| /* |
| * Copyright (C) 2001 Dave Engebretsen IBM Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/of.h> |
| #include <linux/fs.h> |
| #include <linux/reboot.h> |
| #include <linux/irq_work.h> |
| |
| #include <asm/machdep.h> |
| #include <asm/rtas.h> |
| #include <asm/firmware.h> |
| #include <asm/mce.h> |
| |
| #include "pseries.h" |
| |
| static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX]; |
| static DEFINE_SPINLOCK(ras_log_buf_lock); |
| |
| static int ras_check_exception_token; |
| |
| static void mce_process_errlog_event(struct irq_work *work); |
| static struct irq_work mce_errlog_process_work = { |
| .func = mce_process_errlog_event, |
| }; |
| |
| #define EPOW_SENSOR_TOKEN 9 |
| #define EPOW_SENSOR_INDEX 0 |
| |
| /* EPOW events counter variable */ |
| static int num_epow_events; |
| |
| static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id); |
| static irqreturn_t ras_epow_interrupt(int irq, void *dev_id); |
| static irqreturn_t ras_error_interrupt(int irq, void *dev_id); |
| |
| /* RTAS pseries MCE errorlog section. */ |
| struct pseries_mc_errorlog { |
| __be32 fru_id; |
| __be32 proc_id; |
| u8 error_type; |
| /* |
| * sub_err_type (1 byte). Bit fields depends on error_type |
| * |
| * MSB0 |
| * | |
| * V |
| * 01234567 |
| * XXXXXXXX |
| * |
| * For error_type == MC_ERROR_TYPE_UE |
| * XXXXXXXX |
| * X 1: Permanent or Transient UE. |
| * X 1: Effective address provided. |
| * X 1: Logical address provided. |
| * XX 2: Reserved. |
| * XXX 3: Type of UE error. |
| * |
| * For error_type != MC_ERROR_TYPE_UE |
| * XXXXXXXX |
| * X 1: Effective address provided. |
| * XXXXX 5: Reserved. |
| * XX 2: Type of SLB/ERAT/TLB error. |
| */ |
| u8 sub_err_type; |
| u8 reserved_1[6]; |
| __be64 effective_address; |
| __be64 logical_address; |
| } __packed; |
| |
| /* RTAS pseries MCE error types */ |
| #define MC_ERROR_TYPE_UE 0x00 |
| #define MC_ERROR_TYPE_SLB 0x01 |
| #define MC_ERROR_TYPE_ERAT 0x02 |
| #define MC_ERROR_TYPE_TLB 0x04 |
| #define MC_ERROR_TYPE_D_CACHE 0x05 |
| #define MC_ERROR_TYPE_I_CACHE 0x07 |
| |
| /* RTAS pseries MCE error sub types */ |
| #define MC_ERROR_UE_INDETERMINATE 0 |
| #define MC_ERROR_UE_IFETCH 1 |
| #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2 |
| #define MC_ERROR_UE_LOAD_STORE 3 |
| #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4 |
| |
| #define MC_ERROR_SLB_PARITY 0 |
| #define MC_ERROR_SLB_MULTIHIT 1 |
| #define MC_ERROR_SLB_INDETERMINATE 2 |
| |
| #define MC_ERROR_ERAT_PARITY 1 |
| #define MC_ERROR_ERAT_MULTIHIT 2 |
| #define MC_ERROR_ERAT_INDETERMINATE 3 |
| |
| #define MC_ERROR_TLB_PARITY 1 |
| #define MC_ERROR_TLB_MULTIHIT 2 |
| #define MC_ERROR_TLB_INDETERMINATE 3 |
| |
| static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog) |
| { |
| switch (mlog->error_type) { |
| case MC_ERROR_TYPE_UE: |
| return (mlog->sub_err_type & 0x07); |
| case MC_ERROR_TYPE_SLB: |
| case MC_ERROR_TYPE_ERAT: |
| case MC_ERROR_TYPE_TLB: |
| return (mlog->sub_err_type & 0x03); |
| default: |
| return 0; |
| } |
| } |
| |
| static |
| inline u64 rtas_mc_get_effective_addr(const struct pseries_mc_errorlog *mlog) |
| { |
| __be64 addr = 0; |
| |
| switch (mlog->error_type) { |
| case MC_ERROR_TYPE_UE: |
| if (mlog->sub_err_type & 0x40) |
| addr = mlog->effective_address; |
| break; |
| case MC_ERROR_TYPE_SLB: |
| case MC_ERROR_TYPE_ERAT: |
| case MC_ERROR_TYPE_TLB: |
| if (mlog->sub_err_type & 0x80) |
| addr = mlog->effective_address; |
| default: |
| break; |
| } |
| return be64_to_cpu(addr); |
| } |
| |
| /* |
| * Enable the hotplug interrupt late because processing them may touch other |
| * devices or systems (e.g. hugepages) that have not been initialized at the |
| * subsys stage. |
| */ |
| int __init init_ras_hotplug_IRQ(void) |
| { |
| struct device_node *np; |
| |
| /* Hotplug Events */ |
