| |
| if (sg_page(osge) == sg_page(nsge) && |
| osge->offset + osge->length == nsge->offset) { |
| osge->length += nsge->length; |
| put_page(sg_page(nsge)); |
| } |
| |
| msg_opl->sg.end = orig_end; |
| msg_opl->sg.curr = orig_end; |
| msg_opl->sg.copybreak = 0; |
| msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; |
| msg_opl->sg.size += msg_npl->sg.size; |
| |
| sk_msg_free(sk, &to->msg_encrypted); |
| sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); |
| |
| kfree(from); |
| } |
| |
| static int tls_push_record(struct sock *sk, int flags, |
| unsigned char record_type) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec, *tmp = NULL; |
| u32 i, split_point, orig_end; |
| struct sk_msg *msg_pl, *msg_en; |
| struct aead_request *req; |
| bool split; |
| int rc; |
| |
| if (!rec) |
| return 0; |
| |
| msg_pl = &rec->msg_plaintext; |
| msg_en = &rec->msg_encrypted; |
| |
| split_point = msg_pl->apply_bytes; |
| split = split_point && split_point < msg_pl->sg.size; |
| if (unlikely((!split && |
| msg_pl->sg.size + |
| prot->overhead_size > msg_en->sg.size) || |
| (split && |
| split_point + |
| prot->overhead_size > msg_en->sg.size))) { |
| split = true; |
| split_point = msg_en->sg.size; |
| } |
| if (split) { |
| rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, |
| split_point, prot->overhead_size, |
| &orig_end); |
| if (rc < 0) |
| return rc; |
| /* This can happen if above tls_split_open_record allocates |
| * a single large encryption buffer instead of two smaller |
| * ones. In this case adjust pointers and continue without |
| * split. |
| */ |
| if (!msg_pl->sg.size) { |
| tls_merge_open_record(sk, rec, tmp, orig_end); |
| msg_pl = &rec->msg_plaintext; |
| msg_en = &rec->msg_encrypted; |
| split = false; |
| } |
| sk_msg_trim(sk, msg_en, msg_pl->sg.size + |
| prot->overhead_size); |
| } |
| |
| rec->tx_flags = flags; |
| req = &rec->aead_req; |
| |
| i = msg_pl->sg.end; |
| sk_msg_iter_var_prev(i); |
| |
| rec->content_type = record_type; |
| if (prot->version == TLS_1_3_VERSION) { |
| /* Add content type to end of message. No padding added */ |
| sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); |
| sg_mark_end(&rec->sg_content_type); |
| sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, |
| &rec->sg_content_type); |
| } else { |
| sg_mark_end(sk_msg_elem(msg_pl, i)); |
| } |
| |
| if (msg_pl->sg.end < msg_pl->sg.start) { |
| sg_chain(&msg_pl->sg.data[msg_pl->sg.start], |
| MAX_SKB_FRAGS - msg_pl->sg.start + 1, |
| msg_pl->sg.data); |
| } |
| |
| i = msg_pl->sg.start; |
| sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); |
| |
| i = msg_en->sg.end; |
| sk_msg_iter_var_prev(i); |
| sg_mark_end(sk_msg_elem(msg_en, i)); |
| |
| i = msg_en->sg.start; |
| sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); |
| |
| tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, |
| tls_ctx->tx.rec_seq, record_type, prot); |
| |
| tls_fill_prepend(tls_ctx, |
| page_address(sg_page(&msg_en->sg.data[i])) + |
| msg_en->sg.data[i].offset, |
| msg_pl->sg.size + prot->tail_size, |
| record_type); |
| |
| tls_ctx->pending_open_record_frags = false; |
| |
| rc = tls_do_encryption(sk, tls_ctx, ctx, req, |
| msg_pl->sg.size + prot->tail_size, i); |
| if (rc < 0) { |
| if (rc != -EINPROGRESS) { |
| tls_err_abort(sk, -EBADMSG); |
| if (split) { |
| tls_ctx->pending_open_record_frags = true; |
| tls_merge_open_record(sk, rec, tmp, orig_end); |
| } |
| } |
| ctx->async_capable = 1; |
| return rc; |
| } else if (split) { |
| msg_pl = &tmp->msg_plaintext; |
| msg_en = &tmp->msg_encrypted; |
| sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); |
| tls_ctx->pending_open_record_frags = true; |
| ctx->open_rec = tmp; |
| } |
| |
| return tls_tx_records(sk, flags); |
| } |
| |
| static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, |
| bool full_record, u8 record_type, |
| ssize_t *copied, int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct sk_msg msg_redir = { }; |
| struct sk_psock *psock; |
| struct sock *sk_redir; |
| struct tls_rec *rec; |
| bool enospc, policy, redir_ingress; |
| int err = 0, send; |
| u32 delta = 0; |
| |
| policy = !(flags & MSG_SENDPAGE_NOPOLICY); |
| psock = sk_psock_get(sk); |
| if (!psock || !policy) { |
| err = tls_push_record(sk, flags, record_type); |
| if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { |
| *copied -= sk_msg_free(sk, msg); |
| tls_free_open_rec(sk); |
| err = -sk->sk_err; |
| } |
| if (psock) |
| sk_psock_put(sk, psock); |
| return err; |
| } |
| more_data: |
| enospc = sk_msg_full(msg); |
| if (psock->eval == __SK_NONE) { |
| delta = msg->sg.size; |
| psock->eval = sk_psock_msg_verdict(sk, psock, msg); |
| delta -= msg->sg.size; |
| } |
| if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && |
| !enospc && !full_record) { |
| err = -ENOSPC; |
| goto out_err; |
| } |
| msg->cork_bytes = 0; |
| send = msg->sg.size; |
| if (msg->apply_bytes && msg->apply_bytes < send) |
| send = msg->apply_bytes; |
| |
| switch (psock->eval) { |
| case __SK_PASS: |
| err = tls_push_record(sk, flags, record_type); |
| if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { |
| *copied -= sk_msg_free(sk, msg); |
| tls_free_open_rec(sk); |
| err = -sk->sk_err; |
| goto out_err; |
| } |
| break; |
| case __SK_REDIRECT: |
| redir_ingress = psock->redir_ingress; |
| sk_redir = psock->sk_redir; |
| memcpy(&msg_redir, msg, sizeof(*msg)); |
| if (msg->apply_bytes < send) |
| msg->apply_bytes = 0; |
| else |
| msg->apply_bytes -= send; |
| sk_msg_return_zero(sk, msg, send); |
| msg->sg.size -= send; |
| release_sock(sk); |
| err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, |
| &msg_redir, send, flags); |
| lock_sock(sk); |
| if (err < 0) { |
| *copied -= sk_msg_free_nocharge(sk, &msg_redir); |
| msg->sg.size = 0; |
| } |
| if (msg->sg.size == 0) |
| tls_free_open_rec(sk); |
| break; |
| case __SK_DROP: |
| default: |
| sk_msg_free_partial(sk, msg, send); |
| if (msg->apply_bytes < send) |
| msg->apply_bytes = 0; |
| else |
| msg->apply_bytes -= send; |
| if (msg->sg.size == 0) |
| tls_free_open_rec(sk); |
| *copied -= (send + delta); |
| err = -EACCES; |
| } |
| |
| if (likely(!err)) { |
| bool reset_eval = !ctx->open_rec; |
| |
| rec = ctx->open_rec; |
| if (rec) { |
| msg = &rec->msg_plaintext; |
| if (!msg->apply_bytes) |
| reset_eval = true; |
| } |
| if (reset_eval) { |
| psock->eval = __SK_NONE; |
| if (psock->sk_redir) { |
| sock_put(psock->sk_redir); |
| psock->sk_redir = NULL; |
| } |
| } |
| if (rec) |
| goto more_data; |
| } |
| out_err: |
| sk_psock_put(sk, psock); |
| return err; |
| } |
| |
| static int tls_sw_push_pending_record(struct sock *sk, int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec = ctx->open_rec; |
| struct sk_msg *msg_pl; |
| size_t copied; |
| |
| if (!rec) |
| return 0; |
| |
| msg_pl = &rec->msg_plaintext; |
| copied = msg_pl->sg.size; |
| if (!copied) |
| return 0; |
| |
| return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, |
| &copied, flags); |
| } |
| |
| static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, |
| struct sk_msg *msg_pl, size_t try_to_copy, |
| ssize_t *copied) |
| { |
| struct page *page = NULL, **pages = &page; |
| |
| do { |
| ssize_t part; |
| size_t off; |
| |
| part = iov_iter_extract_pages(&msg->msg_iter, &pages, |
| try_to_copy, 1, 0, &off); |
| if (part <= 0) |
| return part ?: -EIO; |
| |
| if (WARN_ON_ONCE(!sendpage_ok(page))) { |
| iov_iter_revert(&msg->msg_iter, part); |
| return -EIO; |
| } |
| |
| sk_msg_page_add(msg_pl, page, part, off); |
| sk_mem_charge(sk, part); |
| *copied += part; |
| try_to_copy -= part; |
| } while (try_to_copy && !sk_msg_full(msg_pl)); |
| |
| return 0; |
| } |
| |
| static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, |
| size_t size) |
| { |
| long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| bool async_capable = ctx->async_capable; |
| unsigned char record_type = TLS_RECORD_TYPE_DATA; |
| bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); |
| bool eor = !(msg->msg_flags & MSG_MORE); |
| size_t try_to_copy; |
| ssize_t copied = 0; |
| struct sk_msg *msg_pl, *msg_en; |
| struct tls_rec *rec; |
| int required_size; |
| int num_async = 0; |
| bool full_record; |
| int record_room; |
| int num_zc = 0; |
| int orig_size; |
| int ret = 0; |
| int pending; |
| |
| if (!eor && (msg->msg_flags & MSG_EOR)) |
| return -EINVAL; |
| |
| if (unlikely(msg->msg_controllen)) { |
| ret = tls_process_cmsg(sk, msg, &record_type); |
| if (ret) { |
| if (ret == -EINPROGRESS) |
| num_async++; |
| else if (ret != -EAGAIN) |
| goto send_end; |
| } |
| } |
| |
| while (msg_data_left(msg)) { |
| if (sk->sk_err) { |
| ret = -sk->sk_err; |
| goto send_end; |
| } |
| |
| if (ctx->open_rec) |
| rec = ctx->open_rec; |
| else |
| rec = ctx->open_rec = tls_get_rec(sk); |
| if (!rec) { |
| ret = -ENOMEM; |
| goto send_end; |
| } |
| |
| msg_pl = &rec->msg_plaintext; |
| msg_en = &rec->msg_encrypted; |
| |
| orig_size = msg_pl->sg.size; |
| full_record = false; |
| try_to_copy = msg_data_left(msg); |
| record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; |
| if (try_to_copy >= record_room) { |
| try_to_copy = record_room; |
| full_record = true; |
| } |
| |
| required_size = msg_pl->sg.size + try_to_copy + |
| prot->overhead_size; |
| |
| if (!sk_stream_memory_free(sk)) |
| goto wait_for_sndbuf; |
| |
| alloc_encrypted: |
| ret = tls_alloc_encrypted_msg(sk, required_size); |
| if (ret) { |
| if (ret != -ENOSPC) |
| goto wait_for_memory; |
| |
| /* Adjust try_to_copy according to the amount that was |
| * actually allocated. The difference is due |
| * to max sg elements limit |
| */ |
| try_to_copy -= required_size - msg_en->sg.size; |
| full_record = true; |
| } |
| |
| if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { |
| ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, |
| try_to_copy, &copied); |
| if (ret < 0) |
| goto send_end; |
| tls_ctx->pending_open_record_frags = true; |
| if (full_record || eor || sk_msg_full(msg_pl)) |
| goto copied; |
| continue; |
| } |
| |
| if (!is_kvec && (full_record || eor) && !async_capable) { |
| u32 first = msg_pl->sg.end; |
| |
| ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, |
| msg_pl, try_to_copy); |
| if (ret) |
| goto fallback_to_reg_send; |
| |
| num_zc++; |
| copied += try_to_copy; |
| |
| sk_msg_sg_copy_set(msg_pl, first); |
| ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, |
| record_type, &copied, |
| msg->msg_flags); |
| if (ret) { |
| if (ret == -EINPROGRESS) |
| num_async++; |
| else if (ret == -ENOMEM) |
| goto wait_for_memory; |
| else if (ctx->open_rec && ret == -ENOSPC) |
| goto rollback_iter; |
| else if (ret != -EAGAIN) |
| goto send_end; |
| } |
| continue; |
| rollback_iter: |
| copied -= try_to_copy; |
| sk_msg_sg_copy_clear(msg_pl, first); |
| iov_iter_revert(&msg->msg_iter, |
| msg_pl->sg.size - orig_size); |
| fallback_to_reg_send: |
| sk_msg_trim(sk, msg_pl, orig_size); |
| } |
| |
| required_size = msg_pl->sg.size + try_to_copy; |
| |
| ret = tls_clone_plaintext_msg(sk, required_size); |
| if (ret) { |
| if (ret != -ENOSPC) |
| goto send_end; |
| |
| /* Adjust try_to_copy according to the amount that was |
| * actually allocated. The difference is due |
| * to max sg elements limit |
| */ |
| try_to_copy -= required_size - msg_pl->sg.size; |
| full_record = true; |
| sk_msg_trim(sk, msg_en, |
| msg_pl->sg.size + prot->overhead_size); |
| } |
| |
| if (try_to_copy) { |
| ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, |
| msg_pl, try_to_copy); |
| if (ret < 0) |
| goto trim_sgl; |
| } |
| |
| /* Open records defined only if successfully copied, otherwise |
| * we would trim the sg but not reset the open record frags. |
| */ |
| tls_ctx->pending_open_record_frags = true; |
| copied += try_to_copy; |
| copied: |
| if (full_record || eor) { |
| ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, |
| record_type, &copied, |
| msg->msg_flags); |
| if (ret) { |
| if (ret == -EINPROGRESS) |
| num_async++; |
| else if (ret == -ENOMEM) |
| goto wait_for_memory; |
| else if (ret != -EAGAIN) { |
| if (ret == -ENOSPC) |
| ret = 0; |
| goto send_end; |
| } |
| } |
| } |
| |
| continue; |
| |
| wait_for_sndbuf: |
| set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| wait_for_memory: |
| ret = sk_stream_wait_memory(sk, &timeo); |
| if (ret) { |
| trim_sgl: |
| if (ctx->open_rec) |
| tls_trim_both_msgs(sk, orig_size); |
| goto send_end; |
| } |
| |
| if (ctx->open_rec && msg_en->sg.size < required_size) |
| goto alloc_encrypted; |
| } |
| |
| if (!num_async) { |
| goto send_end; |
| } else if (num_zc) { |
| /* Wait for pending encryptions to get completed */ |
| spin_lock_bh(&ctx->encrypt_compl_lock); |
| ctx->async_notify = true; |
| |
| pending = atomic_read(&ctx->encrypt_pending); |
| spin_unlock_bh(&ctx->encrypt_compl_lock); |
| if (pending) |
| crypto_wait_req(-EINPROGRESS, &ctx->async_wait); |
| else |
| reinit_completion(&ctx->async_wait.completion); |
| |
| /* There can be no concurrent accesses, since we have no |
| * pending encrypt operations |
| */ |
| WRITE_ONCE(ctx->async_notify, false); |
| |
| if (ctx->async_wait.err) { |
| ret = ctx->async_wait.err; |
| copied = 0; |
| } |
| } |
| |
| /* Transmit if any encryptions have completed */ |
| if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { |
| cancel_delayed_work(&ctx->tx_work.work); |