| np = of_find_node_by_path("/event-sources/hot-plug-events"); |
| if (np != NULL) { |
| if (dlpar_workqueue_init() == 0) |
| request_event_sources_irqs(np, ras_hotplug_interrupt, |
| "RAS_HOTPLUG"); |
| of_node_put(np); |
| } |
| |
| return 0; |
| } |
| machine_late_initcall(pseries, init_ras_hotplug_IRQ); |
| |
| /* |
| * Initialize handlers for the set of interrupts caused by hardware errors |
| * and power system events. |
| */ |
| static int __init init_ras_IRQ(void) |
| { |
| struct device_node *np; |
| |
| ras_check_exception_token = rtas_token("check-exception"); |
| |
| /* Internal Errors */ |
| np = of_find_node_by_path("/event-sources/internal-errors"); |
| if (np != NULL) { |
| request_event_sources_irqs(np, ras_error_interrupt, |
| "RAS_ERROR"); |
| of_node_put(np); |
| } |
| |
| /* EPOW Events */ |
| np = of_find_node_by_path("/event-sources/epow-events"); |
| if (np != NULL) { |
| request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW"); |
| of_node_put(np); |
| } |
| |
| return 0; |
| } |
| machine_subsys_initcall(pseries, init_ras_IRQ); |
| |
| #define EPOW_SHUTDOWN_NORMAL 1 |
| #define EPOW_SHUTDOWN_ON_UPS 2 |
| #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3 |
| #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4 |
| |
| static void handle_system_shutdown(char event_modifier) |
| { |
| switch (event_modifier) { |
| case EPOW_SHUTDOWN_NORMAL: |
| pr_emerg("Power off requested\n"); |
| orderly_poweroff(true); |
| break; |
| |
| case EPOW_SHUTDOWN_ON_UPS: |
| pr_emerg("Loss of system power detected. System is running on" |
| " UPS/battery. Check RTAS error log for details\n"); |
| orderly_poweroff(true); |
| break; |
| |
| case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS: |
| pr_emerg("Loss of system critical functions detected. Check" |
| " RTAS error log for details\n"); |
| orderly_poweroff(true); |
| break; |
| |
| case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH: |
| pr_emerg("High ambient temperature detected. Check RTAS" |
| " error log for details\n"); |
| orderly_poweroff(true); |
| break; |
| |
| default: |
| pr_err("Unknown power/cooling shutdown event (modifier = %d)\n", |
| event_modifier); |
| } |
| } |
| |
| struct epow_errorlog { |
| unsigned char sensor_value; |
| unsigned char event_modifier; |
| unsigned char extended_modifier; |
| unsigned char reserved; |
| unsigned char platform_reason; |
| }; |
| |
| #define EPOW_RESET 0 |
| #define EPOW_WARN_COOLING 1 |
| #define EPOW_WARN_POWER 2 |
| #define EPOW_SYSTEM_SHUTDOWN 3 |
| #define EPOW_SYSTEM_HALT 4 |
| #define EPOW_MAIN_ENCLOSURE 5 |
| #define EPOW_POWER_OFF 7 |
| |
| static void rtas_parse_epow_errlog(struct rtas_error_log *log) |
| { |
| struct pseries_errorlog *pseries_log; |
| struct epow_errorlog *epow_log; |
| char action_code; |
| char modifier; |
| |
| pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW); |
| if (pseries_log == NULL) |
| return; |
| |
| epow_log = (struct epow_errorlog *)pseries_log->data; |
| action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */ |
| modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */ |
| |
| switch (action_code) { |
| case EPOW_RESET: |
| if (num_epow_events) { |
| pr_info("Non critical power/cooling issue cleared\n"); |
| num_epow_events--; |
| } |
| break; |
| |
| case EPOW_WARN_COOLING: |
| pr_info("Non-critical cooling issue detected. Check RTAS error" |
| " log for details\n"); |
| break; |
| |
| case EPOW_WARN_POWER: |
| pr_info("Non-critical power issue detected. Check RTAS error" |
| " log for details\n"); |
| break; |
| |
| case EPOW_SYSTEM_SHUTDOWN: |
| handle_system_shutdown(epow_log->event_modifier); |
| break; |
| |
| case EPOW_SYSTEM_HALT: |
| pr_emerg("Critical power/cooling issue detected. Check RTAS" |
| " error log for details. Powering off.\n"); |
| orderly_poweroff(true); |
| break; |
| |
| case EPOW_MAIN_ENCLOSURE: |
| case EPOW_POWER_OFF: |
| pr_emerg("System about to lose power. Check RTAS error log " |
| " for details. Powering off immediately.\n"); |
| emergency_sync(); |
| kernel_power_off(); |
| break; |
| |
| default: |
| pr_err("Unknown power/cooling event (action code = %d)\n", |
| action_code); |
| } |
| |
| /* Increment epow events counter variable */ |
| if (action_code != EPOW_RESET) |
| num_epow_events++; |
| } |
| |
| static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id) |
| { |
| struct pseries_errorlog *pseries_log; |
| struct pseries_hp_errorlog *hp_elog; |
| |
| spin_lock(&ras_log_buf_lock); |
| |
| rtas_call(ras_check_exception_token, 6, 1, NULL, |
| RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq), |
| RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf), |
| rtas_get_error_log_max()); |
| |
| pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf, |
| PSERIES_ELOG_SECT_ID_HOTPLUG); |
| hp_elog = (struct pseries_hp_errorlog *)pseries_log->data; |
| |
| /* |
| * Since PCI hotplug is not currently supported on pseries, put PCI |
| * hotplug events on the ras_log_buf to be handled by rtas_errd. |
| */ |
| if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM || |
| hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU || |
| hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM) |
| queue_hotplug_event(hp_elog); |
| else |
| log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); |
| |
| spin_unlock(&ras_log_buf_lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* Handle environmental and power warning (EPOW) interrupts. */ |
| static irqreturn_t ras_epow_interrupt(int irq, void *dev_id) |
| { |
| int status; |
| int state; |
| int critical; |
| |
| status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, |
| &state); |
| |
| if (state > 3) |
| critical = 1; /* Time Critical */ |
| else |
| critical = 0; |
| |
| spin_lock(&ras_log_buf_lock); |
| |
| status = rtas_call(ras_check_exception_token, 6, 1, NULL, |
| RTAS_VECTOR_EXTERNAL_INTERRUPT, |
| virq_to_hw(irq), |
| RTAS_EPOW_WARNING, |
| critical, __pa(&ras_log_buf), |
| rtas_get_error_log_max()); |
| |
| log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0); |
| |
| rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf); |
| |
| spin_unlock(&ras_log_buf_lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Handle hardware error interrupts. |
| * |
| * RTAS check-exception is called to collect data on the exception. If |
| * the error is deemed recoverable, we log a warning and return. |
| * For nonrecoverable errors, an error is logged and we stop all processing |
| * as quickly as possible in order to prevent propagation of the failure. |
| */ |
| static irqreturn_t ras_error_interrupt(int irq, void *dev_id) |
| { |
| struct rtas_error_log *rtas_elog; |
| int status; |
| int fatal; |
| |
| spin_lock(&ras_log_buf_lock); |
| |
| status = rtas_call(ras_check_exception_token, 6, 1, NULL, |
| RTAS_VECTOR_EXTERNAL_INTERRUPT, |
| virq_to_hw(irq), |
| RTAS_INTERNAL_ERROR, 1 /* Time Critical */, |
| __pa(&ras_log_buf), |
| rtas_get_error_log_max()); |
| |
| rtas_elog = (struct rtas_error_log *)ras_log_buf; |
| |
| if (status == 0 && |
| rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC) |
| fatal = 1; |
| else |
| fatal = 0; |
| |
| /* format and print the extended information */ |
| log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal); |
| |
| if (fatal) { |
| pr_emerg("Fatal hardware error detected. Check RTAS error" |
| " log for details. Powering off immediately\n"); |
| emergency_sync(); |
| kernel_power_off(); |
| } else { |
| pr_err("Recoverable hardware error detected\n"); |
| } |
| |
| spin_unlock(&ras_log_buf_lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Some versions of FWNMI place the buffer inside the 4kB page starting at |