| tls_tx_records(sk, msg->msg_flags); |
| } |
| |
| send_end: |
| ret = sk_stream_error(sk, msg->msg_flags, ret); |
| return copied > 0 ? copied : ret; |
| } |
| |
| int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| int ret; |
| |
| if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | |
| MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | |
| MSG_SENDPAGE_NOPOLICY)) |
| return -EOPNOTSUPP; |
| |
| ret = mutex_lock_interruptible(&tls_ctx->tx_lock); |
| if (ret) |
| return ret; |
| lock_sock(sk); |
| ret = tls_sw_sendmsg_locked(sk, msg, size); |
| release_sock(sk); |
| mutex_unlock(&tls_ctx->tx_lock); |
| return ret; |
| } |
| |
| /* |
| * Handle unexpected EOF during splice without SPLICE_F_MORE set. |
| */ |
| void tls_sw_splice_eof(struct socket *sock) |
| { |
| struct sock *sk = sock->sk; |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec; |
| struct sk_msg *msg_pl; |
| ssize_t copied = 0; |
| bool retrying = false; |
| int ret = 0; |
| int pending; |
| |
| if (!ctx->open_rec) |
| return; |
| |
| mutex_lock(&tls_ctx->tx_lock); |
| lock_sock(sk); |
| |
| retry: |
| rec = ctx->open_rec; |
| if (!rec) |
| goto unlock; |
| |
| msg_pl = &rec->msg_plaintext; |
| |
| /* Check the BPF advisor and perform transmission. */ |
| ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, |
| &copied, 0); |
| switch (ret) { |
| case 0: |
| case -EAGAIN: |
| if (retrying) |
| goto unlock; |
| retrying = true; |
| goto retry; |
| case -EINPROGRESS: |
| break; |
| default: |
| goto unlock; |
| } |
| |
| /* Wait for pending encryptions to get completed */ |
| spin_lock_bh(&ctx->encrypt_compl_lock); |
| ctx->async_notify = true; |
| |
| pending = atomic_read(&ctx->encrypt_pending); |
| spin_unlock_bh(&ctx->encrypt_compl_lock); |
| if (pending) |
| crypto_wait_req(-EINPROGRESS, &ctx->async_wait); |
| else |
| reinit_completion(&ctx->async_wait.completion); |
| |
| /* There can be no concurrent accesses, since we have no pending |
| * encrypt operations |
| */ |
| WRITE_ONCE(ctx->async_notify, false); |
| |
| if (ctx->async_wait.err) |
| goto unlock; |
| |
| /* Transmit if any encryptions have completed */ |
| if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { |
| cancel_delayed_work(&ctx->tx_work.work); |
| tls_tx_records(sk, 0); |
| } |
| |
| unlock: |
| release_sock(sk); |
| mutex_unlock(&tls_ctx->tx_lock); |
| } |
| |
| static int |
| tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, |
| bool released) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| int ret = 0; |
| long timeo; |
| |
| timeo = sock_rcvtimeo(sk, nonblock); |
| |
| while (!tls_strp_msg_ready(ctx)) { |
| if (!sk_psock_queue_empty(psock)) |
| return 0; |
| |
| if (sk->sk_err) |
| return sock_error(sk); |
| |
| if (ret < 0) |
| return ret; |
| |
| if (!skb_queue_empty(&sk->sk_receive_queue)) { |
| tls_strp_check_rcv(&ctx->strp); |
| if (tls_strp_msg_ready(ctx)) |
| break; |
| } |
| |
| if (sk->sk_shutdown & RCV_SHUTDOWN) |
| return 0; |
| |
| if (sock_flag(sk, SOCK_DONE)) |
| return 0; |
| |
| if (!timeo) |
| return -EAGAIN; |
| |
| released = true; |
| add_wait_queue(sk_sleep(sk), &wait); |
| sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| ret = sk_wait_event(sk, &timeo, |
| tls_strp_msg_ready(ctx) || |
| !sk_psock_queue_empty(psock), |
| &wait); |
| sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); |
| remove_wait_queue(sk_sleep(sk), &wait); |
| |
| /* Handle signals */ |
| if (signal_pending(current)) |
| return sock_intr_errno(timeo); |
| } |
| |
| tls_strp_msg_load(&ctx->strp, released); |
| |
| return 1; |
| } |
| |
| static int tls_setup_from_iter(struct iov_iter *from, |
| int length, int *pages_used, |
| struct scatterlist *to, |
| int to_max_pages) |
| { |
| int rc = 0, i = 0, num_elem = *pages_used, maxpages; |
| struct page *pages[MAX_SKB_FRAGS]; |
| unsigned int size = 0; |
| ssize_t copied, use; |
| size_t offset; |
| |
| while (length > 0) { |
| i = 0; |
| maxpages = to_max_pages - num_elem; |
| if (maxpages == 0) { |
| rc = -EFAULT; |
| goto out; |
| } |
| copied = iov_iter_get_pages2(from, pages, |
| length, |
| maxpages, &offset); |
| if (copied <= 0) { |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| length -= copied; |
| size += copied; |
| while (copied) { |
| use = min_t(int, copied, PAGE_SIZE - offset); |
| |
| sg_set_page(&to[num_elem], |
| pages[i], use, offset); |
| sg_unmark_end(&to[num_elem]); |
| /* We do not uncharge memory from this API */ |
| |
| offset = 0; |
| copied -= use; |
| |
| i++; |
| num_elem++; |
| } |
| } |
| /* Mark the end in the last sg entry if newly added */ |
| if (num_elem > *pages_used) |
| sg_mark_end(&to[num_elem - 1]); |
| out: |
| if (rc) |
| iov_iter_revert(from, size); |
| *pages_used = num_elem; |
| |
| return rc; |
| } |
| |
| static struct sk_buff * |
| tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, |
| unsigned int full_len) |
| { |
| struct strp_msg *clr_rxm; |
| struct sk_buff *clr_skb; |
| int err; |
| |
| clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, |
| &err, sk->sk_allocation); |
| if (!clr_skb) |
| return NULL; |
| |
| skb_copy_header(clr_skb, skb); |
| clr_skb->len = full_len; |
| clr_skb->data_len = full_len; |
| |
| clr_rxm = strp_msg(clr_skb); |
| clr_rxm->offset = 0; |
| |
| return clr_skb; |
| } |
| |
| /* Decrypt handlers |
| * |
| * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. |
| * They must transform the darg in/out argument are as follows: |
| * | Input | Output |
| * ------------------------------------------------------------------- |
| * zc | Zero-copy decrypt allowed | Zero-copy performed |
| * async | Async decrypt allowed | Async crypto used / in progress |
| * skb | * | Output skb |
| * |
| * If ZC decryption was performed darg.skb will point to the input skb. |
| */ |
| |
| /* This function decrypts the input skb into either out_iov or in out_sg |
| * or in skb buffers itself. The input parameter 'darg->zc' indicates if |
| * zero-copy mode needs to be tried or not. With zero-copy mode, either |
| * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are |
| * NULL, then the decryption happens inside skb buffers itself, i.e. |
| * zero-copy gets disabled and 'darg->zc' is updated. |
| */ |
| static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, |
| struct scatterlist *out_sg, |
| struct tls_decrypt_arg *darg) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| int n_sgin, n_sgout, aead_size, err, pages = 0; |
| struct sk_buff *skb = tls_strp_msg(ctx); |
| const struct strp_msg *rxm = strp_msg(skb); |
| const struct tls_msg *tlm = tls_msg(skb); |
| struct aead_request *aead_req; |
| struct scatterlist *sgin = NULL; |
| struct scatterlist *sgout = NULL; |