| * 0x7000. Other versions place it inside the rtas buffer. We check both. |
| */ |
| #define VALID_FWNMI_BUFFER(A) \ |
| ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \ |
| (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16)))) |
| |
| static inline struct rtas_error_log *fwnmi_get_errlog(void) |
| { |
| return (struct rtas_error_log *)local_paca->mce_data_buf; |
| } |
| |
| /* |
| * Get the error information for errors coming through the |
| * FWNMI vectors. The pt_regs' r3 will be updated to reflect |
| * the actual r3 if possible, and a ptr to the error log entry |
| * will be returned if found. |
| * |
| * Use one buffer mce_data_buf per cpu to store RTAS error. |
| * |
| * The mce_data_buf does not have any locks or protection around it, |
| * if a second machine check comes in, or a system reset is done |
| * before we have logged the error, then we will get corruption in the |
| * error log. This is preferable over holding off on calling |
| * ibm,nmi-interlock which would result in us checkstopping if a |
| * second machine check did come in. |
| */ |
| static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs) |
| { |
| unsigned long *savep; |
| struct rtas_error_log *h; |
| |
| /* Mask top two bits */ |
| regs->gpr[3] &= ~(0x3UL << 62); |
| |
| if (!VALID_FWNMI_BUFFER(regs->gpr[3])) { |
| printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]); |
| return NULL; |
| } |
| |
| savep = __va(regs->gpr[3]); |
| regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */ |
| |
| h = (struct rtas_error_log *)&savep[1]; |
| /* Use the per cpu buffer from paca to store rtas error log */ |
| memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX); |
| if (!rtas_error_extended(h)) { |
| memcpy(local_paca->mce_data_buf, h, sizeof(__u64)); |
| } else { |
| int len, error_log_length; |
| |
| error_log_length = 8 + rtas_error_extended_log_length(h); |
| len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX); |
| memcpy(local_paca->mce_data_buf, h, len); |
| } |
| |
| return (struct rtas_error_log *)local_paca->mce_data_buf; |
| } |
| |
| /* Call this when done with the data returned by FWNMI_get_errinfo. |
| * It will release the saved data area for other CPUs in the |
| * partition to receive FWNMI errors. |
| */ |
| static void fwnmi_release_errinfo(void) |
| { |
| int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL); |
| if (ret != 0) |
| printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret); |
| } |
| |
| int pSeries_system_reset_exception(struct pt_regs *regs) |
| { |
| #ifdef __LITTLE_ENDIAN__ |
| /* |
| * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try |
| * to detect the bad SRR1 pattern here. Flip the NIP back to correct |
| * endian for reporting purposes. Unfortunately the MSR can't be fixed, |
| * so clear it. It will be missing MSR_RI so we won't try to recover. |
| */ |
| if ((be64_to_cpu(regs->msr) & |
| (MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR| |
| MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) { |
| regs->nip = be64_to_cpu((__be64)regs->nip); |
| regs->msr = 0; |
| } |
| #endif |
| |
| if (fwnmi_active) { |
| struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs); |
| if (errhdr) { |
| /* XXX Should look at FWNMI information */ |
| } |
| fwnmi_release_errinfo(); |
| } |
| |
| if (smp_handle_nmi_ipi(regs)) |
| return 1; |
| |
| return 0; /* need to perform reset */ |
| } |
| |
| #define VAL_TO_STRING(ar, val) \ |
| (((val) < ARRAY_SIZE(ar)) ? ar[(val)] : "Unknown") |
| |
| static void pseries_print_mce_info(struct pt_regs *regs, |
| struct rtas_error_log *errp) |
| { |
| const char *level, *sevstr; |
| struct pseries_errorlog *pseries_log; |
| struct pseries_mc_errorlog *mce_log; |
| u8 error_type, err_sub_type; |
| u64 addr; |
| u8 initiator = rtas_error_initiator(errp); |
| int disposition = rtas_error_disposition(errp); |
| |
| static const char * const initiators[] = { |
| "Unknown", |
| "CPU", |
| "PCI", |
| "ISA", |
| "Memory", |
| "Power Mgmt", |
| }; |
| static const char * const mc_err_types[] = { |
| "UE", |
| "SLB", |
| "ERAT", |
| "TLB", |
| "D-Cache", |
| "Unknown", |
| "I-Cache", |
| }; |
| static const char * const mc_ue_types[] = { |
| "Indeterminate", |
| "Instruction fetch", |
| "Page table walk ifetch", |
| "Load/Store", |
| "Page table walk Load/Store", |
| }; |
| |
| /* SLB sub errors valid values are 0x0, 0x1, 0x2 */ |
| static const char * const mc_slb_types[] = { |
| "Parity", |
| "Multihit", |
| "Indeterminate", |
| }; |
| |
| /* TLB and ERAT sub errors valid values are 0x1, 0x2, 0x3 */ |
| static const char * const mc_soft_types[] = { |
| "Unknown", |
| "Parity", |
| "Multihit", |
| "Indeterminate", |
| }; |
| |
| if (!rtas_error_extended(errp)) { |
| pr_err("Machine check interrupt: Missing extended error log\n"); |
| return; |
| } |
| |
| pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE); |
| if (pseries_log == NULL) |
| return; |
| |
| mce_log = (struct pseries_mc_errorlog *)pseries_log->data; |
| |
| error_type = mce_log->error_type; |
| err_sub_type = rtas_mc_error_sub_type(mce_log); |
| |
| switch (rtas_error_severity(errp)) { |
| case RTAS_SEVERITY_NO_ERROR: |
| level = KERN_INFO; |
| sevstr = "Harmless"; |
| break; |
| case RTAS_SEVERITY_WARNING: |
| level = KERN_WARNING; |
| sevstr = ""; |
| break; |
| case RTAS_SEVERITY_ERROR: |
| case RTAS_SEVERITY_ERROR_SYNC: |
| level = KERN_ERR; |
| sevstr = "Severe"; |
| break; |
| case RTAS_SEVERITY_FATAL: |
| default: |
| level = KERN_ERR; |
| sevstr = "Fatal"; |
| break; |
| } |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| /* Display faulty slb contents for SLB errors. */ |
| if (error_type == MC_ERROR_TYPE_SLB) |
| slb_dump_contents(local_paca->mce_faulty_slbs); |
| #endif |
| |
| printk("%s%s Machine check interrupt [%s]\n", level, sevstr, |
| disposition == RTAS_DISP_FULLY_RECOVERED ? |
| "Recovered" : "Not recovered"); |
| if (user_mode(regs)) { |
| printk("%s NIP: [%016lx] PID: %d Comm: %s\n", level, |
| regs->nip, current->pid, current->comm); |
| } else { |
| printk("%s NIP [%016lx]: %pS\n", level, regs->nip, |
| (void *)regs->nip); |
| } |
| printk("%s Initiator: %s\n", level, |
| VAL_TO_STRING(initiators, initiator)); |
| |
| switch (error_type) { |
| case MC_ERROR_TYPE_UE: |
| printk("%s Error type: %s [%s]\n", level, |
| VAL_TO_STRING(mc_err_types, error_type), |
| VAL_TO_STRING(mc_ue_types, err_sub_type)); |
| break; |
| case MC_ERROR_TYPE_SLB: |
| printk("%s Error type: %s [%s]\n", level, |
| VAL_TO_STRING(mc_err_types, error_type), |
| VAL_TO_STRING(mc_slb_types, err_sub_type)); |
| break; |
| case MC_ERROR_TYPE_ERAT: |
| case MC_ERROR_TYPE_TLB: |
| printk("%s Error type: %s [%s]\n", level, |
| VAL_TO_STRING(mc_err_types, error_type), |
| VAL_TO_STRING(mc_soft_types, err_sub_type)); |
| break; |
| default: |
| printk("%s Error type: %s\n", level, |
| VAL_TO_STRING(mc_err_types, error_type)); |
| break; |
| } |
| |
| addr = rtas_mc_get_effective_addr(mce_log); |
| if (addr) |
| printk("%s Effective address: %016llx\n", level, addr); |
| } |
| |
| static int mce_handle_error(struct rtas_error_log *errp) |
| { |
| struct pseries_errorlog *pseries_log; |
| struct pseries_mc_errorlog *mce_log; |
| int disposition = rtas_error_disposition(errp); |
| u8 error_type; |
| |
| if (!rtas_error_extended(errp)) |
| goto out; |
| |
| pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE); |
| if (pseries_log == NULL) |
| goto out; |
| |
| mce_log = (struct pseries_mc_errorlog *)pseries_log->data; |
| error_type = mce_log->error_type; |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (disposition == RTAS_DISP_NOT_RECOVERED) { |