| const int data_len = rxm->full_len - prot->overhead_size; |
| int tail_pages = !!prot->tail_size; |
| struct tls_decrypt_ctx *dctx; |
| struct sk_buff *clear_skb; |
| int iv_offset = 0; |
| u8 *mem; |
| |
| n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, |
| rxm->full_len - prot->prepend_size); |
| if (n_sgin < 1) |
| return n_sgin ?: -EBADMSG; |
| |
| if (darg->zc && (out_iov || out_sg)) { |
| clear_skb = NULL; |
| |
| if (out_iov) |
| n_sgout = 1 + tail_pages + |
| iov_iter_npages_cap(out_iov, INT_MAX, data_len); |
| else |
| n_sgout = sg_nents(out_sg); |
| } else { |
| darg->zc = false; |
| |
| clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); |
| if (!clear_skb) |
| return -ENOMEM; |
| |
| n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; |
| } |
| |
| /* Increment to accommodate AAD */ |
| n_sgin = n_sgin + 1; |
| |
| /* Allocate a single block of memory which contains |
| * aead_req || tls_decrypt_ctx. |
| * Both structs are variable length. |
| */ |
| aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); |
| aead_size = ALIGN(aead_size, __alignof__(*dctx)); |
| mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout), |
| sk->sk_allocation); |
| if (!mem) { |
| err = -ENOMEM; |
| goto exit_free_skb; |
| } |
| |
| /* Segment the allocated memory */ |
| aead_req = (struct aead_request *)mem; |
| dctx = (struct tls_decrypt_ctx *)(mem + aead_size); |
| dctx->sk = sk; |
| sgin = &dctx->sg[0]; |
| sgout = &dctx->sg[n_sgin]; |
| |
| /* For CCM based ciphers, first byte of nonce+iv is a constant */ |
| switch (prot->cipher_type) { |
| case TLS_CIPHER_AES_CCM_128: |
| dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; |
| iv_offset = 1; |
| break; |
| case TLS_CIPHER_SM4_CCM: |
| dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; |
| iv_offset = 1; |
| break; |
| } |
| |
| /* Prepare IV */ |
| if (prot->version == TLS_1_3_VERSION || |
| prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { |
| memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, |
| prot->iv_size + prot->salt_size); |
| } else { |
| err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, |
| &dctx->iv[iv_offset] + prot->salt_size, |
| prot->iv_size); |
| if (err < 0) |
| goto exit_free; |
| memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); |
| } |
| tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); |
| |
| /* Prepare AAD */ |
| tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + |
| prot->tail_size, |
| tls_ctx->rx.rec_seq, tlm->control, prot); |
| |
| /* Prepare sgin */ |
| sg_init_table(sgin, n_sgin); |
| sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); |
| err = skb_to_sgvec(skb, &sgin[1], |
| rxm->offset + prot->prepend_size, |
| rxm->full_len - prot->prepend_size); |
| if (err < 0) |
| goto exit_free; |
| |
| if (clear_skb) { |
| sg_init_table(sgout, n_sgout); |
| sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); |
| |
| err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, |
| data_len + prot->tail_size); |
| if (err < 0) |
| goto exit_free; |
| } else if (out_iov) { |
| sg_init_table(sgout, n_sgout); |
| sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); |
| |
| err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], |
| (n_sgout - 1 - tail_pages)); |
| if (err < 0) |
| goto exit_free_pages; |
| |
| if (prot->tail_size) { |
| sg_unmark_end(&sgout[pages]); |
| sg_set_buf(&sgout[pages + 1], &dctx->tail, |
| prot->tail_size); |
| sg_mark_end(&sgout[pages + 1]); |
| } |
| } else if (out_sg) { |
| memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); |
| } |
| |
| /* Prepare and submit AEAD request */ |
| err = tls_do_decryption(sk, sgin, sgout, dctx->iv, |
| data_len + prot->tail_size, aead_req, darg); |
| if (err) |
| goto exit_free_pages; |
| |
| darg->skb = clear_skb ?: tls_strp_msg(ctx); |
| clear_skb = NULL; |
| |
| if (unlikely(darg->async)) { |
| err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); |
| if (err) |
| __skb_queue_tail(&ctx->async_hold, darg->skb); |
| return err; |
| } |
| |
| if (prot->tail_size) |
| darg->tail = dctx->tail; |
| |
| exit_free_pages: |
| /* Release the pages in case iov was mapped to pages */ |
| for (; pages > 0; pages--) |
| put_page(sg_page(&sgout[pages])); |
| exit_free: |
| kfree(mem); |
| exit_free_skb: |
| consume_skb(clear_skb); |
| return err; |
| } |
| |
| static int |
| tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, |
| struct msghdr *msg, struct tls_decrypt_arg *darg) |
| { |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct strp_msg *rxm; |
| int pad, err; |
| |
| err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); |
| if (err < 0) { |
| if (err == -EBADMSG) |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); |
| return err; |
| } |
| /* keep going even for ->async, the code below is TLS 1.3 */ |
| |
| /* If opportunistic TLS 1.3 ZC failed retry without ZC */ |
| if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && |
| darg->tail != TLS_RECORD_TYPE_DATA)) { |
| darg->zc = false; |
| if (!darg->tail) |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); |
| TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); |
| return tls_decrypt_sw(sk, tls_ctx, msg, darg); |
| } |
| |
| pad = tls_padding_length(prot, darg->skb, darg); |
| if (pad < 0) { |
| if (darg->skb != tls_strp_msg(ctx)) |
| consume_skb(darg->skb); |
| return pad; |
| } |
| |
| rxm = strp_msg(darg->skb); |
| rxm->full_len -= pad; |
| |
| return 0; |
| } |
| |
| static int |
| tls_decrypt_device(struct sock *sk, struct msghdr *msg, |
| struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) |
| { |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct strp_msg *rxm; |
| int pad, err; |
| |
| if (tls_ctx->rx_conf != TLS_HW) |
| return 0; |
| |
| err = tls_device_decrypted(sk, tls_ctx); |
| if (err <= 0) |
| return err; |
| |
| pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); |
| if (pad < 0) |
| return pad; |
| |
| darg->async = false; |
| darg->skb = tls_strp_msg(ctx); |
| /* ->zc downgrade check, in case TLS 1.3 gets here */ |
| darg->zc &= !(prot->version == TLS_1_3_VERSION && |
| tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); |
| |
| rxm = strp_msg(darg->skb); |
| rxm->full_len -= pad; |
| |
| if (!darg->zc) { |
| /* Non-ZC case needs a real skb */ |
| darg->skb = tls_strp_msg_detach(ctx); |
| if (!darg->skb) |
| return -ENOMEM; |
| } else { |
| unsigned int off, len; |
| |
| /* In ZC case nobody cares about the output skb. |
| * Just copy the data here. Note the skb is not fully trimmed. |
| */ |
| off = rxm->offset + prot->prepend_size; |
| len = rxm->full_len - prot->overhead_size; |
| |
| err = skb_copy_datagram_msg(darg->skb, off, msg, len); |
| if (err) |
| return err; |
| } |
| return 1; |
| } |
| |
| static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, |
| struct tls_decrypt_arg *darg) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct strp_msg *rxm; |
| int err; |
| |
| err = tls_decrypt_device(sk, msg, tls_ctx, darg); |
| if (!err) |
| err = tls_decrypt_sw(sk, tls_ctx, msg, darg); |
| if (err < 0) |
| return err; |
| |
| rxm = strp_msg(darg->skb); |
| rxm->offset += prot->prepend_size; |
| rxm->full_len -= prot->overhead_size; |
| tls_advance_record_sn(sk, prot, &tls_ctx->rx); |
| |
| return 0; |
| } |
| |
| int decrypt_skb(struct sock *sk, struct scatterlist *sgout) |
| { |
| struct tls_decrypt_arg darg = { .zc = true, }; |
| |
| return tls_decrypt_sg(sk, NULL, sgout, &darg); |
| } |
| |
| static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, |
| u8 *control) |
| { |
| int err; |
| |
| if (!*control) { |
| *control = tlm->control; |
| if (!*control) |
| return -EBADMSG; |
| |
| err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, |
| sizeof(*control), control); |
| if (*control != TLS_RECORD_TYPE_DATA) { |
| if (err || msg->msg_flags & MSG_CTRUNC) |
| return -EIO; |
| } |
| } else if (*control != tlm->control) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) |
| { |
| tls_strp_msg_done(&ctx->strp); |
| } |
| |
| /* This function traverses the rx_list in tls receive context to copies the |
| * decrypted records into the buffer provided by caller zero copy is not |
| * true. Further, the records are removed from the rx_list if it is not a peek |
| * case and the record has been consumed completely. |
| */ |
| static int process_rx_list(struct tls_sw_context_rx *ctx, |
| struct msghdr *msg, |
| u8 *control, |
| size_t skip, |
| size_t len, |
| bool is_peek) |
| { |
| struct sk_buff *skb = skb_peek(&ctx->rx_list); |
| struct tls_msg *tlm; |
| ssize_t copied = 0; |
| int err; |
| |
| while (skip && skb) { |
| struct strp_msg *rxm = strp_msg(skb); |
| tlm = tls_msg(skb); |
| |
| err = tls_record_content_type(msg, tlm, control); |
| if (err <= 0) |
| goto out; |
| |
| if (skip < rxm->full_len) |
| break; |
| |
| skip = skip - rxm->full_len; |
| skb = skb_peek_next(skb, &ctx->rx_list); |
| } |
| |
| while (len && skb) { |
| struct sk_buff *next_skb; |
| struct strp_msg *rxm = strp_msg(skb); |
| int chunk = min_t(unsigned int, rxm->full_len - skip, len); |
| |
| tlm = tls_msg(skb); |
| |
| err = tls_record_content_type(msg, tlm, control); |
| if (err <= 0) |
| goto out; |
| |
| err = skb_copy_datagram_msg(skb, rxm->offset + skip, |
| msg, chunk); |
| if (err < 0) |
| goto out; |
| |
| len = len - chunk; |
| copied = copied + chunk; |
| |
| /* Consume the data from record if it is non-peek case*/ |
| if (!is_peek) { |
| rxm->offset = rxm->offset + chunk; |
| rxm->full_len = rxm->full_len - chunk; |
| |
| /* Return if there is unconsumed data in the record */ |
| if (rxm->full_len - skip) |
| break; |
| } |
| |
| /* The remaining skip-bytes must lie in 1st record in rx_list. |
| * So from the 2nd record, 'skip' should be 0. |
| */ |
| skip = 0; |
| |
| if (msg) |
| msg->msg_flags |= MSG_EOR; |
| |
| next_skb = skb_peek_next(skb, &ctx->rx_list); |
| |
| if (!is_peek) { |
| __skb_unlink(skb, &ctx->rx_list); |
| consume_skb(skb); |
| } |
| |
| skb = next_skb; |
| } |
| err = 0; |
| |
| out: |
| return copied ? : err; |
| } |
| |
| static bool |
| tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, |
| size_t len_left, size_t decrypted, ssize_t done, |
| size_t *flushed_at) |
| { |
| size_t max_rec; |
| |
| if (len_left <= decrypted) |
| return false; |
| |
| max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; |
| if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) |
| return false; |
| |
| *flushed_at = done; |
| return sk_flush_backlog(sk); |
| } |
| |
| static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, |
| bool nonblock) |
| { |
| long timeo; |
| int ret; |
| |
| timeo = sock_rcvtimeo(sk, nonblock); |
| |
| while (unlikely(ctx->reader_present)) { |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| |
| ctx->reader_contended = 1; |
| |
| add_wait_queue(&ctx->wq, &wait); |
| ret = sk_wait_event(sk, &timeo, |
| !READ_ONCE(ctx->reader_present), &wait); |
| remove_wait_queue(&ctx->wq, &wait); |
| |
| if (timeo <= 0) |
| return -EAGAIN; |
| if (signal_pending(current)) |
| return sock_intr_errno(timeo); |
| if (ret < 0) |
| return ret; |
| } |
| |
| WRITE_ONCE(ctx->reader_present, 1); |
| |
| return 0; |
| } |
| |
| static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, |
| bool nonblock) |
| { |
| int err; |
| |
| lock_sock(sk); |
| err = tls_rx_reader_acquire(sk, ctx, nonblock); |
| if (err) |
| release_sock(sk); |
| return err; |
| } |
| |
| static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) |
| { |
| if (unlikely(ctx->reader_contended)) { |
| if (wq_has_sleeper(&ctx->wq)) |
| wake_up(&ctx->wq); |
| else |
| ctx->reader_contended = 0; |
| |
| WARN_ON_ONCE(!ctx->reader_present); |
| } |
| |
| WRITE_ONCE(ctx->reader_present, 0); |
| } |
| |
| static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) |
| { |
| tls_rx_reader_release(sk, ctx); |
| release_sock(sk); |
| } |
| |
| int tls_sw_recvmsg(struct sock *sk, |
| struct msghdr *msg, |
| size_t len, |
| int flags, |
| int *addr_len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| ssize_t decrypted = 0, async_copy_bytes = 0; |
| struct sk_psock *psock; |
| unsigned char control = 0; |
| size_t flushed_at = 0; |
| struct strp_msg *rxm; |
| struct tls_msg *tlm; |
| ssize_t copied = 0; |
| bool async = false; |
| int target, err; |
| bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); |
| bool is_peek = flags & MSG_PEEK; |
| bool released = true; |
| bool bpf_strp_enabled; |
| bool zc_capable; |
| |
| if (unlikely(flags & MSG_ERRQUEUE)) |
| return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); |
| |
| psock = sk_psock_get(sk); |
| err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); |
| if (err < 0) |
| return err; |
| bpf_strp_enabled = sk_psock_strp_enabled(psock); |
| |
| /* If crypto failed the connection is broken */ |
| err = ctx->async_wait.err; |
| if (err) |
| goto end; |
| |
| /* Process pending decrypted records. It must be non-zero-copy */ |
| err = process_rx_list(ctx, msg, &control, 0, len, is_peek); |
| if (err < 0) |
| goto end; |
| |
| copied = err; |
| if (len <= copied) |
| goto end; |
| |
| target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); |
| len = len - copied; |
| |
| zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && |
| ctx->zc_capable; |
| decrypted = 0; |
| while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { |
| struct tls_decrypt_arg darg; |