| switch (error_type) { |
| case MC_ERROR_TYPE_SLB: |
| case MC_ERROR_TYPE_ERAT: |
| /* |
| * Store the old slb content in paca before flushing. |
| * Print this when we go to virtual mode. |
| * There are chances that we may hit MCE again if there |
| * is a parity error on the SLB entry we trying to read |
| * for saving. Hence limit the slb saving to single |
| * level of recursion. |
| */ |
| if (local_paca->in_mce == 1) |
| slb_save_contents(local_paca->mce_faulty_slbs); |
| flush_and_reload_slb(); |
| disposition = RTAS_DISP_FULLY_RECOVERED; |
| rtas_set_disposition_recovered(errp); |
| break; |
| default: |
| break; |
| } |
| } |
| #endif |
| |
| out: |
| return disposition; |
| } |
| |
| /* |
| * Process MCE rtas errlog event. |
| */ |
| static void mce_process_errlog_event(struct irq_work *work) |
| { |
| struct rtas_error_log *err; |
| |
| err = fwnmi_get_errlog(); |
| log_error((char *)err, ERR_TYPE_RTAS_LOG, 0); |
| } |
| |
| /* |
| * See if we can recover from a machine check exception. |
| * This is only called on power4 (or above) and only via |
| * the Firmware Non-Maskable Interrupts (fwnmi) handler |
| * which provides the error analysis for us. |
| * |
| * Return 1 if corrected (or delivered a signal). |
| * Return 0 if there is nothing we can do. |
| */ |
| static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err) |
| { |
| int recovered = 0; |
| int disposition = rtas_error_disposition(err); |
| |
| pseries_print_mce_info(regs, err); |
| |
| if (!(regs->msr & MSR_RI)) { |
| /* If MSR_RI isn't set, we cannot recover */ |
| pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); |
| recovered = 0; |
| |
| } else if (disposition == RTAS_DISP_FULLY_RECOVERED) { |
| /* Platform corrected itself */ |
| recovered = 1; |
| |
| } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) { |
| /* Platform corrected itself but could be degraded */ |
| printk(KERN_ERR "MCE: limited recovery, system may " |
| "be degraded\n"); |
| recovered = 1; |
| |
| } else if (user_mode(regs) && !is_global_init(current) && |
| rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) { |
| |
| /* |
| * If we received a synchronous error when in userspace |
| * kill the task. Firmware may report details of the fail |
| * asynchronously, so we can't rely on the target and type |
| * fields being valid here. |
| */ |
| printk(KERN_ERR "MCE: uncorrectable error, killing task " |
| "%s:%d\n", current->comm, current->pid); |
| |
| _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); |
| recovered = 1; |
| } |
| |
| /* Queue irq work to log this rtas event later. */ |
| irq_work_queue(&mce_errlog_process_work); |
| |
| return recovered; |
| } |
| |
| /* |
| * Handle a machine check. |
| * |
| * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi) |
| * should be present. If so the handler which called us tells us if the |
| * error was recovered (never true if RI=0). |
| * |
| * On hardware prior to Power 4 these exceptions were asynchronous which |
| * means we can't tell exactly where it occurred and so we can't recover. |
| */ |
| int pSeries_machine_check_exception(struct pt_regs *regs) |
| { |
| struct rtas_error_log *errp; |
| |
| if (fwnmi_active) { |
| fwnmi_release_errinfo(); |
| errp = fwnmi_get_errlog(); |
| if (errp && recover_mce(regs, errp)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| long pseries_machine_check_realmode(struct pt_regs *regs) |
| { |
| struct rtas_error_log *errp; |
| int disposition; |
| |
| if (fwnmi_active) { |
| errp = fwnmi_get_errinfo(regs); |
| /* |
| * Call to fwnmi_release_errinfo() in real mode causes kernel |
| * to panic. Hence we will call it as soon as we go into |
| * virtual mode. |
| */ |
| disposition = mce_handle_error(errp); |
| if (disposition == RTAS_DISP_FULLY_RECOVERED) |
| return 1; |
| } |
| |
| return 0; |
| } |