| int to_decrypt, chunk; |
| |
| err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, |
| released); |
| if (err <= 0) { |
| if (psock) { |
| chunk = sk_msg_recvmsg(sk, psock, msg, len, |
| flags); |
| if (chunk > 0) { |
| decrypted += chunk; |
| len -= chunk; |
| continue; |
| } |
| } |
| goto recv_end; |
| } |
| |
| memset(&darg.inargs, 0, sizeof(darg.inargs)); |
| |
| rxm = strp_msg(tls_strp_msg(ctx)); |
| tlm = tls_msg(tls_strp_msg(ctx)); |
| |
| to_decrypt = rxm->full_len - prot->overhead_size; |
| |
| if (zc_capable && to_decrypt <= len && |
| tlm->control == TLS_RECORD_TYPE_DATA) |
| darg.zc = true; |
| |
| /* Do not use async mode if record is non-data */ |
| if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) |
| darg.async = ctx->async_capable; |
| else |
| darg.async = false; |
| |
| err = tls_rx_one_record(sk, msg, &darg); |
| if (err < 0) { |
| tls_err_abort(sk, -EBADMSG); |
| goto recv_end; |
| } |
| |
| async |= darg.async; |
| |
| /* If the type of records being processed is not known yet, |
| * set it to record type just dequeued. If it is already known, |
| * but does not match the record type just dequeued, go to end. |
| * We always get record type here since for tls1.2, record type |
| * is known just after record is dequeued from stream parser. |
| * For tls1.3, we disable async. |
| */ |
| err = tls_record_content_type(msg, tls_msg(darg.skb), &control); |
| if (err <= 0) { |
| DEBUG_NET_WARN_ON_ONCE(darg.zc); |
| tls_rx_rec_done(ctx); |
| put_on_rx_list_err: |
| __skb_queue_tail(&ctx->rx_list, darg.skb); |
| goto recv_end; |
| } |
| |
| /* periodically flush backlog, and feed strparser */ |
| released = tls_read_flush_backlog(sk, prot, len, to_decrypt, |
| decrypted + copied, |
| &flushed_at); |
| |
| /* TLS 1.3 may have updated the length by more than overhead */ |
| rxm = strp_msg(darg.skb); |
| chunk = rxm->full_len; |
| tls_rx_rec_done(ctx); |
| |
| if (!darg.zc) { |
| bool partially_consumed = chunk > len; |
| struct sk_buff *skb = darg.skb; |
| |
| DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); |
| |
| if (async) { |
| /* TLS 1.2-only, to_decrypt must be text len */ |
| chunk = min_t(int, to_decrypt, len); |
| async_copy_bytes += chunk; |
| put_on_rx_list: |
| decrypted += chunk; |
| len -= chunk; |
| __skb_queue_tail(&ctx->rx_list, skb); |
| continue; |
| } |
| |
| if (bpf_strp_enabled) { |
| released = true; |
| err = sk_psock_tls_strp_read(psock, skb); |
| if (err != __SK_PASS) { |
| rxm->offset = rxm->offset + rxm->full_len; |
| rxm->full_len = 0; |
| if (err == __SK_DROP) |
| consume_skb(skb); |
| continue; |
| } |
| } |
| |
| if (partially_consumed) |
| chunk = len; |
| |
| err = skb_copy_datagram_msg(skb, rxm->offset, |
| msg, chunk); |
| if (err < 0) |
| goto put_on_rx_list_err; |
| |
| if (is_peek) |
| goto put_on_rx_list; |
| |
| if (partially_consumed) { |
| rxm->offset += chunk; |
| rxm->full_len -= chunk; |
| goto put_on_rx_list; |
| } |
| |
| consume_skb(skb); |
| } |
| |
| decrypted += chunk; |
| len -= chunk; |
| |
| /* Return full control message to userspace before trying |
| * to parse another message type |
| */ |
| msg->msg_flags |= MSG_EOR; |
| if (control != TLS_RECORD_TYPE_DATA) |
| break; |
| } |
| |
| recv_end: |
| if (async) { |
| int ret, pending; |
| |
| /* Wait for all previously submitted records to be decrypted */ |
| spin_lock_bh(&ctx->decrypt_compl_lock); |
| reinit_completion(&ctx->async_wait.completion); |
| pending = atomic_read(&ctx->decrypt_pending); |
| spin_unlock_bh(&ctx->decrypt_compl_lock); |
| ret = 0; |
| if (pending) |
| ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait); |
| __skb_queue_purge(&ctx->async_hold); |
| |
| if (ret) { |
| if (err >= 0 || err == -EINPROGRESS) |
| err = ret; |
| decrypted = 0; |
| goto end; |
| } |
| |
| /* Drain records from the rx_list & copy if required */ |
| if (is_peek || is_kvec) |
| err = process_rx_list(ctx, msg, &control, copied, |
| decrypted, is_peek); |
| else |
| err = process_rx_list(ctx, msg, &control, 0, |
| async_copy_bytes, is_peek); |
| decrypted += max(err, 0); |
| } |
| |
| copied += decrypted; |
| |
| end: |
| tls_rx_reader_unlock(sk, ctx); |
| if (psock) |
| sk_psock_put(sk, psock); |
| return copied ? : err; |
| } |
| |
| ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, |
| struct pipe_inode_info *pipe, |
| size_t len, unsigned int flags) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sock->sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct strp_msg *rxm = NULL; |
| struct sock *sk = sock->sk; |
| struct tls_msg *tlm; |
| struct sk_buff *skb; |
| ssize_t copied = 0; |
| int chunk; |
| int err; |
| |
| err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); |
| if (err < 0) |
| return err; |
| |
| if (!skb_queue_empty(&ctx->rx_list)) { |
| skb = __skb_dequeue(&ctx->rx_list); |
| } else { |
| struct tls_decrypt_arg darg; |
| |
| err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, |
| true); |
| if (err <= 0) |
| goto splice_read_end; |
| |
| memset(&darg.inargs, 0, sizeof(darg.inargs)); |
| |
| err = tls_rx_one_record(sk, NULL, &darg); |
| if (err < 0) { |
| tls_err_abort(sk, -EBADMSG); |
| goto splice_read_end; |
| } |
| |
| tls_rx_rec_done(ctx); |
| skb = darg.skb; |
| } |
| |
| rxm = strp_msg(skb); |
| tlm = tls_msg(skb); |
| |
| /* splice does not support reading control messages */ |
| if (tlm->control != TLS_RECORD_TYPE_DATA) { |
| err = -EINVAL; |
| goto splice_requeue; |
| } |
| |
| chunk = min_t(unsigned int, rxm->full_len, len); |
| copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); |
| if (copied < 0) |
| goto splice_requeue; |
| |
| if (chunk < rxm->full_len) { |
| rxm->offset += len; |
| rxm->full_len -= len; |
| goto splice_requeue; |
| } |
| |
| consume_skb(skb); |
| |
| splice_read_end: |
| tls_rx_reader_unlock(sk, ctx); |
| return copied ? : err; |
| |
| splice_requeue: |
| __skb_queue_head(&ctx->rx_list, skb); |
| goto splice_read_end; |
| } |
| |
| int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, |
| sk_read_actor_t read_actor) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct strp_msg *rxm = NULL; |
| struct sk_buff *skb = NULL; |
| struct sk_psock *psock; |
| size_t flushed_at = 0; |
| bool released = true; |
| struct tls_msg *tlm; |
| ssize_t copied = 0; |
| ssize_t decrypted; |
| int err, used; |
| |
| psock = sk_psock_get(sk); |
| if (psock) { |
| sk_psock_put(sk, psock); |
| return -EINVAL; |
| } |
| err = tls_rx_reader_acquire(sk, ctx, true); |
| if (err < 0) |
| return err; |
| |
| /* If crypto failed the connection is broken */ |
| err = ctx->async_wait.err; |
| if (err) |
| goto read_sock_end; |
| |
| decrypted = 0; |
| do { |
| if (!skb_queue_empty(&ctx->rx_list)) { |
| skb = __skb_dequeue(&ctx->rx_list); |
| rxm = strp_msg(skb); |
| tlm = tls_msg(skb); |
| } else { |
| struct tls_decrypt_arg darg; |
| |
| err = tls_rx_rec_wait(sk, NULL, true, released); |
| if (err <= 0) |
| goto read_sock_end; |
| |
| memset(&darg.inargs, 0, sizeof(darg.inargs)); |
| |
| err = tls_rx_one_record(sk, NULL, &darg); |
| if (err < 0) { |
| tls_err_abort(sk, -EBADMSG); |
| goto read_sock_end; |
| } |
| |
| released = tls_read_flush_backlog(sk, prot, INT_MAX, |
| 0, decrypted, |
| &flushed_at); |
| skb = darg.skb; |
| rxm = strp_msg(skb); |
| tlm = tls_msg(skb); |
| decrypted += rxm->full_len; |
| |
| tls_rx_rec_done(ctx); |
| } |
| |
| /* read_sock does not support reading control messages */ |
| if (tlm->control != TLS_RECORD_TYPE_DATA) { |
| err = -EINVAL; |
| goto read_sock_requeue; |
| } |
| |
| used = read_actor(desc, skb, rxm->offset, rxm->full_len); |
| if (used <= 0) { |
| if (!copied) |
| err = used; |
| goto read_sock_requeue; |
| } |
| copied += used; |
| if (used < rxm->full_len) { |
| rxm->offset += used; |
| rxm->full_len -= used; |
| if (!desc->count) |
| goto read_sock_requeue; |
| } else { |
| consume_skb(skb); |
| if (!desc->count) |
| skb = NULL; |
| } |
| } while (skb); |
| |
| read_sock_end: |
| tls_rx_reader_release(sk, ctx); |
| return copied ? : err; |
| |
| read_sock_requeue: |
| __skb_queue_head(&ctx->rx_list, skb); |
| goto read_sock_end; |
| } |
| |
| bool tls_sw_sock_is_readable(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| bool ingress_empty = true; |
| struct sk_psock *psock; |
| |
| rcu_read_lock(); |
| psock = sk_psock(sk); |
| if (psock) |
| ingress_empty = list_empty(&psock->ingress_msg); |
| rcu_read_unlock(); |
| |
| return !ingress_empty || tls_strp_msg_ready(ctx) || |
| !skb_queue_empty(&ctx->rx_list); |
| } |
| |
| int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(strp->sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| char header[TLS_HEADER_SIZE + MAX_IV_SIZE]; |
| size_t cipher_overhead; |
| size_t data_len = 0; |
| int ret; |
| |
| /* Verify that we have a full TLS header, or wait for more data */ |
| if (strp->stm.offset + prot->prepend_size > skb->len) |
| return 0; |
| |
| /* Sanity-check size of on-stack buffer. */ |
| if (WARN_ON(prot->prepend_size > sizeof(header))) { |
| ret = -EINVAL; |
| goto read_failure; |
| } |
| |
| /* Linearize header to local buffer */ |
| ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); |
| if (ret < 0) |
| goto read_failure; |
| |
| strp->mark = header[0]; |
| |
| data_len = ((header[4] & 0xFF) | (header[3] << 8)); |
| |
| cipher_overhead = prot->tag_size; |
| if (prot->version != TLS_1_3_VERSION && |
| prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) |
| cipher_overhead += prot->iv_size; |
| |
| if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + |
| prot->tail_size) { |
| ret = -EMSGSIZE; |
| goto read_failure; |
| } |
| if (data_len < cipher_overhead) { |
| ret = -EBADMSG; |
| goto read_failure; |
| } |
| |
| /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ |
| if (header[1] != TLS_1_2_VERSION_MINOR || |
| header[2] != TLS_1_2_VERSION_MAJOR) { |
| ret = -EINVAL; |
| goto read_failure; |
| } |
| |
| tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, |
| TCP_SKB_CB(skb)->seq + strp->stm.offset); |
| return data_len + TLS_HEADER_SIZE; |
| |
| read_failure: |
| tls_err_abort(strp->sk, ret); |
| |
| return ret; |
| } |
| |
| void tls_rx_msg_ready(struct tls_strparser *strp) |
| { |
| struct tls_sw_context_rx *ctx; |
| |
| ctx = container_of(strp, struct tls_sw_context_rx, strp); |
| ctx->saved_data_ready(strp->sk); |
| } |
| |
| static void tls_data_ready(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| struct sk_psock *psock; |
| gfp_t alloc_save; |
| |
| trace_sk_data_ready(sk); |
| |
| alloc_save = sk->sk_allocation; |
| sk->sk_allocation = GFP_ATOMIC; |
| tls_strp_data_ready(&ctx->strp); |
| sk->sk_allocation = alloc_save; |
| |
| psock = sk_psock_get(sk); |
| if (psock) { |
| if (!list_empty(&psock->ingress_msg)) |
| ctx->saved_data_ready(sk); |
| sk_psock_put(sk, psock); |
| } |
| } |
| |
| void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| |
| set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); |
| set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); |
| cancel_delayed_work_sync(&ctx->tx_work.work); |
| } |
| |
| void tls_sw_release_resources_tx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| struct tls_rec *rec, *tmp; |
| int pending; |
| |
| /* Wait for any pending async encryptions to complete */ |
| spin_lock_bh(&ctx->encrypt_compl_lock); |
| ctx->async_notify = true; |
| pending = atomic_read(&ctx->encrypt_pending); |
| spin_unlock_bh(&ctx->encrypt_compl_lock); |
| |
| if (pending) |
| crypto_wait_req(-EINPROGRESS, &ctx->async_wait); |
| |
| tls_tx_records(sk, -1); |
| |
| /* Free up un-sent records in tx_list. First, free |
| * the partially sent record if any at head of tx_list. |
| */ |
| if (tls_ctx->partially_sent_record) { |
| tls_free_partial_record(sk, tls_ctx); |
| rec = list_first_entry(&ctx->tx_list, |
| struct tls_rec, list); |
| list_del(&rec->list); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } |
| |
| list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { |
| list_del(&rec->list); |
| sk_msg_free(sk, &rec->msg_encrypted); |
| sk_msg_free(sk, &rec->msg_plaintext); |
| kfree(rec); |
| } |
| |
| crypto_free_aead(ctx->aead_send); |
| tls_free_open_rec(sk); |
| } |
| |
| void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); |
| |
| kfree(ctx); |
| } |
| |
| void tls_sw_release_resources_rx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| kfree(tls_ctx->rx.rec_seq); |
| kfree(tls_ctx->rx.iv); |
| |
| if (ctx->aead_recv) { |
| __skb_queue_purge(&ctx->rx_list); |
| crypto_free_aead(ctx->aead_recv); |
| tls_strp_stop(&ctx->strp); |
| /* If tls_sw_strparser_arm() was not called (cleanup paths) |
| * we still want to tls_strp_stop(), but sk->sk_data_ready was |
| * never swapped. |
| */ |
| if (ctx->saved_data_ready) { |
| write_lock_bh(&sk->sk_callback_lock); |
| sk->sk_data_ready = ctx->saved_data_ready; |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| } |
| } |
| |
| void tls_sw_strparser_done(struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| tls_strp_done(&ctx->strp); |
| } |
| |
| void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| kfree(ctx); |
| } |
| |
| void tls_sw_free_resources_rx(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| |
| tls_sw_release_resources_rx(sk); |
| tls_sw_free_ctx_rx(tls_ctx); |
| } |
| |
| /* The work handler to transmitt the encrypted records in tx_list */ |
| static void tx_work_handler(struct work_struct *work) |
| { |
| struct delayed_work *delayed_work = to_delayed_work(work); |
| struct tx_work *tx_work = container_of(delayed_work, |
| struct tx_work, work); |
| struct sock *sk = tx_work->sk; |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_sw_context_tx *ctx; |
| |
| if (unlikely(!tls_ctx)) |
| return; |
| |
| ctx = tls_sw_ctx_tx(tls_ctx); |
| if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) |
| return; |
| |
| if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) |
| return; |
| |
| if (mutex_trylock(&tls_ctx->tx_lock)) { |
| lock_sock(sk); |
| tls_tx_records(sk, -1); |
| release_sock(sk); |
| mutex_unlock(&tls_ctx->tx_lock); |
| } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { |
| /* Someone is holding the tx_lock, they will likely run Tx |
| * and cancel the work on their way out of the lock section. |
| * Schedule a long delay just in case. |
| */ |
| schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); |
| } |
| } |
| |
| static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) |
| { |
| struct tls_rec *rec; |
| |
| rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); |
| if (!rec) |
| return false; |
| |
| return READ_ONCE(rec->tx_ready); |
| } |
| |
| void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) |
| { |
| struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); |
| |
| /* Schedule the transmission if tx list is ready */ |
| if (tls_is_tx_ready(tx_ctx) && |
| !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) |
| schedule_delayed_work(&tx_ctx->tx_work.work, 0); |
| } |
| |
| void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| write_lock_bh(&sk->sk_callback_lock); |
| rx_ctx->saved_data_ready = sk->sk_data_ready; |
| sk->sk_data_ready = tls_data_ready; |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| |
| void tls_update_rx_zc_capable(struct tls_context *tls_ctx) |
| { |
| struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); |
| |
| rx_ctx->zc_capable = tls_ctx->rx_no_pad || |
| tls_ctx->prot_info.version != TLS_1_3_VERSION; |
| } |
| |
| int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_prot_info *prot = &tls_ctx->prot_info; |
| struct tls_crypto_info *crypto_info; |
| struct tls_sw_context_tx *sw_ctx_tx = NULL; |
| struct tls_sw_context_rx *sw_ctx_rx = NULL; |
| struct cipher_context *cctx; |
| struct crypto_aead **aead; |
| struct crypto_tfm *tfm; |
| char *iv, *rec_seq, *key, *salt; |
| const struct tls_cipher_desc *cipher_desc; |
| u16 nonce_size; |
| int rc = 0; |
| |
| if (!ctx) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (tx) { |
| if (!ctx->priv_ctx_tx) { |
| sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); |
| if (!sw_ctx_tx) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| ctx->priv_ctx_tx = sw_ctx_tx; |
| } else { |
| sw_ctx_tx = |
| (struct tls_sw_context_tx *)ctx->priv_ctx_tx; |
| } |
| } else { |
| if (!ctx->priv_ctx_rx) { |
| sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); |
| if (!sw_ctx_rx) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| ctx->priv_ctx_rx = sw_ctx_rx; |
| } else { |
| sw_ctx_rx = |
| (struct tls_sw_context_rx *)ctx->priv_ctx_rx; |
| } |
| } |
| |
| if (tx) { |
| crypto_init_wait(&sw_ctx_tx->async_wait); |
| spin_lock_init(&sw_ctx_tx->encrypt_compl_lock); |
| crypto_info = &ctx->crypto_send.info; |
| cctx = &ctx->tx; |
| aead = &sw_ctx_tx->aead_send; |
| INIT_LIST_HEAD(&sw_ctx_tx->tx_list); |
| INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); |
| sw_ctx_tx->tx_work.sk = sk; |
| } else { |
| crypto_init_wait(&sw_ctx_rx->async_wait); |
| spin_lock_init(&sw_ctx_rx->decrypt_compl_lock); |
| init_waitqueue_head(&sw_ctx_rx->wq); |
| crypto_info = &ctx->crypto_recv.info; |
| cctx = &ctx->rx; |
| skb_queue_head_init(&sw_ctx_rx->rx_list); |
| skb_queue_head_init(&sw_ctx_rx->async_hold); |
| aead = &sw_ctx_rx->aead_recv; |
| } |
| |
| cipher_desc = get_cipher_desc(crypto_info->cipher_type); |
| if (!cipher_desc) { |
| rc = -EINVAL; |
| goto free_priv; |
| } |
| |
| nonce_size = cipher_desc->nonce; |
| |
| iv = crypto_info_iv(crypto_info, cipher_desc); |
| key = crypto_info_key(crypto_info, cipher_desc); |
| salt = crypto_info_salt(crypto_info, cipher_desc); |
| rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc); |
| |
| if (crypto_info->version == TLS_1_3_VERSION) { |
| nonce_size = 0; |
| prot->aad_size = TLS_HEADER_SIZE; |
| prot->tail_size = 1; |
| } else { |
| prot->aad_size = TLS_AAD_SPACE_SIZE; |
| prot->tail_size = 0; |
| } |
| |
| /* Sanity-check the sizes for stack allocations. */ |
| if (nonce_size > MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) { |
| rc = -EINVAL; |
| goto free_priv; |
| } |
| |
| prot->version = crypto_info->version; |
| prot->cipher_type = crypto_info->cipher_type; |
| prot->prepend_size = TLS_HEADER_SIZE + nonce_size; |
| prot->tag_size = cipher_desc->tag; |
| prot->overhead_size = prot->prepend_size + |
| prot->tag_size + prot->tail_size; |
| prot->iv_size = cipher_desc->iv; |
| prot->salt_size = cipher_desc->salt; |
| cctx->iv = kmalloc(cipher_desc->iv + cipher_desc->salt, GFP_KERNEL); |
| if (!cctx->iv) { |
| rc = -ENOMEM; |
| goto free_priv; |
| } |
| /* Note: 128 & 256 bit salt are the same size */ |
| prot->rec_seq_size = cipher_desc->rec_seq; |
| memcpy(cctx->iv, salt, cipher_desc->salt); |
| memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); |
| |
| cctx->rec_seq = kmemdup(rec_seq, cipher_desc->rec_seq, GFP_KERNEL); |
| if (!cctx->rec_seq) { |
| rc = -ENOMEM; |
| goto free_iv; |
| } |
| |
| if (!*aead) { |
| *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); |
| if (IS_ERR(*aead)) { |
| rc = PTR_ERR(*aead); |
| *aead = NULL; |
| goto free_rec_seq; |
| } |
| } |
| |
| ctx->push_pending_record = tls_sw_push_pending_record; |
| |
| rc = crypto_aead_setkey(*aead, key, cipher_desc->key); |
| if (rc) |
| goto free_aead; |
| |
| rc = crypto_aead_setauthsize(*aead, prot->tag_size); |
| if (rc) |
| goto free_aead; |
| |
| if (sw_ctx_rx) { |
| tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); |
| |
| tls_update_rx_zc_capable(ctx); |
| sw_ctx_rx->async_capable = |
| crypto_info->version != TLS_1_3_VERSION && |
| !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); |
| |
| rc = tls_strp_init(&sw_ctx_rx->strp, sk); |
| if (rc) |
| goto free_aead; |
| } |
| |
| goto out; |
| |
| free_aead: |
| crypto_free_aead(*aead); |
| *aead = NULL; |
| free_rec_seq: |
| kfree(cctx->rec_seq); |
| cctx->rec_seq = NULL; |
| free_iv: |
| kfree(cctx->iv); |
| cctx->iv = NULL; |
| free_priv: |
| if (tx) { |
| kfree(ctx->priv_ctx_tx); |
| ctx->priv_ctx_tx = NULL; |
| } else { |
| kfree(ctx->priv_ctx_rx); |
| ctx->priv_ctx_rx = NULL; |
| } |
| out: |
| return rc; |
| } |